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Abstract: The induction motor plays a vital role in industrial drive systems due to its robustness and
easy maintenance but at the same time, it suffers electrical faults, mainly rotor faults such as broken
rotor bars. Early shortcoming identification is needed to lessen support expenses and hinder high
costs by using failure detection frameworks that give features extraction and pattern grouping of
the issue to distinguish the failure in an induction motor using classification models. In this paper,
the open-source dataset of the rotor with the broken bars in a three-phase induction motor available
on the IEEE data port is used for fault classification. The study aims at fault identification under
various loading conditions on the rotor of an induction motor by performing time, frequency, and
time-frequency domain feature extraction. The extracted features are provided to the models to
classify between the healthy and faulty rotors. The extracted features from the time and frequency
domain give an accuracy of up to 87.52% and 88.58%, respectively, using the Random-Forest (RF)
model. Whereas, in time-frequency, the Short Time Fourier Transform (STFT) based spectrograms
provide reasonably high accuracy, around 97.67%, using a Convolutional Neural Network (CNN)
based fine-tuned transfer learning framework for diagnosing induction motor rotor bar severity
under various loading conditions.

Keywords: fault diagnosis; induction motor; Short Time Fourier Transform; transfer learning; vibra-
tion signal

1. Introduction

Mechanical and electrical tools are broadly utilized in different industrial fields, and
their dependability is connected with the industry’s monetary advantages and the well-
being of society [1,2]. Mechanical equipment plays a vital role in any industry for its
functioning and development. This equipment also requires high capital costs and main-
tenance costs [3]. Fault diagnosis assumes a critical part in machinery like an induction
motor, commonly used in many industrial systems. Induction motors are reliable, but faults
can happen because of their heavy-duty cycle and corrosive environment [4]. The faults in
induction motors are broadly classified as electrical and mechanical faults [5]. Electrical
faults mainly include rotors and stator faults, whereas mechanical faults include bearing
and eccentricity faults [6]. In the rotor, faults are caused due to broken rotors or broken end
ring faults. Broken rotor bars are one of the problems that frequently arise in an induction
motor. An induction motor’s rotor is made up of several bars that, if damaged, might cause
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the motor to malfunction severely. The broken bar faults initially appear as a localized
fracture of the rotor bar with stress increasing nearby. As the fault progresses, the rotor bar
breaks completely, including adjacent bars, and eventually the entire motor fails. If there
is no monitoring of the machines’ status and maintenance is neglected, the failures that
ensue could be very dangerous and expensive. even the minor, initially unimportant fault.
The presence of broken rotor bars prompts security concerns, reduced torque generation,
and also irregular motor working [7]. Broken bar defects can arise for various reasons
including:

1. Magnetic stresses resulting from electromagnetic pressures, magnetic asymmetry
forces, sounds, and electromagnetic vibrations;

2. Thermal stresses resulting from over-load, uneven heat distribution, hot spot, and arc;
3. Remaining stress from the manufacturing process;
4. Dynamic stress brought on by the axial torque and centrifugal forces of the rotor;
5. Circumferential stress brought on by the rotor material’s deterioration and contamina-

tion by chemical substances and humidity;
6. Mechanical stress brought on by mechanical fatigue of various parts, bearing damage,

loosened laminations, etc.

These faults might cause the motor to malfunction, resulting in a drop in efficiency,
increased operational costs, and high maintenance costs if not dealt with in time. Small
pieces of the broken rotor bars could rise out of the space because of the centrifugal force of
the motor’s rotation, which could damage the stator winding and lamination if they come
in contact [8]. Also, uneven heating arises in rotor bars due to adjacent broken bars which
could generate eccentricity leading to an unbalanced magnetic pull [9], which could also
lead to breakage of other rotor bars [10], and due to adjacent broken bars, rated current
increases [11], resulting a decrease in the average torque generation [12].

To guarantee the accessibility of the industrial system and the security of items and
people on the premises, the monitoring, and detection of rotor failure cannot be overstated.
Rotor abnormality in the mechanical equipment can be analyzed from the monitoring
data by various processing techniques at the beginning phase. Early fault detection and
diagnosis could minimize losses and decrease the chances of machine failure or spreading
failure, and limit fault severity. Utilizing a proper strategy for extracting the characteristics
that demonstrate the occurrence of rotor failures in the monitored data to improve the
prediction accuracy of the motor’s state and the analysis effectiveness [13]. Generally,
vibrational data are broadly utilized for fault diagnosis among the different data that could
be examined from a three-phase induction motor. The work is structured as follows to
classify faults in the induction motor by using the vibration signals:

1. The open-source dataset of the rotor with the broken bars in a three-phase induc-
tion motor is available on the IEEE data port and is used to extract the data’s time,
frequency, and time-frequency domain features.

2. The extracted time-domain and frequency-domain features are provided to ML mod-
els for the rotor fault classification.

3. This study also provides a viable method of applying time-frequency-based feature
extraction (STFT) on signals from multiple sensors to convert the one-dimensional
time-series signal into a two-dimensional image to learn better information using
fine-tuned transfer learning models.

2. Related Work

To guarantee the accessibility of the industrial system and the security of items and
people on the premises, the monitoring, and detection of rotor failure cannot be overstated.
Rotor abnormality in the mechanical equipment can be analyzed from the monitoring data
by various processing techniques at the beginning phase.Many researchers used different
approaches to diagnose the faults in the induction motor. Ola E. Hassan et al. [5] presented
a diagnosis based on different loading conditions, several broken rotor bars, validation
methodology, and numerous signal processing methods like FFT, Wigner-Ville distribution,
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etc., for identifying rotor broken bars. R. Zhang et al. [14] presented a model for bearing
failure diagnosis in an induction motor in different working conditions with the assistance
of transfer learning by incorporating the use of neural networks, vibration data, and the
sliding frame technique to generate training samples from the vibrational data obtained.
Pu Shi et al. [15] used a new diagnostic technique based on the wavelet coefficient of stator
current to indicate parameters under different loading conditions for different levels of
broken rotor bar severity. ZHU et al. [16] presented a new technique by combining the
strength of Deep Transfer learning with CNN and Domain adaptation with the help of a
domain loss that combines various Gaussian kernels for better feature adaptation. They
used the raw vibration data instead of spectrum features by converting the time-domain
signal into the image through a defined effective method.

Yan Du et al. [17] proposed a novel approach for the diagnosis in induction motors
by employing the use of STFT for feature extraction from the raw vibrational data and
proposing a novel network model with the use of transfer learning, named Transfer Deep
Residual network for improving the fault diagnosis performance. The output from the STFT
feature extractor was fed into the TDRN as an input for the fault diagnosis process. J. W. Hur
et al. [18] presented several analysis techniques for the fault diagnosis in the BLDC motor in
non-stationary operating conditions by observing the change in the vibrational data of the
motor. They dealt with different vibration signal analysis techniques for anomaly detection
in the BLDC motor working under different speed conditions as well as providing different
condition indicators for determining the SOH of the system. R. Supangat et al. [19] Instead
of using the FFT, which is based on the induction motor’s load condition, a newly developed
technique using the wavelet transform was accustomed to exploring the broken rotor bar
failure identification using the starting current analysis in an induction motor to identify
the typically broken bar fault frequencies from the overshadowing of the basic components.

Ferrucho-Alvarez, E.R. et al. [20] propose a novel approach for detecting damaged
rotor bars in an induction motor based on Contrast estimation, similar to the one used in
image processing. Their experimental results from applying the contrast method validate
Unser and Tamura contrast definitions as a means of recognizing and characterizing an
Induction motor operating state as Healthy, 1 bar broken, or 2 bar broken. S. Mohanty
and D. Mohanty [21] investigated the impact of fault signatures caused by damaged
bars in an induction motor under varying loading conditions. A new method based on
wavelet transform was derived, and simulations were used for diagnosing procedures to
diagnose the broken bar fault. N. Mehala and R. Dahiya [22] presented the theoretical
and experimental results for identifying faults in induction motors using Motor Current
Signature Analysis (MCSA) using the current spectrum obtained from FFT performed on
signal under analysis. They also compared different signal processing methods performed
under non-constant load conditions in an induction motor.

Almounajjed A. and Sahoo AK. [23] proposes an innovative online detection scheme
for diagnosing incipient inter-turn short circuit faults and estimating failure severity in
induction motors to provide the motor with a safe operating area by introducing a new
mathematical variable based on the discrete wavelet analysis and using a multi-class SVM
to carry out the classification function, their work intends to estimate the proportion of
faulty turns in the shorted winding. Tauheed Mian et al. [24] examined different bearing
failure combinations, including dual and multiple fault circumstances, using two widely
used fault diagnosis techniques: non-invasive infrared thermography (IRT) and vibration
monitoring in the time-frequency domain by extracting scalograms. They used a CNN
network to classify the fault combinations. A. Choudhary et al. [25] reviewed SOTA
Condition Monitoring and Fault Diagnosis approaches for early identification of failure in
electric vehicles and reducing the chance of abrupt failure. They also discussed difficulties
for future work on emerging technologies for research activities. Chang, H.-C et al. [26]
showed the usage and advantages of DCGAN in generating the dataset for fault diagnosis
to oversample the Imbalanced data. Their results showed promising results when dealing
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with imbalanced data and using DCGAN and CNN on time-frequency features for fault
severity classification tasks.

Based on the available literature on induction motor fault diagnosis, the author used
the raw signal and extracted the features using the time-domain, frequency-domain, and
time-frequency domain analysis. The time series data was converted into a frequency
domain by using the Fast Fourier Transform (FFT) technique. In the time-frequency domain,
STFT was used to transform a one-dimensional time-series signal into a two-dimensional
image called spectrograms. The spectrograms were fed to the CNN-based fine-tuned
transfer learning models for fault classification.

Along with time-domain and frequency-based feature extraction for diagnosis, the
critical contribution of this study is the use of spectrograms for fault identification under
various loading conditions generated from the vibration signals of an induction motor and
the use of Transfer learning to classify the severity of the fault in less amount of data with
improved accuracy.

3. Database Description

In this study, the IEEE data port’s dataset “Experimental database for detecting and
diagnosing rotor broken bar in a three-phase induction motor” provided by Treml et al. was
used to get the proposed working system for diagnosing broken rotor bars in an induction
motor [27]. Figure 1 shows block diagram of the experimental setup of the workbench
used for generating the dataset [27]. The database carries mechanical and electrical signals
that were collected with varying mechanical loads on the three-phase induction motor
axis and various degrees of broken bar defects in the induction motor rotor. All signals
were captured simultaneously for Eighteen seconds for each loading condition, and ten
iterations from transient to consistent conditions of the induction motor were recorded.
Tests were carried out on healthy motors and motors with rotor defects in direct start with
balanced three-phase supply voltage and 60 Hz frequency.
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Figure 1. The block diagram of experimental workbench for collecting and generating a database.

The database was gathered in the “Laboratory of Intelligent Automation of Processes
and Systems and Laboratory of Intelligent Control of Electrical Machines, School of Engi-
neering of São Carlos of the University of São Paulo (USP), Brazil”. The database contains
reading from Vibro-control uniaxial accelerometers, model PU 2001, with a sensitivity
of 10 mV/mm/s, a frequency range of 5 to 2000 Hz, and stainless-steel housing, which
provides the integrated acceleration signal over time i.e., provides the measure of vibration
velocity from sensors placed at 5 different positions to get different readings of mechanical
vibrations along with voltages and current in phases A, B, and C. The reading was collected
on various loading conditions to diagnose the failures for healthy engines and engines with
rotors containing 1, 2, 3, and 4 bars broken adjacent. It was essential to drill the rotor to
imitate the failure of broken bars in the squirrel cage rotor of the three-phase induction
motor. To ensure that the diameter of the hole surpasses the width of a rotor bar, drilling
was done using a bench drill outfitted with a 6 mm diameter drill, with the tip centered at
half the longitudinal length of the rotor. To create a database of tracked variables, a rotor
without a hole i.e., a healthy rotor was tested first, and then it was gradually replaced.
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The data set is coordinated as a construction of the MATLAB application. The
“struct_rs” structure presents the exploratory information alluding to the defect-less induc-
tion motor, “struct_r1b” implies one broken bar, “struct_r2b” suggests two broken bars,
“struct_r3b” referring three broken bars and “struct_r4b” for four broken bars. Figure 2
shows the reading containing mechanical and electrical signals collected from different
sensors on the induction motor, listing three-phase voltage, three-phase current, and five
vibration signals.
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4. Proposed Work

In this work, the authors consider the vibration signal data from the database available
in .mat format (data is stored in MATLAB’s structural array format). The python program
is used to retrieve the time-series vibration signals (5 different vibration locations as
mentioned in Figure 2) and convert them into CSV formats for building the proposed
system. Each CSV file in the extracted dataset contains values of vibration data for different
locations and loading conditions. The whole procedure consists of two major parts: feature
extraction and fault classification.

4.1. Feature Extraction

A proper signal-processing technique must be selected to extract useful data from
the raw data [28]. Generally, different feature extraction techniques such as time domain,
frequency domain, and time-frequency domain techniques were used for extracting useful
information from raw data. In this paper, the author used all three methods, i.e., time,
frequency, and time-frequency domain analysis, to extract the features from raw data.

4.1.1. Time Domain Analysis

An examination of physical signals, mathematical functions, or time series of economic
or environmental data in the context of time is referred to as a time domain analysis. In
discrete time or continuous time, the value of the signal or function is understood for all
real numbers at various discrete occurrences. Multiple features like mean, variance, Root
Mean Square (RMS), standard deviation, peak-to-peak factor, skewness, and kurtosis can
be extracted from the raw data. These values are estimated by segmenting the complete
vibration data by each second. Those features are calculated on each one-second window
for the whole Eighteen-seconds vibration signal. All the features are concatenated to give a
single file containing the time-domain features of a raw vibration signal.
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4.1.2. Frequency Domain Analysis

Frequency domain analysis (FDA) is the study of physical signals, mathematical
functions, or time series data in the context of frequency. According to a range of frequencies,
the frequency domain reveals how much of the signal is contained inside a certain frequency
band. A frequency-domain representation can additionally contain the phase shift that
must be applied to each sinusoid to recombine the frequency components and retrieve the
original time signal. Techniques like Fourier transformation are generally used to transform
the time-series signal into the frequency domain. The Fast Fourier Transform is used in
frequency domain analysis in this work. The FFT is applied to the raw signal, which then
estimates the frequency components of the vibration data. Features are then estimated
based on a one-second window from the complete vibration signal data.

Fast Fourier Transform

Fast Fourier Transform (FFT) is used to transform the spaced time samples and evalu-
ate the frequency domain response. The Discrete Fourier Transform (DFT) computation
takes a long time and requires N2 floating-point multiplications. The DFT can be quickly
calculated using the FFT technique. The FFT is a group of operations created to cut down
on the number of unnecessary computations. Features and benefits vary depending on the
FFT’s implementation. The 2-point DFT and 4-point DFT are combined with the 8-point,
16-point, to 2r-point extensions to create the FFT technique. The FFT formula breaks down
the DFT equation, as shown in Equation (1):

X(k) = ∑ x(n)WNnk (1)

Into a series of small transformations before recombining them. The FFT algorithm is
used to transform a signal (x) of length (N) from the time domain to the frequency domain
(X) as shown in Equation (2).

X[h] =
N−1

∑
i=0

(
x[i]Wih

N

)
, WN = e−

J2Π
N , for h = 0, 1, 2, . . . , N − 1 (2)

Figure 3 shows the flowchart of the procedure implemented to extract features in
the time domain and frequency domain from the raw vibration data of the three-phase
induction motor.
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4.1.3. Time-Frequency Domain Analysis

An induction motor is a rotatory machine that generates non-stationary signals whose
frequency content changes over time. Brandt expressed that most of the inspection of
rotating machines depends on inspecting the vibrational signals [29]. Utilizing frequency
domain analysis on this signal would result in transforming the time series signal to the
frequency domain. The frequency domain has problems while dealing with non-stationary
signals, as it assumes the signal is stationary when it transforms into the frequency domain.
Thus, frequency-domain analysis techniques like Fourier Transform (FT) cannot provide
time distribution information of the spectral components. The time-frequency domain
analysis has been utilized for non-stationary waveform signals, which are generally used
when machinery failures occur. Many time-frequency analysis methods have been created
and applied to apparatus failure diagnosis, e.g., STFT, wavelet transform (WT), Hilbert-
Huang transform (HHT), etc. Figure 4 shows the generalized difference between the
time-domain, frequency-domain (FT), and time-frequency domain (STFT) approaches.
These approaches indicate that the time domain has good time resolution but no frequency
information, whereas the frequency domain has good frequency resolution but poor time
resolution. Time-frequency domain provides good time and frequency resolution due to
its windowing approach. In this work, the author uses the STFT time-frequency domain
approach to transform signals to get information about the spectral components.
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Short Time Fourier Transform

One of the most popular methods for time-frequency analysis is the STFT, a modified
Fourier transform that enables us to analyze non-stationary signals in the time-frequency
domain [30]. The concept behind STFT is to utilize a windowed function to extract the
windowed signal from the entire signal. It uses a short-time localized window function to
divide a signal into equal-length segments. The Fourier spectrum is then extracted using
the DFT independently on each windowed signal. The STFT of the continuous-time signal
x(t) can be expressed as follows in Equation (3)

st f t(t, w) =
∫ +∞

−∞
x(τ)ω(τ − t) exp(−jωτ)dτ, (3)

where ω(τ) is a sliding window function and τ is a time variable.
Corresponding, the STFT of a vibration signal in the discrete form x(n), Equation (4)

will become,

st f t(n, w) =
+∞

∑
−∞

x(n)ω(n − m) exp(−jwn) (4)

The magnitude squared of the STFT, likewise called the spectrogram, is utilized to
approximate the frequency components depending on the STFT features of the signal. The
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spectrogram is a visual depiction of the signal measuring the variation of frequency as it
varies with time. The spectrogram can be presented mathematically by Equation (5),

spec(n, w) =
∣∣∣ st f t(n, w)2

∣∣∣ (5)

Figure 5 shows the flowchart of the procedure implemented to generate the spectro-
grams of the raw vibration data of the three-phase induction motor.
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The time and frequency-domain features using FFT extracted at an interval of the
1-s window from multiple sensors are concatenated to form a single file corresponding
to one particular label, i.e., the condition of the rotor bar in an induction motor. Each
label file containing many feature vectors is finalized as a single file having all the labeled
feature rows.

4.2. Classification

The function of the classification component is to convert the independent variable
into the dependent variable by classifying the features returned by the feature extractor
into a group of brain patterns. In this work, some algorithms for classification are K-
Nearest neighbors (KNN), Decision tree, and Random Forest, used for data in numerical
values, i.e., features from the time domain or frequency domain. For the time-frequency
domain, neural networks can be used for more accurate results as the features are converted
into two-dimensional images. CNN [31] is most widely used in image classification and
performs well in extracting features from the images [32]. They are used in a way that
convolution is first conducted using multiple kernels/filters followed by a non-linear
activation function, Batch Normalization, and pooling if required. For the classification
problem, fully connected layers are used after multiple rounds of convolution, batch
normalization, and pooling operations. The parameters of CNN are optimized with
backpropagation by minimizing the loss. In this work, CNN-based pre-trained transfer
learning models are used for fault diagnosis. Transfer learning is a technique where we
use a model trained on a particular task, and remodeled on some other-related task. It
uses the knowledge gained by training on a large dataset to apply to small data for better
results. Transfer learning is a widely used technique in the area of machine learning or deep
learning as it helps to build a model with having small dataset by using someone else’s
model, which is trained on a large dataset for a different but similar task and implementing
that knowledge to get a more accurate result.

In transfer learning, as shown in Figure 6 [31,33], learning parameters are transferred
by the model trained on large data, for a long time on GPUs or TPUs, to our desired
model and then freeze the parameters while training our model. Fine-tuning the transfer
learning model also helps to achieve the desired result for the particular task. In this work,
the CNN operations are conducted with the help of Transfer Learning by using different
CNN networks like VGG16, InceptionV3, MobileNetV2, and Inception_ResNetV2. These
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networks are used to extract features from the spectrogram, and then those features are
passed to fully connected networks. Lastly, a Softmax function is applied for the multi-class
classification task.
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The proposed work steps for broken rotor bar fault diagnosis in an induction motor
are summarized as follows:

1. The database in .mat (MATLAB structural array format) was parsed using a python
program which goes through each loading condition containing time-series data and
all the vibration data in the files are saved in separate .csv files format.

2. A Python program extracts the features from the vibration data from multiple sensors
into the time domain and frequency domain (after applying FFT on raw data) by
using a window size of 1-s.

3. Another Python program extracts the features from raw data into the time-frequency
domain with the help of STFT, and then respective features are converted into spectro-
grams.

4. The generated spectrograms are then saved in image format and used by the neural
networks for fault diagnosis.

5. All the data in multiple domains are then labeled as “rs”, “r1b”, “r2b”, “r3b”, and
“r4b” i.e., specific motor conditions.

6. The time domain and frequency domain features are then used to train the ML model
for classification. KNN, Decision tree classifier, and Random Forest Classifiers are
used for the classification of the broken bar diagnosis.

7. The images of spectrograms are fed into different fine-tuned Convolutional neural
networks (CNN) transfer learning models such as VGG16, InceptionV3, MobileNetV2,
and Inception_ResNetV2 for feature learning and to build a system that could easily
detect the failure in an induction motor due to broken rotor bars with its respective
fault labels.

Figure 7 shows spectrograms, i.e., the time-frequency spectrum, of an induction motor
vibration data collected from the axial location under normal conditions and conditions
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with the rotor having healthy, 1, 2, 3, and 4 broken bars adjacent, under loading conditions
at 2.5 Nm after applying STFT on each data file. More precise representation can be
achieved by reducing the window size in the window function but may result in increased
computation time.
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The spectrogram generated using STFT at different loading conditions of the vibration
data of the three-phase induction motor are stored in a database containing the labels
“rs”, “r1b”, “r2b”, “r3b”, and “r4b”. The “rs” indicates a healthy rotor, and the rotor with
“r1b”, “r2b”, “r3b”, and “r4b” are broken bars, respectively. Table 1 indicates the number of
spectrogram samples generated for each condition and its class label.

Table 1. Number of spectrogram samples generated for each label.

Condition of Rotor Class Label Number of Spectrograms Generated

Healthy rotor bar (rs) 0 400
1 broken bar (r1b) 1 395
2 broken bars (r2b) 2 400
3 broken bars (r3b) 3 400
4 broken bars (r4b) 4 400

Figure 8 shows the working procedure of the proposed work using time-frequency
domain analysis and fine-tuned transfer learning model implementation to distinguish the
fault detected in the induction motor.
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5. Results

The rotor fault detection of a three-phase squirrel cage induction motor has two major
phases; feature extraction from raw data and fault identification from extracted features
using classification models. KNN, Decision Tree, and Random forest classifier were used
for fault identification from the time and frequency features.

Table 2 shows the test accuracy of the classification model trained on the features
extracted from the time and frequency domain. The confusion matrix portrays the classifi-
cation ability of the model in the shape of true versus projected value. Figure 9 shows the
confusion matrices for the time and frequency domains, respectively.

Table 2. Performance measures and comparison of different algorithms for time domain and fre-
quency domain features.

Classification
Models

Test Accuracy (%)

Using Time-Domain Features Using Frequency-Domain Features

K-Nearest neighbors 77.37 80.53
Decision Tree 83.80 81.71

Random Forest 86.80 85.92Sensors 2022, 22, 8210 12 of 17 
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In time-frequency domain spectrograms, CNN-based pre-trained model structures
were selected for classification purposes because of their great strength in learning the
2D image data. For fault identification, spectrograms were generated from the extracted
STFT features. All the architectures were trained on the generated spectrograms to test the
adaptability of models for the various failure condition under different loading conditions.
All the architecture was given the same values of hyper-parameters with the same number
of fully connected layers.

Additionally, the predictive outputs from the confusion matrix and classification
report of the final layer of the working model for the target data in each situation are given.
Figure 10 shows the training and validation graphs generated from the deep-learning
model, demonstrating the performance of different architectures used for fault diagnosis.
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Table 3 shows the Performance measures and comparison of the CNN network and
different transfer learning networks to perform better learning of the fault classification
of rotors. The CNN shows the test accuracy up to 89.99%. The pre-trained CNN transfer
learning approach models show better classification compared to the normal CNN model.
The MobileNetV2 shows the maximum test accuracy of up to 97.67% using the Transfer
learning approach. Figure 11 shows the confusion matrix plotted for all the transfer
learning networks used for fault diagnosis in an induction motor using time-frequency
domain analysis.

Table 3. Performance measures and comparison of different transfer learning networks.

Networks Training Accuracy
(%)

Validation Accuracy
(%)

Test Accuracy
(%)

CNN 98.83 91.30 89.99
VGG16 95.89 93.98 95.33

InceptionV3 99.93 94.31 94.00
Inception_ResNetV2 99.93 91.30 92.33

MobileNetV2 99.93 95.32 97.67
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Figure 11. Confusion matrices for the fined-tuned transfer learning networks.

The Confusion matrices show that the model easily identifies between spectrograms
of various fault signatures under different loading conditions and provides much more
accurate results as compared to using time and frequency features. Furthermore, the
classification reports describe the classification metrics on an each-class basis. It is a broadly
used performance metric in deep learning. The result shows that the transfer learning
approach provides the acceptable classification of normal and faulty rotors. Table 4 shows
the detailed classification reports of every CNN-based transfer learning network used for
learning and mapping the spectrogram images to their corresponding labels.

Table 4. Show the classification reports of transfer learning CNN network used.

Classification report of
VGG16 model

Condition Precision Recall F1-score Support

1 broken bar (r1b) 0.99 0.91 0.95 54
2 broken bar (r2b) 0.99 0.92 0.96 65
3 broken bar (r3b) 0.85 1.00 0.92 57
4 broken bar (r4b) 0.98 0.94 0.96 67
Healthy rotor (rs) 0.95 0.98 0.97 57

Avg. Accuracy 0.95

Classification report of
InceptionV3 model

1 broken bar (r1b) 0.91 0.91 0.91 54
2 broken bar (r2b) 0.97 0.94 0.95 65
3 broken bar (r3b) 0.96 0.96 0.96 57
4 broken bar (r4b) 0.93 0.93 0.93 67
Healthy rotor (rs) 0.93 0.96 0.95 57

Avg. Accuracy 0.94
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Table 4. Cont.

Classification report of
Inception_ResNetV2 model

1 broken bar (r1b) 0.85 0.93 0.88 54
2 broken bar (r2b) 0.97 0.91 0.94 65
3 broken bar (r3b) 0.86 0.99 0.93 57
4 broken bar (r4b) 0.97 0.84 0.90 67
Healthy rotor (rs) 0.98 0.96 0.97 57

Avg. Accuracy 0.92

Classification report of
MobileNetV2 model

1 broken bar (r1b) 0.95 0.98 0.96 54
2 broken bar (r2b) 0.95 0.95 0.95 65
3 broken bar (r3b) 0.99 0.96 0.98 57
4 broken bar (r4b) 0.99 0.99 0.99 67
Healthy rotor (rs) 0.99 0.99 0.99 57

Avg. Accuracy 0.98

It can be observed from the confusion matrices and the accuracy report that the time-
frequency analysis method (STFT) shows promising results with the help of fine-tuned
CNN-based transfer learning models, as most of the labels were classified correctly by
every network using the STFT spectrograms as input. The classification accuracy is better
for time-frequency domain features than time and frequency domain features.

6. Conclusions

This work introduced a viable method of diagnosing induction motor’s rotor fault
detection technique under various loading conditions from Vibration signals by performing
time-domain, frequency-domain, and time-frequency domain analysis using Short Time
Fourier Transform (STFT) and also utilizes the advantages of the Transfer learning approach
to get improved accuracy. The time-domain and frequency-domain features provide the
test accuracy of up to 87.52% and 88.58%, respectively, using the Random Forest model. In
the time-frequency domain, the spectrograms are generated using extracted STFT data of
vibration signals, and Fine-tuned CNN framework-based transfer learning models were
used for the rotor fault severity diagnosis.

1. The suggested strategy utilizes the optimal capacity of STFT to process the non-
stationary vibration signals by transforming the STFT features into a spectrogram.
The fault diagnosis test accuracy obtained are around 95.33%, 94%, 92.33%, and 97.67%
for VGG19, InceptionV3, Inception_ResNetV2, and MobileNetV2 models respectively.

2. The use of fine-tuned CNN-based transfer learning models helped to achieve accurate
results with having less training data of spectrograms generated under different
loading conditions

3. The empirical results show that the suggested approach can altogether work in diag-
nosing the damaged rotor bars fault in a three-phase induction motor with promising
results for fault classification in induction motors under different loading conditions

4. The method can be used to classify the fault severity by observing the vibration signal
from the induction motor and transforming those signals into the time-frequency
domain to feed into the model for the classification task.

5. Further improvement can be made by generating and oversampling the database
using Generative Adversarial Networks (GANs) and combining that with the transfer
learning approach. Furthermore, signal processing techniques like noise filtering or
others can be employed to the raw signal to extract more refined features.
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