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Abstract 

In this article we propose several modeling choices to extend propensity score analysis to 

clustered data. We describe different possible model specifications for estimation of the 

propensity score: single level model, fixed effects model, and two random effects models. We 

also consider both conditioning within clusters and conditioning across clusters. We examine the 

underlying assumptions of these modeling choices and the type of randomized experiment 

approximated by each approach. Using a simulation study, we compare the relative performance 

of these modeling and conditioning choices in reducing bias due to confounding variables at both 

the person- and cluster-levels. An applied example is provided in which the effect of retention in 

grade 1 on passing an achievement test in grade 3 is evaluated. We find that models that consider 

the clustered nature of the data both in estimation of the propensity score and conditioning on the 

propensity score performed best in our simulation study, however other modeling choices also 

performed well. An applied example illustrates practical limitations of these models when cluster 

sizes are small.  
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The use of propensity scores in multisite non-randomized trials 

As evidenced by this special issue and recent work by Thoemmes and Kim (in press), 

propensity score (PS) methods have become a widely used tool in estimating causal treatment 

effects in non-randomized studies and broken randomized experiments, i.e., randomized studies 

that suffer from attrition, treatment non-compliance, or both (Barnard, Frangakis, Hill, & Rubin, 

2003). Multilevel models (MLM; also called hierarchical linear models) are a widely used tool 

for the analysis of data with a nested structure. In the present context, nested structures are those 

that include participants within larger units such as students within schools or patients within 

treatment sites. However, the use of PSs within the nested data structures addressed by MLM has 

received little attention. The primary exception is the work by Hong and colleagues (e.g., Hong 

& Raudenbush, 2006; Hong & Yu, 2007, 2008) and recent publications by Arpino and Mealli (in 

press), Gadd, Hanson, and Manson (2008), Grieswold, Localio, and Mulrow (2010), and Kim 

and Seltzer (2007). Researchers who wish to draw causal inferences using PS matching from 

non-randomized studies with nested structure currently have little guidance on how to 

incorporate methods from the causal inference literature.  

The use of PS in the MLM context requires several special considerations. Among these 

considerations are decisions about how to model the influence of variables at each of the 

hierarchical levels of the MLM and choices of appropriate conditioning schemes for the 

estimated PSs. The primary focus of this paper is to extend the use of PSs to data from 

nonrandomized nested designs that are analyzed using MLM. In this article we focus on designs 

in which individual units at the lower level of the analysis are clustered and are non-randomly 

assigned to either treatment or control condition. We consider two diverse perspectives on 

clustering that may be taken. First, the cluster level may be a central feature of the design as 
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when schools having different academic resources and different policies about retention decide 

to retain or not retain poorly performing students (Hong & Raudenbush, 2006). There may be 

variations in treatment implementation and interference between students within the school. 

Treatment effects within cluster and their generalization across clusters becomes the focus of the 

study. In this first case the propensity score analysis attempts to approximate a multi-site 

randomized trial, in which units are randomized within individual clusters. Second, clustering 

may be an incidental feature of the design as when randomly selected members of groups of 

unacquainted individuals waiting to complete forms in state unemployment office are offered the 

opportunity to participate in a job seeking skills program (see Caplan, Vinokur, Price, & van 

Ryn, 1989 for a randomized experiment in this context). The treatment is assumed to be 

implemented without variation. The focus of the study is to estimate the average treatment effect 

for the population of individuals, controlling for the potential nuisance effect of incidental 

clustering. In this second case the propensity score analysis attempts to approximate a single 

level randomized experiment on individuals who happened to be clustered. This status of 

clustering as a central versus incidental feature of the design and the type of randomized 

experiment that is approximated will have implications for the PS approaches that should be 

considered. In this article we will not discuss PS designs in which treatment is given to the entire 

cluster so the unit of analysis is the cluster itself (for an example, see Stuart, 2007).  

We will consider both theoretical and practical aspects of causal inference in MLM and 

present guidelines on how to use PS matching in the context of non-randomized MLM designs. 

We limit our presentation to designs in which treatment effects are estimated for a binary 

treatment condition. In the single level context, Rubin (1997) proposed extending PS approaches 

to designs with more than two treatment conditions by comparing sets of pairs of treatment 
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conditions (e.g., treatment 1 vs. control; treatment 2 vs. control), constructing a PS model 

separately for each focused comparison. All models that we present could be extended likewise. 

More complex multilevel multinomial propensity score models that simultaneously compare all 

treatment conditions are still in development. 

Causal Effects and Confounding in Multisite Non-randomized Trials 

In order to better understand the issues, we begin by defining the causal effect of interest 

in a multisite non-randomized trial and discuss how this causal effect can be estimated from 

observed data. Hong and Raudenbush (2003) defined causal effects in these designs within the 

framework of the potential outcomes model (e.g., Rubin, 1974, 1978). 

Given a binary treatment condition (e.g., treatment vs. control), a causal effect in a single 

level experiment can be defined as the expected difference between the potential outcomes that 

we would observe if all participants (units) could hypothetically be observed under both the 

treatment and control conditions (Holland, 1986).  

)()( iCiT YEYE           (1) 

where YiT is the response of unit i under the treatment condition, YiC is the response of unit i 

under the control condition, and δ is the average causal effect (Rubin, 2005). These potential 

outcomes are not observed in their entirety in any given experiment—the fundamental problem 

of causal inference (Holland, 1986) —but they can be estimated from observed quantities. In an 

ideal randomized experiment1 this causal effect can be estimated by the simple difference in 

observed means of the treatment and control groups.  

An issue in extending the potential outcomes model to the multilevel case is the 

underlying assumption in the single level case that each unit has only one potential outcome that 

depends deterministically only on the particular unit and the treatment assignment. This 
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assumption implies that the potential outcome should ideally be invariant to cluster membership, 

cluster composition, and the treatment assignments of other participants, and that treatment 

delivery should be identical across clusters. This assumption might be unrealistic in many 

applied research contexts that involve clustered data (Hong & Raudenbush, 2006). Hong and 

Raudenbush (2006) propose allowing cluster specific effects on the potential outcomes, but 

assume additivity: “the observed group composition and agent allocation …are viewed as 

random events that are exchangeable” (Hong & Raudenbush, 2003, p. 1850). In other words, 

even though cluster-specific effects might exist, they are regarded as random effects that have an 

expected value of zero in the population. This assumption implies that an average causal effect 

can still be estimated when averaged across all clusters and the associated exchangeable random 

cluster effects. Hong and Raudenbush (2003) express the potential outcomes along with the 

random cluster effects as: 
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where YijC is the potential outcome of unit i in cluster j in the control condition and YijT is the 

potential outcome of unit i in cluster j in the treatment condition. The grand mean of the potential 

outcomes in the control condition of all units across clusters is expressed as Ȗ00. Random site-

specific differences from this grand mean that do not depend on the treatment are captured in u0j, 

which is assumed to have a mean of zero and a variance of τ00. The treatment effect is expressed 

as δ and quantifies the average increase that a single unit is expected to make when observed in 

the treatment as opposed to the control condition. Note that the expected outcome for units that 
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are assigned to the treatment condition also includes the random component u0j as well as a 

second random component u1j. This second random component quantifies the cluster specific 

deviation over and above the treatment effect δ. Finally, e0ij and e1ij are unit-specific random 

effects. The expected value of equation (2) can be expressed as 
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where the expectations are taken across both units and clusters. This equation makes apparent 

that the random effects, if aggregated across clusters, do not affect the estimation of the grand 

mean, Ȗ00, or treatment effect, δ.  

Given randomization, the unbiased average treatment effect across all clusters can be 

estimated with the following model: 
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where Ȗ10 is the estimated average causal treatment effect over all clusters. The treatment effect 

Ȗ10 can be tested for statistical significance. Furthermore, variance in estimated treatment effects 

across clusters can be tested by assessing the statistical significance of the random component 

τ11. Small and non-significant variance components can be interpreted as evidence that the 

treatment effect is relatively homogenous across clusters.  

In trials that employ randomization, equation (4) provides a direct estimate of the causal 

effect. In non-randomized observational studies, equation (4) estimates the prima facie or 

apparent treatment effect that will nearly always require adjustment. Threats to internal validity, 

notably selection at both the individual and cluster levels, must be addressed and additional 
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assumptions made for a valid causal inference. The selection of level 1 units into either the 

treatment or control condition can potentially depend on covariates at the person level, the 

cluster level, or both. The treatment assignment variable Z could be related to a vector of 

variables X at level 1 and the average level of Z could be related to a vector of variables W at 

level 2. Consider a program offered to several schools in which students are invited to participate 

on a voluntary basis. The treatment selection in this case could be related to student level 

variables such as motivation and interest as well as school level characteristics such as the ethnic 

composition of the student body and public vs. private school status. The relationship between 

selection into treatment and level 1 covariates may differ across clusters or interact with 

variables at level 2. Motivation of students might be an important predictor of selection in one 

school, but unimportant in another school. In order to obtain an unbiased estimate of the causal 

effect, these potential confounding influences need to be controlled through a selection model 

that incorporates the confounding structure on both levels. The use of PSs in MLM is one such 

possible solution to model selection.  

Hong and Raudenbush (2006) considered the first case in which clustering is a central 

feature of the design and the goal is to approximate a multi-site randomized trial. To obtain a 

valid causal interpretation of the treatment effect, they noted that several assumptions are 

needed. In their example, schools serve as clusters, and variations in treatment implementation 

across schools and interference between students within schools are permitted.  

“(a) Generalization of causal inferences is restricted to current school assignments, (b) 

there is no interference between schools, and (c) treatment assignment is strongly 

ignorable; that is one’s own and one’s peers treatment assignments are independent of the 

ensemble of potential outcomes given observed covariates.” (p. 902).  
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 In the second case in which clustering is an incidental feature of the design and the goal 

is to approximate a randomized experiment on individuals, some changes in the assumptions are 

necessary. In this case, it is assumed that there are no variations in treatment implementation 

across clusters and that selection is invariant across clusters. The multilevel analysis addresses 

incidental effects of the clustering of participants into groups. As in the approximation of the 

multisite randomized trial, the assumptions of no between-cluster interference and strongly 

ignorable treatment assignment given person-level covariates are needed.  

Practical Issues in Estimating the Propensity Score in Trials with Clustered Data 

A PS analysis involves several steps that can be briefly summarized as (a) assessment of 

critical covariates, (b) estimation of the PS, (c) conditioning on the PS, (d) model adequacy 

checks, and (e) treatment effect estimation (for a more complete overview see Caliendo and 

Koeping, 2007; Stuart, 2010; Thoemmes & West, 2010). In this section we consider several 

possible ways to conduct a PS analysis for multisite designs. Some aspects of PS analysis are 

easily translated to the more complex case of MLM; others require more study. As a preface to 

these particular considerations, we return to the issue of the role of clustering and the type of 

randomized experiment that is approximated by using propensity scores.  

The first case in which the clusters are a central feature of the design approximates a 

multi-site randomized trial in which participants at level 1 (e.g., students) are randomly assigned 

to either treatment or control and this procedure is repeated across different clusters (e.g., 

schools). When approximating this design, it is of special importance that balance is achieved 

within each cluster. In this case the selection model (the relationship between covariates and 

treatment selection) may differ across clusters, and any one covariate can have a different 

regression weight attached to it in the prediction of treatment selection. If selection (and the 
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regression weight of the propensity score model) differs across clusters, matching within clusters 

is most suited to achieve balance on covariates within clusters. Also, matching within single 

clusters makes the use of level 2 variables (e.g., school characteristics) irrelevant. Units within 

the same cluster will by definition always have the same values on all observed and unobserved 

level 2 covariates.  

The second case in which clusters are not a central feature of the design approximates a 

randomized experiment in which individuals are randomly assigned to either treatment or control 

conditions regardless of cluster membership. In this type of randomized experiment it would be 

possible to match individuals with identical propensity scores both within and across clusters and 

as a result achieve balance in the overall sample, but not necessarily within single clusters. Both 

level 1 and level 2 variables would need to be considered in the estimation of the PSs, as 

individual units would now be equated on a combination of individual-level and cluster-level 

characteristics. This case assumes that the selection model for the estimation of the PS from level 

1 covariates will be identical across clusters. Under this assumption, if balance between the 

treatment and control groups on the PS is achieved, it is expected that balance on the covariates 

that contribute to the PS will also be achieved. In contrast, if the selection model could differ 

across clusters, units from different clusters could be matched on PSs based on different 

regression weights. In this case, matching of units from different clusters on PSs would not 

necessarily be expected to lead to balance on the covariates that contribute to the PS if the 

selection models differ across clusters.  

Identification of Covariates 

The first step of a PS analysis is to identify covariates that could potentially bias the 

treatment effect. In a design with clustered data the key additional consideration is that both 
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person-level covariates and cluster-level covariates can be considered to be potential 

confounders. The researcher should aim to have an exhaustive list of covariates from both level 1 

and level 2 sources with a particular emphasis on those of known theoretical or empirical 

importance. If researchers form matches only within single clusters, level 2 covariates can be 

ignored.  

Estimation of the Propensity Score 

The PS can be estimated with diverse statistical methods including logistic regression, 

discriminant analysis, recursive partitioning (e.g., McCaffrey, Ridgway, & Morall, 2004), and 

generalized additive models. We limit our presentation here to the commonly used logistic 

regression model and its MLM extension, the generalized linear mixed model. This decision 

permits us to focus on conceptual differences concerning the treatment of clustering and 

estimation of effects at different levels in different modeling strategies. Following Grieswold, 

Localio, and Mulrow (2010) and Kim and Seltzer (2007), we examine (a) single level models in 

which all participants are pooled prior to estimation of parameters and clustering is ignored, (b) 

fixed effects regression models (see Allison, 2005) in which single level logistic regression is 

used for each individual cluster, and (c) multi-level model specifications that include random 

intercepts, slopes, or both. We consider how the PS is estimated in each of these models and 

which model parameters are important in the equating of units on the estimated PS.  

Single level models.  

The estimated propensity scores in single level models in which the vectors of person- 

level variables X and cluster-level variables W are included are specified as follows: 
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where logit(e(x,w)) is the estimated logit of the propensity score, 0  is an intercept, ∑
P

p

ipXβ
1=

is a 

vector of regression coefficients and predictor variables on the person level (potentially including 

person-level interactions and polynomial terms), ∑
1
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  is a vector of regression coefficients 

and predictor variables on the cluster level (potentially including cluster-level interactions and 

polynomial terms), and 
I

i
iji XW

1

  includes all possible interactions between person- and 

cluster-level variables. Note that a PS models applied to a real dataset will typically not include 

all possible predictor variables or interactions thereof.  

The use of single level models with clustered data yields unbiased estimates of fixed 

effects, but does not include an estimate of the random effect for that cluster. This approach will 

only yield proper estimates of the PS for a unique cluster (approximating the multi-site 

randomized trial) when both (a) the intra-class correlation coefficient (ICC, a measure of the 

proportion of total variance that is between clusters) and (b) the random variability of regression 

coefficients across clusters is zero—highly unlikely in practice. Consider a data structure in 

which clusters differ substantially in their average level of an explanatory variable of treatment 

selection, e.g., motivation to participate in the intervention. Within each single cluster, 

motivation might be a strong predictor for treatment selection, but if a single level regression 

model is estimated the effect of motivation might be biased due to clustering effects (Kreft & de 

Leeuw, 1998). In addition, any variability in the strength of relationship between motivation and 

treatment selection between clusters will not be properly modeled by the basic single level 

model. The use of single level models to estimate PS with clustered data is expected to yield 
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biased estimates of the PS within single clusters. On the other hand, if selection does not differ 

appreciably across clusters and the goal is to approximate a randomized experiment in which 

individuals are assigned to treatment conditions irrespective of cluster membership, the single 

level model can be a viable choice for estimation of the PS.  

Fixed effects models.  

An alternative conceptual approach to estimating PSs in multisite trials is to use a 

separate logistic regression for each cluster. In practice, the selection model includes indicator 

variables that represent clusters and capture variation in cluster means. The selection model can 

also theoretically include interactions between the indicator variables and person-level variables; 

inclusion of such interactions is limited in practice because they utilize a large number of degrees 

of freedom. No cluster-level covariates can be included in the regression equation because they 

are constant within each cluster (perfectly collinear). The fixed effect model can be expressed as: 
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where C is an indicator variable for cluster membership and remaining regression coefficients 

are defined as in Equation (5). Note that the model specification is very similar to the single level 

model from Equation (5), with the difference being that the indicator variable C in the fixed 

effects model allows for estimation of intercepts and possibly regression slopes of the X variables 

for every single cluster. As a result, the fixed effects model theoretically allows for estimation of 

unbiased within cluster regression slopes, regardless of presence or absence of any cluster-level 

covariates. Due to the presence of the cluster membership indicator variable, observed or 

unobserved cluster-level covariates cannot change the estimated PS. Two important limitations 

of this model are that very large sample sizes within each cluster are needed for the estimation of 
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this model (if cluster level interactions are included), and that the estimated PSs across different 

clusters are not comparable, because they are based on different regression equations within each 

cluster. This estimation model is appropriate when a multisite randomized trial is approximated.  

Multi-level models. 

Finally, we specify a multi-level model (MLM) with potential random intercept and slope 

components. In practice, not all random components might be modeled: Random effects should 

be included in the model when they are significantly different from zero and estimation does not 

yield a non-positive definite matrix of variance and covariance components.  

MLM comes with additional complexities relative to the previously considered models. 

In models with random intercepts, slopes, or both, that are allowed to vary across clusters, 

predicted propensity scores can be either based on fixed effects only or both fixed and random 

effects (see e.g., McLean, Sanders, & Stroup, 1991; Robinson, 1991; Zeger, Liang, & Albert, 

1998). This distinction between the inclusion vs. exclusion of random effects in estimating PSs is 

also referred to as the distinction between narrow (subject-level) and broad (population-wide) 

inference spaces. If specific PSs for the sampled units are desired, the narrow inference space 

with inclusion of random effects is used. These predicted values are usually referred to as best 

linear unbiased predictors (BLUPs). The narrow inference space captures PS models that mimic 

a randomized multisite trial, whereas the broad inference space captures PS models that mimic a 

randomized individual trial with incidental clustering. 

The narrow inference space uses the full MLM model with fixed and random effects: 
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possible interaction terms between subject- and cluster-level covariates, ju0  is a random effects 

component influencing the intercept of each cluster j, and ∑
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 is a vector of random effects 

components that influence each of the regression slopes of subject-level predictors. All random 

effects u are assumed to be normally distributed with mean 0 and estimated variance τ. Random 

effects may be allowed to correlate with each other. The model used to estimate the PS based on 

the broad inference space is identical to Equation 7 with the omission of all random effects:  
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Several important observations can be made about the MLM models. First, two different 

types of predicted probabilities can be extracted from the MLM, depending on whether the broad 

or narrow inference space is used. Predicted values based on the two inference spaces can differ 

dramatically if the estimates of the random effects components are large. Of key importance is to 

differentiate between random components influencing the intercept vs. slope estimates. The 

random effect component of the intercept will change the average level of the estimated PS 

within a single cluster, and should therefore not have any profound effect on later conditioning, 

because the rank ordering of estimated PS will not be changed within the cluster. Random effect 
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components of random slopes on the other hand can have strong effects on both the estimation of 

the PS and potentially the conditioning and resulting treatment effects, because the rank ordering 

of estimated PS can change dramatically based on inclusion or exclusion of the slope-specific 

random effects. A noteworthy difference between the model parameters from MLM as compared 

to the single level or fixed effects model is that estimates of within cluster relationships in MLM 

are based on the shrinkage estimator (see e.g. Little, Milliken, Stroup, and Wolfinger, 1996). 

The narrow inference space MLM allows for the selection model to differ across clusters, 

and is most appropriate for matches within single clusters, approximating a multisite randomized 

trial. The broad inference space MLM does not allow for the selection model (the relationships 

between covariates and treatment selection) to differ across clusters, except as a function of 

cross-level interactions and is more suited to the approximation of randomized experiments of 

individuals in which cluster membership is not a central feature. 

Summary: Similarities and Differences between Estimation Methods 

What are the key conceptual differences and similarities between these estimation 

methods and how do they relate to different approximations of randomized experiments? The 

single level model ignoring clustering (SL) will yield increasingly biased estimates of PSs within 

single clusters to the extent that the ICC and random slope variance both diverge from 0. 

However, all estimated PSs are based on the same model, i.e., the same regression coefficients 

relating covariates and treatment selection are used in estimation. One would therefore expect 

that covariate balance could be achieved in the whole sample if conditioning on the estimated 

PSs from the SL model were performed. However, covariate balance would unlikely be achieved 

within clusters and residual bias of treatment effects could remain.  
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The MLM with broad inference space (MLM-B) is conceptually similar to the SL model 

so that we would expect to see predicted PSs that are closely related to each other across the SL 

and MLM-B methods. Both models apply a single set of regression predictors to the estimation 

of each PS score. The difference between the models is that the estimates of the MLM-B model 

are shrunken towards the overall mean. Both estimation techniques therefore map on to 

situations in which randomized experiments are approximated in which individuals are assigned 

to treatment or control irrespective of cluster membership. These approaches are suited for 

matching across the full sample, but not necessarily within single clusters. 

Conceptual similarity can also be observed between the fixed effects (FE) model and the 

MLM with narrow inference space (MLM-N). Both of these models use regression slope 

estimates relating covariates to treatment selection that can vary substantially across clusters and 

might not even be comparable across different clusters. As a result these estimation techniques 

can be used to approximate multisite randomized trials in which matching is constrained to units 

that share the same cluster membership, approximating a randomized multisite trial.  

Conditioning  

Conditioning on the PS can be achieved using diverse methods (e.g., matching, 

stratification). In the context of multisite trials, conditioning can be performed within single 

clusters or across clusters. With matching or stratification this implies that matches or strata 

would be formed only within each cluster (i.e., matching would be restricted to units from the 

same cluster) or across clusters (i.e., matching could be performed across the whole sample, 

ignoring cluster membership). Conditioning within clusters (CWC) is conceptually an option that 

maps on to the approximation of the multisite randomized trial, because treatment effects are 

ultimately computed for each single cluster and then averaged across clusters. CWC ensures that 
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covariate balance is achieved within clusters and that individual treatment effects within cluster 

can be estimated without bias. The practical drawback of CWC is that for small sample sizes the 

number of appropriate matches (and ultimately the overall size of the matched dataset) can 

diminish sharply therefore making conditioning within single clusters nearly impossible, a point 

also raised by Arpino and Mealli (in press).  

In practice, conditioning across clusters (CAC) may often be an attractive option, if CWC 

is infeasible due to smaller sample sizes within clusters. A single unit in a cluster for which no 

appropriate within cluster match was found could be matched with a similar unit from another 

similar cluster, thereby increasing the overall sample size. The key consideration for this 

approach is that under certain estimation methods (FE or MLM-N) the estimated PSs will be 

based on different regression equations. The PSs might not (even in expectation) yield balance 

on the background covariates, either in the entire sample, or within single clusters. This would 

prohibit estimation of an unbiased treatment effect. Instead, when CAC is used (and an 

experiment is approximated in which individuals are randomized without consideration of cluster 

membership), the estimation techniques SL and MLM-B should be used, as they both do not 

model selection within single clusters.  

It is illustrative to consider how two randomly picked units (one treated; one control) 

could differ from each other in their estimated PSs. The estimated PS for each unit will 

determine whether they will be potentially equated, whether the basis for equating is matching, 

propensity score weighting, or stratification. Following Kim and Seltzer (2007) we consider how 

two units (XT and XC) and their associated PSs could be different in each of the estimation 

methods. Differences in estimated PSs could potentially be obtained when conditioning occurs 
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within or between clusters. Here we only consider combinations of estimation and conditioning 

that map on to approximations of the two different types of randomized experiments.  

Single level models (SL) under conditioning across cluster (CAC) 

The difference between any two estimated PSs from the SL model with CAC would be:  
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            (9) 

Equation (9) implies that the difference in the PSs is based on a weighted combination of 

differences on the person-level X variables, cluster-level W variables, and the interaction of the 

two sets of variables. Two units will have an identical estimated PS if all values on all X and W 

variables are identical, or if the weighted combinations of X and W variables are identical. This 

implies the not widely known fact that two units with very similar estimated PSs do not have to 

be identical in their composition of background variables. Balance on the background variables 

is achieved on average in the distribution in the matched sample, but not necessarily for any 

single matched pair. A further implication is that the CAC type conditioning is expected to create 

balanced covariates on both levels across the whole sample. This implication does not 

necessarily imply that the person-level X variables within each cluster will be perfectly balanced. 
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However, when one is approximating the type of randomized experiment with incidental 

clustering, the primary goal is to achieve balance in the full sample.  

Single level models (SL) under conditioning within cluster (CWC) 

In the case that conditioning is restricted to units within the same cluster, all W variables 

become constants and the difference between two estimated PSs in the SL model simplifies to: 

  pCpT

I

i

P

p
pi XX   1 1

CT )logit(e(x))logit(e(x)       (10) 

This result implies that under CWC the difference between estimated PSs only depends on 

person-level variables, the regression coefficients of the X variables, and the cross-level 

interaction regression coefficients. The interaction regression coefficients have a potential effect 

on each single regression coefficient of the person-level covariates. This can lead to situations in 

which different clusters (with accompanying different interaction weights) yield estimated PSs 

that are based on different regression coefficients of the person-level covariates. This 

combination of estimation and conditioning approximates a multisite randomized trial, however 

also assumes that the SL model is a proper approximation of the selection within single clusters.  

Fixed effects model (FE) under conditioning within cluster (CWC) 

Under CWC the difference in estimated PSs can be expressed as: 
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which is identical to the SL model. However, individual regression coefficients might differ 

substantially between the SL model and the FE model, depending on the amount of intra-class 

variability and random slope variability. The FE model specification should be restricted to 

CWC, because the estimated PSs from different clusters are based on incomparable models. In 
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the FE model the estimation of the PS under CWC only depends on person-level variables and 

person-level regression coefficients. This result is important because it implies that as long as 

conditioning is performed within cluster, cluster-level variables do not need to be considered in 

the estimation of the PS. Observed and unobserved cluster variables cannot bias the estimation of 

the PS and the treatment effect. Performing CWC with the FE model shields the estimate of the 

causal effect from any bias that could arise from omitted cluster-level variables.  

MLM-B model under conditioning across clusters (CAC)  

Estimated PSs in the MLM-B model are unaffected by the random effects of intercepts 

and slopes across clusters. Estimation of PSs is only based on fixed effects in the model. As a 

result, the estimated PSs are conceptually similar to those of the SL model with the difference 

that fixed effects in the MLM-B model are shrunken towards the average slope across clusters. 

The difference between two estimated PSs can be expressed as:  
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           (12) 

where  is a regression weight associated with either person-level, cluster-level variables, or 

interactions thereof, depending on the subscript. As in the SL model, this result illustrates that 

conditioning on the estimated PS will depend on weighted combinations of differences on the 
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subject and cluster level. Conditioning on this estimated PS will usually not balance covariates 

within any cluster, but may provide balance across clusters in the whole sample.  

MLM-B model under conditioning within clusters (CWC)  

In the case of restriction to CWC, the difference in PSs simplifies to: 
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Note again that the interaction term can alter the value of regression coefficients systematically 

across clusters depending on the values of the cluster-level covariates and that it is assumed that 

the model with the broad inference space is still a valid approximation of the selection within 

single clusters. 

MLM-N model under conditioning within clusters (CWC)  

Finally, we consider the case of the MLM-N model under CWC. This model is different 

from the MLM-B model because the random components of intercepts and slopes across clusters 

are included in the estimation of the PS. In real data examples it is doubtful that all possible 

random effects can or should be estimated. As a practical solution, individual random effects 

could be probed for significance and only significant random effects would then be included in 

the model estimation. In the case of CWC the difference between PSs is simply: 
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All random effects and cluster-level effects do not influence the difference of units within a 

single cluster and can therefore be ignored in the difference between two units that reside in the 

same cluster. Again, this approach approximates a multisite randomized trial.  
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Summary: Model components and conditioning  

Our examination of the influence of model components on conditioning permits us to 

reach several conclusions. First, only under the FE model are the cluster-level effects of 

covariate vector W completely ignored. All other models consider the influence or at least the 

potential interaction effects of cluster-level covariates. All models that use CWC are expected to 

yield balance within clusters.  

In the case of CAC, where conditioning is performed across the whole sample, balance is 

achieved in the total sample but imbalances can remain within clusters under any estimation 

model. The CAC approach also requires that selection models do not differ across cluster. 

Imagine that a single person is matched on his or her estimated PS to a person from another 

cluster. Under a model that allows for different selection models across cluster, e.g., the MLM-N 

model, the estimated PSs from individuals from different clusters could be based on substantially 

different regression equations. Therefore, matching two units with the same PS from different 

clusters may not actually achieve balance on the person-level covariates because the estimated 

PSs were differently weighted across different clusters.  

The FE model with CWC and the MLM-N model with CWC approximate multi-site 

randomized trials and allow the selection model to differ across clusters. The SL model with 

CWC, and the MLM-B model with CWC also approximate this type of randomized experiment 

but make the assumption that the selection model can only differ across clusters as a function of 

cross-level interactions. In all cases in which a multi-site randomized trial is approximated and 

CWC is used, covariate balance within clusters is of main importance. These models allow 

estimation of average treatment effects and treatment effect variability across clusters mimicking 

a randomized multisite trial. In contrast, the SL model with CAC, and the MLM-B model with 
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CAC approximate randomized experiments in which randomization occurred at the individual 

level without regard to clustering. In these models covariate balance is achieved in the total 

sample and not within single clusters.  

Estimation of treatment effect 

The final step of a PS analysis in the context of a trial with clustered data is the 

estimation of the treatment effect. Given prior conditioning on the estimated PS, the treatment 

effect could be estimated using either a fixed or random effects hierarchical linear model with 

the outcome variable being regressed on treatment assignment or models that use OLS, but 

correct the standard errors due to the clustered nature of the data. For theoretical or empirical 

reasons, the effect of the treatment could be allowed to vary across clusters. The significance of 

the treatment effect can be tested by examining the significance of the fixed effect for treatment, 

whereas treatment heterogeneity across clusters in the case of a multisite randomized trial can be 

assessed by examining the significance of the random slope component associated with the 

estimate of the average treatment effects in an MLM.  

Simulation Study 

Design 

To explore differences between the estimation and conditioning choices and the effects of 

certain data characteristics, we conducted a simulation study. We varied the type of estimation 

strategy, the type of conditioning, overall sample size (simultaneously varying cluster size and 

number of clusters), and the degree of intra-class correlation in a full 4 x 2 x 2 x2 factorial 

design. The levels of the manipulated factors and key values of other features that were held 

constant are summarized in Table 1. Our main interest was to observe how well different 
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propensity score methods (both with regard to estimation and conditioning) could reproduce the 

treatment effect in the population.  

We varied several factors that we believed might be influential in the performance of the 

PS models. In particular, we varied the amount of the intra-class correlation coefficient for all X 

variables from a very low .05 to a very high .50. We expected that single level models would be 

most biased under presence of a strong intra-class correlation coefficient. The ICCs for the 

outcome variable and treatment assignment were held constant. The ICC of the continuous 

outcome variable was held constant at a value of .10. The ICC of the binary treatment indicator 

was manipulated by introducing variability in the intercept estimate of the treatment assignment 

variable. The average treatment assignment probability was set to .5, indicating an even split 

between treated and untreated units. This value of .5 was allowed to vary randomly across 

clusters. We chose the random intercept variance to achieve a specified distribution of expected 

splits between treatment and control assignments across all clusters. This distribution was 

referenced to a normal distribution with specified mean and variance. In other words, based on 

our specification we were able to determine the frequency of particular treatment assignment 

probabilities across clusters. Based on this information we computed the ICC of treatment 

assignment using formulas provided by Ridout, Demetrio, and Firth (1999) and Zou and Donner 

(2004). The ICC of the treatment assignment variable was approximately .20. The treatment 

effect was set to account for 13% of the explained variance (moderate effect size per Cohen’s, 

1988, definition). The strength of confounding, defined as the relationship between covariates 

and treatment selection, and covariates and the outcome variable, was set to a constant value of 

26% of the total explained variance (large effect size, Cohen, 1998) separately for both subject-

level X and cluster-level W covariates. The amount of random slope variance for all subject-level 
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X variables was set to a relatively small value of .0026. This value was chosen based on 

consideration that the spread of slope coefficients across clusters could reasonably form a 95% 

confidence interval of +/- 0.1 on a standardized regression coefficient metric. In other words, the 

value for the slope variance implied that the more extreme values would be about +/- 0.1 from 

the mean slope coefficient. Finally, we set the amount of explained variance in the slope 

coefficients due to cluster-level W variables to 13% (moderate effect size, Cohen, 1988). We 

considered two levels of sample size: 20 clusters with 50 units each to represent a realistic large 

sample size and 200 clusters with 500 people each to represent an asymptotic sample size. These 

conditions were fully crossed with the estimation and conditioning schemes to provide a design 

with a total of 32 conditions. Each condition was replicated 1,000 times.  

Data Generation and Analysis 

Data were simulated using Mplus 5 (Muthén, & Muthén, 2009; Input file available from 

first author) using the following model specifications.  

Selection model: 
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where X is a vector of subject-level covariates with dimension p, W is a vector of cluster-level 

variables with dimension q, and u are random effects components of the intercepts or slopes 

depending on the subscript. The matrix of variance and covariance terms of random effects is 
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abbreviated with ellipses (…) that represent elements between our indexing variables. The 

residual term in this logistic regression is held constant at 
3

2
.  

Outcome model: 
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where all definitions are identical to the selection model with the difference that the outcome 

variable is now the continuous variable Y and additional effects of the treatment Z (both fixed 

and random parts) are also included in the model. In both models, the value of p (the dimension 

of the person-level variable vector), and the value of q (the dimension of the cluster-level 

variable vector) were set to three, meaning that we had three variables on the person level and 

three variables on the cluster level. Specific sizes of parameters are given in the form of 

explained variance in Table 1 and a path model representation of the selection model is displayed 

in Figure 1. We made the selection mechanism complex, allowing for all possible interaction 

effects between cluster-level and person-level variables, and random slope variances for the 

person-level variables. However, we also made several simplifying assumptions. First, all 

person-level and cluster-level covariates were standardized (mean of 0 and variance of 1) and 

were within their respective level uncorrelated with each other. This lack of correlation of the 

covariates simplifies calculations, but is unrealistic in real datasets. However, this data structure 

does not appreciably change the behavior of the model in terms of the either the selection 
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mechanism or the relationship to the outcome. It is the unique effect of a covariate in selection 

and its relationship to the outcome variable over and above the other covariates that determines 

its status as a confounder. The second simplifying assumption was that relationships between 

person-level covariates and treatment assignment were specified in the selection model as 

additive and linear (with the exception of cross-level interactions). This might not be a realistic 

representation of conditions in substantive research; however the focus of the investigation was 

not on the performance of PS analyses under non-linear selection models, but rather on the 

comparison of estimation and conditioning strategies under controlled circumstances. The third 

simplifying assumption was that random intercept components and random slope components 

were not correlated with each other. Again, this was done to simplify calculations and 

estimation; more realistic conditions that allow for correlations between random slopes and 

intercepts could be specified. Lastly, we only included three variables as covariates on each 

level; propensity score models often include many more variables. However, the performance of 

the different estimation approaches is not expected to change dramatically with differing 

numbers of covariates given proper specification.  

After data were simulated, we estimated PSs using SAS PROC LOGISTIC for single 

level and fixed effects models and SAS PROC GLIMMIX for random effects models. The model 

used to estimate the PSs included all person-level covariates X, all cluster-level covariates W, and 

all interaction effects. The random effects matrix was a diagonal matrix, with diagonal elements 

freely estimated and off-diagonal elements constrained to zero. This mirrored the data generating 

model. Conditioning was accomplished by stratification on the estimated PS using 10 strata, and 

then computing and averaging treatment effects across strata. For cross-cluster conditioning, the 

strata were formed across the whole sample, ignoring the cluster structure. Then within each 
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stratum, a multi-level model was used to estimate the treatment effect based on treatment 

assignment, allowing for both random intercepts and slopes. For within-cluster conditioning, we 

formed 10 strata based on the estimated PS within each cluster and treatment effects were 

estimated as in the cross-cluster conditioning models.  

We collected several statistics as measures of performance: the amount of average raw 

bias, defined as the difference between the treatment effect in the population and the estimated 

treatment effect averaged across 1,000 replications, the Mean Square Error (MSE) defined as the 

squared deviation of the estimated treatment effect from the true population treatment effect 

averaged across 1000 replications, the percent coverage, defined as the percent of replications in 

which a 95% confidence interval covered the true treatment effect, and balance statistics within 

and across clusters for person-level and cluster-level variables.  

Results 

The results are presented in Table 2. In the low ICC conditions, differences on the 

performance measures across the different PS estimation and conditioning choices were subtle. 

For small sample sizes and a small ICC value, virtually all estimation and conditioning 

combinations performed very well, with both low values for bias and coverage rates for the true 

treatment effect close to 95%. Within this sample size and ICC combination, the CWC MLM-N 

model performed slightly better than other models; however, it did not appreciably outperform 

the other models. This slight advantage of the MLM-N model became more apparent in the large 

sample size, small ICC condition. The MSE did not differ appreciably across models in this 

combination of sample size and ICC, but was again lowest for the MLM-N model.  

In the large ICC, small sample size condition, most models performed relatively well. As 

expected, the SL model seemed to perform worse than other models. The SL model was the only 
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model that ignored clustering effects, which were prominent in the large ICC conditions. In the 

large ICC condition, the MLM-N model slightly outperformed all other models in terms of raw 

bias, MSE, and coverage regardless of sample size. The CWC SL and CAC SL models seemed 

to perform worse than other models. The remaining models performed similarly, but all models 

that utilized CAC seemed to have slightly larger biases. In this study the CWC MLM-N model 

performed best.  

In addition to bias and coverage, we also examined balance statistics for each condition 

(see Table 3). We assessed the average balance (defined as the median of all standardized 

differences on the means of the covariates) within clusters and across clusters for each data 

generating mechanism and PS model condition. For the balance across clusters, we further 

differentiated between balance on level 1 and level 2 variables. Consistent with our results on 

bias, balance was overall very good. This was expected as we included all covariates from the 

data generating model in our estimation and used the correct functional form. Some notable 

differences were that models that used CAC had markedly worse balance within clusters when 

sample sizes were small. With large sample sizes imbalance even within clusters disappeared. 

Larger average imbalances for level 2 variables were also observed for models that used CAC 

and large sample sizes. Finally, the imbalances within cluster were almost always largest for the 

SL model when comparing models that used CWC. Especially for conditions with large ICC, 

these imbalances within cluster were noticeable.  

Our results indicate that the SL model becomes problematic as ICC values become larger. 

When the ICC was .05, bias was small, indicating that ignoring cluster membership can yield 

relatively unbiased results. When the ICC was .50, the SL model can yield badly biased results 

with coverage values as low as 11% rather than the expected 95%. As a caveat it should be noted 
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that in many applied circumstances, the expected ICC will usually be much smaller than .5. The 

MLM- N model performed best in almost all circumstances, especially when coupled with the 

CWC conditioning scheme. The combination of the MLM-N model and the CWC scheme takes 

clustering fully into account, both estimating PSs and conditioning within clusters. As expected, 

the MLM-N model coupled with CWC yielded good balance within clusters, which is crucial for 

the estimation of treatment effects when a multi-site randomized trial is approximated. The CWC 

FE and CWC MLM-B models also showed good performance in most circumstances, even 

though decreased coverage rates were observed under conditions of large sample size, and ICC = 

.50. Based on the results of our simulation study, the use of the SL model is discouraged and the 

use of the MLM-N model or FE model with CWC is encouraged, presuming that the sample size 

in the clusters allows for this approach. The MLM-N model worked very well in our simulation 

because the cluster size and distribution of treated and untreated subjects were similar across 

clusters. If this had not been the case (i.e., highly imbalanced clusters in terms of treatment 

assignment), any sort of CWC scheme could potentially fail, because too many units would not 

have suitable matches within each cluster. We explored this limitation in our applied example. 

Applied Example: Retention in grade 1 and its effects on later academic performance 

To illustrate the use of PS in MLM, we present a partial re-analysis of a study by Hughes, 

Chen, Thoemmes, and Kwok (2010), in which the impact of repeating grade 1 on passing the 

grade 3 Texas Assessment of Knowledge and Skills (TAKS) math achievement test was 

assessed. In this study 769 students across three districts in Texas were recruited when in grade 

1. Of these 769 students, 165 were retained in first grade and 604 were promoted. We excluded 

all schools that had fewer than 2 retained children, because of perceived problems with matching 

and estimation of effects in the MLM. The reported sample size reflects this exclusion criterion. 
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At the end of grade 3, students took the TAKS math test. The research question was to determine 

whether retention in grade 1 had any impact on passing the grade 3 test. To bypass issues of 

missing data in our illustrative example we used a single imputation using SAS PROC MI to 

create a complete data set.  

We used a total of 67 comprehensive covariates that were measured on the person level, 

and two variables that were measured on the cluster (school) level. These variables were 

intended to be a comprehensive set of covariates that have been shown in prior research to be 

related to grade retention, to achievement in the elementary grades, or ideally both. In this 

illustration, we estimated treatment effects for grade 1 retention on grade 3 TAKS math 

achievement using all of the estimation and conditioning strategies discussed above. To ensure 

comparability across different estimation and conditioning models, we first fit a saturated model 

(including all subject-level and cluster-level covariates and interactions). We used the same 

combinations of estimation and conditioning schemes that we used for the simulation study. We 

used 1:1 nearest neighbor matching without replacement and a caliper width of 0.1 standard 

deviation. The treatment effects were estimated based on the matched samples using a random 

effects MLM. To ensure convergence of the models with random effects, each regression slope 

of level 1 predictors was first tested individually for significant variation across clusters using 

SAS PROC MIXED. Only 5 slopes that showed significant variation were entered as random 

effects in the model. Slopes of other level 1 predictors were assumed to be fixed. The covariance 

matrix of random effects was constrained to zero on off-diagonal elements. For each 

combination of PS estimation and conditioning (CWC, CAC), we estimated the treatment effect 

(with 95% confidence interval), the balance of all covariates between the retained and the 

promoted groups in the matched sample as a whole, and the balance of all covariates within each 
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single cluster. Balance was defined as the standardized difference in means (Cohen’s d) on all 

covariates. Balance statistics were averaged across all variables and clusters.  

The results are presented in Table 4. This applied example made several limitations of the 

FE model approach apparent. Because of small sample sizes within clusters, virtually none of the 

single FE PS models could be properly estimated, at least not if all interaction effects between 

dummies and person-level covariates were included. Recall that the FE model posits a single 

logistic regression model for each cluster. In many clusters the number of predictors was larger 

than the number of students in this particular cluster, and even in larger clusters, problems of 

complete separation of groups occurred frequently. This problem was not observed with any of 

the other models that estimated the PS using the complete sample (either completely pooled as in 

the case of the SL model or partially pooled as in the case of the MLM-N and MLM-B models). 

A second complication that became apparent was that all combinations that used the CWC 

scheme, ended up with very small sample sizes. This was due to the fact that in many schools no 

appropriate matches could be found for many of the retained students. In fact, on average models 

that used CWC were able to include approximately 5% of children in the original sample, and 

only 11% of all retained children. As a result, estimated treatment effects were extremely 

variable and confidence intervals were exceedingly large. The theoretical advantages of the 

CWC scheme in approximating a multisite randomized trial could not be realized in this applied 

dataset in which extreme imbalances between treated and untreated units existed. The small 

remaining sample size led to unacceptably high variance in estimates of the treatment effect. In 

contrast, the CAC scheme retained more subjects because matches could be formed across 

different clusters. Of note is that the SL model retained almost 90% of all retained children and 

achieved an almost perfect balance on covariates when computed across the whole sample. 
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Treatment effects of the conditioned model were all positive, but had 95% confidence intervals 

that included 0.  

The present applied example paints a more complicated picture of the prospect of using 

PSs in MLM. In cases of CWC too few units could be matched and resulted in highly variable 

treatment effects. As a result CAC models had to be preferred, approximating a randomized 

experiment in which individuals are assigned disregarding cluster membership. 

Conclusion and Discussion 

PS analysis with clustered data has been only rarely applied and previously has not 

received thorough examination in the literature. Our article considered several important 

modeling choices that need to be made in the context of clustered data, both at the stage of 

estimation and at the stage of conditioning. For the data generated in our simulation studies, 

modeling the clustered nature of the data using random effects multilevel models with a narrow 

inference space (inclusion of random effects in prediction of the PS) and conditioning within 

clusters yielded the best results; however, other modeling choices such as the fixed effects model 

and conditioning within clusters also performed well. We also provided theoretical arguments 

relating different estimation and conditioning choices to two different types of randomized 

experiments. In particular, researchers can choose to approximate a multi-site randomized trial 

and rely on conditioning within clusters. Our simulations show that in this case the multi-level 

model with narrow inference space is a viable choice, if researchers have large enough samples 

to support it. We also note that in a number of applied circumstances some approaches might not 

always be feasible. In pursuit of its goal of equating the treatment and control groups at baseline, 

propensity score methods often have the effect of reducing the number of cases available for 

analysis. Our applied example illustrated that severe imbalances in the proportion of retained and 
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promoted children yielded dramatic reductions in sample size, particularly when conditioning 

was restricted to occur within single clusters. This reduction in sample size can yield highly 

variable estimates of treatment effects that are unlikely to be informative for applied researchers. 

An alternative approach that can circumvent this problem of reduced sample sizes is to 

approximate a randomized experiment with individuals in which clusters are an incidental 

feature of the design. Here, conditioning on the estimated propensity score across clusters can be 

used, and according to our simulation studies, the multi-level model with broad inference space 

provides a viable estimation strategy. 
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Footnotes 

1 An ideal randomized experiment is defined as meeting certain assumptions, such as 

proper randomization, no attrition, full treatment compliance, identical treatment for all 

participants, and that assignment of one participant does not alter the response of another 

(Holland, 1986; West & Thoemmes, 2010). The last two assumptions are sometimes referred to 

as the stable unit treatment value assumption (SUTVA, Rubin, 2010). 
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Table 1. Factors and levels of simulation study.  

Factor Level(s) 

Number of X variables (person-specific confounders) 3 

Number of W variables (cluster-specific confounders) 3 

Total explained variance of all X variables in treatment .26 

Total explained variance of all X variables in outcome .26 

Total explained variance of W variables on random intercepts of 

treatment 

.26 

Total explained variance of W variables on random intercepts of 

outcome 

.26 

Unique explained variance in outcome by treatment .13 

Total explained variance of W variables on slopes of X variables .13 

ICC of treatment variable .10 

ICC of outcome variable .20 

Random slope variance of X variables on treatment .0026 

Random slope variance of X variables on outcome .0026 

ICC of X variables .05 .5 

Sample size (cluster × units)  20 × 50 200 × 500 

Type of estimation of propensity score SL FE MLM-B MLM-N 

Type of conditioning used  CAC CWC 

Note:   SL= single level model, FE= fixed effects model, MLM-B= multi-level model with broad 

inference space, MLM-N= multi-level model with narrow inference space, CAC= conditioning 
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across clusters, CWC= conditioning within clusters.  Only one level is presented for factors that 

were held constant.
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Table 2. Results of simulation study averaged across 1,000 replications within each condition.  

 

 Sample Size 

 small large small large 

 ICC ICC 

 .05 .5 

PS strategy Bias MSE* %Cov Bias MSE* %Cov Bias MSE* %Cov Bias MSE* %Cov 

CWC SL -.011 .307 93.2 -.005 .006 77.5 -.046 .620 83.9 -.014 .025 31.9 

CWC FE -.014 .325 94.1 -.005 .006 76.9 -.019 .437 92.5 -.006 .007 75.3 

CWC MLM-N -.002 .299 94.1 -.002 .004 87.1 -.014 .408 91.2 -.003 .006 85.5 

CWC MLM-B -.011 .303 93.7 -.005 .006 77.4 -.021 .416 90.4 -.006 .009 75.0 

CAC SL -.005 .293 94.5 -.005 .006 76.1 -.035 .488 87.5 -.019 .043 11.1 

CAC MLM-B -.005 .293 94.4 .-005 .006 76.1 -.016 .367 91.9 -.010 .015 53.0 

Note: SL= single level model, FE= fixed effects model, MLM= multilevel model, CAC= conditioning across clusters, CWC= 

conditioning within clusters. Bias = Raw average bias, MSE = Mean Square Error multiplied by 100, %Cov = Percentage coverage.  
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Table 3. Balance statistics of simulation study averaged across 1,000 replications within each condition.  

 Sample Size 

 small large small large 

 ICC ICC 

 .05 .5 

PS strategy 
Within 

clusters 

Total 

sample  

L1 

Total 

sample 

L2 

Within 

clusters 

Total 

sample 

L1 

Total 

sample 

L2 

Within 

clusters 

Total 

sample 

L1 

Total 

sample 

L2 

Within 

clusters 

Total 

sample 

L1 

Total 

sample 

L2 

CWC SL -.013 -.014 -.003 -.009 -.008 -.001 -.081 -.005 -.006 -.029 -.004 -.005 

CWC FE -.024 -.011 -.001 -.012 -.007 -.001 -.024 -.008 -.004 -.016 -.004 -.003 

CWC MLM-N .011 .023 .003 -.006 .011 .002 -.013 .014 .019 -.011 .000 .001 

CWC MLM-B -.016 -.012 .000 -.009 -.007 -.002 -.029 .018 -.019 -.013 .027 -.055 

CAC SL -.148 -.023 -.035 -.009 -.008 -.034 -.195 -.055 -.152 -.024 -.018 -.140 

CAC MLM-B -.156 -.023 -.039 -.009 -.008 -.034 -.139 -.015 -.144 -.007 -.006 -.141 

Note: SL= single level model, FE= fixed effects model, MLM= multilevel model, CAC= conditioning across clusters, CWC= 
conditioning within clusters. Within cluster = Median balance of all L1 covariates within single clusters averaged across all clusters 
and strata. Total sample L1 = Median balance of all L1 covariates in the whole sample averaged across all strata. Total sample L2 = 
Median balance of all L2 covariates in the whole sample averaged across all strata.  
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Table 4. Treatment effects and standard errors of applied example across all estimation and conditioning choices.   

PS Strategy  
Treatment 

effect 
95% CI 

Total matched 

sample 

Average balance 

total sample 

Average balance 

within cluster 

Prima facie -.39 (-.08, .04) 656 .04 .05 

CWC SL -1.25 (-3.67, 1.14) 32 -.03 .10 

CWC FE 

CWC MLM-N .51 (-1.49, 2.51) 24 .03 .11 

CWC MLM-B 1.67 (.06, 3.27) 48 .07 .09 

CAC SL .42 (-.04, 1.27) 142 .02 .00 

CAC MLM-B .08 (-.96, 1.12) 79 .04 .00 

Note: SL= single level model, FE= fixed effects model, MLM= multilevel model, CAC= conditioning across clusters, CWC= 

conditioning within clusters. 

Not estimable 
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Figure 1. Data generation structure of simulated example, including a treatment effect from Z to 

Y, and confounding variables X and W on both levels of the analysis.  

 

 

Note: Z is a treatment variable, Y an outcome of interest, X is a vector of level 1 confounders, W 

is a vector of level 2 confounders. Circles on regression paths, denote a random effect that varies 

across clusters. Triangles with “1” denote intercepts. 
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