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Abstract—With the wide application of deep learning, the
amount of data required to train deep learning models is becoming
increasingly larger, resulting in an increased training time and
higher requirements for computing resources. To improve the
throughput of a distributed learning system, task scheduling and
resource scheduling are required. This article proposes to combine
ARIMA and GRU models to predict the future task volume. In
terms of task scheduling, multi-priority task queues are used to
divide tasks into different queues according to their priorities to
ensure that high-priority tasks can be completed in advance. In
terms of resource scheduling, the reinforcement learning method
is adopted to manage limited computing resources. The reward
function of reinforcement learning is constructed based on the
resources occupied by the task, the training time, the accuracy of
the model. When a distributed learning model tends to converge, the
computing resources of the task are gradually reduced so that they
can be allocated to other learning tasks. The results of experiments
demonstrate that RLPTO tends to use more compu-ting nodes
when facing tasks with large data scale and has good scalability. The
distributed learning system reward experiment shows that RLPTO
can make the computing cluster get the largest reward.

Index Terms—Cloud computing, scheduling algorithms,
dynamic scheduling, resource management, distributed
computing, reinforcement learning.

I. INTRODUCTION

D EEP learning is widely used in image identification [1],
[2], speech recognition [3], [4], recommendation systems

[5], [6], and medical fields [7], [8], [9]. With the development

Manuscript received 28 October 2022; revised 1 September 2023; accepted 12
September 2023. Date of publication 20 September 2023; date of current version
30 October 2023. This research work was supported by the National Key R&D
Program of China under Grant 2020YFB2104700, and in part by the National
Natural Science Foundation of China under Grant 62136006. Recommended for
acceptance by Alan Sussman. (Corresponding authors: Xiaofeng Lu.)

Xiaofeng Lu, Chao Liu, and Senhao Zhu are with the National Engineering
Center for Mobile Internet Security Technology, Beijing University of Post
and Telecommunications, Beijing 100876, China (e-mail: luxf@bupt.edu.cn;
liuchao37@yeah.net; zsh239040@bupt.edu.cn).

Yilu Mao is with the Alibaba Cloud Computing Company Ltd., Beijing
100102, China (e-mail: yilu.myl@alibaba-inc.com).

Pietro Lio is with Computer Laboratory, University of Cambridge, CB2 1TN
Cambridge, U.K. (e-mail: pl219@cam.ac.uk; panhui@ust.hk).

Pan Hui is with the Computational Media and Arts Thrust, Hong Kong Univer-
sity of Science and Technology, Guangzhou 510000, China (e-mail: pan.hui@
telekom.de).

Digital Object Identifier 10.1109/TPDS.2023.3317388

of deep learning research, the performance of deep learning
models is becoming increasingly better, but the training time
and computing resources required to train deep learning models
are also increasing. To meet the computing power requirements
of complex deep learning models and the needs of privacy
security, distributed machine learning has emerged, in which
the training task is jointly completed by multiple distributed
computing nodes [10], [11], [12]. Many large IT companies
now use several servers and a large number of client or edge
devices to form distributed computing clusters, and train on
massive data to obtain models with better performance. For
example, Google uses the Distributed TensorFlow framework to
provide services for Google Photos and Google Cloud Speech
[13].

The training of deep learning models requires a large amount
of resources and is time-consuming. For example, training a
DeepSpeech2 model on the LibriSpeech dataset takes 3-5 days
with 16 GPUs to achieve the desired accuracy [14]. Moreover,
training a GoogleNet model on the ImageNet dataset takes 23.4
hours on a Titan supercomputing server with 32 NVIDIA K20
GPUs [15].

With the growing scale of distributed computing clusters,
determining how to schedule distributed computing clusters to
meet the requirements of distributed learning tasks has become
the key to the improvement of the throughput of the entire dis-
tributed computing cluster [16]. Therefore, it is necessary to de-
sign a suitable resource scheduling system for distributed com-
puting clusters and allocate appropriate computing resources for
different tasks.

The methods commonly used in the field of resource schedul-
ing include static and dynamic resource scheduling methods.
Static resource scheduling involves the allocation of a fixed
number of computing resources before task execution, and the
computing resources are kept unchanged during task operation.
Dynamic resource scheduling is characterized by the dynamic
adjustment of the amount of computing resources used by the
task during task operation. Classic resource scheduling schemes
include first come first served [17] (FCFS), fair scheduling
(FS) [18], delayed scheduling [19], and the dominant resource
fair (DRF) scheduling policy [20]. These resource scheduling
methods do not take advantage of the fact that the performance
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of the deep learning model changes with the training time, and do
not maximize the throughput of the entire distributed computing
cluster.

Reinforcement learning is a research hotspot in machine
learning. Its main idea is what actions an agent should take to
maximize the reward in a particular environment. Reinforcement
learning is a type of unsupervised learning where the agent
learns from past experience without labeled data. Resources
and tasks in distributed machine learning clusters are non-linear
and non-deterministic, and reinforcement learning can adapt to
these rapid changes in the environment. Reinforcement learning
can deal with long-term rewards, adapting to situations where
resource scheduling decisions pay off in the future. It is suitable
for complex systems such as distributed learning clusters. In
this paper, deep reinforcement learning is used for resource
scheduling in distributed learning clusters, the strong fitting
ability of deep learning is used to fit the complex environment
in distributed systems, and the decision-making ability of rein-
forcement learning is used to decide which resource scheduling
behavior to adopt.

The main contributions of this research are as follows.
1) A computing resource allocation algorithm based on long-

term and short-term task volume prediction, namely LSP,
is proposed. The LSP prediction method combining long-
and short-term prediction is proposed to predict the future
task volume. The index moving weighted average method
is used to evaluate the number of tasks completed by each
computing node and to calculate the number of computing
nodes required for a certain day. In this way, the energy
consumption of a distributed computing cluster can be
reduced on the premise of ensuring relatively sufficient
computing resources.

2) A task scheduling method based on a multi-priority task
queue is used. This research is oriented to the distributed
machine learning, and the dynamic priority and preemp-
tive task scheduling mechanism is used to place the
learning tasks into task queues with different priorities.
High-priority tasks can obtain computing resources first
to start training tasks earlier.

3) A dynamic computing resources scheduling algorithm
(RLPTO) based on reinforcement learning is proposed in
this paper. The reward function and state space of the re-
inforcement learning algorithm are designed according to
the model accuracy, training time and the task priority. The
reinforcement learning algorithm dynamically increases
and reduces the computing resources of tasks. RLPTO
combines resource scheduling with task scheduling to
maximize the reward of distributed computing clusters.
This paper finds the relationship between β and data scale,
and gives a suggested range of β.

II. RELATED WORK

Increasingly more researchers are investigating how to rea-
sonably schedule computing resources in distributed clusters to

different learning tasks to improve the utilization of computing
resources.

A. Resource Scheduling Strategy

Common centralized scheduling schemes in the field of re-
source scheduling include FCFS [17], FS [18], delayed schedul-
ing [19], and DRF scheduling [20].

FCFS [17] is the most basic resource scheduling strategy.
The operating system allocates resources to tasks according to
the time sequence of task submission, and each task uses the
allocated resources to work.

The FS strategy [18] implements resource scheduling based
on queues. During resource allocation, the queues are first
allocated the minimum amount of resources, and the remain-
ing resources are then allocated to each queue according to
the resource shortage of different queues. Within each queue,
resources are allocated to all jobs in an evenly divided manner.

The purpose of delayed scheduling [19] is to increase the data
locality of task scheduling. For the task at the head of the queue,
the scheduler determines whether the data used by the task are
local. If the data are localized data, the task can be executed.
Otherwise, the task scheduler executes other tasks with local
data behind the queue. When the task at the head of the line is
delayed for a certain period of time, the task is started.

DRF scheduling [20] is a max-min algorithm, and the schedul-
ing goal of the strategy is to maximize the minimum amount of
resources allocated to a task. The resource that the task requires
the most is called the dominant resource. The purpose of DRF
is to keep the dominant resources of different tasks as fair as
possible.

B. Resource Scheduling for Distributed Learning

There are different optimization methods for resource
scheduling in distributed learning. Yan et al. established a
resource-completion time model [21]. The model evaluates the
impacts of data parallelism, model parallelism, and different
resource scheduling methods on tasks in distributed machine
learning to obtain the optimal resource allocation scheme.
Lee et al. [22] proposed a dynamic resource management scheme
for distributed machine learning with a federated learning pa-
rameter server structure. The method evaluates each iteration
time according to the computation time and communication
time, based on which it continuously adjusts the resource al-
location. This method addresses the dynamic demands on the
resources of distributed machine learning tasks during execu-
tion.

Some researchers have taken a more detailed look at the use
of GPUs for machine learning tasks. One problem of distributed
machine learning is that CPU computing is slower than GPU
computing, but GPU training requires more network bandwidth
than CPU training. To solve this problem, Gao et al. [23] pro-
posed GAI, a scheduler based on a centralized tree structure,
the scheduling objective of which is to minimize the completion
time of high-priority training jobs. GAI uses a centralized rack-
aware tree scheduling method, and maintains a resource tree in
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the memory to place all tasks of the machine learning training
jobs in one machine, or in the machines belonging to the same
rack to the greatest extent possible.

Gu et al. [24] proposed two GPU scheduling algorithms,
namely the Discretized Two-Dimensional Gittins index algo-
rithm and the Discretized Two-Dimensional LAS algorithm, to
minimize the average job completion time. According to differ-
ent task priorities, GPU resources are allocated and scheduled
to reduce the task waiting time, thereby reducing the completion
time of all learning tasks.

In addition to static resource scheduling schemes for dis-
tributed machine learning, dynamic scheduling schemes are
also evolving. Peng et al. proposed the Optimus algorithm [25],
which dynamically adjusts the number of worker nodes managed
by the parameter server during runtime. The algorithm fits the
convergence of the machine learning model online, and uses
the constructed performance model to evaluate the number of
resources required for each job, thereby achieving the goal of
minimizing the total task completion time. However, it is quite
difficult to fit the convergence of the machine learning model
online, especially for users who only use data to train models.

In addition to modeling the relationship between the resources
and the task completion time, some research has aimed to
maximize the overall performance of multiple models on a
cluster. Zhang et al. [26] proposed the SLAQ algorithm, which
models the task execution quality-runtime while carrying out
resource allocation. SLAQ allocates resources according to the
change of the current loss value of different models. With the
assumptions of the loss convergence rate, SLAQ uses the historic
values of exponentially weighted loss to fit a curve for sublinear
algorithms. Due to the differences in the structure of each deep
learning model, and because the computing resources occupied
by the models can change at any time, methods that predict the
model quality based on mathematics sometimes lead to large
prediction errors.

Zheng et al. [27] proposed a target-based resource scheduling
scheme, TRADL, which aims to improve the overall perfor-
mance of multiple distributed deep learning tasks. This method
sets up two-layer goals for distributed learning tasks. When the
accuracy of the model reaches a goal, the model is handed over
to the user, and the model continues to be trained to improve
the model accuracy. This scheme reduces the time required
for the model to reach a target. While TRADL is aimed at
model accuracy, users usually want a model with high accuracy,
and it is difficult for users to set the target accuracy at the
beginning.

It is not easy to change the configuration of a distributed
machine learning system when it is running. Chun et al. [28] pro-
posed Dolphin to address the configuration problem at runtime
by optimizing the configuration of the running machine learning
system according to computations and communications. Dol-
phin extends the existing parameter server architecture with two
new components, namely the Optimizer and Elastic Memory
Store (EMS). The Optimizer models the iteration time as a
cost function of several variables. Via cost-based optimization,
the Optimizer finds the optimal configuration that produces the
lowest cost, i.e., the shortest iteration time. EMS is a distributed

Fig. 1. Overall structure of the proposed system.

in-memory store abstraction that makes it possible to change the
configuration of the system at runtime. However, Dolphin only
focuses on the iteration time and other time durations, not on
the performance of the model. The proposed approach focuses
on the cost of improving model performance.

III. Task and Resource Scheduling System Of Distributed
Machine Learning

The distributed machine learning resource allocation and
scheduling algorithm based on task prediction and reinforcement
learning proposed in this work includes three components: re-
source allocation, task scheduling, and resource scheduling. The
overall structure of the system is illustrated in Fig. 1.

The user initiates a learning task request, and the task will
enter the task manager. The task manager schedules tasks ac-
cording to the priority of tasks, and assigns computing resources
to the selected tasks. The dynamic priority task scheduling
mechanism is adopted for the task manager. Higher-priority
tasks can obtain computing resources first to complete training
tasks earlier. The priority of a task is set and adjusted by the user,
and the user can send a request to the task manager to change
the priority of the task. The priority of the task is determined by
the cost paid by the user; high-priority tasks cost more money.
Therefore, the user will not define all tasks as high-priority.

The resource manager predicts the daily task volume and
determines the size of the resource pool available for the day. In
this work, a task prediction algorithm called LSP is proposed.
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LSP combines the advantages of the autoregressive integrated
moving average (ARIMA) and gated recurrent unit (GRU) mod-
els to predict future tasks. The resource manager calculates
the daily computing resources via the exponentially weighted
moving average (EWMA) method and the LSP task volume
prediction model.

After computing resources are allocated to the task, the
learning task begins to execute. In the training process of the
distributed machine learning model, the resource scheduler
schedules the computing resources occupied by each learning
task based on the reinforcement learning algorithm. After the
machine learning model has been trained for a long amount of
time and the performance of the model reaches convergence, the
resource scheduler actively reduces the amount of computing
resources occupied by the task.

IV. COMPUTING RESOURCE ALLOCATION BASED ON LONG-
AND SHORT-PERIOD TASK VOLUME PREDICTION

A. Prediction of Task Volume Based on Long and Short
Periods

The daily task volume of the system is affected by the task
volume in the recent period, and it also exhibits long-term
periodicity, i.e., people do similar work every week. Therefore,
the amount of data processed in the previous weeks can be used
to predict the amount of data in the future. For example, to
predict the task volume of next Monday, the task volume of each
Monday in the past few weeks can be used to make predictions.

This study proposes the combination of the GRU and ARIMA
models for task volume prediction. The GRU model is used to
make predictions based on the task volume of the last week, and
the ARIMA model is used to predict the task volume of the next
week based on the data volume of the previous weeks.

The GRU is a type of recurrent neural network. Like long
short-term memory, (LSTM), it was also proposed to solve
problems such as long-term memory and gradients in backprop-
agation.

The ARIMA model is composed of an autoregressive (AR)
model and a moving average (MA) model. AR models are
mainly used to describe the relationship between the current mo-
ment and the historical moment. The AR model fits the historical
data and predicts the data at the current moment according to the
fitting result. The MA model pays more attention to the influence
of the error term. The role of the MA model in the ARIMA model
is primarily to adjust the error term in the model.

This work combines the GRU and ARIMA models, and
proposes a long- and short-term combined prediction algorithm
called LSP. The prediction formula is

ypred=αGRU (xbefore_seven)+(1−α)ARIMA (xbefore) ,
(1)

where α is the scale factor, the value range of which is [0,
[1], representing the influence of different models on the final
predicted value. If the data to be predicted is stable over the long
term, the α value can be set closer to 0, and the output will be
more inclined to the ARIMA model. If the data to be predicted
changes significantly over time, theα value is set closer to 1, and

TABLE I
NOTATIONS AND THE REPRESENTATION

the output is more skewed toward the GRU model. In this study,
compared with the long-term task volume, the short-term task
volume plays a greater role in predicting the future task volume,
so the scale factor α is taken as 0.6.

Table I refers to the notations and their representations used
throughout this paper.

B. Resource Management Based on Task Volume Prediction

To reduce the energy consumption and maintenance costs,
usually only some computing resources are powered on. How-
ever, it is difficult to determine how many computing resources
should be powered on.

In this study, a heuristic algorithm is used to manage the
number of running nodes in a distributed learning cluster. If the
predicted number of running nodes is greater than the current
number of running nodes, the resource manager increases the
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running nodes. When the predicted number of running nodes is
less than the current number of running nodes, the number of
running nodes will be reduced, thereby reducing the operation
and maintenance costs.

The EWMA (Exponentially Weighted Moving Average)
method is used in this study to calculate the average number
of tasks completed by nodes. When using this method, each
previous value decreases exponentially with time. The formula
for the average daily number of tasks completed by a computing
node is

tasknew = ρtaskold + (1− ρ) taskpast, (2)

where ρ is a scale factor, which represents the impact of past
data on the average value, taskpast represents the task volume
in the past day, taskold represents the task volume calculated
by the EWMA the last time, and tasknew represents the task
volume calculated at the current moment. If the number of
tasks changes frequently, set ρ to close to 0. If the number of
tasks changes infrequently, set ρ to close to 1. In this study,
ρ = 0.8.

Using (1) and (2), the number of running computing nodes
required by the distributed computing cluster on the current day
can be calculated. The calculation formula is as follows.

wpred =
ypred

tasknew
(3)

V. TASK SCHEDULING BASED ON MULTI-PRIORITY QUEUES

A. Dynamic Priority

The types of machine learning tasks proposed by users are
diverse, as are the time requirements for completing the tasks.
In this work, tasks are divided into two types, namely normal
tasks and urgent tasks, and tasks of each type have their own
priorities. Users prioritize their tasks according to their needs.
The task scheduler schedules tasks according to the priority of
the task; high-priority tasks are executed earlier, while lower-
priority tasks must wait longer.

The priority of tasks is defined by the user and can be adjusted
dynamically. When a user wants his or her task to be completed
first, the user can increase the priority of the task. In a resource
scheduling cycle, the user can increase the priority of the task
multiple times. The priority adjustment formula is

prt = prt−1 + μN (4)

where prt−1 represents the priority of the current task, prt is
the priority after adjustment, t is the priority update period, and
μ represents the change factor, which represents the amount of
change in each request to increase or decrease the priority. The
larger the value of μ, the greater the impact of each user request
on the task. The value of μ is set to 0.1 in this study. Finally,
N represents the number of user requests to change the priority
within a priority update period.

To facilitate the management of task queues, a threshold is set
for task priority. When the priority of a normal task is greater than
the threshold, the task is set as an urgent task and the priority
is reset. When the priority of an urgent task is lower than the

Fig. 2. Conversion of tasks between the normal queue and emergency
queue.

Fig. 3. Task scheduling mechanism of RLPTO.

threshold, the urgent task is downgraded to a normal task and a
new priority is set.

B. Task Scheduling Based on Multi-Priority Queues

To meet the scheduling requirements of tasks with different
priority, multi-priority queues are used for task scheduling. The
task manager establishes three queues, namely the normal queue,
urgent queue, and interrupt queue. The normal queue includes
low-priority and default-priority tasks. The urgent queue mainly
includes urgent tasks with high priority. The tasks in this queue
must be executed earlier than the tasks in the normal queue. The
conversion of tasks between the normal queue and emergency
queue is shown in Fig. 2.

The interrupt queue is used to store interrupted tasks. In
the proposed task scheduling scheme, there is a task with the
highest priority, and this task occupies resources in a preemptive
manner for task execution. The interrupt queue saves the inter-
rupted tasks, and the tasks in the queue will also be scheduled
preferentially in the subsequent task scheduling. The proposed
task scheduling mechanism of distributed machine learning is
presented in Fig. 3.
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Fig. 4. Architecture of the distributed resource scheduling system.

In the distributed task scheduling system, the task scheduler
selects tasks from multiple queues and offloads them to the
computing cluster. When a task in the computing cluster is com-
pleted, the task manager first checks to see if there are still tasks
in the interrupt queue. If there is a task in the interrupt queue, the
task manager selects the task from the interrupt queue to execute
first; otherwise, it selects the task with higher priority from the
urgent queue to execute. If the urgent queue has no tasks, the task
manager schedules high-priority tasks from the normal queue
for execution. When the highest-priority task appears and there
are no idle computing resources in the computing cluster, the
newly-started learning task is interrupted. The interrupted task
is added to the interrupt queue, and its resources are occupied
by the task with the highest priority. For each task in the task
queue, the owner of the task can adjust the task priority or cancel
the task.

VI. RESOURCE SCHEDULING ALGORITHM FOR DISTRIBUTED

LEARNING SYSTEMS BASED ON REINFORCEMENT LEARNING

A. Resource Scheduling System Architecture for Distributed
Learning Based on Reinforcement Learning

In this work, a distributed resource scheduling algorithm
based on deep reinforcement learning is used for the resource
scheduling of machine learning tasks. The distributed resource
scheduler consists of a state collector, reinforcement learning
agent, and resource scheduling executor. The state collector
collects and processes the state information of the ongoing
distributed learning task, and inputs the processed state informa-
tion into the reinforcement learning agent. The reinforcement
learning agent chooses the next action to take based on the
input state, and sends the action to the resource scheduling
executor. The resource scheduling executor performs this action
and adjusts the amount of resources owned by each parameter
server of distributed machine learning. The strong fitting ability
of deep learning is used to fit the complex environment in the
distributed system, and the decision-making ability of reinforce-
ment learning is used to decide the resource scheduling operation
to be taken.

The architecture of the distributed resource scheduling system
is exhibited in Fig. 4.

Resource Scheduling Algorithm.
1. function Schedule(Environment env, Agent agent):
2. reduce task’ resource;
3. cur_state = env.getState(); //Get the environ mental

state
4. While ThereIsFreeResource() = True do:
5. action = agent.getAction(cur_state); // Get the next

action by Reinforcement learning algorithm
6. cur_state = env.doAction(action); // Execute

actions and update state
7. end function
9. function main():

10. Initialize environment;
11. Initialize Task Queue;
12. Initialize agent;
13. While true do:
14. If TaskQueue.empty() do:
15. Continue;
16. End if
17. If model is convergent or server don’t train model

do:
18. If model is convergent do: // The model doesn’t

need any more training
19. Release resources;
20. End if
21. task = getTask(); // Take a new task from the

task queue
22. AllocateResource(task);
23. StartTrain(task);
24. End if
25. If task’s precision increase < β do:
26. Schedule(environment, agent); // Reduce some

resources
27. End if
28. End while
29. End function

As shown in Fig. 4, the reinforcement learning agent selects
the next action based on the training state of the machine learning
model being trained. Distributed machine learning requires a
large amount of iterative training at the beginning of the task,
and reinforcement learning agents should not frequently change
the computing resources at this time. When the machine learning
model is close to convergence or has converged, and once the
gradient of the model parameters has changed very little after
each training iteration, the resources allocated to the task can
be modified. This work proposes the use of a reinforcement
learning algorithm to adjust the computing resources of this
task, and to allocate a portion of the resources of the task to
other tasks. In this way, the computing resources occupied by
the converged distributed learning tasks can be released in time,
and the excessive use of computing resources by such tasks can
be reduced, thereby improving resource utilization. The resource
scheduling algorithm is given as follows.
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B. Reward Function for RLPTO

The goal of the resource scheduling strategy proposed in this
paper is to maximize the utilization of computing resources and
improve the training speed of each distributed learning task
under the premise of achieving the high performance of the
distributed learning model. To achieve this goal, it is necessary
to provide an accurate state space and an action space with low
computational complexity, as well as to design a reasonable
reward function for the reinforcement learning algorithm.

When users submit a machine learning task, they usually
desire that the learning task be completed as soon as possible so
that the performance of the model can be known as early as pos-
sible. Thus, the training effect and resource utilization efficiency
of the distributed learning model are comprehensively con-
sidered, and a reinforcement learning-based performance/time-
optimized (RLPTO) resource scheduling algorithm is proposed.

The reinforcement learning algorithm evaluates the current
impact of the action at at time t via the reward function. When
the performance of the model is improved, the reward function
has a positive benefit, and it is necessary for the task to occupy
the computing node. When the model tends to converge and
stabilize, although the task continues to occupy computing re-
sources, the performance of the model cannot be improved. In
this case, the occupied computing resources should be gradually
reduced, and the released computing resources can be allocated
to other training tasks that require computing resources. This
study proposes a reinforcement learning reward function that
combines the model performance and training time. The reward
function is defined as follows:

vait = accinew − accipre

rit = vait + sign
(
vait − β0

)× T i × wi × kw, (5)

where vait represents the variation of the model accuracy of the
i-th task at time t, β0 represents the threshold of the variation
of the model accuracy, T i represents the execution time of the
i-th task, wi represents the number of computing nodes owned
by the i-th task, and kw is a constant that represents the average
power consumption of the computing nodes in each computing
cycle, and kw = 0.000625. sign is a function of judging whether
(vait − β0) is positive or negative. In the early stage of model
training, the accuracy of the model continues to improve, and
sign(vait − β0) > 0. After the model has been trained for a
period of time, the performance of the model has converged,
and the change in the accuracy of the model is very small,
sign(vait − β0) < 0. When vait > β, the training of the model
for the i-th task brings a positive benefit. When vait < β, with the
increase of the task execution time, the use of computing nodes
for the training of the i-th task will bring negative benefits, i.e.,
computing resources may be wasted.

The goal of reinforcement learning decision-making is to
obtain the maximum cumulative reward. Two commonly used
methods for calculating the cumulative reward are the T-step
and gamma discount cumulative reward methods. The T-step cu-
mulative reward method calculates the total cumulative reward
value in T decision-making cycles, and then takes the average

value. The calculation formula is

reward = E

[
T−1∑
i = 1

ri

]
(6)

where T is the number of reinforcement learning steps from
the start to the current time. The γ discount cumulative reward
discounts the reward value of the previous strategy when calcu-
lating the current cumulative reward. The calculation formula is

reward = E

[ ∞∑
t = 1

γtrt

]
(7)

where γt is the discount factor at time t, γ�(01). The closer
the value of γ is to 0, the smaller the effect of the previous
strategy; the closer the value of γ is to 1, the more important
the previous strategy. The gamma discount cumulative reward
method is adopted to calculate the total reward. In this study,
resource scheduling is progressive, and each task increases or
decreases by at most one computing resource in each scheduling
cycle. Therefore, the previous strategy is very important for the
calculation of the cumulative reward, so γ = 0.99.

C. Proximal Policy Optimization Reinforcement Learning
Algorithm

The policy gradient (PG) algorithm is an important category
in deep reinforcement learning. The PG algorithm models the
policy function and then uses gradient descent to update the
parameters of the network. One disadvantage of the PG method
is that the parameter update is slow. For this reason, researchers
have proposed the combination of the value-based and policy-
based algorithms to form the actor-critic (AC) algorithm. The
actor part of the algorithm is responsible for updating the policy
function πθ and selecting subsequent actions. The critic part
is responsible for calculating the action value Qw(s, a), and
gives the score for the action chosen by the actor. s means the
state and a means the action. The actor modifies the probability
of all available actions based on the rating given by the critic.
The update of the network parameter θ by the actor depends
on the action-value function of the critical part. The critic part
updates its network parameters ω by function approximation.
The AC algorithm updates the gradient in a way similar to the
PG algorithm. The overall reward function J(θ) is defined as
follows:

∇θJ (θ) ≈ Eπθ
[∇θ log πθ (s, a)Qω (s, a)] (8)

where π is the policy function. Because the actor part is a
policy-based algorithm, there is a problem of medium to high
variance. In addition to introducing the critic network to reduce
the variance of the actor, the baseline method is also introduced
to further reduce the variance. The AC algorithm introduces
the advantage function Aπθ (s, a) as the baseline function. The
meanings of Aπθ (s, a), Qw(s, a), Qπθ (s, a), V πθ (s), ∇θ, δπθ ,
J(θ), βkl can be found in Table I. The policy gradient update
formula is given as follows.

∇θJ (θ) ≈ Eπθ
[∇θ log πθ (s, a)A

πθ (s, a)] , (9)
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The advantage function is defined as

Aπθ (s, a) = Qπθ (s, a)− V πθ (s) , (10)

where Qπθ (s, a) is the action value function corresponding to
the strategy function, and V πθ (s) is the environmental value
function corresponding to the policy function. This function
calculates the improvement compared to the average of the
action taken at that state. In other words, this function calculates
the extra reward if this action is taken. The extra reward is that
beyond the expected value of that state. The advantage function
Aπθ (s, a) uses a T-step update to estimate the advantage. The
AC algorithm uses the temporal-difference (TD) error method
to estimate Aπθ (s, a) unbiasedly. The calculation formula of the
TD error is

δπθ = r + γV πθ (s′)− V πθ (s) , (11)

where r is the accumulated reward value. By combining (9) and
(11), the GP update method of the AC algorithm can be obtained
as follows:

∇θJ (θ) ≈ Eπθ
[∇θ log πθ (s, a) δ

πθ ] , (12)

where δπθ is the error generated by the policy function. The actor
network part uses the PG algorithm for action selection, but the
PG algorithm requires resampling after each update.

On the basis of the AC algorithm, the PPO algorithm is
proposed to include the addition of importance sampling, which
turns the online algorithm into an offline method so that the
agent can reuse the previously sampled data. In the traditional
AC algorithm, the sampling method is as follows.

Ex∼p [f (x)] = ∫ f (x) p (x) dx ≈ 1

N

N∑
i = 1

f
(
xi
)
, (13)

The principle of importance sampling is as follows.

Ex∼p [f (x)] ≈ ∫ f (x) p (x) dx = ∫ f (x)
p (x)

q (x)
dx

= Ex∼p

[
f (x)

p (x)

q (x)

]
, (14)

The importance principle is introduced into the PC, so the PG
is as follows.

∇θ′J (θ) = Eπθ′

[
πθ (s, a)

πθ′ (s, a)
Aπθ′ (s, a)

]
(15)

θ′ is the new network parameters. To ensure that the difference
between θ and θ’ is not too large, the Kullback-Leibler (KL)
divergence is added to the PPO algorithm. The KL divergence
is used to measure the “distance” between two probability dis-
tribution functions, and its expression is given by the following
equation.

KL [P (X) ‖ Q(X)] =
∑
x∈X

[
P (x) log

P (a)

Q(x)

]

=
∑
x∈X

[
P (x) log

P (a)

Q(x)

]
(16)

PPO Algorithm.
1: begin
2: Initial policy function parameters θ0, and value function

parameters w0

3: for i ∈ {1, . . . , N} do
4: Using θk to interact with the environment to collect

{st, at}
5: Computing advantage function Aθk

(st, at)
6: Find policy function parameters θ to optimize

JPPO(θ)
7: end for

The KL divergence and importance sampling together affect
the training speed and accuracy of the AC algorithm. The final
likelihood function is

Jθk

PPO (θ) = Jθk

PPO (θ)− βklKL (θ, θ′) , (17)

where βkl is the adaptive KL divergence constraint.
The PPO algorithm is as follows.

D. Reinforcement Learning State Space

The learning process of reinforcement learning can be ex-
pressed as Markov decision processes (MDPs). Assuming that
the state space of the environment E where the agent is located
is S, all states st ∈ S in the environment E can be perceived by
the agent, and the set of all actions a of the agent is the action
space A. At a certain time t, the agent obtains the state st of
its environment, performs an action at, affects the current state
st, and changes the current state st to another state st+1 via the
state transition function P. The change of state will cause the
reward function R to feed back the corresponding reward rt to
the agent. By continuously selecting the next action a � A and
obtaining the corresponding reward r, the current environment
finally reaches the terminal state.

For the agent to train a better policy function π, it is necessary
to provide the agent with as much accurate and useful environ-
mental information as possible. State information can accurately
describe various important information in a distributed machine
learning cluster, including not only the execution speed and
model performance of distributed learning tasks, but also related
information such as the resource allocation of tasks in the
distributed cluster.

In this work, Nt is used to denote the number of learning
tasks performed in the distributed learning cluster at the t-th
sampling. By adjusting the number of learning nodes for each
distributed learning task, the model performance and training
time of multiple distributed learning tasks are balanced. The
state information obtained at the t-th sampling can be described

as st = (
⇀

mt,
⇀

et,
⇀

lt,
⇀

nt,
⇀

at,
⇀

ct,
⇀

wt).
⇀

mt is an N-dimensional vector representing N tasks being
performed in the distributed learning cluster at the t-th sam-
pling.

⇀

et is an N-dimensional vector representing the number
of iterations that the corresponding task has completed at the

t-th sampling.
⇀

lt is an N-dimensional vector representing the
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loss function value of each task in the current iteration cycle at
the t-th sampling.

⇀

nt is an N-dimensional vector representing the
maximum loss function value of each task until the t-th sampling.
⇀

at is an N-dimensional vector representing the model accuracy
of N tasks in the current iteration cycle at the t-th sampling.

⇀

ct
is an N-dimensional vector representing the usage time of the
computing nodes by N tasks in the current iteration cycle at the
t-th sampling.

⇀

wt is an N-dimensional vector representing the
proportion of computing nodes owned by each task in the current
iteration cycle at the t-th sampling.

E. Reinforcement Learning Action Spaces

Reinforcement learning agents take actions based on the col-
lected environmental states. When using reinforcement learning
for the resource scheduling of distributed learning tasks, the
reinforcement learning agent must obtain the model state infor-
mation of all running tasks, and the policy function then selects
the next action to execute. The resource scheduler performs this
action to schedule computing resources. Therefore, the period of
action change is the maximum value among the training iteration
periods of these tasks.

In reinforcement learning, different actions have different
effects on the environment in which the agent is. Suppose the
two-dimensional action space in a distributed environment is
[N, M]; then, the selection range of the action space is N∗M.
When the values of N and M are both large, the number of
actions that the reinforcement learning agent must learn is
very large, which increases the training cost of reinforcement
learning and leads to a significant decrease in the convergence
speed.

A simple action strategy is therefore designed: the agent’s next
action directly increases or decreases the number of computing
nodes assigned to a task. The action is defined as at = i, and
its specific meaning is as follows: when i > 0, the number of
computing nodes for the i-th task is increased; when i < 0,
the number of computing nodes for the i-th task is reduced;
when i= 0, the agent does not change the number of computing
nodes.

VII. EXPERIMENTS AND RESULTS

A. Experimental Setup

1) Experimental Environment: The server used in this exper-
iment had 48 GB of memory, two 1080Ti graphics cards, and
a 2.5 TB hard disk. The CPU was an Intel CoreTM i7-8700K,
and the operating system was Ubuntu 18.04.6 LTS. The Docker
version used in this research was 20.10.10.

Based on the latest version of the image released by Tensor-
Flow, the container image of the distributed learning system was
constructed, and the image was used as the bottom layer to build
computing nodes to form a distributed computing cluster.

2) Experimental Data: There were two types of distributed
learning task in this experiment: convolutional neural net-
work (CNN)-based image classification, residual neural network
(ResNet)-based image classification.

Fig. 5. Prediction results of the proposed LSP method.

In order to investigate the scalability of the proposed method
on datasets of different scales, this experiment used image
datasets of different scales, 40000, 60000, and 120000 respec-
tively. In the following text, they are defined as small-scale
data, medium-scale data, and big-scale data. Although 120000
images are not considered a large scale in many systems, due
to the hardware condition limitations of our server, more data
can significantly increase the training time, making it difficult
to conduct the experiments.

In order to investigate the scalability of the proposed method
on different scale computing nodes, experiments were conducted
on different computing node scales, namely 8, 12, and 16.

When training a distributed learning model, there are two
conditions for ending the task, namely that the specified number
of iterations has been reached or the model has converged. The
specified number of iterations refers to the number of training
times for the learning task preset by the user. Once the model
reaches the convergence state, the accuracy of the model has
exhibited little improvement and the loss function value has
converged to a certain fixed value.

B. Experimental Results

1) Task Volume Prediction and Resource Allocation: The
task volume of distributed learning can be represented by the
size of the dataset used by the distributed learning model. In this
research, the traffic data of the core network of a city in Europe
were used as the training data to test the prediction algorithm.
This dataset was collected from the Internet traffic data of a city
in Europe from 06:57 on June 7, 2005, to 11:17 on July 31, 2005
[29]. The prediction results are shown in Fig. 5.

In Fig. 5, the orange line is the actual task value, and the blue
line is the prediction result of the proposed LSP method, which
achieved an accuracy rate of 97.1%. Although Internet traffic
is not the number of machine learning tasks, this paper argues
that they all represent the cyclical nature of how humans use
networks and computers. The experimental results show that the
method can be used for task volume prediction and can maintain
a high model accuracy.

In the case of the same number of tasks, different numbers
of running computing nodes will impose different computing
pressures on each computing node. Suppose the number of
computing nodes is 60. Based on the static resource allocation
method, 30 computing nodes were used. Fig. 6 shows the average
number of tasks that each computing node needs to complete
based on the proposed resource allocation method and the static
resource allocation method. As can be seen from the figure, the
proposed resource allocation scheme significantly reduced the
number of tasks completed by each computing node in all cycles.
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Fig. 6. Average number of tasks completed by each computing node.

This avoids processing performance degradation from running
too many tasks on a single computing node.

2) Resource Scheduling Experiment: 1. Performance
Comparison

For the resource scheduling experiment, several resource
scheduling methods were selected as the baseline methods: (1)
FS, in which the distributed learning task allocates all computing
resources equally, (2) FCFS, in which, when a task is executed,
the task occupies all computing resources, (3) SLAQ, (4) Dol-
phin, and (5) TRADL.

(1) Experiment 1
The experiment consists of 12 computing nodes divided into

three compute clusters. The learning task involved only CNN-
based image classification tasks, with a total of 12 computational
tasks, using 3 types of data sets of different sizes. In order to
objectively reflect the impact of β on accuracy and time, the
same specified β value is used for different data sizes. Each
method is repeated 20 times to achieve stable results.

Fig. 7 shows the performance of the models trained by dif-
ferent methods on different scales of data. “β = 0.00005” in the
figure is a simplified representation of “RLPTO β = 0.00005”.
The proposed scheduling method relies on the reward function,
which takes into account both accuracy and training time. At
multiple β values, RLPTO can achieve higher model accuracy
and shorter training time than other methods on small-scale
data. The accuracy performance of RLPTO is comparable to
SLAQ and higher than other methods on medium and large scale
data. However, on large-scale data, the training time of RLPTO
is shorter than that of FS, SLAQ and Dolphin in most cases.
This shows that RLPTO tends to use more compute nodes to
improve the training efficiency when facing learning tasks with
large-scale data. Shorter training times come at the expense of
some accuracy. If a user requires higher accuracy, the user can
adjust the β value for better accuracy performance.

Table II shows the average accuracy of the model trained on
three datasets of different sizes and the average total time for
each method to complete the 12 tasks.

Using the FS method, the numbers of computing nodes al-
located to the three parameter servers were (3, 3, 4). Because
each computing node only computed a portion of the data set,

Fig. 7. Performance of different methods on different scales of data.

TABLE II
MODEL PERFORMANCE AND EFFICIENCY WITH 12 COMPUTING NODES

the accuracy of the distributed learning task model and the task
completion time were both at an intermediate level.

In the FCFS scheduling experiment, all compute nodes were
used in the execution of each task, but the data amount of
each compute node was the least, resulting in a large difference
in calculated gradients, so the model accuracy was poor and
the model convergence was slow, resulting in a longer overall
training time.
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TABLE III
MODEL PERFORMANCE AND EFFICIENCY WITH 16 COMPUTING NODES

SLAQ scheduling method takes model performance as evalu-
ation criterion. Because the change value of loss function shrinks
continuously in the process of distributed learning and training,
the performance of the obtained model is higher than FCFS,
Dolphin and TRADL, but the completion time is longer than
FS, Dolphin, TRADL and RLPTO (β>0.00005).

The Dolphin algorithm pays more attention to the communi-
cation time and training time. The algorithm achieved better
scheduling in terms of time, but the model accuracy of the
distributed learning system was reduced.

TRADL is divided into two stages for training, when the
accuracy of the model reaches a goal, the model is handed over
to the user, so its training process is fastest.

The RLPTO resource scheduling method uses the dual indi-
cators of model accuracy and training time to jointly judge the
training stage of the tasks. As the β value increased, the average
accuracy of the models decreased, and the task completion
time also decreased. When β <0.0001, the average accuracy of
RLPTO was higher than other methods, but the task completion
time was relatively long, and the average accuracy of RLPTO
was slightly lower when β>0.0005. When β = 0.0001, RLPTO
enables the model to achieve higher accuracy and shorter training
times than SLAQ.

(2) Experiment 2
In this study, another set of experiments was conducted to

verify the scalability of the method, which included 16 compute
nodes divided into 4 compute clusters, with the remaining condi-
tions unchanged. The experimental results are shown in Table III,
and the average accuracy of different methods is not much
different from that of experiment 1. It is worth noting that this
study uses Docker to build distributed machine learning clusters.
As the number of compute nodes increases, the computing power
of a single compute node decreases slightly, so the total task
completion time does not decrease significantly.

2. The β value
Fig. 8 shows the effects of β on the model accuracy and

training time for three different datasets of different sizes and
2 types of tasks. Due to differences in accuracy and training
time under different scale data, the data shown in the figure is

Fig. 8. Influence of β value on the accuracy and training time of CNN model
under different data scales.

TABLE IV
RECOMMENDED β VALUES

the difference from the lowest value, which is called relative
accuracy and relative training time. This allows for a better
description of how accuracy and training time change with β
value. As can be seen from the figure, as the β value increases,
the accuracy of the model decreases and the time to complete
the task decreases. The value of β can be determined by the user
according to their own needs, if the user wants a higher accuracy,
it is recommended that the value of β range is [0.00003, 0.0001],
if the user wants a shorter training time, the recommended
value of β range is [0.0003, 0.0005]. Considering the accuracy
and training time, the reasonable range of β values is [0.0001,
0.0003]. It can be seen from the figure that the model accuracy
trained on the large-scale data is less affected by the value of β,
but the training time is more affected by the value of β. The
accuracy of the model trained on small-scale data is greatly
affected by the β value, but the training time is less affected
by the β value. Therefore, this paper suggests that when the
data size is small, choose a smaller β to pursue higher accuracy,
and when the data size is large, choose a larger β to pursue a
shorter training time. The recommended beta values are shown
in Table IV.

3. Number of computing nodes
Fig. 9 shows the impact of the number of computing nodes

on the accuracy and training time of a single learning task. It
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Fig. 9. Impact of the number of computing nodes on accuracy and training
time.

TABLE V
TASK COMBINATIONS

can be seen from the figure that as the number of computing
nodes increases, the training time continuously decreases but
the accuracy gradually decreases. This is because when the
training data is divided into multiple parts and distributed to
different computing nodes, each computing node can only use
a portion of the data for training, which can lead to a decrease
in the performance of the model on a single node, resulting
in a decrease in the accuracy of the entire task. In addition,
more computing nodes bring higher communication overhead,
so the time efficiency benefits of increasing computing nodes
will gradually decrease. Overall, when the number of computing
nodes of a task is between 2 and 4, there is a more balanced
performance in training time and accuracy.

4. Distributed Learning System Reward
The distributed learning system throughput is the total reward

of the distributed learning tasks within a certain time. When
multiple tasks have different urgency, the rewards for performing
tasks with different urgency are different. In the experiment, it
was supposed that the award of the highest-priority task was 80
points, and other tasks were given 10 to 40 points according to the
task priority. There are a total of 12 tasks in this experiment, and
the system randomly assigns priority to 12 tasks, which use three
datasets of different sizes. The first four tasks used large-scale
data sets, the middle four used medium-scale data sets, and the
last four used small-scale data sets. The 12 tasks form several
task combinations with different priority distributions, as shown
in Table V.

The training time for this experiment is 120 minutes, and
the reward score is recorded every 1000 seconds. In order to
make the experimental comparison more reliable, we did not
let β be 0.0001 in this experiment, but let β be a more general

Fig. 10. Experimental results of task combinations with different priorities.

value of 0.0003. The TRADL algorithm has a short training time
due to early termination, so the reward score will not increase
after 100 minutes. The experimental results of different priority
task combinations are shown in Fig. 10. The results indicate that
RLPTO is beneficial for distributed learning clusters to schedule
tasks and resources according to the needs of different users,
respond to urgent or timely processing of high priority tasks.
From the beginning to 60 minutes, there are sufficient tasks
to be scheduled, and the RLPTO algorithm obtains more task
rewards faster than other algorithms. The number of tasks in
this experiment is fixed, but in reality, machine learning tasks
are generated by users without time constraints. When there are
many tasks that need to be scheduled, the RLPTO algorithm
can respond to high priority tasks in a timely manner, which
can maximize the overall system performance of the distributed
learning cluster.

In fact, the start time of each learning task is different.
Therefore, this paper takes the average reward of each resource
scheduling method as the evaluation index. Fig. 11 shows the
average reward of different resource scheduling algorithms un-
der different task combinations. As can be seen from the figure,
the proposed RLPTO method obtains the highest reward value
under the four task combinations and shows very good learning
task throughput.

VIII. DISCUSSION

When the reinforcement learning method is used to schedule
distributed computing resources, each action is to adjust the
resources of one parameter server. Therefore, the amount of re-
sources adjusted by an action accounts for a small proportion of
the whole cluster resources. As a result, the resource scheduling
is not fast enough. In addition, the method mainly considers the
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Fig. 11. Average reward of different task resource scheduling algorithms.

scheduling of computing resources, and does not consider the
data management and scheduling in machine learning.

The scheduling algorithm proposed in this paper reduces the
training time of machine learning tasks, so that limited compute
nodes can handle more machine learning tasks per unit time. The
algorithm improves the efficiency of resource utilization, so as
to reduce the total number of computing nodes, and reduces the
energy consumption.

IX. CONCLUSION

This paper proposed a task volume prediction method called
LSP based on the combination of long- and short-term data,
which can more accurately predict the future task volume. It
then calculates the most appropriate number of working nodes
via a heuristic algorithm. The results of experiments show that
the resource allocation scheme based on LSP can relieve the task
pressure of computing nodes and ensure the normal operation
of nodes.

In terms of task scheduling, three task queues are established
according to the type and priority of the task. Tasks are assigned
to one of three task queues according to their urgency, ensuring
that urgent and high-priority tasks can start training earlier.
Moreover, a reinforcement learning-based resource scheduling
strategy was proposed. Based on the model performance and
training time, the reward function, action space, and state space
of RLPTO were designed to dynamically adjust the resources
occupied by every task. The results of experiments demonstrate
that the model accuracy of large-scale data training is less af-
fected by the value of β, but the training time is more affected by
the value of β. The accuracy of the model trained on small-scale
data is greatly affected by theβ value, but the training time is less
affected by the β value. RLPTO scheduling method tends to use
more computing nodes when facing tasks with large scale data.
This paper suppose to determine β value based on the data scale.
Small-scale data can use smaller β to pursue higher accuracy.
Large scale data should choose a larger β to reduce the training
time.

In this paper, a large number of experiments are carried out
on different scale data sets with different number of computing
nodes. The experimental results show that the resource schedul-
ing method RLPTO proposed in this paper has good scalability.

RLPTO combines resource scheduling with task scheduling to
maximize the reward of distributed computing clusters. Exper-
iments show that compared with FS, FCFS, SLAQ, Dolphin
and TRADL, RLPTO can make the computing cluster get the
maximum reward in different task combinations. In the future,
we will further study how to improve the scheduling efficiency
of RLPTO.
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