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Bifactor and second-order factor models are two alternative approaches for repre-
senting general constructs comprised of several highly related domains. Bifactor and
second-order models were compared using a quality of life data set (N = 403). The
bifactor model identified three, rather than the hypothesized four, domain specific
factors beyond the general factor. The bifactor model fit the data significantly better
than the second-order model. The bifactor model allowed for easier interpretation of
the relationship between the domain specific factors and external variables, over and
above the general factor. Contrary to the literature, sufficient power existed to distin-
guish between bifactor and corresponding second-order models in one actual and one
simulated example, given reasonable sample sizes. Advantages of bifactor models
over second-order models are discussed.

Researchers interested in assessing a construct often hypothesize that several
highly related domains comprise the general construct of interest. In the motivat-
ing example, which is the focus of this article, Stewart and Ware (1992) proposed
measures of health-related quality of life. They hypothesized that this general con-
struct was comprised of at least four highly related domain specific factors (cogni-
tion, vitality, mental health, and disease worry). Building on earlier work (e.g.,
Hays & Stewart, 1990; Lubeck & Fries, 1993; McHorney, Ware, & Raczek, 1993,
Stewart & Ware, 1992; Ware, Davies-Avery, & Brook, 1980), these authors se-
lected 17-items to represent the four domains that were hypothesized to comprise
the general construct. Other researchers have also hypothesized general constructs
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that are comprised of several closely related domains. For examples, Costa and
McCrae (1992, 1995) hypothesized a structure for each of the five dimensions in
their revised NEO personality inventory. Jackson, Ahmed, and Heapy (1976) pro-
posed a general structure that was comprised of several domains for achievement
motivation. In these hypothesized structures, the central scientific interest lies in
the general construct. There may also be a secondary interest in whether a more fo-
cused domain specific construct may make a unique contribution, over and above
the general factor, to the prediction of external criteria.

Within confirmatory factor analysis, two alternative models (described in the
next section) have been proposed to represent the factor structure of items that as-
sess several highly related domains that are hypothesized to comprise a general
construct. Bifactor models, also known as general-specific or nested models1, are
less familiar because they have been used primarily in the area of intelligence re-
search in the recent literature (e.g., Gustafsson & Balke, 1993; Luo, Petrill,
&Thompson, 1994). Second-order models are more familiar as they have been ap-
plied in a wider variety of substantive areas, such as personality (DeYoung, Peter-
son, & Higgins, 2002; Judge, Erez, Bono, & Thoresen, 2002), self-concept
(Marsh, Ellis, & Craven, 2002), and psychological well-being (Hills & Argyle,
2002). Our first goal in this article is to illustrate the potential advantages of
bifactor models over second-order models when researchers have an interest in
predicting external criteria. Our second goal is to address concerns raised by
Mulaik and Quartetti (1997) that bifactor and second-order models may not be sta-
tistically distinguishable given sample sizes commonly used in the behavioral sci-
ences. Following our explication and comparison of the models, we address the
important issue of orthogonality constraints associated with both models in the
general discussion.

CONNECTING BIFACTOR MODELS
AND SECOND-ORDER MODELS

Bifactor models are potentially applicable when (a) there is a general factor that is
hypothesized to account for the commonality of the items; (b) there are multiple
domain specific factors, each of which is hypothesized to account for the unique
influence of the specific domain over and above the general factor; and (c) re-
searchers may be interested in the domain specific factors as well as the common
factor that is of focal interest. Figure 1 illustrates a bifactor model of health quality
of life derived from the second-order model originally proposed by Stewart and
Ware (1992). In this case there is a single quality of life factor that underlies each of
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1Holzinger and Swineford (1937) originally termed this model the bifactor model. Several recent
presentations of this model have used the term nested or general-specific model.



the items. Separately, there are domain specific factors of cognition, vitality, men-
tal health, and disease worry, each of which accounts for unique variance in its own
separate set of domain-related items. We consider the canonical bifactor model in
which the relations among the general and domain specific factors are assumed to
be orthogonal, as the domain specific factors are related to the contribution that is
over and above the general factor.
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FIGURE 1 A bifactor model of quality of life. Note. Items with acronym in parentheses.
Items that are reverse coded are denoted with (R). (a) Cognition subscale: “Have difficulty rea-
soning and solving problems?” (diffeas); “React slowly to things that were said or done?”
(sloact); “Become confused and start several actions at a time?” (confused); “Forget where you
put things or appointments?” (forget); “Have difficulty concentrating?” (diffconc). (b) Vitality
subscale: “Feel tired?” (tired); “Have enough energy to do the things you want?” (R) (enrgtic);
“Feel worn out?” (worout); “Feel full of pep?” (R) (peppy). (c) Mental health subscale: “Feel
calm and peaceful?”(R) (atpeace)? “Feel downhearted and blue?” (feelblue); “Feel very
happy”(R) (happy); “Feel very nervous?” (nervous); “Feel so down in the dumps nothing could
cheer you up? (down). (d) Disease worry subscale: “Were you afraid because of your health?”
(afraid); “Were you frustrated about your health?” (frust); “Was your health a worry in your
life?” (healthwry). Second-order factor: Quality of Life (QOL)—high scores indicate high
quality of life.



In RAM notation, the curved double headed arrows represent factor variances
for each of the latent variables and measurement error variance for each of the
measured variables. Factor loadings designated with 1 are marker variables; all
other factor loadings are estimated.

For the model in Figure 1, let vector Y represent observed variables; matrix �y

represents the factor loadings of the general and domain specific factors; vector �
represents the general and domain specific factors; and vector � represents residual
variance (uniquenesses).

The observed variables can be expressed in the following equation:

Y = �y� + �.

The first term represents the contribution of the general and domain specific
factors, the second term represents the contribution of the residual variance.2
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2The residual variance is composed of measurement error and variance that is not captured by the
general factor and the specific factors.
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The other commonly used model is the second-order model. Like bifactor mod-
els, second-order models are also used when it is hypothesized that measurement
instruments assess several highly related domains. Second-order models are po-
tentially applicable when (a) the lower-order factors are substantially correlated
with each other, and (b) there is a higher-order factor that is hypothesized to ac-
count for the relationship among the lower-order factors. Figure 2 illustrates the
second-order model of quality of life proposed by Stewart and Ware (1992). In this
hierarchical structure, quality of life is a general factor that accounts for the com-
monality among lower order factors representing each of the four domains: cogni-
tion, vitality, mental health, and disease worry. Multiple items on the measure in
turn, represent each of the lower order factors. Such second-order models can be
estimated and the fit of the second-order structure can be statistically tested so long
as four or more first order factors are hypothesized.
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FIGURE 2 A standard second-order factor model of quality of life. Note. In RAM notation,
the curved double headed arrow represents the factor variance for the second order factor
(QOL), disturbance variance for each of the first-order factors, and measurement error variance
for each of the measured variables. Factor loadings designated with 1 are marker variables; all
other factor loadings are estimated.



For the model in Figure 2, let the Y vector represent observed variables; �y

represents the loadings of the measured variables on the first-order factors; the �
vector represents the lower-order factors; the � vector represents the loadings of
the lower-order factors on the higher-order factor; the � vector represents the
higher-order factor; the � vector represents the disturbances of the lower-order
factors (unique variance that is not shared with the common higher-order factor);
and the � vector represents the residuals. The equations for the second-order
model are:

� = �� + �

Y = �y� + �.

The first equation above represents the structure for each of the lower order fac-
tors; the second equation above represents the measurement model for the ob-
served variables.

Early work suggested that the bifactor and second-order models are mathemati-
cally equivalent (Wherry, 1959). However, newer work by several researchers
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(Gustafsson & Balke, 1993; McDonald, 1999; Mulaik & Quartetti, 1997; Yung,
Thissen, & McLeod, 1999) has independently pointed out that these two models
are not generally equivalent. A bifactor model and a second-order model are math-
ematically equivalent only when proportionality constraints are imposed using the
Schmid-Leiman transformation method (Schmid & Leiman, 1957). The
Schmid-Leiman transformation imposes two specific constraints: (a) the factor
loadings of the general factor in the bifactor model must be the product of the cor-
responding lower-order factor loadings and the second-order factor loadings in the
second-order models (Mulaik & Quartetti, 1997); and (b) the ratio of the general
factor loading to its corresponding domain specific factor loading is the same
within each domain specific factor (Yung, et al., 1999).

Yung et al. (1999) have used the generalized Schmidt-Leiman transformation,
in which no proportionality constraints are imposed, to demonstrate that sec-
ond-order models are in fact nested within the bifactor models (see also Rindskopf
& Rose, 1988). For every bifactor model (see Figure 1), there is an equivalent full
second-order model with direct effects (factor loadings) from the second-order
factor to every observed variable, over and above the second-order effect on the
lower order factors (see Figure 3). A standard second-order model (see Figure 2) is
a special case (constrained version) of the full second-order model with the direct
effects from the second-order factor to the observed variables eliminated. In other
words, the “reduced” second-order model is more restricted than the full sec-
ond-order model, which is equivalent to the bifactor model. Consequently, the “re-
duced” second-order model is more restricted than the bifactor model (A is nested
in B, B is equal to C, so that A is nested in C).

Although the second-order model is not mathematically equivalent to the
bifactor model, these two models have similar interpretations (Gustafsson &
Balke, 1993). First, the second-order factor in the second-order model corresponds
to the general factor in the bifactor model; second, the disturbances of the first-or-
der factors in the second-order model resemble the domain specific factors in the
bifactor model; and third, in the bifactor model the general factor and the domain
specific factors are assumed to be orthogonal paralleling the representation in the
second-order model in which the second-order factor and the disturbances (unique
factors) are defined to be orthogonal. However, the differences between the two
models become more important when researchers are also interested in the contri-
bution of the one or more of the domain specific factors over and above the gen-
eral/second-order factor.

ADVANTAGES OF BIFACTOR MODELS

Bifactor models have several potential advantages over second-order models, par-
ticularly when researchers may be interested in the predictive relationships be-
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tween domain specific factors and external criteria, over and above the gen-
eral/second-order factor. First, a bifactor model can be used as a less restricted
baseline model to which a second-order model can be compared, given that the
second-order model is nested within the bifactor model (Yung et al., 1999). A like-
lihood ratio test (chi-square difference test) can be used to distinguish the two
models.

Second, the bifactor model can be used to study the role of domain specific fac-
tors that are independent of the general factor. For example, drawing on
Spearman’s (1927) conception of general and domain specific factors, suppose
there is factor of general intelligence of focal interest as well as domain specific
factors of intelligence-related abilities such as verbal, spatial, mathematical, and
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FIGURE 3 A full second-order factor model of quality of life with direct effects from the sec-
ond-order factor to the observed variables. Note. In RAM notation, the curved double headed
arrow represents the factor variance for the second-order factor (QOL), disturbance variance for
each of the first-order factors and measurement error variance for each of the measured vari-
ables. Factor loadings designated with 1 are marker variables; all other factor loadings are esti-
mated. To achieve identification, there is no path from QOL to each of the measured variables
that serves as a marker for a first order factor.



analytic. However, suppose that verbal ability reflects only general intelligence,
whereas spatial, mathematical, and analytic abilities still exist as specific domains,
even after partialling out general intelligence. In this example, verbal ability will
not exist as a domain specific factor in the bifactor model. If verbal ability is then
included as a hypothesized domain specific factor in the bifactor model, problems
in estimation will occur because of identification problems due to factor
overextraction (Rindskopf, 1984). These identification problems will be mani-
fested in two primary ways: (a) factor loadings of the verbal domain specific factor
will be small and nonsignificant; and (b) the variance of the verbal factor will not
be significant. In this example the common variance in the verbal ability items is
entirely explained by the general intelligence factor. However, such problems will
typically not be easily discovered in the second-order model, as verbal ability will
legitimately exist as a lower-order factor. The second-order factor model will man-
ifest the nonexistence of the domain specific factor in the variance of the distur-
bance of the lower order factor. The variance of the disturbance may not be signifi-
cant as it represents the domain specific verbal ability factor. The lack of
significance in the variance of the disturbance will typically not cause any problem
in a model, and therefore, the possibility that one or more of the domain specific
factors may not exist can be easily glossed over by researchers examining the out-
put from second-order models.

Third, in the bifactor model, we can directly examine the strength of the rela-
tionship between the domain specific factors and their associated items, as the rela-
tionship is reflected in the factor loadings, whereas these relationships cannot be
directly tested in the second-order factor model as the domain specific factors are
represented by disturbances of the first-order factors.

Fourth, the bifactor model can be particularly useful in testing whether a subset of
the domain specific factors predict external variables, over and above the general
factor, as the domain specific factors are directly represented as independent factors
(Gustafsson & Balke, 1993). Domain specific factors (disturbances) may also be
used to predict external criteria, over and above the second-order factor, in sec-
ond-order models, but such tests may require the use of nonstandard structural equa-
tion models (Bentler, 1990). That is, the disturbances of the first-order factors must
be used as predictors (Gustafsson & Balke, 1993). However, such nonstandard mod-
els are not easily implementable in many of the standard structural equation model-
ing software packages and the results may be difficult to explain to substantive re-
searchers. Of importance, with either approach only a limited set of domain specific
factors may be included with the general factor in the prediction of an external crite-
rion. Otherwise, exact linear dependence of the predictors will result and the model
cannot be properly estimated. Most current structural equation modeling software
does not include adequate checks to reliably detect this problem.

Fifth, in the bifactor model, we can test measurement invariance of the domain
specific factors, in addition to the general factor in different groups (e.g., males vs.
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females). In contrast, in the second-order model, only the second-order factor can
be directly tested for invariance between groups, as the domain specific factors are
represented by disturbances. Measurement invariance involves testing the equiva-
lence of measured constructs in two or more independent groups to assure that the
same constructs are being assessed in each group.

Finally, in the bifactor model, latent mean differences in both the general and
domain specific factors can be compared across different groups, given an ade-
quate level of measurement invariance. In contrast, in the second-order model
only the second-order latent means can be directly compared. For example, us-
ing a bifactor model, Gustafsson (1992) was able to compare latent mean differ-
ences between white and black participants in general intelligence as well as
three domain specific abilities: “broad” verbal ability, “broad” spatial-figure
ability, and “narrow” memory span ability. In their Swedish sample it was found
that the white participants scored higher than black participants on all abilities
except for memory span.

POWER

The second goal of the study is to examine whether there is sufficient power to dif-
ferentiate the bifactor and second-order models. A common strategy for estimating
the power of differentiating two nested models in structural equation modeling
was developed by Satorra and Saris (1985). The likelihood ratio chi-square statis-
tic is calculated for the target model and more restricted model, respectively. The
difference in the chi-square statistic between the target model and the more re-
stricted model is the noncentrality parameter of the noncentral chi-square distribu-
tion. The noncentrality parameter and the difference in degrees of freedom be-
tween the two models are used in the estimation of statistical power.

Mulaik and Quartetti (1997) conducted an investigation to examine whether
there is enough power to distinguish between the bifactor and second-order mod-
els. In the initial example of Mulaik and Quartetti, they generated a population
covariance matrix based on a hypothetical second-order model. As expected from
theory, the second-order and the bifactor factor models both fit the covariance ma-
trix almost perfectly, because the second-order model is more restricted than the
bifactor model. Based on the second-order model, they also set up a
Schmid–Leiman decomposition table with proportionality constraints. In other
examples, they used this Schmid–Leiman decomposition table to generate bifactor
models except that they slightly perturbed some of the loadings in the table so that
the bifactor models would be similar but not equivalent to the corresponding sec-
ond-order models. Population covariance matrices were generated based on these
perturbed bifactor models. In Example 2, an incomplete second-order model with
n = 1,000 was fit to the population covariance matrix based on a perturbed incom-
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plete bifactor model, yielding �2(101) = 3.59. In Example 3, a complete second-or-
der model was fit to the population covariance matrix based on a perturbed com-
plete bifactor model, yielding �2(100) = 18.81 and 37.66 for sample sizes of 500
and 1000, respectively. The �2 statistic obtained from the second-order model was
used as the noncentrality parameter to calculate power.

Of importance, instead of calculating the power to distinguish between the
bifactor and second-order models (i.e., comparing the two nested models), Mulaik
and Quartetti (1997) calculated the power to reject the null hypothesis that the sec-
ond-order model could have generated the population covariance matrix from the
perturbed bifactor model (i.e., an omnibus test of the absolute fit of the second-or-
der model to the data). Two independent population covariance matrices were gen-
erated and tested, the first with a sample size of 1,000, and the second with sample
sizes of 500 and 1,000. It was found that the power to distinguish the two models
was .35 for a sample of 500, and for two independent samples of 1,000, the power
ranged from .18 to .75. Based on these results, Mulaik and Quartetti concluded that
the power to distinguish the second-order model from the bifactor model is unac-
ceptably low for sample sizes commonly used in behavioral science research.

There are two possible reasons that may account for the low power observed in
Mulaik and Quartetti’s (1997) study to differentiate the two models. The first rea-
son is that Mulaik and Quartetti focused on the omnibus test of absolute fit rather
than the focused test comparing the nested bifactor and second-order models.
When we recalculated the power based on the nested models using the data pro-
vided in the Mulaik and Quartetti article, power increased from .35 to .84 for the
sample of 500, and the power increased from .08 (not .18) to .20, and from .75 to
> .99, respectively3, for two independent samples of 1,000. The second reason is
related to the particular covariance matrices used in the study. As discussed earlier,
the Schmid-Leiman transformation puts proportionality constraints on the factor
loadings of the general factor and domain specific factors in the bifactor model. In
Examples 2 and 3, Mulaik and Quartetti made changes to the Schimid-Leiman
transformation table produced by the second-order model; however, only very
small changes were made. The factor loadings in the perturbed bifactor models de-
viated by only .01 to .05 from those produced by the Schmid–Leiman transforma-
tion. Thus, the factor loadings still generally followed the proportionality con-
straints. The very small value of the obtained noncentrality parameter is consistent
with this view, although it is difficult to interpret in the absence of a familiar metric
for model comparisons. MacCallum, Browne, and Cai (2006) have tentatively sug-
gested the change in the RMSEA may provide a useful “standardardized” metric in
power analysis for assessing the degree of discrepancy between two confirmatory
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factor models. The RMSEAs for both the complete second-order and the complete
bifactor models (Example 3) evaluated by Mulaik and Quartetti were 0. These re-
sults strongly suggest that the lack of power observed by Mulaik and Quartetti was
the result of the trivial amount of discrepancy between the two models. We sought
to examine the power to detect the difference between the bifactor and second-or-
der models in the more general situation in which proportionality constraints are
not imposed on the models and a nontrivial amount of misspecification existed.

STUDY 1

The bifactor and second-order factor structures of a 17-item health-related quality
of life measurement from the AIDS Time-Oriented Health Outcome Study
(ATHOS) were compared. ATHOS is a longitudinal observational database that at-
tempted to represent a population of people with HIV-associated illness cared for
by community-based providers. The sample was collected in the early 1990s from
three community-based providers in the greater San Francisco area, two private
practices in Los Angeles, and five community clinics in San Diego. As noted
above, the measurement of health-related quality of life is composed of four
subscales: Cognition, Vitality, Mental Health, and Disease Worry. Brief descrip-
tions of the full set of items are given in the caption to Figure 1. Items were an-
swered on a 5-point scale ranging from 1 (all of the time) to 5 (never) so that high
scores on the scale represent high quality of life.

To examine the relationship between a domain specific factor and an external
criterion variable, over and above the relationship between the general factor and
the criterion variable, a measure of social functioning was also included. Social
functioning has been defined as “the ability to develop, maintain, and nurture ma-
jor social relationships” (Sherbourne, 1992, p. 173). Social functioning has been
considered as being indicative of physical and mental health status. Lubeck and
Fries (1993) developed a social functioning question as part of their battery of
self-administered measures of quality of life. The question is, “Compared to your
usual level of social activity, in the past three months, has your level of social activ-
ity decreased, stayed the same, or increased because of a change in your physical
health or concern about your health?” The responses are 1 “far less active than
usual,” 2 “somewhat less active than usual,” 3 “as active as usual,” 4 “somewhat
more active than usual,” and 5 “much more active than usual.”

We limited the sample to participants who had either a part-time or full-time job
at the time of assessment. We wanted to be certain that no participant in the sample
was so debilitated by physical illness as to seriously restrict social functioning. We
further limited our sample to White Caucasian males. A relatively small number of
Caucasian female (6) and non-Caucasian (67) participants were also included in
the original sample. We excluded these individuals to achieve a more homoge-
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neous sample. This resulted in a sample size of 403 with a mean age of 40. All par-
ticipants were HIV-positive at the time of their enrollment into the study. We used
the data from each participant’s initial measurement following enrollment.

We investigated the two alternative hypothesized structures for the quality of
life instrument. First, we investigated a bifactor structure in which there is a gen-
eral factor of global quality of life and domain specific factors of cognition, vital-
ity, mental health, and disease worry (see Figure 1). Second, we investigated a sec-
ond-order factor structure for the quality of life instrument, with cognition, vitality,
mental health, and disease worry as the lower-order factors, and global quality of
life as the higher-order factor (Stewart & Ware, 1992) (see Figure 2). We con-
ducted tests of the factor structure using confirmatory factor analysis (CFA) based
on the covariance structure. Analyses were conducted in two major stages using
the Mplus 3.01 program (Muthén & Muthén, 1998) and maximum likelihood esti-
mation. First, CFA procedures were used to test the fit of the bifactor and sec-
ond-order factor models, respectively. Second, given findings of model tenability,
the domain specific factors and the general/second-order factor were used to pre-
dict the external criterion variable, social functioning. Maximum likelihood proce-
dures were used because initial examination of the data did not show evidence of
excessive non-normality4 (skewness: median = –.47; range = –1.04 to –.01; excess
kurtosis: median = –.04; range = –.40 to .65). The covariance matrix for the 17
items is presented in Table 1.

Test of the Unrestricted Four-Factor Model

Before testing the hypothesized models, an unrestricted exploratory four-factor
model was tested. An unacceptable fit of the unrestricted model would prevent fur-
ther tests of more restricted models (Jöreskog, 1979; Mulaik & Millsap, 2000). We
used conventional criteria for three fit indices that are widely used in the literature.
Browne and Cudeck (1993) stated that “a value of the RMSEA of about 0.05 or
less would indicate a close fit of the model” and “a value of 0.08 or less would indi-
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4We also addressed non-normality by comparing the results obtained with alternative estimators.
First, we used the alternative WLSMV estimator for ordered categorical data available in Mplus
(Muthén & Muthén, 1998). The fit does not change substantially except for RMSEA, which becomes
worse. For example, for the incomplete bifactor model, with WLSMV estimation, �2 = 79.69 (df = 45),
RMSEA = .086 (vs. .058 with ML); WRMR = .949 (vs. SRMR = .038 with ML, although these indices
are not directly comparable because they are in different metrics); CFI = .964 (vs. .966 with ML). Sec-
ond, we also explored alternative estimators in the Satorra-Bentler family. Neither MLR (with robust
standard errors) nor MLMV (with robust standard errors and a mean- and variance-adjusted chi-square
test statistic) significantly improved model fit. With MLR, �2 = 232.76 (df = 107), RMSEA = .054 (vs.
.058 with ML); SRMR = .036 (vs. .038 with ML); CFI = .966 (vs. .966 with ML); With MLMV, �2 =
152.29 (df = 70), RMSEA = .054 (vs. .058 with ML); SRMR = .036 (.038 with ML); CFI = .965 (vs.
.966 with ML). These results are generally consistent with the conclusions of a review by West, Finch,
and Curran (1995) on the effects of non-normality on fit.
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TABLE 1
Covariance Matrix of Health Related Quality of Life Items (Study 1)

y 0.644
x1 0.205 0.667
x2 0.160 0.370 0.634
x3 0.220 0.505 0.400 0.763
x4 0.176 0.447 0.335 0.522 0.711
x5 0.195 0.532 0.376 0.511 0.491 0.763
x6 0.280 0.239 0.208 0.263 0.215 0.261 0.571
x7 0.284 0.228 0.218 0.245 0.179 0.230 0.386 0.773
x8 0.270 0.253 0.231 0.283 0.234 0.292 0.428 0.378 0.596
x9 0.305 0.235 0.212 0.256 0.180 0.270 0.390 0.376 0.405 0.641
x10 0.160 0.211 0.190 0.289 0.211 0.278 0.266 0.264 0.256 0.333 0.590
x11 0.203 0.286 0.228 0.292 0.240 0.329 0.321 0.309 0.312 0.329 0.413 0.683
x12 0.193 0.224 0.184 0.239 0.177 0.248 0.289 0.299 0.262 0.378 0.393 0.366 0.657
x13 0.193 0.361 0.282 0.397 0.322 0.399 0.319 0.264 0.306 0.322 0.366 0.412 0.298 0.812
x14 0.258 0.353 0.266 0.329 0.264 0.349 0.327 0.333 0.343 0.352 0.365 0.498 0.380 0.447 0.765
x15 0.250 0.293 0.255 0.325 0.232 0.339 0.277 0.339 0.326 0.306 0.365 0.439 0.325 0.434 0.414 0.936
x16 0.319 0.272 0.233 0.321 0.233 0.321 0.331 0.340 0.378 0.370 0.356 0.422 0.354 0.385 0.397 0.623 0.855
x17 0.235 0.255 0.239 0.291 0.215 0.271 0.277 0.304 0.296 0.335 0.345 0.399 0.336 0.377 0.339 0.669 0.584 0.940

Note. y-social functioning; x1-diffeas; x2-sloract; x3-confsed; x4-forget; x5-diffconc; x6-tired; x7-enrgtic; x8-worout; x9-peppy; x10-atpeace;
x11-feelblue; x12-happy; x13-nervous; x14-down; x15-afraid; x16-frust; x17-hlthwry. N = 403. See caption to Figure 1 for full description.



cate a reasonable error of approximation” (p. 144). Based on their extensive simu-
lation study, Hu and Bentler (1999) recommended cutoffs of .95 for the CFI, and
.08 for the SRMR, respectively.

The four-factor unrestricted model was defined as the follows: (a) there were
four common factors: cognition, vitality, mental health, and disease worry; (b) a
marker item was chosen for each factor5, and the marker variable’s loading on the
factor that was designed to measure was freely estimated and was set to 0 on the
other factors (Jöreskog, 1979; Mulaik & Millsap, 2000); (c) other non-marker
items were allowed to load on all factors; (d) the four factors were correlated with
each other; and (e) error terms associated with each item were uncorrelated. To
identify the model, the variances of the factors were set to 1.

As can be seen from Table 2, �2(74) = 165.99, p < .001; RMSEA was .056 (ns);
SRMR was .018; and CFI was .978. Given an adequate fit of the unrestricted model
to the data, further analyses were conducted.

Test of the Bifactor Model

Testing the Hypothesized Bifactor Model (Figure 1). The bifactor factor
model hypothesized that the responses could be explained by one general factor,
which we term global health-related quality of life, and four domain specific fac-
tors: cognition, vitality, mental health, and disease worry. The model was defined
as the following: (a) each item had a nonzero loading on the factor that was de-
signed to measure, and zero loadings on the other factors; (b) the five factors were
uncorrelated with each other; and (c) error terms associated with each item were
uncorrelated. To identify the model, in addition to setting one of the factor loadings
in the general factor to 1, one of the loadings in each of the domain specific factors
was also set to 1. The variances of the factors were estimated.

The fit statistics are presented in Table 2 and the unstandardized and standard-
ized factor loadings are presented in Table 3. As can be seen from Table 2, �2(102)
= 206.79, p < .001; RMSEA was .050 (ns); SRMR was .033; and CFI was .975, in-
dicating an adequate fit of the data.

It is important to note that 4 of the 5 factor loadings for the mental health factor
(Table 3) were not significant, and, contrary to prediction, 3 of the 5 factor loadings
were negative (items had been reverse scored). In addition, the variance of the
mental health factor was nonsignificant and negative, –.06, ns (Heywood case), in-
dicating that the model was misspecified. Standardized solutions related to the
mental health factor were not calculated because of the negative variance estimate
for this factor. These results suggest that mental health may not exist as a domain
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5The choice of the specific item among the items that are hypothesized to measure a given factor to
serve as the marker variable is arbitrary (Mulaik & Millsap, 2000). For simplicity, we chose the first
item of each factor.



specific factor, over and above the general factor, and that the variance related to
mental health is explained by the general factor.

Testing the Incomplete Bifactor Factor Model (Figure 4). The bifactor
modelwas thenmodifiedby removing thementalhealthdomainspecific factor from
the model. This consists of an incomplete bifactor model, and the factor loadings are
presented in Table 4. As can be seen from Table 2, �2(107) = 252.10, p < .001;
RMSEA was .058 (ns); SRMR was .036; and CFI was .966. These results indicate an
adequate fit of the data6. No problems with any of the estimates were observed.

Test of the Second-Order Factor Model

Testing a second-order factor model with direct effects that is equivalent
to the bifactor model (Figure 3). The second-order factor model hypothe-
sized that the responses to quality of life could be explained by four first-order fac-
tors (cognition, vitality, mental health, and disease worry) and further, by one sec-
ond-order factor of quality of life underlying the first-order factors. Yung et al.
(1999) demonstrated that for every bifactor model, there is an equivalent sec-
ond-order model with direct effects from the second-order factor to the observed
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TABLE 2
Summary of Fit Statistics for Bifactor and Second-Order Models

of Quality of Life (Study 1)

Bifactor vs. Second

x2 df RMSEA SRMR CFI ∆x2 ∆df Power

Unrestricted four-factor model 165.99* 74 .056
(ns)

.018 .978

Bifactor model (Figure 1) 206.79* 102 .050
(ns)

.033 .975

Second-order model with direct
effects (Figure 3)

206.79* 102 .050
(ns)

.033 .975

Second-order model (Figure 2) 279.35* 115 .060 .040 .961 72.56* 13 >.99
Incomplete bifactor model

(Figure 4)
252.10* 107 .058

(ns)
.036 .966

Incomplete second-order model
(Figure 5)

292.62* 117 .061 .053 .959 40.52* 10 >.99

Note. N = 403. RMSEA = root mean square error of approximation; SRMR = standardized root mean
square residual; CFI = comparative fit index.

*p < .001.

6It is possible that another model with additional parameters may fit these data better. To facilitate
exploration of alternative models, the covariance matrix is provided in Table 1.
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TABLE 3
Factor Loadings From Bifactor Model and Second-Order Factor Model With Direct Effects From the Second-Order Factor

to the Observed Variables (Study 1)

Bifactor Model (Figure 1) Second-Order Model With Direct Effects (Figure 3)

Item/Factor General Factor Cognition Vitality Mental Health Disease Worry Second-Order Cognition Vitality Mental Health Disease Worry

diffeas 1.000 (.566)a 1.000 (.635) 0c 1.000 (.851)

sloract .819 (.476) .702 (.458) .116 (.068) .702 (.613)

confsed 1.061 (.562) 1.054 (.626) .007 (.004) 1.054 (.839)

forget .830 (.455) 1.078 (.664) –.248 (–.136) 1.078 (.889)

diffconc 1.108 (.587) 1.006 (.598) .102 (.054) 1.006 (.801)

tired 1.059 (.649) 1.000 (.562) 0c 1.000 (.858)

enrgtic 1.044 (.549) .803 (.388) .193 (.102) .803 (.592)

worout 1.070 (.641) 1.021 (.561) –.012 (–.007) 1.021 (.857)

peppy 1.166 (.673) .733 (.388) .390 (.225) .733 (.593)

atpeace 1.207 (.727) 1.000 0c 1.000 (.637)

feelblue 1.460 (.817) –.415b 1.964 (1.099) –.417 (–.247)

happy 1.212 (.692) –1.005b 2.426 (1.384) –1.005 (–.607)

nervous 1.376 (.706) –.476b 1.951 (1.001) –.476 (–.258)

down 1.477 (.781) .251b 1.175 (.621) .251 (.140)

afraid 1.367 (.653) 1.000 (.574) 0c 1.000 (.870)
frust 1.358 (.679) .730 (.439) .360 (.180) .730 (.665)
Hlthwry 1.248 (.595) .983 (.564) –.096 (–.046) .983 (.854)
Cognition 1.000 (.665)
Vitality 1.059 (.756)
Mental
health

1.207 (1.141)

Disease
worry

1.367 (.751)

Note. N = 403.
aCompletely standardized solution is included in parentheses. bFactor loading was not significant, and the standardized solution could not be computed due to

Heywood case. cFactor loading of the direct effect was set to zero for identification purposes.



variables. To illustrate the equivalence between the bifactor and second-order
models, direct effects from the second-order factor to the observed variables were
added. The model was defined as the following.

1. Each item had a nonzero loading on the first-order factor that it was de-
signed to measure, and zero loadings on the other first-order factors. One of
the lower-order factor loadings for each factor was set to 1 and variances of
the factors were estimated.

2. The covariance among the first-order factors was explained by a sec-
ond-order factor. One of the second-order factor loadings for each factor
was set to 1, and the variance of the second-order factor was estimated.

3. Of importance and different from the regular second-order model, there
was a direct effect from the second-order factor to each item as well; that is,
each item had a nonzero loading on the second-order factor. The loadings
of items 1 (diffeas), 6 (tired), 10 (atpeace), and 15 (afraid) on the corre-
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FIGURE 4 An incomplete bifactor model of quality of life. Note. In RAM notation, the
curved double headed arrows represent factor variances for each of the latent variables and mea-
surement error variance for each of the measured variables. Factor loadings designated with 1
are marker variables; all other factor loadings are estimated.
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TABLE 4
Factor Loadings from the Incomplete Bifactor Model and Incomplete Second-Order Factor Model (Study 1)

Incomplete Bifactor Model (Figure 4) Incomplete Second-Order Model (Figure 5)

Item/Factor
General
Factor Cognition Vitality

Mental
Health

Disease
Worry

Second-
Order Cognition Vitality

Mental
Health

Disease
Worry

diffeas 1.000 (.555) 1.000 (.646) 1.000 (.874)
sloract .824 (.469) .701 (.465) .730 (.680)
confsed 1.078 (.559) 1.040 (.628) 1.012 (.848)
forget .839 (.451) 1.064 (.666) .914 (.797)
diffconc 1.119 (.581) 1.001 (.605) 1.018 (.853)
tired 1.072 (.643) 1.000 (.568) 1.000 (.846)
enrgtic 1.060 (.546) .803 (.392) .934 (.679)
worout 1.081 (.634) 1.026 (.570) 1.014 (.840)
peppy 1.194 (.676) .724 (.388) .987 (.788)
atpeace 1.296 (.764) 1.000 (.725)
feelblue 1.489 (.816) 1.265 (.818)
happy 1.253 (.701) 1.045 (.690)
nervous 1.388 (.698) 1.187 (.705)
down 1.504 (.779) 1.281 (.784)
afraid 1.389 (.650) 1.000 (.579) 1.000 (.860)
frust 1.379 (.676) .733 (.444) .914 (.823)
hlthwry 1.271 (.594) .977 (.564) .938 (.805)
Cognition 1.000 (.707)
Vitality .935 (.783)
Disease worry 1.199 (.771)

Note. N = 403. Parenthetical values are completely standardized solution.



sponding first-order factors were set to 0 for identification purposes (see
caption to Figure 1 for descriptions of items).

4. Error terms associated with each item were uncorrelated.

The fit statistics are presented in Table 2. The unstandardized and standardized
factor loadings are presented in Table 3.

As can be seen in Table 2, the fit statistics were exactly the same as in the
bifactor model, consistent with the expected mathematical equivalence of the full
second-order model. Further, Table 3 shows that the unstandardized factor load-
ings of the domain specific factors in the bifactor factor were identical to the load-
ings for the lower-order factors in the full second-order model, although the stan-
dardized solutions differ. The relationships between the standardized factor
loadings in the bifactor model and the second-order factor model are more com-
plex. Following the development in Yung et al. (1999), these relationships can be
specified as follows.

Let �second be the standardized factor loading of the second-order factor, �first
be the standardized factor loadings of the first-order factors, and �direct be the
standardized factor loading of the direct effect from the second-order factor in the
full second-order model.

Let �general be the standardized factor loading of the general factor, and
�specific be the standardized factor loading of the domain specific factor in the
bifactor model.

The standardized second-order factor loadings can be solved uniquely using the
factor loadings of the general factor and domain specific factor of the variables that
havebeenfixed to0, that is, “diffeas,”“tired,”“atpeace,”and“afraid,” respectively:

sign (�specific) is +1 if �specific is positive and –1 if �specific is negative.

where .566 and .635 are the general and domain specific factor loadings of item
“diffeas.”
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where .649 and .562 are the general and domain specific factor loadings of item
“tired.”

where .653 and .574 are the general and domain specific factor loadings of item
“afraid.”

�second3 could not be solved because the domain specific factor loading of
item “atpeace” was not available due to model misspecification.

After solving the second-order factor loadings, factor loadings of the direct ef-
fects can be solved using the following equation:

For example, for item “sloract,”

Using the factor loadings of direct effect and second-order factors, first-order fac-
tor loadings can be solved as follows:

For example, for item “sloract,”

Testing the standard second-order factor model (Figure 2). The stan-
dard second-order model was specified in the following way: (a) each item had a
nonzero loading on the first-order factor (cognition, vitality, mental health, disease
worry) that it was designed to measure and a zero loading on each of the other
first-order factors; (b) error terms associated with each item were uncorrelated;
and (c) all covariance between each pair of the first-order factors was explained by
a higher-order factor—global health-related quality of life. To identify the model,
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in addition to setting one of the factor loadings in the second-order factor to 1, one
of the loadings in each of the lower-order factors was also set to 1. The variance of
the second-order factor was estimated.

As can be seen from Table 2, the �2(115) = 279.35, p < .001; RMSEA was .060;
SRMR was .040; and CFI was .961, indicating an adequate fit of the data. The stan-
dardized disturbance of mental health factor was significant, but the size was very
small, .086, p < .05, indicating that 91.4% of variance of the mental health factor
was explained by the second-order factor.

Testing the incomplete second-order factor model (Figure 5). As dis-
cussed earlier, the standard second-order model (Figure 2) is a reduced form of the
full second-order model (Figure 3), which is equivalent to the bifactor model (Fig-
ure 1). Therefore, the standard second-order model (Figure 2) is nested within the
bifactor model (Figure 1). Yung et al. (1999) have further demonstrated that this re-
lationship can be applied to incomplete bifactor and second-order models. To nest
a second-order model within the incomplete bifactor model (Figure 4), an incom-
plete second-order model (Figure 5) was tested. That is, the full second-order fac-
tor model (Figure 3) was modified by removing the mental health first-order factor
and, further, removing the direct effects from the second-order factor to the mea-
sured items that are associated with mental health factor. The factor loadings are
presented in Table 4. As can be seen from Table 2, the �2(117) = 292.62, p < .001;
RMSEA was .061; SRMR was .053; and CFI was .959, indicating an adequate fit
of the data. The chi-square difference test between the incomplete second-order
model (Figure 5) and the incomplete bifactor model (Figure 4) was significant,
��2 = 54.44 (�df = 10), p < .001, indicating that incomplete bifactor model (Figure
4) fit the data better than the incomplete second-order factor model (Figure 5).

If we assume that the incomplete bifactor model is the true model, the power to
differentiate the incomplete bifactor and incomplete second-order models may be
calculated using procedures developed by Satorra and Saris (1985). (The SAS pro-
gram used to calculate the power for the chi-square difference test between the in-
complete bifactor and second-order models at the .05 alpha level is given in the
Appendix.) Given our sample size of 403, the power to differentiate the two mod-
els exceeded .99. Of note, the difference in RMSEAs between the two models was
.003, indicating that a relatively small discrepancy could be detected.

Prediction of an External Criterion

Researchers may wish to answer the question of whether one (or more) of the do-
main specific factors predicts an external criterion over and above the general fac-
tor. Researchers may address this question so long as they do not include all do-
main specific factors (here, four domain specific factors) and the general factor
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simultaneously in the model, a specification that introduces a linear dependency
among the predictors.

Analysis using the conditional incomplete bifactor model (Figure 6).We
tested whether the three domain specific factors in the conditional bifactor model
would predict social functioning over and above the general quality of life factor.
Each of the three domain specific factors and the general factor were used to pre-
dict social functioning simultaneously. The fit statistics are presented in Table 5.
The �2 (120) = 280.47, p < .001; CFI was .963, indicating an adequate fit of the
data. As can be seen from Table 6, the general quality of life factor predicted social
functioning, standardized coefficient 	 = .42, z = 7.35, p < .001. Of the three do-
main specific factors, “vitality” predicted social functioning over and above the
general factor, 	 = .35, z = 6.13, p < .001, “disease worry” also predicted social
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FIGURE 5 An incomplete second-order model of quality of life. Note. In RAM notation, the
curved double headed arrow represents the factor variance for the second-order factor (QOL),
disturbance variance for each of the first-order factors and measurement error variance for each
of the measured variables. Factor loadings designated with 1 are marker variables; all other fac-
tor loadings are estimated.



functioning, 	 = .13, z = 2.41, p < .01, whereas “cognition” failed to reach statisti-
cal significance, 	 = .08, z = 1.73, ns. Note that disease worry was reverse scored so
that high scores indicate low levels of disease worry, accounting for the positive
sign of the path coefficient.

Analysis using the conditional incomplete second-order factor model
(Figure 7). The Bentler and Weeks (1980) representation implemented in EQS
(Bentler, 1995) permits similar tests based on second-order models.7 Once again,
we tested whether the domain specific factors would predict social functioning
over and above the second-order factor quality of life using the incomplete sec-
ond-order model. The disturbances of the lower-order factors “vitality,” “cogni-
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FIGURE 6 Predicting an external criterion: A conditional incomplete bifactor model of qual-
ity of life. Note. In RAM notation, the curved double headed arrows represent factor variances
for each of the latent variables and measurement error variance for each of the measured vari-
ables. Factor loadings designated with 1 are marker variables; all other factor loadings and
paths are estimated.

7The conditional second-order model is a nonstandard model (Bentler, 1990) in which disturbances
are used to predict external variables. As with the bifactor model, specification of a model that includes
all four disturbances of the first order factors as well as the general factor produces a linear dependency
among the predictors.



tion,” and “disease worry,” which correspond to the domain specific factors from
the bifactor model, and the second-order factor, which corresponds to the general
factor in the bifactor model, were used to predict social functioning using the EQS
5.7 program. The fit statistics are presented in Table 5. The �2(130) = 316.48, p <
.001; CFI was .958, indicating an adequate fit of the data.

As can be seen from Table 6, the estimates from the second-order model are
very similar to those from the bifactor model. The second-order factor predicted
social functioning, 	 = .42 (vs. .42 in the bifactor model), z = 8.27, p < .001. In ad-
dition, social functioning was predicted by the disturbances of the first order fac-
tors of “vitality,” 	 = .37 (vs. .35 in the bifactor model), z = 6.59, p < .001 and “dis-
ease worry,” 	 = .15 (vs. .13 in the bifactor model), z = 2.76, p < .01, whereas the
disturbance of the first order factor “cognition” did not predict social functioning,
	 = .09 (vs. .08 in the bifactor model), z = 1.89, ns.
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TABLE 5
Summary of Fit Statistics for Conditional Bifactor and Second-Order

Models of Quality of Life (Outcome on Bifactor/Second and Three Domain
Specific Factors) (Study 1)

Second vs. Bifactor

x2 df RMSEA SRMR CFI ∆χ2 ∆df Power

Conditional bifactor
model (Figure 6)

280.47* 120 NA NA .963

Conditional second-order
model (Figure 7)

316.48* 130 NA NA .958 36.01* 10 >.99

Note. N = 403.
*p < .001.

TABLE 6
Regression Coefficients for the Conditional Incomplete Bifactor

and Second-Order Models of Quality of Life (Study 1)

Factor  (N = 403) Bifactor Factor Second-Order Factor

General/Second-order .73** (.42) .62** (.42)
Cognition .13 (.08) .14 (.09)
Vitality .65** (.35) .75** (.37)
Disease worry .19* (.13) .23* (.15)

Note. Standardized coefficients are in parentheses. N = 403.
*p < .01. ** p < .001.



DISCUSSION

The present study compared two alternative approaches to the representation of the
factor structure of instruments when it is hypothesized that a general construct is
comprised of several highly related domains. Using a quality of life instrument
with multiple items representing each domain of the construct, this study indicated
that the bifactor model had several advantages over the second-order model when
researchers are interested in both the domain specific factors and the general fac-
tor. There are five major conclusions from our comparison of the bifactor and sec-
ond-order models using a quality of life measure.

1. For the hypothesized bifactor model, there was a mathematically equivalent
second-order factor model with direct effects from the second-order factor to the
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FIGURE 7 Predicting an external criterion: A conditional incomplete second-order model of
quality of life. Note. In RAM notation, the curved double headed arrow represents the factor
variance for the second-order factor (QOL), disturbance variance for each of the first-order fac-
tors and measurement error variance for each of the measured variables. Factor loadings desig-
nated with 1 are marker variables; all other factor loadings and paths are estimated.



observed variables. This result provides an empirical illustration for the equiva-
lence of the two models demonstrated analytically by Yung et al. (1999).

2. Based on the hypothesized full bifactor model, there was one general
quality of life factor with four domain specific factors—cognition, vitality,
mental health, and disease worry. The bifactor analysis established that there
were only three, rather than four, domain specific factors over and above the
general factor. The hypothesized mental health factor did not exist as a domain
specific factor over and above the general factor. The hypothesized full bifactor
model was then modified by removing the mental health domain specific fac-
tor, yielding an incomplete bifactor factor model. In contrast, the second-order
model did not provide clear evidence of the collapse of the mental health do-
main specific factor.

3. A corresponding incomplete second-order model fit the data significantly
worse than the incomplete bifactor model, indicating that the constraints in the sec-
ond-order model were too strict. Given that the incomplete second-order model
was nested within the incomplete bifactor model (Yung et al., 1999), the bifactor
model was used as a baseline model against which the second-order model was
compared.

4. When estimating the predictive relationships between the domain specific
factors/disturbances and an external variable, over and above the general/second-
order factor, the incomplete bifactor model and second-order model gave similar
parameter estimates. However, it is easier for substantive researchers to interpret
the results from the bifactor model, as the domain specific factors are represented
by common factors, rather than disturbances.

5. In contrast to Mulaik and Quartetti’s (1997) results, there was sufficient
power to differentiate the bifactor model from the corresponding second-order
model with a sample size of less than 500. There are three possible reasons for this
discrepancy. First, as noted earlier, the covariance matrix used in Mulaik and
Quartetti’s study imposed proportionality constraints on the factor loadings of the
general and domain specific factors. Given that the proportionality constraints
were only slightly perturbed, the discrepancy between the bifactor and second-or-
der models was trivially small. Second, in Mulaik and Quartetti’s study, power was
calculated for the omnibus test of the absolute fit of the second-order model, rather
than for the focused test comparing the fit of the two nested models. When power
was recalculated comparing the two nested models, power was substantially in-
creased in that study; or, third, the high power in the present study may be an arti-
fact of the collapse of mental health factor. The use of an actual data set rather than
a simulated data set in which the true model is known precluded definite conclu-
sions. Thus the present findings raise issues about Mulaik and Quartetti’s conclu-
sion, but the possibility that the present results could be an artifact together with
the use of post hoc power analysis (see Lenth, 2001, for a critique on this practice)
requires a clearer demonstration.
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STUDY 2

A small Monte Carlo study was conducted to address two issues: (1) to examine
further the power to differentiate bifactor models from second-order models, and
(2) to provide a preliminary assessment of the power to distinguish bifactor from
second-order models. The use of a known population covariance matrix assured
that (a) the full bifactor model in which each of the domain specific factors had
variance substantially greater than 0 would be tested, and (b) empirical power esti-
mates rather than post hoc power calculations would be provided.

We used the Monte Carlo feature in Version 3.01 of Mplus (Muthén & Muthén,
1998) to generate the data and Mplus’s maximum likelihood (ML) estimation to
estimate the model. This method permitted us to fit a model that differed in struc-
ture from the model that generated the data (see Muthén & Muthén, 1998, for fur-
ther details about Mplus Monte Carlo procedures). Following the procedures rec-
ommended by Satorra and Saris (1985), the data generation and estimation
procedure was comprised of four basic steps.

1. Raw data were randomly generated from a multivariate normal distribution
to correspond to the parameterization of a hypothesized complete bifactor model
(see Figure 8). The hypothesized model was created with all the parameters fixed
to the specified values. The parameters selected for the hypothesized bifactor
model are similar to the ones presented in Table 3, except that two major changes
were made: first, factor loadings for the domain specific factor “mental health”
were fixed to be positive and they ranged from .681 to 1.000; and second, the vari-
ance of the “mental health” factor was fixed to .257, which is comparable to the
variance of other domain specific factors. These changes would be expected to in-
crease the discrepancy between the bifactor and second-order models relative to
Study 1. The hypothesized factor loadings, variances, and residual variances are
presented in Table 7, and the population covariance matrix in Table 8.

2. The hypothesized bifactor model was fitted to the randomly generated raw
data, and the fit statistics were used as baseline fit information.

3. A second-order model was fit to the raw data generated from the bifactor
model.

4. The chi-square difference test statistic was used to compare the fit of the two
models.

We used a sample size of 200, which is consistent with typical current practice in
psychology. Jaccard and Wan (1995) reported that the median sample size of studies
using multiple regression analyses reported in American Psychological Association
journals in theearly1990swas175.MacCallum(personal communication,Septem-
ber22,2004) reported thatof the109studiesconsidered ina reviewofstudies report-
ing structural equation models (MacCallum & Austin, 2000), 50 had sample sizes
less than or equal to 200 and 59 had sample sizes of greater than 200.
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Data Characteristics

Distribution. Data were generated from a multivariate normal distribution.

Replications. A total of 500 replications that yielded proper solutions were
generated for each sample. One replication did not converge and two yielded im-
proper solutions. These replications were replaced.

Baseline Bifactor Model

The baseline model (see Figure 8) was a complete bifactor model with four domain
specific factors, and the corresponding second-order model has four lower-order
factors (Figure 9). The results of the fit statistics are reported in Table 9. When the
bifactor model was fitted to the raw data, the fit was acceptable. Across the 500
replications for n = 200, the mean values of the fit statistics were �2 = 91.52 (df =
88), ns; RMSEA = .014; SRMR = .028; and CFI = .998.
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FIGURE 8 A bifactor model. Note. In RAM notation, the curved double headed arrows rep-
resent factor variances for each of the latent variables and measurement error variance for each
of the measured variables. Factor loadings designated with 1 are marker variables; all other fac-
tor loadings are estimated.



Given a large sample size, the expected value of the �2 statistic for a properly
specified model should be equal to the degrees of freedom. In contrast, given the
modest sample size (n = 200) used in the simulation, the average �2 statistic would
be higher than its expected value (see Hu, Bentler, & Kano, 1992). All parameter
estimates in the model, that is, factor loadings, variances/covariances, residual
variances, closely matched the population values with no appreciable bias.

Bifactor Model Versus Second-Order Model

For each of the 500 replications, a second-order model (see Figure 9) was also fit-
ted to the raw data generated by the baseline bifactor model. As can be seen from
Table 9, with a sample size of 200, the mean fit statistics were �2(100) = 138.69;
RMSEA was .043; SRMR was .043; and CFI was .988. The mean chi-square dif-
ference test between the two models was significant, ��2 = 47.18 (�df = 12), p <
.001. The average power to detect the difference exceeded .99.
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TABLE 7
Hypothetical Values for the Complete Bifactor Model (Study 2)

Unstandardized Factor Loadings

Item/Factor
General
Factor

Domain
Specific
Factor 1

Domain
Specific
Factor 2

Domain
Specific
Factor 3

Domain
Specific
Factor 4

Variance/Residual
Variance

V1 1.00 1.00 .179
V2 .86 .75 .316
V3 1.20 1.03 .362
V4 .90 1.06 .250
V5 1.16 1.00 .272
V6 1.05 1.04 .220
V7 1.09 .76 .352
V8 1.05 1.03 .298
V9 .99 1.00 .447
V10 1.55 .80 .160
V11 1.27 .68 .239
V12 1.26 1.08 .452
V13 1.55 1.00 .325
V14 1.42 .76 .347
V15 1.25 .64 .461
V16 1.15 .93 .297
General factor .452
Domain Specific Factor 1 .263
Domain Specific Factor 2 2.196
Domain Specific Factor 3 .257
Domain Specific Factor 4 .326



219

TABLE 8
Population Covariance Matrix (Study 2)

x1 0.894
x2 0.586 0.798
x3 0.813 0.670 1.292
x4 0.686 0.559 0.775 0.912
x5 0.524 0.451 0.629 0.472 3.076
x6 0.475 0.408 0.570 0.427 2.834 3.094
x7 0.493 0.424 0.591 0.443 2.240 2.253 2.157
x8 0.475 0.408 0.570 0.427 2.812 2.851 2.236 3.126
x9 0.447 0.385 0.537 0.403 0.519 0.470 0.488 0.470 1.147
x10 0.701 0.603 0.841 0.631 0.813 0.736 0.764 0.736 0.899 1.410
x11 0.574 0.494 0.689 0.517 0.666 0.603 0.626 0.603 0.743 1.030 1.087
x12 0.570 0.490 0.683 0.513 0.661 0.598 0.621 0.598 0.841 1.105 0.912 1.469
x13 0.701 0.603 0.841 0.631 0.813 0.736 0.764 0.736 0.694 1.086 0.890 0.883 1.737
x14 0.642 0.552 0.770 0.578 0.745 0.674 0.700 0.674 0.635 0.995 0.815 0.809 1.243 1.447
x15 0.565 0.486 0.678 0.508 0.655 0.593 0.616 0.593 0.559 0.876 0.718 0.712 1.084 0.961 1.301
x16 0.520 0.447 0.624 0.468 0.603 0.546 0.567 0.546 0.515 0.806 0.660 0.655 1.109 0.969 0.844 1.177



Summary

Study 2 replicated the findings of Study 1 regarding statistical power. First, there
was sufficient power to detect the difference between the bifactor model and sec-
ond-order model even with a sample size of 200. Second, the difference between
the two models was not an artifact of the collapse of one of the domain specific fac-
tors or the use of post hoc power calculations. Indeed, the observed difference be-
tween the RMSEAs for the two models (.029) indicates that the inclusion of the
fourth domain specific factor lead to a greater discrepancy between the two mod-
els, yielding sufficient statistical power to distinguish them even at a modest sam-
ple size (n = 200) that typifies current psychological research.
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FIGURE 9 A standard second-order model. Note. In RAM notation, the curved double
headed arrow represents the factor variance for the second-order factor (QOL), disturbance
variance for each of the first-order factors, and measurement error variance for each of the mea-
sured variables. Factor loadings designated with 1 are marker variables; all other factor load-
ings are estimated.



GENERAL DISCUSSION

The present article compared the results of a bifactor model and second-order fac-
tor model using a health-related quality of life instrument with HIV patients. Con-
sistent with theoretical expectation, the bifactor model had several advantages over
the second-order model. First, the bifactor model was able to identify that there
were only three, rather than four, domain specific factors, over and above the gen-
eral factor. Second, the bifactor model fit the data significantly better than the cor-
responding second-order model, indicating that the constraints on the second-or-
der model were too strict. Third, when domain specific factors/disturbances are
used to predict an external variable, over and above the general/second-order fac-
tor, it is easier for substantive researchers to interpret the results from the bifactor
model, which represents the domain specific factors as common factors rather than
disturbances. These findings have important implications for psychological re-
search, as researchers may be interested in the predictive validity of the general
factor as well as domain specific factors over and above the common underlying
factor.

Yung et al.’s (1999) demonstration that the second-order models are nested
within corresponding bifactor models made it possible to directly compare the two
models. We showed in Studies 1 and 2 that there was sufficient power to distin-
guish the two models even with a sample size of less than 500. Study 1 compared
an incomplete bifactor model with an incomplete second-order model. The results
were based on the empirical example of the quality of life instrument. Given our
sample size (n = 403), the power exceeded .99, clearly sufficient to differentiate the
two models. In contrast, Study 2 simulated data for a complete bifactor model and
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TABLE 9
Summary of Fit Statistics for the Simulated Complete Bifactor and Second-Order

Models (Study 2)

Bifactor vs. Second

Model x2 df RMSEA SRMR CFI ∆χ2 ∆df
Rejecting

Probabilitya Power

Bifactor model 91.52
(13.18)

88 .014
(.014)

.028
(.005)

.998
(.003)

Second-order
model

138.69*
(18.12)

100 .043
(.011)

.043
(.005)

.988
(.006)

47.18** 12 90.60% > .99

Note. Standard deviations are in parentheses. N = 200. RMSEA = root mean square error of approxima-
tion; SRMR = standardized root mean square residual; CFI = comparative fit index.

aProbability of rejecting the second-order model out of the 500 replications.
*p < .01. **p < .001.



compared it with the corresponding second-order model. Even with a sample size
of 200, the power to differentiate the two models in our example exceeded .99.

Despite these positive characteristics of the bifactor model, its limitations
should also be noted. We considered here the canonical version of the bifactor
model in which the general factor and each of the domain specific factors are as-
sumed to be orthogonal. An attractive feature of this version is that the results are
very easy to interpret, as we have shown. Each parameter in the model is uniquely
estimable so that theoretically there should not be problems with identification. As
we move away from the orthogonal version of the model and allow covariances be-
tween factors, problems of identification become more likely. For example,
Mulaik and Quartetti (1997) found that when the general factor is allowed to
covary with the domain specific factors, the model will not converge. Rindskopf
and Rose (1988) found evidence of identification problems when they allowed the
domain specific factors to covary. Similar identification issues also affect sec-
ond-order models in which assumptions of orthogonality are relaxed. However,
these identification issues are less apparent because the orthogonality constraints
are included in the standard basic assumptions of confirmatory factor analysis.
Paralleling the bifactor model assumption that the general and the domain specific
factors are uncorrelated, one assumption of the second-order model is that the sec-
ond-order factor and the disturbances of the first order factor are uncorrelated. If
researchers have an interest in investigating models in which non-orthogonal rela-
tionships between general and domain specific factors are permitted, variables out-
side of the measurement model that are known to predict only one of the factors
(instrumental variables) may be added to help assure identification. In addition,
external criterion variables that are known to be uniquely predicted by one of the
factors can also help identify the model. These general strategies are discussed in
detail by Graham and Collins (1992). The success of such techniques that “borrow
strength” to achieve identification depend strongly on the correct specification of
the relationships between the external variables and those of the bifactor model.

The context of our motivating example has several characteristics that make con-
sideration of bifactor and second-order models attractive. Researchers (e.g., Lubeck
& Fries, 1993; McHorney, Ware, & Raczek, 1993, Stewart & Ware, 1992) hypothe-
sized a general factor that is comprised of several specific domains. Their central in-
terestwas in theeffectof thegeneral factor; their secondary interestwas in theeffects
of the domain specific factors. Previous studies had been conducted to support the
hypothesized conception. The pool of items representing the domains had been re-
fined so that substantive interest is now focused on the standard, fixed set of items
that comprise the scale rather than a hypothetical population of items. Under these
conditions, models need to capture the general factor that the measure was designed
to assess. Alternative approaches such as the exploratory factor analysis with
oblique rotation to simple structure or first order confirmatory factor models in
which correlations are estimated between the domain-specific factors (group-factor
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model, Rindskopf & Rose, 1988) do not capture this focus. Although these alterna-
tive approaches are highly useful in many applications, in the present context they
tend to yield solutions with highly correlated domain-specific factors and miss the
general factor that underlies the data. Under such circumstances, it is possible to
have a set of domain-specific factors that collectively account for a substantial por-
tion of the variance in an external criterion but which individually fail to lead to sub-
stantial prediction of the criterion due to multicollinearity. In contrast, bifactor mod-
els and second-order models maintain the focus of the analysis on the constructs
hypothesized by the developers of the scale, and can more adequately capture the re-
lationship between the general factor and external criteria.

Finally, we do not wish to imply that bifactor models are more applicable than
second-order models under all conditions. If the general factor is the main focus of
the research, the second-order factor model may be more parsimonious, given that
the second-order model fits the data equally well as the bifactor model. Moreover,
the bifactor and second-order representations are not mutually exclusive, and they
can coexist in different parts of the same complex model. Eid, Litschetzke,
Nussbeck, and Trierweiler (2003) provided some examples in their representations
of second-order multitrait multimethod models.
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APPENDIX

The SAS program for power calculation.

/*Title ‘Power Analysis for the Incomplete Bifactor and Second-Order Models’*/
DATA ONE;
DF=10; CRIT=18.3070; /*critical value at alpha equals .05 for df = 10*/
LAMBDA=40.52; /*chi-square difference between the two models*/
POWER=(1-(PROBCHI(CRIT,DF,LAMBDA)));
PROC PRINT DATA=ONE;
RUN;
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