
Expert Systems With Applications 213 (2023) 118736

Available online 5 October 2022
0957-4174/© 2022 Published by Elsevier Ltd.

Contents lists available at ScienceDirect

Expert SystemsWith Applications

journal homepage: www.elsevier.com/locate/eswa

Training generalizable quantized deep neural nets
Charles Hernandez1, Bijan Taslimi ∗, Hung Yi Lee, Hongcheng Liu2, Panos M. Pardalos
Department of Industrial and Systems Engineering, University of Florida, Gainesville FL, 32611, USA

A R T I C L E I N F O

MSC:
62M45
68Q32

Keywords:
Deep learning
Quantized neural networks
Generalizability

A B S T R A C T

While a number of practical methods for training quantized DL models have been presented in the literature,
there exists a critical gap in the theoretical generalizability results for such approaches. Although empirical
evidence often suggests a high tolerance of DL architectures to variations of training procedures, existing
theoretical generalization analyses are often contingent on the specific designs of training algorithms, e.g.,
in stochastic gradient descent (SGD). This specialization makes such generalizability results inapplicable
to the case of quantized DL models. In view of this critical vacuum, this paper provides several almost-
algorithm-independent results to ensure the generalizability of a quantized neural network at different levels
of optimality. These results include the characterizations of a computable, quantized local solution that ensures
the generalization performance and an algorithm that is provably convergent to such a local solution.

1. Introduction

Deep Learning methods have been successfully used in a wide
spectrum of applications, achieving impressive results (Affonso, Rossi,
Vieira, de Leon Ferreira, et al., 2017; Ahn, Cho, & Kim, 2000; Dosovit-
skiy et al., 2020; Edunov, Ott, Auli, & Grangier, 2018; Foret, Kleiner,
Mobahi, & Neyshabur, 2020; Guresen, Kayakutlu, & Daim, 2011; Kabir,
Abdar, Jalali, Khosravi, Atiya, Nahavandi, et al., 2020; Liu, Duh, Liu,
& Gao, 2020; Tao, Sapra, & Catanzaro, 2020; Tsai & Wu, 2008; Zhang
et al., 2020). However, the resulting models can be prohibitively ex-
pensive to use in application areas where computational resources
are limited. Recent technologies like facial recognition (Zhao & Tsai,
2015), OCR (Laine & Nevalainen, 2006) and text translation (Fragoso,
Gauglitz, Zamora, Kleban, & Turk, 2011) are rapidly being adopted as
core features on many mobile devices, a trend that has only emphasized
the need for technologies that can transform these state-of-the-art
models into something that can be more portably utilized.

Numerous works have shown how to turn this desire into a reality,
which we will discuss in more detail in Section 1.1, but for the purposes
of this paper, we focus on methods involving quantized networks. A
quantized network is one in which all parameter values have been
discretized in order to significantly reduce the number of candidate
weight values admissible to the network. As an example, rounding all
the weights of a network to integers would be considered a network
that has been quantized to integer values. A more rigorous definition
of quantization can be found at the end of Section 1.2.

∗ Corresponding author.
E-mail addresses: cdhernandez@ufl.edu (C. Hernandez), b.taslimi@ufl.edu (B. Taslimi), hungyilee@ufl.edu (H.Y. Lee), hliu@ise.ufl.edu (H. Liu),

pardalos@ise.ufl.edu (P.M. Pardalos).
1 Supported by National Science Foundation, USA grant CMMI-2016571.
2 Supported by National Science Foundation, USA grant CMMI-2016571 and University of Florida, USA AI Catalyst Grant OR-DRD-AI2020.

Though there have been many works establishing practical schemes
for training quantized DL models, there remain significant gaps in our
theoretical understanding of such problems. Two of these critical vacua
are as below:

• Gap 1. While Petersen and Voigtlaender (2018) and Ding, Liu, Xiong,
and Shi (2018) have proven the expressive power of quan-
tized networks and Bu, Gao, Zou, and Veeravalli (2019) have
analyzed the impact of model compression on generalization
performance in general, limited theoretical generalizability
guarantees on quantized DL models are available from the
literature.

• Gap 2. Although, for non-quantized DL models, there are many
existing results on the generalization error bounds, they tend
to be contingent on the specific algorithmic designs, e.g., of
the stochastic gradient descent (SGD) (Brutzkus, Globerson,
Malach, & Shalev-Shwartz, 2017; Brutzkus et al., 2017; Cao &
Gu, 2019a, 2019b; Daniely, 2017; Li & Liang, 2018; Wang, Gi-
annakis, & Chen, 2019). Because most provably
generalizability-guaranteeing algorithms cannot be directly
used for quantization, it is unknown how the correspond-
ing algorithm-specific generalizability results can be readily
applicable to a quantized DL model.

In view of these critical gaps, this paper presents several results
on the generalization performance of a quantized DL model. We first

https://doi.org/10.1016/j.eswa.2022.118736
Received 23 January 2021; Received in revised form 9 July 2022; Accepted 29 August 2022

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:cdhernandez@ufl.edu
mailto:b.taslimi@ufl.edu
mailto:hungyilee@ufl.edu
mailto:hliu@ise.ufl.edu
mailto:pardalos@ise.ufl.edu
https://doi.org/10.1016/j.eswa.2022.118736

Expert Systems With Applications 213 (2023) 118736

2

C. Hernandez et al.

present a completely algorithm-independent generalization error bound
for globally optimal solutions to the training formulation of a quantized
DL. To our knowledge, this is among the first set of theoretical results
that explicate the impact of quantization to generalization performance.

Further, we present an almost-algorithm-independent result for the
locally trained quantized DL models. We show the existence of tractable
local solutions where a significant portion of connection weights of a
DL model can be quantized without introducing any compromise to
the generalizability. Meanwhile, if all weights are quantized, then the
generalization error can still be well controlled. As an additional con-
tribution to Gap 2. , a byproduct of our local result can be found in Sec-
tion 2.4. Such a result is readily applicable to analyzing a non-quantized
DL model.

Based on our new theoretical insights, we further propose a quan-
tized iterative shrinkage-thresholding algorithm (Quantized ISTA),
which is a first-order method with provably tractable computational
complexity in solving for those generalizable, quantized local solutions.
Our algorithm substantially modifies the ISTA traditionally for sparse
recovery, as discussed by, e.g., Beck and Teboulle (2009), and is a new
addition to existing quantized training algorithms as further explored
in Section 1.1. We finally demonstrate this algorithm’s performance in
numerical experiments including both synthetic and real world data,
thereby testing our theoretical results and the practical performance of
our approach.

The rest of this paper is organized as below: We conclude our
introduction with a review of Network Compression Literature and an
explanation of our notations in Sections 1.1 and 1.2, respectively. Sec-
tion 2 presents our main theoretical results. Section 3 briefly discusses
our numerical experiments to verify our theory (with details provided
in the supplementary document). Section 4 concludes this paper. All
our proofs can be found in Appendix.

1.1. Related works on quantized DL

A variety of methods have been used to convert a trained DL
model into smaller or more computationally efficient forms. Han, Mao,
and Dally (2015) demonstrated the effectiveness of a combination of
pruning and weight clustering on compressing a large network like
the AlexNet into a model with 1/40th of the original size, without
significant accuracy loss. Others have focused on designing entirely
new architectures from the ground up to optimize the tradeoff between
model size and accuracy. Such an approach has been demonstrated
by Howard et al. (2017), Zhang, Zhou, Lin, and Sun (2018), and Ian-
dola, Han, Moskewicz, Ashraf, Dally, and Keutzer (2016) as a method
of learning a computationally efficient model while Meller, Finkelstein,
Almog, and Grobman (2019) and Goncharenko, Denisov, Alyamkin,
and Terentev (2019) have iterated and improved on those ideas. Knowl-
edge distillation was first demonstrated by Hinton, Vinyals, and Dean
(2015) and has been used in concert with other compression methods to
train reduced-size networks as in Mishra and Marr (2017), Wu, Leng,
Wang, Hu, and Cheng (2016), Polino, Pascanu, and Alistarh (2018),
and Tann, Hashemi, Bahar, and Reda (2017).

A key development in the methodology of training quantized DL
models is the Quantization Aware Training (QAT) algorithm which
first used by Courbariaux and Bengio (2016) to retrain their quantized
networks. This method utilizes the straight-through estimator, dis-
cussed by Hinton, Srivastava, and Swersky (2012) and Bengio, Léonard,
and Courville (2013) to propagate gradients across the discontinuous
quantization operation.

A variety of works have innovated on top of this QAT algorithm
in order to improve the quantized DL model training process. Gon-
charenko, Denisov, Alyamkin, and Terentev (2018) focused on quan-
tization methods that only require retraining with limited data. Baskin
et al. (2018) used random perturbations to regularize the quantiza-
tion process in order to achieve high test accuracy with only 3-bit
weights. Li, Zhang, and Liu (2016), Courbariaux and Bengio (2016),

Zhou, Wu, Ni, Zhou, Wen, and Zou (2016), Hubara, Courbariaux,
Soudry, El-Yaniv, and Bengio (2017), and Tann et al. (2017) go a step
further, quantizing networks to use only to binary, ternary or power-of-
two valued weights that can eliminate costly multiplication operations
in favor of inexpensive addition and/or bit shift operations. However,
these more efficient operations require custom hardware to realize
the theoretical gains they promise. Jacob et al. (2018), in contrast,
focuses on practical usage and methods directly transferable to existing
hardware.

Despite the myriad aforementioned results using different methods
to train quantized DL models, they universally employ QAT as a funda-
mental component of their approach. In contrast to the many practical
results that use QAT, there exists only limited theoretical guarantees
of its performance, although some asymptotic convergence analysis
related to the QAT is presented by Yin, Lyu, Zhang, Osher, Qi, and
Xin (2019) under the assumption of an infinite training sample size.
In that sense, we believe the QAT algorithm to be ripe for innovation.
Thus, we position the algorithm described in Section 2.3 as a direct
alternative to QAT, one with significantly stronger theoretical results
as demonstrated in Sections 2.2 and 2.3.

Both QAT and our proposed Quantized ISTA algorithms attempt to
transform a discrete optimization problem into a continuous optimiza-
tion problem that is easier to solve, but how the two methods achieve
quantization is quite different between the QAT and the Quantized
ISTA. More specifically, the QAT incorporates the straight-through
estimator by Hinton et al. (2012) and Bengio et al. (2013). This
estimator approximates the gradient of any point (vector of fitting
parameters) by the gradient of the closest quantized point. The QAT
then follows a stochastic gradient descent (SGD)-like continuous opti-
mization algorithm with the aforementioned gradient approximation.
The output of this SGD-like procedure is then further discretized to
yield the final quantized model. The Quantized ISTA, on the other hand,
employs a penalty to induce quantization. Our numerical experimental
results to be presented in Section 3 indicate a significant difference in
the performance between the proposed Quantized ISTA and the QAT
scheme.

1.2. Notation and network architecture

We will denote by | ⋅ | and ‖ ⋅ ‖, respectively, the 1-norm and 2-
norm, while | ⋅ | also represents the cardinality of a finite set, if it is
the argument. 1(⋅) denotes the index function that takes value 1 if the
conditions in the argument ‘‘⋅’’ is satisfied; otherwise, the value of this
index function is zero. 𝑣𝑒𝑐(⋅) represents the vector that collects all the
elements in the argument ‘‘⋅’’.

Let (𝐱, 𝑦) ∈ 𝒳 ×𝒴 be a pair of random input (features) and output
(labels) with support 𝑠𝑢𝑝𝑝(𝐱, 𝑦), where 𝒳 ∶= {𝐱 ∈ ℜ𝑑 ∶ ‖𝐱‖ = 1},
for some integer 𝑑 > 0, and 𝒴 ∶= {−1, 1}. Let 𝑛 be the sample size.
Suppose that we have the knowledge of a collection of training data
{(𝐱1, 𝑦1),… , (𝐱𝑛, 𝑦𝑛)} ⊂ 𝒳 × {−1, 1}, which are i.i.d. samples of (𝐱, 𝑦).
For convenience of analysis, we let 𝑛 ≥ 2.

Denote by 𝐹𝑁𝑁 (𝐱, 𝐖) the NN of consideration, where 𝐹𝑁𝑁 ∶ 𝒳 ×

ℜ𝑝
→ ℜ captures the output of the NN for a given input 𝐱 ∈ 𝒳 and

fitting parameters 𝐖 ∈ ℜ𝑝 (that is, connection weights and biases).
Here, 𝑝 > 2 is the network size. Suppose the NN has 𝐿-many hidden
layers (𝐿 ≥ 3 is an integer) and, only for notational simplicity, each
hidden layer has exactly 𝐾 hidden neurons (𝐾 ≥ 2 is an integer). The
output of this network, given 𝐱 and 𝐖 ∶= [𝑣𝑒𝑐(𝐖0,𝓁 ∶ 𝓁 = 1,… , 𝐿 −

1); 𝑣𝑒𝑐(𝐛𝓁 ∶ 𝓁 = 1,… , 𝐿 − 1); 𝑣𝑒𝑐(𝐖𝓁 ∶ 𝓁 = 2,… , 𝐿 − 1); 𝑣𝑒𝑐(𝐰𝓁,𝐿 ∶

𝓁 = 0,… , 𝐿)], is calculated as below, where 𝐖0,𝓁 ∈ ℜ𝑑×𝐾 , 𝐛𝓁 ∈ ℜ𝐾 ,
𝐖𝓁 ∈ ℜ𝐾×𝐾 , 𝐰𝓁,𝐿 ∈ ℜ𝐾 , and 𝜎(𝐯) = [max{𝑣1 , 0}; max{𝑣2 , 0}; ...], for
any vector 𝐯 = (𝑣𝑗), represents the ReLU activation.

𝐹𝑁𝑁 (𝐱, 𝐖) ∶= 𝐰⊤
0,𝐿

𝐱 +

𝐿−1∑
𝓁=1

𝐰⊤
𝓁,𝐿

𝐳𝓁(𝐱); 𝐳1(𝐱) ∶= 𝜎
(
𝐖⊤

0,1
𝐱 + 𝐛1

)
;

and 𝐳𝓁(𝐱) ∶= 𝜎
(
𝐖⊤

𝓁
𝐳𝓁−1(𝐱) +𝐖⊤

0,𝓁
𝐱 + 𝐛𝓁

)
, ∀𝓁 = 2,… , 𝐿 − 1. (1.1)

Expert Systems With Applications 213 (2023) 118736

3

C. Hernandez et al.

This NN is trained by minimizing a loss function commonly dis-
cussed for binary classification (Cao & Gu, 2019a, 2019b), namely,
ℱ(𝑧) ∶= ln[1 + exp(−𝑧)]. Thus, the training formulation is given as

inf
𝐖=(𝑊𝑗)∈ℜ

𝑞

{
𝑛−1

𝑛∑
𝑖=1

ℱ
(
𝑦𝑖 ⋅ 𝐹𝑁𝑁 (𝐱𝑖,𝐖)

)

= 𝑛−1
𝑛∑
𝑖=1

ln
[
1 + exp

(
−𝑦𝑖 ⋅ 𝐹𝑁𝑁 (𝐱𝑖,𝐖)

)]
∶ 𝑊𝑗 ∈ S𝛥, 𝑗 ∈ 𝒬

}
. (1.2)

From (1.1), it should be noted that the NN has ‘‘skip connections’’
both from the input layer to each hidden neuron and from each hidden
neuron to the output layer. For quantized networks, we let S𝛥 ∶=

{𝛥 ⋅ 𝑘 | 𝑘 = 0, ±1, ±2,…} be a countable set of quantization grids with
an 𝛥-resolution (𝛥 > 0) and we quantize the set of parameters indexed
by 𝒬 ⊆ {1,… , 𝑝}. When 𝒬 = {1,… , 𝑝}, we say that the network is ‘‘fully
quantized’’. Note that

2. Main results

We are now ready to present our theoretical results. Theorem 2.20
provides the promised, almost-algorithm-independent theory on gener-
alizability.

2.1. Generalizability of globally optimal quantized solutions

Given architecture as described in Section 1.2, training an NN con-
sists of minimizing objective function (1.2) subject to constraints (1.1).
This problem can be viewed as a stochastic optimization problem with
𝑛 observations in the form of (𝑥𝑖, 𝑦𝑖). Therefore, the Sample Average
Approximation (SAA) method, a well-known technique in stochastic
programming (see Shapiro, Dentcheva, & Ruszczyński, 2014, Kim, Pa-
supathy, & Henderson, 2015, and Bertsimas, Gupta, & Kallus, 2018),
can be utilized to solve this problem . In this section, we show that
if the problem of training an NN is handled like an SAA problem with
quantized solutions, and solved to optimality, the generalizability error
of the NN is bounded as illustrated in Theorem 2.4. We make the
following assumption on the data considered in this section.

Assumption 2.1. We assume that there exists an unknown, deter-
ministic, and measurable separating function 𝑔 ∶ 𝒳 → ℜ such that
inf (𝑥,𝑦)∈𝑠𝑢𝑝𝑝(D){𝑦 ⋅ 𝑔(𝐱)} ≥ 𝑣 for some 𝑣 ∈ (0, 1); which means the two
categories of data are separable by function 𝑔. We also assume that
E[|𝑔(𝐱)|] < ∞.

Let 𝛺 be the model misspecification error of the NN representing
the separating function 𝑔. So, we have

𝛺 ≥ inf
𝐖∶‖𝐖‖0≤𝑝𝐄

[|||𝐹𝑁𝑁 (𝐱,𝐖) − 𝑔(𝐱)
|||
]
. (2.3)

We assume that 𝐄[|𝐹𝑁𝑁 (𝐱,𝐖)|] < ∞ for all 𝐖 ∶ ‖𝐖‖∞ ≤ 𝑅𝛺
for some 𝑅𝛺 > 0 where 𝑅𝛺 is large enough to satisfy the following
assumption.

Assumption 2.2. When the fitting parameters are bounded from the
above by 𝑅𝛺, the NN can represent the separating function g with
a model misspecification error that does not exceed 𝛺. In the other
words, we have {𝐖 ∈ ℛ𝑝 ∶ 𝐄[|𝑔(𝐱) − 𝐹𝑁𝑁 (𝐱,𝐖)|] ≤ 𝛺} ∩ [−𝑅𝛺 , 𝑅𝛺]

𝑝 ≠
∅.

We also consider the following non-critical condition on the ar-
chitecture of an NN which can be verified it holds for many NN
architectures including NNs with linear or ReLU activation functions
in the output layer.

Assumption 2.3. For any constant 𝐶 and fitting parameters 𝐖1 ∈

ℛ𝑝 ∶ ‖𝐖1‖∞ ≤ 𝑅𝛺, It holds that 𝐹𝑁𝑁 (𝐱,𝐖1) ⋅ 𝐶 = 𝐹𝑁𝑁 (𝐱,𝐖2) for
some 𝐖2 ∈ ℛ𝑝 ∶ ‖𝐖2‖∞ ≤ 𝐶 ⋅ 𝑅𝛺.

Theorem 2.4. Suppose that Assumptions 2.1–2.3 hold. Consider a neural

network 𝐹𝑁𝑁 (𝐱,𝐖) defined as in (1.1), then the expected 0–1 loss is

bounded by

𝐄

[
𝟏
(
𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖𝐒𝐀𝐀) < 0

)]

≤
√√√√8𝜎2𝑝

(
ln 𝑛 + ln

(𝑅𝛺 ⋅ln 𝑛

𝛥𝑣
+ 1

))

𝑛
+

ln 𝑛

𝑣
⋅𝛺 +

2√
𝑛

(2.4)

with probability at least 1 −
1

𝑛𝑝
.

Remark 2.5. The following remarks are obtained from Theorem 2.4:

1. The architecture of NN considered in this theorem is prevalent

for the binary classification problem. Further, Assumptions 2.2

and 2.3 are very generic allowing this result to be applicable to

many NNs.
2. While the existing studies on generalization bounds are mainly

driven for particular training algorithms, our result is not contin-

gent on the algorithm design. Additionally, our result is specif-

ically obtained for quantized NNs in contrast to previous works

that presented their results for non-quantized NNs. Thus, our

derivation can be applied to numerous algorithms specialized for

quantized solutions regardless of their training approach.
3. Ignoring the first and third term of the bound, we observe that

the generalization error increases logarithmically in the number

of observations. In the other words, it is in the order of 𝒪 (ln 𝑛).

4. The generalization error increases linearly with respect to the

misspecification error of the NN. It implies that an architecture

of NN that results in small amount of misspecification error

can significantly decrease the generalization error. Note that the

value of 𝛺 is affected by various factors such as the number of

hidden layers, number of neurons, activation function, and loss

function of the NN as well as the properties of the approximating

function 𝑔. Therefore, to obtain a more precise representation of

this error, we need to restrict the problem to particular classes

of NNs and functions such as what we provide in Corollary 2.6.

Corollary 2.6. Suppose the approximating function 𝑔 is a piecewise 𝐶𝛽

function 𝑔 ∶ [−
1

2
, 1
2
]𝑑 → R, and the approximating accuracy is 𝜉 ∈ (0, 1

2
). If

the NN has as many as 𝑐 ⋅𝜉−2(𝑑−1)∕𝛽 -many weights and 𝑐′ ⋅log2(𝛽+2)⋅(1+
𝛽

𝑑
)

layers, then the generalization error would be

𝐄

[
𝟏
(
𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖𝐒𝐀𝐀) < 0

)]

≤
√√√√8𝜎2𝑝

(
ln 𝑛 + ln

(𝑅𝛺 ⋅ln 𝑛

𝛥𝑣
+ 1

))

𝑛
+

ln 𝑛

𝑣
⋅ 𝜉 +

2√
𝑛

(2.5)

with probability at least 1 −
1

𝑛𝑝
.

2.2. Generalizability of computable quantized solutions

This subsection is focused on extending the aforementioned results

to quantized solutions which are not globally optimal but tractably

computable (local) solutions. Specifically, we show that solutions that

satisfy a set of weak second-order necessary conditions (wSONC) of a

modified DL training formulation are both quantized and generalizable.

Consequently, those wSONC conditions can serve as characterizations

of the desired solutions to allow for simultaneous training and quantiz-

ing. However, to do this we require additional constraints on our data

and network initialization.

Expert Systems With Applications 213 (2023) 118736

4

C. Hernandez et al.

2.2.1. The data generation process
Hereafter, we will strengthened our data Assumption 2.1 by limiting

the separating function to the following form:

Assumption 2.7. For any (𝐱, 𝑦) ∈ supp(𝐱, 𝑦), there exists a constant
𝑣 > 0 and

𝑔(⋅) ∈

{
𝐺(⋅) ∶ 𝐺(𝐱)

= ∫
ℜ𝑑
𝐶𝑔(𝐮) ⋅max

{
0, 𝐮⊤𝐱

}
⋅ 𝑃 (𝐮)𝑑𝐮 ∶ sup

𝐮
|𝐶𝑔(𝐮)| ≤ 1

}
,

where 𝑃 (𝐮) is the density of the standard Gaussian vectors, such that
𝑦 ⋅ 𝑔(𝐱) ≥ 𝑣 for all (𝐱, 𝑦) ∈ 𝒳 ×𝒴.

Remark 2.8. Assumption 2.7 follows the same settings as in Cao and
Gu (2019b) and is more general than Wang et al. (2019).

2.2.2. Initialization
In general our objective (1.2) is nonconvex and thus the train-

ing quality can be dependent on the initialization. Several effective
initialization schemes have been discussed by LeCun, Bottou, Orr,
and Müller (2012), Hinton and Salakhutdinov (2006), Erhan, Bengio,
Courville, Manzagol, Vincent, and Bengio (2010), Glorot and Bengio
(2010), Glorot, Bordes, and Bengio (2011), Mishkin and Matas (2015),
Saxe, McClelland, and Ganguli (2013), and Xiao, Bahri, Sohl-Dickstein,
Schoenholz, and Pennington (2018). In this research, we consider the
initialization scheme in Algorithm 1 below. Our following theories
show the generalizability of any solution that has a better empirical
risk than the initial solutions generated by Algorithm 1.

Algorithm 1. A tractable initialization scheme

Step 1. Fix a desired tolerance 𝜍 ≥ 0. Generate each entry of 𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙
0,𝓁

,
for all 𝓁 = 1, ..., 𝐿 − 1 from an independent standard normal
distribution and set 𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝓁
= 𝟎 and 𝐛𝓁 = 𝟎, 𝓁 = 1, ..., 𝐿 − 1.

Step 2. Solve the following convex optimization problem approxi-
mately:

inf
(�̃�𝓁,𝐿∶𝓁=0,...,𝐿−1)

1

𝑛

𝑛∑
𝑖=1

(
𝑦𝑖 ⋅

(
𝐰⊤
0,𝐿

𝐱 +

𝐿−1∑
𝓁=1

𝐰⊤
𝓁,𝐿

𝐳𝓁(𝐖)

))
. (2.6)

Let
(
𝐰𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝓁,𝐿

∶ 𝓁 = 0, ..., 𝐿 − 1
)
be the 𝜍-suboptimal solution to

(2.6). (See Remark 2.10.)

Step 3. Output 𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∶= [𝑣𝑒𝑐(𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙
0,𝓁

∶ 𝓁 = 1, ..., 𝐿 − 1); 𝑣𝑒𝑐(𝐛𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝓁

∶

𝓁 = 1, ..., 𝐿 − 1); 𝑣𝑒𝑐(𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝓁

∶ 𝓁 = 2, ..., 𝐿 − 1); 𝑣𝑒𝑐(𝐰𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝓁,𝐿

∶ 𝓁 =

0, ..., 𝐿)].

Remark 2.9. In Step 3 of Algorithm 1, Problem (2.6) is essentially
the training formulation for a subnetwork of the original NN. This
subnetwork is constructed as per the following: (i) All the weights and
biases for connections between the input layer and each hidden layer
are fixed at values determined as in Steps 1 and 2 of this algorithm.
(ii) All the weights for connections between each hidden layer and
the output layer are to be trained by solving Problem (2.6). (iii) All
other fitting parameters are set to be zero (and thus the corresponding
connections and biases are disabled).

Remark 2.10. The 𝜍-suboptimal solution, for 𝜍 ≥ 0, refers to any
solution in the 𝜍-sublevel set of the objective function of (2.6); that is,
a 𝜍-suboptimal solution to (2.6) is any solution in the set below:
{

(𝐰𝓁,𝐿 ∶ 𝓁 = 0,… , 𝐿 − 1) ∶
1

𝑛

𝑛∑
𝑖=1

ℱ

(
𝑦𝑖 ⋅

(
𝐰⊤
0,𝐿

𝐱 +

𝐿−1∑
𝓁=1

𝐰⊤
𝓁,𝐿

𝐳𝑙

))

≤ inf
(�̃�𝓁,𝐿∶𝓁=0,…,𝐿−1)

1

𝑛

𝑛∑
𝑖=1

ℱ

(
𝑦𝑖 ⋅

(
�̃�⊤
0,𝐿

𝐱 +

𝐿−1∑
𝓁=1

�̃�⊤
𝓁,𝐿

𝐳𝑙

))
+ 𝜍

}
. (2.7)

For any arbitrary choice of 𝜍 > 0, Algorithm 1 is tractable, because not
only is (2.6) convex but it is actually strongly convex on a bounded
domain.

2.2.3. Weak second-order necessary conditions
To introduce the wSONC, We consider the following variation of

(1.2):

min
𝐖∈ℜ𝑝

1

𝑛

𝑛∑
𝑖=1

ℱ
(
𝑦𝑖𝐹𝑁𝑁 (𝐱,𝐖)

)
+ 𝑅(𝐖;𝒬), (2.8)

where 𝑅(𝐖;𝒬) ∶=
∑
𝑗∈𝒬 𝑃𝜆

(
min𝑞𝑗∈S𝛥 |𝑊𝑗 − 𝑞𝑗 |

)
is a construct designed

to enable quantization. Here, 𝑃𝜆 is the minimax concave penalty (MCP)
formulated as 𝑃𝜆(𝑡) ∶= ∫ 𝑡

0
max{0, 𝜃−𝜚⋅𝜆}

𝜚
𝑑𝜃 (with 𝜆 > 0 and 𝜚 > 0 are MCP’s

hyper-parameters), for any 𝑡 ≥ 0, and 𝒬 ⊆ {1,… , 𝑝} is the index set for
parameters to be quantized.

Hereafter, we define the derivative of the activation function to
be 𝑑𝜎(𝑧)

𝑑𝑧
∶= 1(𝑧 > 0), which ignores the case where 𝑧 = 0. This is

a common bypass used in the literature in view of the presence of
the non-differentiable point at 𝑧 = 0. Accordingly, the gradient of the
training formulation is written as

𝜕
[
𝑛−1

∑𝑛
𝑖=1 ℱ

(
𝑦𝑖 ⋅ 𝐹𝑁𝑁 (𝐱𝑖,𝐖)

)]
𝜕𝑊𝑗

∶= 𝑛−1
𝑛∑
𝑖=1

[
𝑑ℱ(𝑧)

𝑑𝑧

]

𝑧=𝑦𝑖⋅𝐹𝑁𝑁 (𝐱𝑖 ,𝐖)

⋅ 𝑦𝑖 ⋅
𝜕𝐹𝑁𝑁 (𝐱𝑖,𝐖)

𝜕𝑊𝑗

,

where 𝜕𝐹𝑁𝑁 (𝐱𝑖 ,𝐖)

𝜕𝑊𝑗
can be further explicated by invoking the chain rule,

which provably holds according to Berner, Elbrächter, Grohs, and
Jentzen (2019). Correspondingly, we also have (c.f., 𝑦𝑖 ∈ {−1, 1} for
all 𝑖) that

𝜕2
[
𝑛−1

∑𝑛
𝑖=1 ℱ

(
𝑦𝑖 ⋅ 𝐹𝑁𝑁 (𝐱𝑖,𝐖)

)]

𝜕𝑊 2
𝑗

∶= 𝑛−1
𝑛∑
𝑖=1

[
𝑑2ℱ(𝑧)

𝑑𝑧2

]

𝑧=𝑦𝑖⋅𝐹𝑁𝑁 (𝐱𝑖 ,𝐖)

⋅

[
𝜕𝐹𝑁𝑁 (𝐱𝑖,𝐖)

𝜕𝑊𝑗

]2
.

The aforementioned wSONC is then defined as below:

Definition 2.11. We say that 𝐖 is an wSONC solution to (2.8) for a
given 𝒬, if it satisfies that
[
𝜕2

[
𝑛−1

∑𝑛
𝑖=1 ℱ

(
𝑦𝑖 ⋅ 𝐹𝑁𝑁 (𝐱𝑖,𝐖)

)]

𝜕𝑊 2
𝑗

]

𝐖=𝐖

+
𝜕2𝑅(𝐖,𝒬)

𝜕𝑊 2
𝑗

≥ 0, ∀𝑗 ∈ {𝑗 ∈ 𝒬 ∶ 𝑊𝑗 ∉ S𝛥}.

Remark 2.12. Recall that the standard second-order KKT (SO-KKT)
conditions include that the hessian matrix (if it exists) of the objective
function is positive semidefinite. Because the quantity[
𝜕2

[
𝑛−1

∑𝑛
𝑖=1 ℱ(𝑦𝑖⋅𝐹𝑁𝑁 (𝐱𝑖 ,𝐖))

]

𝜕𝑊 2
𝑗

]

𝐖=𝐖

+
𝜕2𝑅(𝐖;𝒬)

𝜕𝑊 2
𝑗

is on the diagonal of a hessian

matrix, 2.11 is then implied by the standard SO-KKT.

Remark 2.13. While the wSONC conditions 2.11 seem technical,
they admit tractable solution schemes to be explained in Section 2.3
below. The wSONC solutions can be shown to be both quantized and
generalizable as in Section 2.2.4.

2.2.4. Theoretically generalizable quantization
The wSONC solutions can be shown to be both quantized and

generalizable as in the following results. We start by introducing an
additional assumption.

Expert Systems With Applications 213 (2023) 118736

5

C. Hernandez et al.

Assumption 2.14. There exists some 𝒰ℱ > 0 such that, for all

𝐖 = (𝑊𝑗) ∶ ‖𝐖‖ ≤ 𝑅𝓁2
,
𝜕2

[
𝑛−1

∑𝑛
𝑖=1 ℱ(𝑦𝑖⋅𝐹𝑁𝑁 (𝐱𝑖 ,𝐖))

]

𝜕𝑊 2
𝑗

≤ 𝒰ℱ .

Again, in this assumption, the second derivative is based on the
aforementioned definition that 𝑑𝜎(𝑧)

𝑑𝑧
∶= 1(𝑧 > 0) to avoid the non-

differentiable kink point.
Let 𝒬 ∶= 𝒬1 = {𝑗 ∶ 𝑊 𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑗 ≠ 0} in (2.8), where 𝑊 𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑗 is the

𝑗th entry of 𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙 generated by Algorithm 1. Then, the following
corollary shows that an NN whose majority of fitting parameters are
quantized can achieve the same generalization error as in (2.16); that
is, no compromise in generalizability is introduced by quantizing those
fitting parameters at any resolution.

Theorem 2.15. Suppose that Assumptions 2.7 and 2.14 hold. Consider
a neural network 𝐹𝑁𝑁 (𝐱,𝐖) defined as in (1.1). Let 𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙 be the initial
weights generated by Algorithm 1 and let 𝐖 ∶= (𝑊𝑗) ∈ ℜ𝑝 ∶ ‖𝐖‖ ≤ 𝑅𝓁2

,
for some 𝑅𝓁2

≥ 1, be a wSONC solution to (2.8) with 𝒬 ∶= 𝒬1. Assume that
1

𝑛

∑𝑛
𝑖=1 ℱ

(
𝑦𝑖𝐹𝑁𝑁 (𝐱,𝐖)

)
+ 𝑅(𝐖;𝒬1) ≤ 1

𝑛

∑𝑛
𝑖=1 ℱ

(
𝑦𝑖𝐹𝑁𝑁 (𝐱,𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

)
+

𝑅(𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙;𝒬1), w.p.1. For any given 𝛥 > 0, if 𝜚 < 𝒰−1
ℱ
, then there is a

universal constant 𝐶4 > 0, such that, if 𝐾 =
⌈
𝑛1∕4

⌉
, then

E

[
1

(
𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖) < 0

)] ≤ 𝐶4 ⋅

(
1

𝑛
+

ln 𝑛

𝑛
⋅

√
𝑑 ln (𝑑∕𝐿) + ln 𝑛

𝑣2

)

+𝐶4 ⋅

⎛
⎜⎜⎜⎝

𝑑 ln (𝑑∕𝐿) ⋅ (ln 𝑛)3

𝑛1∕4 ⋅ 𝑣2
+

[
ln 𝑛 + ln(𝐿 ⋅ 𝑅𝓁2

)
]1∕2

𝑛1∕4

⎞
⎟⎟⎟⎠
, (2.9)

with probability at least 1 − exp
(
−𝑝 ln 𝑛 − 𝑝𝐿

𝐶4
ln(𝐿 ⋅ 𝑅𝓁2

)
)

− 𝐶4 exp(
−𝑑 ln

(
𝑑𝑛

𝐶4⋅𝐿

))
. Furthermore, with probability one, all fitting parameters

in 𝒬1 are quantized; that is, P[𝑊𝑗 ∈ S𝛥, ∀𝑗 ∈ 𝒬1] = 1.

Remark 2.16. Notice that in the corollary above, |𝒬1| ∶= (𝐾2 +𝐾) ⋅𝐿-
many fitting parameters are quantized into S𝛥. Meanwhile, there are
(𝐾2 + (𝑑 +2) ⋅𝐾)-many fitting parameters in the NN of consideration in

total. Therefore, if 𝐾2+𝐾

𝐾2+(𝑑+2)⋅𝐾
≥ 95% ⟺ 19𝑑 + 18 ≤ 𝐾 (c.f., the error

bound in (2.9) is equivalent to (2.18)), then the above corollary means
that more than 95% of the fitting parameters in the DL model can be
quantized without compromising the generalization performance. We
thus conclude that, for a neural network that has a large width, the
majority of the NN can be quantized without any compromise.

Below, we present the results on fully quantized networks. Let 𝒬 ∶=

𝒬2 = {1,… , 𝑝} in (2.8). Then, the following theorem shows that a
fully quantized DL model has a bounded generalization error. In this
new result, the trade-off between generalizability and quantization is
explicated.

Theorem 2.17. Suppose that Assumptions 2.7 and 2.14 hold. Consider a
neural network 𝐹𝑁𝑁 (𝐱,𝐖) defined as in (1.1). Let 𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙 be the initial
weights generated by Algorithm 1 and let 𝐖 = (𝑊𝑗) ∈ ℜ𝑝 ∶ ‖𝐖‖ ≤
𝑅𝓁2

, for some 𝑅𝓁2
≥ 1, be a wSONC solution to (2.8). Assume that

1

𝑛

∑𝑛
𝑖=1 ℱ

(
𝑦𝑖𝐹𝑁𝑁 (𝐱,𝐖)

)
+ 𝑅(𝐖;𝒬2) ≤ 1

𝑛

∑𝑛
𝑖=1 ℱ

(
𝑦𝑖𝐹𝑁𝑁 (𝐱,𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

)
+

𝑅(𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙;𝒬2), w.p.1. For any given 𝛥 > 0, if 𝜚 < 𝒰−1
ℱ
, then there exists a

universal constant 𝐶5 > 0, such that, if 𝐾 =
⌈
𝑛1∕4

⌉
, then

E

[
1

(
𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖) < 0

)] ≤ 𝐶5 ⋅

(
1

𝑛
+

ln 𝑛

𝑛
⋅

√
𝑑 ln (𝑑∕𝐿) + ln 𝑛

𝑣2

)

+𝐶5 ⋅

⎛⎜⎜⎜⎝

𝑑 ln (𝑑∕𝐿) ⋅ (ln 𝑛)3

𝑛1∕4 ⋅ 𝑣2
+

[
ln 𝑛 + ln(𝐿 ⋅ 𝑅𝓁2

)
]1∕2

𝑛1∕4

⎞⎟⎟⎟⎠
+𝐶5 ⋅ 𝜚 ⋅ 𝛥

2 ⋅ 𝐿 ⋅𝐾 ⋅ 𝑑, (2.10)

with probability at least 1 − exp
(
−𝑝 ln 𝑛 − 𝑝𝐿

𝐶5
ln(𝐿 ⋅ 𝑅𝓁2

)
)

− 𝐶5 exp(
−𝑑 ln

(
𝑑𝑛

𝐶5⋅𝐿

))
. Furthermore, P[𝑊𝑗 ∈ S𝛥, ∀𝑗 ∈ 𝒬2] = 1.

Remark 2.18. For a fixed 𝜚 (which can be set to be 𝜚 = 𝑂(1) ⋅ 𝒰−1
ℱ
),

the generalization performance of a fully quantized NN model may
deteriorate linearly in both the network width 𝐾 and the depth 𝐿.
Meanwhile, the same performance metric improves quadratically as
the resolution improves (namely, 𝛥 vanishes). Notice that this result is
established on a tractable local solution (a tractable algorithm will be
presented subsequently). To our knowledge, this is the first explication
between the tradeoff between generalization performance and resolu-
tion in quantization at a tractably computable solution to the training
formulation of DL.

2.3. A novel quantization algorithm and its theoretical guarantee

This section presents a solution scheme that generates a solution
to satisfy the aforementioned characterization of generalizable and
quantized solutions. For ease of presentation, we consider an abstract
optimization problem with evident correspondence with problems (2.8)
with 𝑓 ∶ ℜ𝑝

→ ℜ,

min
𝐖=(𝑊𝑗)∈ℜ

𝑝
𝑓𝜆(𝐖) ∶= 𝑓 (𝐖) + 𝑅(𝐖;𝒬) (2.11)

The computing procedures of this solution scheme is provided as
below:

Algorithm 2. A simultaneous quantization and training algorithm

Step 1. Initialize fitting parameters 𝐖0 = 𝐖
1
2 and set the iteration

count 𝜅 ∶= 0. Choose termination tolerance 𝜖 > 0.

Step 2. Let 𝑞𝜅𝑗 ∈ argmin
{
𝑞𝑗 ∈ S𝛥 ∶ |𝑞𝑗 −𝑊 𝜅

𝑗 |
}
for all 𝑗 ∈ . Solve the

following problem

𝐖𝜅+1 ∈ arg min
𝐖=(𝑊𝑗)∈ℜ

𝑝

⟨
𝐠𝑘, 𝐖 −𝐖𝜅

⟩
+
𝑈𝐿
2

‖𝐖 −𝐖𝜅‖2

+
∑
𝑗∈

𝑃 ′
𝜆(|𝑊 𝜅

𝑗 − 𝑞𝜅𝑗 |) ⋅ |𝑊𝑗 − 𝑞
𝜅
𝑗 |. (2.12)

where 𝐠𝑘 ∶ ‖𝐠𝑘 − ∇𝑓 (𝐖𝜅)‖ ≤ 𝜗 is an arbitrary approximation
to the gradient.

Step 3. Solve the following problem

𝐖
𝜅+ 3

2 ∈ arg min
𝐖∈ℜ𝑝

⟨
∇𝑓 (𝐖𝜅+1), 𝐖 −𝐖𝜅+1

⟩

+
𝑈𝐿
2

‖𝐖 −𝐖𝜅+1‖2 + 𝑅(𝐖;). (2.13)

Here 𝑈𝐿 is a user-specified hyper-parameter such that 𝑈𝐿 ≥ 𝑈
and 𝑈 is defined as in Assumption 2.14.

Step 4. If the stopping criteria are not met, let 𝜅 ∶= 𝜅 + 1 and go to
Step 2.

A viable termination criterion can be to step the algorithm when

‖𝐖𝜅+1 −𝐖𝜅‖2 < 𝜖2

𝑈2
𝐿

(2.14)

holds for the first time. Alternatively, one may also terminate the
algorithm when it reaches a user-specified maximal iteration number.

Note that both subproblems (2.12) and (2.13) are highly tractable.
In particular, the first problem is essentially one iteration of iterative
shrinkage thresholding algorithm and thus admits a closed form. To
be more specific, let 𝑡 = 𝑊 𝜅

𝑗 − 𝑞𝜅𝑗 −
1

𝑈𝐿
𝑔𝑘𝑗 . Then, we have 𝐖𝜅+1 =(

sign(𝑡) ⋅max

{
0, |𝑡| − 𝑃 ′

𝜆

(|||𝑊 𝜅
𝑗
−𝑞𝜅

𝑗
|||
)

𝑈𝐿

}
+ 𝑞𝜅𝑗 ∶ 𝑗 = 1,… , 𝑝

)
. (In our im-

plementation, we further let 𝑈𝐿 = 1 and 𝛼𝑗 = 𝑃 ′
𝜆

(|||𝑊 𝜅
𝑗 − 𝑞𝜅𝑗

|||
)
. Then,

𝑊 𝜅+1
𝑗 = sign(𝑡) ⋅ max

{
0, |𝑡| − 𝛼𝑗

}
+ 𝑞𝜅𝑗 .) The second problem admits

Expert Systems With Applications 213 (2023) 118736

6

C. Hernandez et al.

a semi-closed form solution given in supplementary documents. This
semi-closed form is computable in (strongly) polynomial time.

Also observe that Step 2 does not require exact gradient. Instead,
any vector that approximates the gradient with 𝜗 accuracy suffices. One

viable approach is to let 𝐠𝑘 be the gradient of 𝐖𝜅+ 1
2 instead of that of

𝐖𝜅 at the 𝜅th iteration.

Theorem 2.19. Suppose that 𝑓 ∗
𝜆
∶= inf𝐖 𝑓𝜆(𝐖) > −∞ and the gradient

∇𝑓𝜆 is globally Lipschitz continuous with constant 𝒰ℱ . Let 𝜚 < 𝑈
−1
𝐿

≤ 𝒰−1
ℱ
,

𝜚 ⋅ 𝜆 = 𝛥. For any 𝜖 ∈ (0, 𝑎𝜆) and 𝜗 ∈ [0, 𝜖
4
), Algorithm 2, with

the termination criterion chosen as in (2.14), stops at iteration 𝒦∗ ≤⌈
4𝑈𝐿 ⋅

𝑓𝜆(𝐖
0)−𝑓∗

𝜆

𝜖2

⌉
+1. At termination,𝐖𝒦∗+

3
2 is an exact wSONC solution

to (2.11). Furthermore, 𝑓𝜆(𝐖
𝜅+ 3

2) ≤ 𝑓𝜆(𝐖
0) for all 𝜅 = 1,… ,𝒦∗.

2.4. Almost-algorithm-independent generalizability at tractably computable
solutions

Though it is not the focus of this paper, we can obtain an almost-
algorithm-independent generalizability result as a byproduct of The-
orem 2.17. In this result we refer to fitting parameters of a trained
neural network as a random vector 𝐖, because it is a function of
both the (random) training data (𝐱𝑖, 𝑦𝑖), 𝑖 = 1,… , 𝑛, and the additional
randomness in the training algorithm (e.g., the SGD).

Theorem 2.20. Suppose that Assumption 2.7 holds. Consider a neural
network 𝐹𝑁𝑁 (𝐱,𝐖) defined as in (1.1) and let𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙 be the initial weights
generated by Algorithm 1 with arbitrarily fixed 𝜍 ≥ 0. Let𝐖 ∈ ℜ𝑝 ∶ ‖𝐖‖ ≤
𝑅𝓁2

, for some 𝑅𝓁2
≥ 1, be a random vector that satisfies, w.p.1.,

1

𝑛

𝑛∑
𝑖=1

ℱ
(
𝑦𝑖𝐹𝑁𝑁 (𝐱𝑖,𝐖)

) ≤ 1

𝑛

𝑛∑
𝑖=1

ℱ
(
𝑦𝑖𝐹𝑁𝑁 (𝐱𝑖,𝐖

𝑖𝑛𝑖𝑡𝑖𝑎𝑙)
)
+ 𝛤 , (2.15)

for any fixed 𝛤 ∈ ℜ. There exists a universal constant 𝐶1 > 0, such that
the expected 0–1 loss is bounded by

E

[
1

(
𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖) < 0

)] ≤ 2𝜍 + 2𝛤 + 𝐶1 ⋅

(
1

𝑛
+

ln 𝑛

𝑛
⋅

√
𝑑 ln (𝑑𝐾𝐿)

𝐿𝐾 ⋅ 𝑣2

)

+𝐶1 ⋅

⎛⎜⎜⎜⎝

𝑑 ln (𝑑𝐾) ⋅ (ln 𝑛)2

𝐿𝐾 ⋅ 𝑣2
+

√√√√ 𝑝 ⋅
[
ln 𝑛 + 𝐿 ln(𝐿 ⋅ 𝑅𝓁2

)
]

𝑛

⎞⎟⎟⎟⎠
, (2.16)

with probability at least 1 − exp
(
−𝑝 ln 𝑛 − 𝑝𝐿

𝐶1
ln(𝐿 ⋅ 𝑅𝓁2

)
)

− 2 exp(
−𝑑 ln

(
𝑑𝐾𝐿∕𝐶1

))
. Here, 𝜍 is defined in Algorithm 1 as the sub-optimality

gap in solving the convex problem in (2.6).

Remark 2.21. We have a few remarks on Theorem 2.20:

1. The expected 0–1 loss, as the generalizability metric adopted
in this theorem, is a common measure of generalization per-
formance in binary classification. The same metric is used by,
e.g., Cao and Gu (2019a, 2019b).

2. 𝛤 in this theorem captures two different possibilities. Firstly,
sometimes the output from Algorithm 1 should be converted to
start the subsequent training process. Errors as a result of such
a conversion is characterized by 𝛤 . Secondly, in more common
settings, 𝛤 captures the effect of subsequent optimization; the
empirical risk of 𝐖, after the subsequent training following the
initialization, may be non-trivially lower than the empirical risk
of the initializer 𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙. In such a case, 𝛤 < 0. In fact, the
generalization error in (2.16) becomes better as the optimization
quality of 𝐖 becomes better.

3. In view of the foregoing discussions on 𝛤 and 𝜍 (as in Re-
mark 2.10), we may as well let 𝛤 = 0 and 𝜍 =

1

𝑛
. These choices

of values represent the plausible scenario that the subproblem
in Algorithm 1 is solved with an suboptimality gap of 𝜍 and

then a (descent) training algorithm is started with the output
of Algorithm 1 to ensure that 𝐖 is always no worse than 𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙

in terms of the empirical risk. Since 𝑝 = 𝑂(1)(𝑑 ⋅𝐾 + 𝐿 ⋅𝐾2), we
may have a more explicit bound on the generalization error than
(2.16):

𝐶2 ⋅

(
1

𝑛
+

ln 𝑛

𝑛
⋅

√
𝑑 ln (𝑑𝐾)

𝐿𝐾 ⋅ 𝑣2
+
𝑑 ln (𝑑𝐾) ⋅ (ln 𝑛)2

𝐿𝐾 ⋅ 𝑣2

+

√√√√ (𝑑𝐾 + 𝐿𝐾2) ⋅
[
ln 𝑛 + 𝐿 ln(𝐿𝑅𝓁2

)
]

𝑛

⎞
⎟⎟⎟⎠
, (2.17)

with probability at least 1 − exp
(
−𝑝 ln 𝑛 − 𝑝𝐿

𝐶2
ln(𝐿 ⋅ 𝑅𝓁2

)
)
− exp(

−𝑑 ln
(
𝑑𝐾∕𝐶2

))
for some universal constant 𝐶2.

4. We can see that the generalization error increases only polyno-
mially in the number of layers 𝐿. This dependence is perhaps
more effective than the exponential dependence of the gener-
alization error on 𝐿 as provided by, e.g., Cao and Gu (2019a,
2019b), when their theories are applied to the same settings
under Assumption 2.7. Our results on the choice of hyper-
parameters, such as 𝐾, is comparatively more flexible than Cao
and Gu (2019a) and Cao and Gu (2019b). A more detailed com-
parison will be presented subsequent to Theorem 2.20, which
simplifies Corollary 2.22 .

We may properly choose hyper-parameters, such as 𝐾, the width
of the DL model, to simplify the generalization error bound into the
below.

Corollary 2.22. Suppose that Assumption 2.7 holds. Consider a neural
network 𝐹𝑁𝑁 (𝐱,𝐖) defined as in (1.1) and let𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙 be the initial weights
generated by Algorithm 1 with arbitrarily fixed 𝜍 =

1

𝑛
. Let 𝐖 ∈ ℜ𝑝 ∶

‖𝐖‖ ≤ 𝑅𝓁2
, for some 𝑅𝓁2

≥ 1, be a random vector that satisfies, w.p.1.,

1

𝑛

𝑛∑
𝑖=1

ℱ
(
𝑦𝑖𝐹𝑁𝑁 (𝐱𝑖,𝐖)

) ≤ 1

𝑛

𝑛∑
𝑖=1

ℱ
(
𝑦𝑖𝐹𝑁𝑁 (𝐱𝑖,𝐖

𝑖𝑛𝑖𝑡𝑖𝑎𝑙)
)
.

There exists a universal constant 𝐶3 > 0, such that, if 𝐾 =
⌈
𝑛1∕4

⌉
, then

E

[
1

(
𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖) < 0

)] ≤ 𝐶3 ⋅

(
ln 𝑛

𝑛
⋅

√
𝑑 ln 𝑑 + ln 𝑛

𝐿𝑣2

)

+𝐶3 ⋅
𝑑 ln 𝑑 ⋅ (ln 𝑛)3

𝐿𝑛1∕4 ⋅ 𝑣2
+ 𝐶3 ⋅

(
𝑑

𝑛3∕8
+

𝐿

𝑛1∕4

)
⋅
[
ln 𝑛 + ln(𝐿 ⋅ 𝑅𝓁2

)
]1∕2

, (2.18)

with probability at least 1 − exp
(
−𝑝 ln 𝑛 − 𝑝𝐿

𝐶3
ln(𝐿 ⋅ 𝑅𝓁2

)
)

− 𝐶3 exp(
−𝑑 ln

(
𝑑𝑛

𝐶3

))
.

Remark 2.23. Ignoring the poly-logarithmic terms, our results can

be summarized (with some oversimplification) as 𝒪
(

𝑑⋅𝐿

𝑛1∕4⋅𝑣2

)
. In com-

parison, for the same data generation process, recent results on SGD

indicate an error of 𝒪

(
2𝐿

𝑣⋅
√
𝑛

)
(Cao & Gu, 2019a, 2019b). In contrast,

our bound is more efficient in a flexible regime where 𝐿 − log2 𝐿 ≥
log2 𝑑 +

1

4
log2 𝑛 − log2 𝑣 ⟺ 2𝐿 ≥ 𝑑𝐿𝑛1∕4∕𝑣. For example, if 𝑑 = 256,

𝑛 = 105, 𝑣 = 10−5, then this regime becomes 𝐿 ≥ 34. We thus argue that
our results could be more advantageous for deeper models.

Remark 2.24. If we fix all other quantities, the rate on the sample
size is 𝑂(𝑛−1∕4), which is less appealing than several existing results
that attains 𝑂(𝑛−1∕2). Nonetheless, most results with the sharper bound
are also under the assumption that global optimality is achieved,
proper regularization is employed, or a specific computing procedure
(several of which are shown to entail implicit regularization mecha-
nisms) is followed. In contrast, we are focused on a ‘‘non-global’’ and
‘‘non-regularized’’ solution in the sublevel set determined by a simple
initialization scheme. This solution is highly tractably computable.

Expert Systems With Applications 213 (2023) 118736

7

C. Hernandez et al.

Empirical results on similarly general solution have repetitively re-
ported worse out-of-sample performance than DLs with even simple
regularization schemes and or global optimization schemes. Therefore,
we think that our error bound is consistent with empirical findings.
We will leave to future research the incorporation of our theories with
explicit and implicit regularization mechanisms or approaches (such as
in Li and Liang (2018)) to reducing the dependence on 𝑛.

3. Numerical experiments

We conducted two sets of numerical experiments. (Sample codes
are available at https://github.com/Hyliy/HL_Quantization.) Our first
experiment is intended to link our theoretical results to practical per-
formance. To that end, the setup follows the format of Theorem 2.19
with synthetic data. Our second experiment is intended to compare our
Quantized ISTA algorithm to QAT on a common testbed. As such, we
utilize CIFAR-10 (Krizhevsky, Nair, & Hinton, 2014), MNIST (LeCun,
1998), and SVHN (Netzer et al., 2011) datasets and a variety of
classic ResNet architectures and train models to compare performance
between the two algorithms. In all cases, our experiments were imple-
mented using PyTorch 1.6 (Paszke et al., 2019) and run on a PC with
Intel Core i9 @ 2.30 GHz, 32 GB RAM, and an NVIDIA Quadro RTX
4000 GPU (8 GB RAM).

3.1. Experiment on synthetic data

This subsection presents our results on simulated data. 2000 train-
ing and 1000 testing data samples were generated in line with As-
sumption 2.7, where 𝑑 = 20 and 𝐶𝑔(𝐮) ∶= sin(

∑𝑑
𝜄=1 𝑢𝜄∕𝜋) with 𝐮 =

(𝑢𝜄). We followed Sections 1.2 and 2.2.2 for the network architecture
and initialization process. After initialization, the training of a non-
quantized model (𝛥 = 0) was done by invoking a gradient descent with
constant learning rate 𝑙𝑟 = 0.15, and the training of a quantized model
was done by invoking Algorithm 2. All quantized models were fully
quantized; that is, we let 𝒬 ∶= {1,… , 𝑝} and thus all the parameters
in the network all quantized. We increased the number of layers from
𝐿 = 31 to 𝐿 = 101 (and thus the number of hidden layers were increased
from 30 to 100). For quantized models, we also varied the quantization
resolution 𝛥 from 1

8
to 1

128
. The test results are summarized in Table 1,

where we see that all the trained models resulted in reasonable out-
of-sample performance. Meanwhile, increasing the number of layers or
reducing the quantization resolution almost incurred no impact to the
performance. In contrast, our theory predicts the generalization error to
deteriorate slowly and no faster than a polynomial function of 𝐿 and 𝛥.
While the numerical results were still consistent with our error bounds
(which are supposed to be over-estimators of the generalization errors),
the empirical findings seemed to indicate room for further sharpening
our theory.

3.2. Experiment on CIFAR-10, MNIST, and SVHN datasets

This subsection presents our numerical results on CIFAR-10, MNIST,
and SVHN datasets. Our experiments were focused on the ResNet family
architectures (He, Zhang, Ren, & Sun, 2016) as those are commonly
used for image recognition. We considered two scenarios in our experi-
ments. The first scenario was more demanding; we quantized the entire
network, including both the input and output layers, to S𝛥 with 𝛥 =

2−𝐵+1, i.e., the same set of candidate values representable by 𝐵-many
bits. Here, 𝐵 is chosen from {3, 4,… , 9}. For this scenario, we obtained
pretrained networks from Phan, David, Zafar, and Song (2020). The
second scenario was less demanding, as we followed Dong, Yao, Gho-
lami, Mahoney, and Keutzer (2019) to quantize only the hidden layers
of the networks to S𝛥 with 𝛥 = 2−𝐵+1. Meanwhile, both the input and
output layers were quantized to 8 bits. The corresponding pretrained
networks were taken from Idelbayev (2020). The pretrained models
were employed as the warm start for the quantization algorithms.

Table 1
Out-of-sample classification errors. ‘‘𝑙𝑟’’ is the constant learning rate.
When running Algorithm 2, we set 𝑈𝐿 ∶=

1

𝑙𝑟
. ‘‘Epochs’’ is the number of

Epochs of the algorithm. The result with 𝛥 = inf is for the DL without
any quantization.

𝛥 𝐿 Classification error 𝑙𝑟 epochs

inf 31 0.896 0.15 200
inf 41 0.894 0.15 200
inf 51 0.895 0.15 200
inf 61 0.895 0.15 200
inf 71 0.895 0.15 200
inf 81 0.896 0.15 200
inf 91 0.894 0.15 200
inf 100 0.896 0.15 200

1/8 31 0.893 0.15 200
1/8 41 0.894 0.15 200
1/8 51 0.895 0.15 200
1/8 61 0.896 0.15 200
1/8 71 0.895 0.15 200
1/8 81 0.895 0.15 200
1/8 91 0.894 0.15 200
1/8 100 0.895 0.15 200

1/16 31 0.893 0.15 200
1/16 41 0.894 0.15 200
1/16 51 0.895 0.15 200
1/16 61 0.896 0.15 200
1/16 71 0.895 0.15 200
1/16 81 0.895 0.15 200
1/16 91 0.894 0.15 200
1/16 101 0.895 0.15 200

1/32 31 0.893 0.15 200
1/32 41 0.894 0.15 200
1/32 51 0.895 0.15 200
1/32 61 0.896 0.15 200
1/32 71 0.895 0.15 200
1/32 81 0.895 0.15 200
1/32 91 0.894 0.15 200
1/32 101 0.895 0.15 200

1/64 31 0.893 0.15 200
1/64 41 0.894 0.15 200
1/64 51 0.895 0.15 200
1/64 61 0.896 0.15 200
1/64 71 0.895 0.15 200
1/64 81 0.895 0.15 200
1/64 91 0.894 0.15 200
1/64 101 0.895 0.15 200

1/128 31 0.893 0.15 200
1/128 41 0.894 0.15 200
1/128 51 0.895 0.15 200
1/128 61 0.896 0.15 200
1/128 71 0.895 0.15 200
1/128 81 0.895 0.15 200
1/128 91 0.894 0.15 200
1/128 101 0.895 0.15 200

The test results for CIFAR-10, MNIST, and SVHN are shown in
Tables 2, 3, and 4, respectively. From these tables, it can be seen that
Quantized ISTA was less sensitive to the bit length as compared to the
QAT. In particular, the former significantly outperformed the latter at
lower bit lengths (when 𝐵 = 3, 4, 5) for CIFAR-10 in the first scenario
above. In other less demanding case of Scenario 2, the Quantized ISTA
achieved comparable results as the QAT for CIFAR-10. As for MNIST
and SVHN, two algorithms perform comparably.

Given the quantization levels used, one may estimate the relative
improvement in storage size and forward pass energy usage compared
to the original model. For example, quantization with 𝛥 = 1∕128 and
𝐵 = 8 (or 1∕64 and 𝐵 = 7) leads to 71.8% (or 75%) of storage size as
well as 61.25% (or 97.5%, respectively) energy reduction.

4. Conclusions

Quantized NNs has been recently shown empirically to be promising
to effectively increase portability without significantly compromising

https://github.com/Hyliy/HL_Quantization

Expert Systems With Applications 213 (2023) 118736

8

C. Hernandez et al.

Table 2
Test accuracy of ResNet family on CIFAR-10 and the bit length 𝐵 ranges from 3 to 9. The pretrained models for the two scenarios were taken from Phan et al. (2020) and
Idelbayev (2020), respectively. In Scenario 1, all connections weights, including those in the input and output layers, were quantized to 𝐵-bits. In Scenario 2, only the hidden
layers were quantized to 𝐵-bits, while the input and output layers were always quantized to 8-bits.

𝐵 Scenario 1 Scenario 2

Resnet18 Resnet34 Resnet50 Resnet20 Resnet32 Resnet56

Quantized
ISTA

QAT Quantized
ISTA

QAT Quantized
ISTA

QAT Quantized
ISTA

QAT Quantized
ISTA

QAT Quantized
ISTA

QAT

3 0.6731 0.1010 0.6551 0.1010 0.6483 0.1010 0.8652 0.8637 0.8631 0.8487 0.8332 0.8071
4 0.7879 0.1010 0.7534 0.1010 0.7536 0.1010 0.9000 0.8963 0.9098 0.9032 0.9171 0.9148
5 0.8728 0.1010 0.7551 0.1010 0.7881 0.1010 0.9070 0.9069 0.9177 0.9155 0.9276 0.9242
6 0.8905 0.9009 0.8335 0.9060 0.8872 0.8822 0.9135 0.9121 0.9207 0.9225 0.9302 0.9290
7 0.8944 0.9171 0.8993 0.9208 0.9032 0.9210 0.9145 0.9146 0.9221 0.9241 0.9301 0.9316
8 0.9031 0.9200 0.9051 0.9223 0.8988 0.9267 0.9153 0.9138 0.9251 0.9252 0.9305 0.9299
9 0.9105 0.9207 0.9091 0.9221 0.8992 0.9309 0.9156 0.9167 0.9250 0.9251 0.9316 0.9316

Table 3
Test accuracy of ResNet family on MNIST and the bit length 𝐵 ranges from 3 to 8. The pretrained models are self-generated.
All connections weights, including those in the input and output layers, were quantized to 𝐵-bits.

B Resnet18 Resnet34 Resnet50

Quantized
ISTA

QAT Quantized
ISTA

QAT Quantized
ISTA

QAT

3 0.9825 0.9815 0.9753 0.9660 0.9368 0.9427
4 0.9900 0.9825 0.9897 0.9813 0.9891 0.9768
5 0.9900 0.9839 0.9889 0.9818 0.9883 0.9762
6 0.9892 0.9870 0.9866 0.9819 0.9862 0.9719
7 0.9875 0.9853 0.9818 0.9772 0.9830 0.9651
8 0.9869 0.9848 0.9783 0.9756 0.9819 0.9563

Table 4
Test accuracy of ResNet family on SVHN and the bit length 𝐵 ranges from 3 to 6. The pretrained models are self-generated.
All connections weights, except for those in the input and output layers, were quantized to 𝐵-bits.

B Resnet18 Resnet34 Resnet50

Quantized
ISTA

QAT Quantized
ISTA

QAT Quantized
ISTA

QAT

3 0.9378 0.9352 0.9430 0.9373 0.9350 0.9296
4 0.9399 0.9376 0.9404 0.9388 0.9385 0.9422
5 0.9411 0.9378 0.9434 0.9400 0.9452 0.9410
6 0.9404 0.9414 0.9452 0.9460 0.9456 0.9453

the model performance. However, limited generalization analysis on
quantized NNs is currently available. This paper presents perhaps the
first results that can be applied to various types of quantized NNs.
We show that, for a generic NN architecture, an NN is provably
generalizable if it is trained till global optimum. Furthermore, under
some mild conditions on the NN architecture, a tractably computable
local solution also ensures the generalizability. Both of these results
are algorithm-independent; that is, they provide performance guarantee
regardless of the specific designs on how to train an NN. Finally,
we provide an effective local optimization algorithm for training a
quantized NN and establish its computational complexity.

Our numerical experiments using synthetic data were used to test
these theoretical results. Although the performance was within the
bounds predicted by our theory, we did not witness the expected degra-
dation as we increased the number of layers or decreased the quanti-
zation resolution. This indicates the potential for further tightening of
the bounds.

Lastly, our experiments using CIFAR-10, MNIST, and SVHN were
intended to show the potential efficacy of our algorithm on problems
and network architectures that are already commonly seen. We found
that the Quantized ISTA approach performed comparably well to the
more common QAT algorithm, thereby demonstrating the practical ef-
fectiveness of the algorithm and its potential as an alternative approach
for quantized DL problems.

CRediT authorship contribution statement

Charles Hernandez: Conceptualization, Methodology, Software,
Formal analysis, Writing – original draft. Bijan Taslimi: Conceptual-
ization, Methodology, Formal analysis, Writing – original draft, Writing
– review & editing. Hung Yi Lee: Methodology, Software, Writing –
review & editing. Hongcheng Liu: Conceptualization, Methodology,
Writing – review & editing, Supervision, Funding acquisition. Panos M.
Pardalos: Conceptualization, Methodology, Writing – review & editing,
Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Expert Systems With Applications 213 (2023) 118736

9

C. Hernandez et al.

Appendix

A.1. Proof of Theorem 2.4

Proof. We divide the proof into three steps.
Step 1: Let 𝑆𝜀 and �̂�𝛿

𝑁
be the sets of quantized 𝜀-optimal solutions

of the true problem and 𝛿-optimal solutions of the SAA problem,
respectively. Let 𝜔 be the set of all feasible solutions of 𝐖. Given our
assumed quantization, 𝜔 is assumed to be finite meaning that |𝜔| <∞.
By inequality (5.103) in Shapiro et al. (2014) we know that

1 − 𝑃𝑟(�̂�𝛿
𝑁
⊂ 𝑆𝜀) ≤ |𝜔|𝑒−

𝑛(𝜀−𝛿)2

2𝜎2 (A.19)

where 𝑃𝑟(�̂�𝛿
𝑁

⊂ 𝑆𝜀) is the probability of the event that any 𝛿-
optimal solution of the SAA problem is an 𝜀-optimal solution of the
true problem. To utilize this inequality for function min{ln 2,ℱ(𝑦 ⋅

𝐹𝑁𝑁 (𝐱,𝐖))}, we need to prove it has a sub-Gaussian distribution.
Because min{ln 2,ℱ(𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖))} ∈ (0, ln 2], with probability 1 we
have ‖min{ln 2,ℱ(𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖))}‖𝜓2 ≤ 1. To see this, observe that
by example 2.5.8(c) in Vershynin (2018) it holds that ‖min{ln 2,ℱ(𝑦 ⋅

𝐹𝑁𝑁 (𝐱,𝐖))}‖𝜓2 ≤ 1

ln 2
‖min{ln 2,ℱ(𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖))}‖∞ =

1

ln 2
sup(𝐱,𝐖){

min{ln 2,ℱ(𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖))}
}

=
1

ln 2
ln 2 = 1. It implies that the sub-

Gaussian distribution assumption is satisfied and we can use inequality
(A.19). Now let 𝛿 = 0 which means we solve the SAA problem up to
optimality. Thus, we can rewrite (A.19) as

𝑃𝑟

(||||𝐄
[
1

𝑛

𝑛∑
𝑖=1

min
{
ln 2,ℱ

(
𝑦𝑖 ⋅ 𝐹𝑁𝑁 (𝐱𝐢,𝐖

𝐒𝐀𝐀)
)}]

− min
𝐖∶ ‖𝐖‖∞≤ ln 𝑛

2𝑣
𝑅𝛺

𝐄

[
min

{
ln 2,ℱ

(
𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖)

)}]|||| ≤ 𝜀

)

≥ 1 − |𝜔|𝑒−
𝑛𝜀2

2𝜎2 , (A.20)

implying
||||𝐄

[
1

𝑛

∑𝑛
𝑖=1 min

{
ln 2,ℱ

(
𝑦𝑖 ⋅ 𝐹𝑁𝑁 (𝐱𝑖,𝐖

𝑆𝐴𝐴)
)}]

−min
𝐖∶ ‖𝐖‖∞≤ ln 𝑛

2𝑣
𝑅𝛺

𝐄

[
min

{
ln 2,ℱ

(
𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖)

)}]|||| ≤ 𝜀 with proba-

bility at least 1 − |𝜔|𝑒−
𝑛𝜀2

2𝜎2 .
Step 2: We can easily see that function ℱ is 1-Lipschitz continuous

since its first derivative is ℱ′ = −
1

1+𝑒𝑧
which implies |ℱ′| ≤ 1. It

follows that 𝐄
[
ℱ
(
𝑦 ⋅ ln 𝑛

2𝑣
⋅ 𝐹𝑁𝑁 (𝐱,𝐖1)

)]
− 𝐄

[
ℱ
(
𝑦 ⋅ ln 𝑛

2𝑣
⋅ 𝑔(𝐱)

)] ≤ ln 𝑛

2𝑣
⋅

𝐄
[|||𝐹𝑁𝑁 (𝐱,𝐖1) − 𝑔(𝐱)

|||
]
for any 𝐖1 ∶ ‖𝐖1‖∞ ≤ 𝑅𝛺. By utilizing this

inequality, Assumption 2.3 and the fact that inf𝑢ℱ(𝑢) = 0, We obtain
the following result

min
𝐖∈𝜔∶‖𝐖‖∞≤𝑅𝛺 𝐄

[
ℱ
(
𝑦 ⋅

ln 𝑛

2𝑣
⋅ 𝐹𝑁𝑁 (𝐱,𝐖)

)]
− inf

𝑢
ℱ(𝑢)

≤ min
𝐖∈𝜔∶‖𝐖‖∞≤𝑅𝛺

ln 𝑛

2𝑣
⋅ 𝐄

[|||𝐹𝑁𝑁 (𝐱,𝐖) − 𝑔(𝐱)
|||
]
+ 𝐄

[
ℱ
(
𝑦 ⋅

ln 𝑛

2𝑣
⋅ 𝑔(𝐱)

)]

≤ ln 𝑛

2𝑣
⋅𝛺 + 𝐄

[
ℱ
(
𝑦 ⋅

ln 𝑛

2𝑣
⋅ 𝑔(𝐱)

)]

(A.21)

Since we assume that we have 𝑦⋅𝑔(𝐱) ≥ 𝑣 for all (𝐱, 𝑦) ∈ 𝑠𝑢𝑝𝑝(𝒟), then
it follows that 𝐄

[
ℱ
(
𝑦 ⋅ ln 𝑛

2𝑣
⋅ 𝑔(𝐱)

)]
= 𝐄

[
ln
(
1 + 𝑒𝑥𝑝(−𝑦 ⋅ ln 𝑛

2𝑣
⋅ 𝑔(𝐱))

)] ≤
ln
(
1 + 𝑒𝑥𝑝(−0.5 ln 𝑛)

) ≤ 1√
𝑛
. Thus, inequality (A.21) can be simplified

to

min
𝐖∈𝜔∶‖𝐖‖∞≤𝑅𝛺 𝐄

[
ℱ
(
𝑦⋅
ln 𝑛

2𝑣
⋅𝐹𝑁𝑁 (𝐱,𝐖)

)]
−inf

𝑢
ℱ(𝑢) ≤ ln 𝑛

2𝑣
⋅𝛺+

1√
𝑛
. (A.22)

In addition, by Assumption 2.3, ln 𝑛

2𝑣
⋅ 𝐹𝑁𝑁 (𝐱,𝐖) can be represented

by the same NN architecture 𝐹𝑁𝑁 (𝐱,𝐖′) =
ln 𝑛

2𝑣
⋅ 𝐹𝑁𝑁 (𝐱,𝐖) for some

new fitting parameters 𝐖′ ∶ ‖𝐖′‖∞ ≤ ln 𝑛

2𝑣
⋅ 𝑅𝛺. Therefore, we have

min
𝐖∈𝜔∶ ‖𝐖‖∞≤ ln 𝑛

2𝑣
⋅𝑅𝛺

𝐄
[
ℱ
(
𝑦⋅𝐹𝑁𝑁 (𝐱,𝐖)

)]
−inf

𝑢
ℱ(𝑢) ≤ ln 𝑛

2𝑣
⋅𝛺+

1√
𝑛
. (A.23)

Step 3: By Assumption 2.2 and since the NN is assumed to be fully
quantized, we have |𝜔| = (

𝑅𝛺 ln 𝑛

𝛥𝑣
+ 1)𝑝. We let 𝜀 =√

2𝜎2𝑝

(
ln 𝑛+ln

(
𝑅𝛺 ⋅ln 𝑛

𝛥𝑣
+1
))

𝑛
. Thus, now we can write |𝜔|𝑒−

𝑛𝜀2

2𝜎2 = (
𝑅𝛺 ln 𝑛

𝛥𝑣
+

1)𝑝 𝑒
−

𝑛

(√√√√√ 2𝜎2𝑝

(
ln 𝑛+ln

(
𝑅𝛺 ⋅ln 𝑛
𝛥𝑣

+1

))
𝑛

)2

2𝜎2 = (
𝑅𝛺 ln 𝑛

𝛥𝑣
+ 1)𝑝𝑒

(
ln
(
𝑛(
𝑅𝛺 ⋅ln 𝑛

𝛥𝑣
+1)

)−𝑝)
=

(
𝑅𝛺 ln 𝑛

𝛥𝑣
+1)𝑝

(
𝑛(
𝑅𝛺 ⋅ln 𝑛

𝛥𝑣
+1)

)−𝑝
=

1

𝑛𝑝
. Therefore, the probability 1−|𝜔|𝑒−

𝑛𝜀2

2𝜎2

can be written as 1 −
1

𝑛𝑝
. Since 𝐄

[
min

{
ln 2,ℱ

(
𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖)

)}] ≤
𝐄

[
ℱ
(
𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖)

)]
, by combining (A.20) and (A.23), and since we

let 𝜀 =

√
2𝜎2𝑝

(
ln 𝑛+ln

(
𝑅𝛺 ⋅ln 𝑛

𝛥𝑣
+1
))

𝑛
, we obtain that

𝐄

[
min

{
ln 2,ℱ

(
𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖𝐒𝐀𝐀)

)}]

≤
√√√√ 2𝜎2𝑝

(
ln 𝑛 + ln

(𝑅𝛺 ⋅ln 𝑛

𝛥𝑣
+ 1

))

𝑛
+

ln 𝑛

2𝑣
⋅𝛺 +

1√
𝑛

(A.24)

with probability at least 1 −
1

𝑛𝑝
.

Furthermore, since 𝐄

[
min

{
ln 2,ℱ

(
𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖

𝑆𝐴𝐴)
)}]≥

0.5 ⋅ 𝐄

[
𝟏
(
𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖

𝑆𝐴𝐴) < 0
)]
, We have

𝐄

[
𝟏
(
𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖𝐒𝐀𝐀) < 0

)]

≤ 2

√√√√2𝜎2𝑝
(
ln 𝑛 + ln

(𝑅𝛺 ⋅ln 𝑛

𝛥𝑣
+ 1

))

𝑛
+

ln 𝑛

𝑣
⋅𝛺 +

2√
𝑛

(A.25)

to be satisfied with probability at least 1 −
1

𝑛𝑝
. □

A.2. Proof of Corollary 2.6

Proof. Using the results of Theorem 3.1 in Petersen and Voigt-
laender (2018), under the stated condition in this corollary we have
‖𝐹𝑁𝑁 (𝐱,𝐖) − 𝑔(𝐱)‖𝐿2 ≤ 𝜉. It implies that the misspecification error of
the NN is at most 𝜉 which is more explicit than what we considered in
Assumption 2.2. Therefor, by invoking this result into inequality (2.4),
we obtain the generalization error bounded as inequality (2.5) with
probability at least 1 −

1

𝑛𝑝
. □

A.3. Semi-closed form to subproblem (2.13) in Step 3 in Algorithm 2

For any given 𝒬 ⊆ {1,… , 𝑝}. The semi-closed form solution to (2.13)
in Step 3 of Algorithm 2 is given as

𝑊 𝜅+1
𝑗

=

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

argmin

{(
∇𝑓 (𝐖𝜅+ 1

2)
)
𝑗
⋅

(
𝑊𝑗 −𝑊

𝜅+ 1

2

𝑗

)

+
𝐿

2
⋅

(
𝑊𝑗 −𝑊

𝜅+ 1

2

𝑗

)2

+ 𝑃𝜆

(
min𝑞𝑗∈S𝛥 |𝑊𝑗 − 𝑞𝑗 |

)
∶ 𝑊𝑗 ∈ S𝛥

}
,

if 𝑗 ∈ 𝒬;

𝑊
𝜅+ 1

2

𝑗 −
1

𝐿
⋅ ∇𝑓 (𝐖𝜅+ 1

2)

if 𝑗 ∉ 𝒬.

(A.26)

where
(
∇𝑓 (𝐖𝜅+ 1

2)
)
𝑗
is the 𝑗th entry of ∇𝑓 (𝐖𝜅+ 1

2). The formulation for

𝑗 ∈ 𝒬 is less trivial than the alternative case. Intuitively, the calculation
therein is to find the best quantization grid in S𝛥 to minimize the
one-dimensional optimization problem, which can be further reduced

into comparing the two quantization grids that are closest to 𝑊
𝜅+ 1

2
𝑗 −

Expert Systems With Applications 213 (2023) 118736

10

C. Hernandez et al.

1

𝐿
∇𝑓 (𝐖𝜅+ 1

2), in terms of the cost function of the one-dimensional

problem

{(
∇𝑓 (𝐖𝜅+ 1

2)
)
𝑗
⋅

(
𝑊𝑗 −𝑊

𝜅+ 1
2

𝑗

)
+
𝐿

2
⋅

(
𝑊𝑗 −𝑊

𝜅+ 1
2

𝑗

)2

+
∑
𝑗∈𝒬 𝑃𝜆

(
|𝑊𝑗 −𝑊

𝜅+ 1
2

𝑗 |
)

∶ 𝑊𝑗 ∈ S𝛥

}
. It is evident that this one-

dimensional optimization problem with finite feasible region can be
solved in strongly polynomial time.

To derive this semi-closed form, we observe that (2.13) is equiva-
lently decomposed into one-dimensional optimization problems written
as below: For each 𝑗 = 1,… , 𝑝

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min

{(
∇𝑓 (𝐖𝜅+ 1

2)
)
𝑗
⋅

(
𝑊𝑗 −𝑊

𝜅+ 1
2

𝑗

)

+
𝐿

2
⋅

(
𝑊𝑗 −𝑊

𝜅+ 1
2

𝑗

)2

+ 𝑃𝜆

(
min𝑞𝑗∈S𝛥 |𝑊𝑗 − 𝑞𝑗 |

)
∶ 𝑊𝑗 ∈ ℜ

}
,

if 𝑗 ∈ 𝒬;

min

{(
∇𝑓 (𝐖𝜅+ 1

2)
)
𝑗
⋅

(
𝑊𝑗 −𝑊

𝜅+ 1
2

𝑗

)
+

𝐿

2
⋅

(
𝑊𝑗 −𝑊

𝜅+ 1
2

𝑗

)2

∶ 𝑊𝑗 ∈ ℜ

}
,

if 𝑗 ∉ 𝒬.

(A.27)

In the second case with 𝑗 ∉ 𝒬, the problem is to minimize a quadratic
function. Thus, the closed-form to it is evidently consistent with (A.26).

As for the case with 𝑗 ∈ 𝒬, we observe that, because 𝑎 < 𝐿−1,
the (global) optimal solution to this optimization problem must satisfy
second-order KKT conditions, which imply that the hessian matrix
of the objective function should be positive semidefinite. From the
diagonals of this matrix, we have 𝐿 + 𝑃 ′′

𝜆
(|𝑊𝑗 − 𝑊

𝜅+1∕2
𝑗) ≥ 0, if

𝑃 ′′
𝜆

(
min𝑞𝑗∈S𝛥 |𝑊𝑗 − 𝑞𝑗 |

)
exists. Observe that 𝑃 ′′

𝜆

(
min𝑞𝑗∈S𝛥 |𝑊𝑗 − 𝑞𝑗 |

)
=

−1∕𝑎 must exist if |𝑊𝑗 − 𝑞𝑗 | ∈ (0, 𝜆 ⋅ 𝜚) = (0, 𝛥) by the definition of
𝑃𝜆. Therefore, the satisfaction of second-order KKT conditions implies
that 𝐿− 𝜚−1 ≥ 0, if min𝑞𝑗∈S𝛥 |𝑊𝑗 − 𝑞𝑗 | ∈ (0, 𝛥). This contradicts with our

specification of hyper-parameter that 𝜚 < 𝐿−1. The contradiction means
that min𝑞𝑗∈S𝛥 |𝑊𝑗 − 𝑞𝑗 | ∉ (0, 𝛥). Furthermore, min𝑞𝑗∈S𝛥 |𝑊𝑗 − 𝑞𝑗 | ≠ 𝛥;
this is because, otherwise, if 𝑊𝑗 − 𝑞

∗
𝑗 = 𝛥 (where 𝑞∗𝑗 is the optimal 𝑞𝑗)

then 𝑊𝑗 − (𝑞∗𝑗 + 𝛥) = 0, implying that 𝑞∗𝑗 + 𝛥 is actually the optimal
quantization point, because by our assumption, 𝑞∗𝑗 + 𝛥 ∈ S𝛥. The same
argument applies to the case where 𝑊𝑗 − 𝑞

∗
𝑗 = −𝛥. Therefore, it must

be the case that min𝑞𝑗∈S𝛥 |𝑊𝑗 − 𝑞𝑗 | = 0. In the other words, solving first
problem in (A.27) (for 𝑗 ∈ 𝒬) is equivalent to solving the first problem
in (A.26).

A.4. Proof of Theorem 2.15

Proof. We will divide the proof into two steps. Step 1 shows that
wSONC solutions are quantized by using the properties of wSONC.
Step 2 then shows that those quantized solutions are generalizable by
invoking Theorem 2.20.

Step 1. By the definition of wSONC as in Definition 2.11, it holds

that

[
𝜕2

[
𝑛−1

∑𝑛
𝑖=1 ℱ(𝑦𝑖⋅𝐹𝑁𝑁 (𝐱𝑖 ,𝐖))

]

𝜕𝑊 2
𝑗

]

𝐖=𝐖

+
𝜕2𝑅(𝐖,𝐱)

𝜕𝑊 2
𝑗

≥ 0 for all 𝑗 ∈ 𝒬2 ∶ 𝑊𝑗 ∉

S𝛥, w.p.1. By the definition of 𝑈𝐿 and the fact that 𝑃 ′′
𝜆
(|𝑡|) = −

1

𝑎
for

any 𝑡 ∉ S𝛥, the wSONC condition implies that 𝑈𝐿 ≥ 1

𝑎
, if there exists

𝑗 ∶ 𝑊𝑗 ∉ S𝛥, which contradicts with the assumption that 𝑈𝐿 < 1

𝑎
.

Therefore, P[𝑊𝑗 ∉ S𝛥, ∀𝑗 ∈ 𝒬1] = 1.

Step 2. By assumption, 1

𝑛

∑𝑛
𝑖=1 ℱ

(
𝑦𝑖𝐹𝑁𝑁 (𝐱,𝐖)

)
+ 𝑅(𝐖;𝒬2) ≤

1

𝑛

∑𝑛
𝑖=1 ℱ

(
𝑦𝑖𝐹𝑁𝑁 (𝐱,𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

)
+𝑅(𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙;𝒬2), w.p.1. Further notice that

𝑅(𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙;𝒬2) = 0 because 𝑊𝑗 = 0 for all 𝑗 ∈ 𝒬2. Thus,
1

𝑛

∑𝑛
𝑖=1

ℱ
(
𝑦𝑖𝐹𝑁𝑁 (𝐱,𝐖)

) ≤ 1

𝑛

∑𝑛
𝑖=1 ℱ

(
𝑦𝑖𝐹𝑁𝑁 (𝐱,𝐖)

)
+ 𝑅(𝐖;𝒬2) ≤ 1

𝑛

∑𝑛
𝑖=1

ℱ
(
𝑦𝑖𝐹𝑁𝑁 (𝐱,𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

)
. We may then invoke Theorem 2.20 with 𝜍 = 1∕𝑛,

𝛤 = 0, and 𝐾 =
⌈
𝑛1∕4

⌉
to obtain the desired result. □

A.5. Proof of Theorem 2.17

Proof. The proof is closely similar to that for Theorem 2.15. We will
divide the proof into two steps. Step 1 shows that wSONC solutions are
quantized by using the properties of wSONC. Step 2 then shows that
those quantized solutions are generalizable by invoking Theorem 2.20.

Step 1. By the definition of wSONC as in Definition 2.11, it holds

that

[
𝜕2

[
𝑛−1

∑𝑛
𝑖=1 ℱ(𝑦𝑖⋅𝐹𝑁𝑁 (𝐱𝑖 ,𝐖))

]

𝜕𝑊 2
𝑗

]

𝐖=𝐖

+
𝜕2𝑅(𝐖,𝐱)

𝜕𝑊 2
𝑗

≥ 0 for all 𝑗 ∈ 𝒬2 ∶ 𝑊𝑗 ∉

S𝛥, w.p.1. By the definition of 𝑈𝐿 and the fact that 𝑃 ′′
𝜆
(|𝑡|) = −

1

𝑎
for

any 𝑡 ∉ S𝛥, the wSONC condition implies that 𝑈𝐿 ≥ 1

𝑎
, if there exists

𝑗 ∶ 𝑊𝑗 ∉ S𝛥, which contradicts with the assumption that 𝑈𝐿 < 1

𝑎
.

Therefore, P[𝑊𝑗 ∉ S𝛥, ∀𝑗 ∈ 𝒬2] = 1.

Step 2. By assumption, 1

𝑛

∑𝑛
𝑖=1 ℱ

(
𝑦𝑖𝐹𝑁𝑁 (𝐱,𝐖)

)
+ 𝑅(𝐖;𝒬2) ≤

1

𝑛

∑𝑛
𝑖=1 ℱ

(
𝑦𝑖𝐹𝑁𝑁 (𝐱,𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

)
+ 𝑅(𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙;𝒬2), w.p.1. Further notice

that 𝑅(𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙;𝒬2) = 0 because 𝑊𝑗 = 0 for all 𝑗 ∈ 𝒬1. Thus,
1

𝑛

∑𝑛
𝑖=1 ℱ

(
𝑦𝑖𝐹𝑁𝑁 (𝐱,𝐖)

) ≤ 1

𝑛

∑𝑛
𝑖=1 ℱ

(
𝑦𝑖𝐹𝑁𝑁 (𝐱,𝐖)

)
+ 𝑅(𝐖;𝒬2) ≤

1

𝑛

∑𝑛
𝑖=1 ℱ

(
𝑦𝑖𝐹𝑁𝑁 (𝐱,𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

)
+ 𝑅(𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙;𝒬2). Notice that 𝑃𝜆(|𝑊𝑗 |) ≤

𝜚𝜆2

2
, for all 𝑗 ∈ 𝒬2∖𝒬1, and that 𝑊 𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑗 = 0 for all 𝑗 ∈ 𝒬1, where
𝒬1 is defined as in Theorem 2.15. Since |𝒬2∖𝒬2| ≤ (𝑑 + 1) ⋅ 𝐾 ⋅ 𝐿, we

have 𝑅(𝐖;𝒬2) ≤ 𝜚𝜆2

2
⋅ (𝑑 + 1) ⋅ 𝐾 ⋅ 𝐿. Since 𝜚𝜆 = 𝛥, we have 𝜆 =

𝛥

𝜚
.

Combining the above, 𝑅(𝐖;𝒬2)
𝜚𝜆2

2
=

∑𝑝

𝑗=1
𝑃𝜆(|𝑊𝑗 |) ≤ |𝒬2∖𝒬2| ⋅ 𝜚𝜆

2

2
=

(𝑑+1) ⋅𝐾 ⋅𝐿 ⋅
𝛥2

𝜚
⋅𝐿 ⋅𝐾. We may then invoke Theorem 2.20 with 𝜍 = 1∕𝑛,

𝛤 = 0, and 𝐾 =
⌈
𝑛1∕4

⌉
to obtain the desired result. □

A.6. Proof of Theorem 2.19

Proof. Hereafter, we let 𝑞𝜅+1𝑗 ∈ argmin{|𝑞 −𝑊 𝜅+1
𝑗 | ∶ 𝑞 ∈ S𝛥} and

𝑞𝜅𝑗 ∈ argmin{|𝑞 −𝑊 𝜅
𝑗 | ∶ 𝑞 ∈ S𝛥}. Notice that a well-known inequality

under the 𝒰ℱ -Lipschitz continuity of the gradient ∇𝑓 (c.f., 𝑈𝐿 ≥ 𝒰ℱ)
yields that

𝑓 (𝐖) − 𝑓 (𝐖𝜅) ≤ ⟨∇𝑓 (𝐖𝜅), 𝐖 −𝐖𝜅⟩ + 𝑈𝐿
2

‖𝐖 −𝐖𝜅‖2 (A.28)

for all 𝐖 ∈ ℜ𝑝. By the optimality condition to (2.12), we have that

∇𝑓 (𝐖𝜅) − 𝐠𝑘 = ∇𝑓 (𝐖𝜅) + 𝑈𝐿 ⋅
(
𝐖𝜅+1 −𝐖𝜅

)
+ 𝜸

𝜅+1 (A.29)

where 𝜸𝜅+1 ∶=
(
𝑃 ′
𝜆

(|||𝑊 𝜅
𝑗 − 𝑞𝜅𝑗

|||
)
⋅ 𝜕

|||𝑊
𝜅+1
𝑗 − 𝑞𝜅𝑗

||| ∶ 𝑗 = 1,… , 𝑝
)
and 𝜕 | ⋅ |

is the partial differential of | ⋅ |.
Combining (A.28) and (A.29), we then have

𝑓 (𝐖𝜅+1) − 𝑓 (𝐖𝜅) ≤ −𝑈𝐿‖𝐖𝜅+1 −𝐖𝜅‖2 − ⟨𝜸𝜅+1, 𝐖𝜅+1 −𝐖𝜅⟩
+
𝑈𝐿
2

⋅ ‖𝐖𝜅+1 −𝐖𝜅‖2 + ⟨∇𝑓 (𝐖𝜅) − 𝐠𝑘, 𝐖𝑘+ 1
2 −𝐖𝑘⟩

= −
𝑈𝐿
2

‖𝐖𝜅+1 −𝐖𝜅‖2 − ⟨𝜸𝜅+1, 𝐖𝜅+1 −𝐖𝜅⟩
+ ⟨∇𝑓 (𝐖𝜅) − 𝐠𝑘, 𝐖𝑘+ 1

2 −𝐖𝑘⟩
≤ −

𝑈𝐿
2

‖𝐖𝜅+1 −𝐖𝜅‖2 − ⟨𝜸𝜅+1, 𝐖𝜅+1 −𝐖𝜅⟩ + 𝜗 ⋅ ‖𝐖𝑘+ 1
2 −𝐖𝑘‖.

Because 𝑃𝜆(𝑡) is concave, we know that
∑𝑝

𝑗=1

[
𝑃 ′
𝜆
(|𝑊 𝜅

𝑗 − 𝑞𝜅𝑗 |)⋅(
|𝑊 𝜅+1

𝑗 − 𝑞𝜅𝑗 | − |𝑊 𝜅
𝑗 − 𝑞𝜅𝑗 |

)] ≥ 𝑃𝜆(|𝑊 𝜅+1
𝑗 − 𝑞𝜅𝑗 |) − 𝑃𝜆(|𝑊 𝜅

𝑗 − 𝑞𝜅𝑗 |) ≥
𝑃𝜆(|𝑊 𝜅+1

𝑗 − 𝑞𝜅+1𝑗 |) − 𝑃𝜆(|𝑊 𝜅
𝑗 − 𝑞𝜅𝑗 |). The last inequality is due to the

definition of 𝑞𝜅+1𝑗 . Therefore,

𝑓 (𝐖𝜅+1) +

𝑝∑
𝑗=1

𝑃𝜆(|𝑊 𝜅+1
𝑗 − 𝑞𝜅+1𝑗 |) − 𝑓 (𝐖𝜅) −

𝑝∑
𝑗=1

𝑃𝜆(|𝑊 𝜅
𝑗 − 𝑞𝜅𝑗 |)

≤ −
𝑈𝐿
2

‖𝐖𝜅+1 −𝐖𝜅‖2 + 𝜗 ⋅ ‖𝐖𝜅+1 −𝐖𝜅‖. (A.30)

Expert Systems With Applications 213 (2023) 118736

11

C. Hernandez et al.

Considering, again, the well-known inequality under the 𝒰ℱ

-Lipschitz continuity of the gradient ∇𝑓 (c.f., 𝑈𝐿 ≥ 𝒰ℱ), we have

𝑓 (𝐖𝜅+ 3
2)−𝑓 (𝐖𝜅+1) ≤ ⟨∇𝑓 (𝐖𝜅+1), 𝐖𝜅+ 3

2 −𝐖𝜅+1⟩+ 𝑈𝐿
2

‖𝐖𝜅+ 3
2 −𝐖𝜅+1‖2.

(A.31)

This, combined with (2.13), yields that

𝑓 (𝐖𝜅+ 3
2) +

𝑝∑
𝑗=1

𝑃𝜆

(
|𝑊 𝜅+ 3

2
𝑗 − 𝑞

𝜅+ 3
2

𝑗 |
)
− 𝑓 (𝐖𝜅+1) (A.32)

≤⟨∇𝑓 (𝐖𝜅+1), 𝐖𝜅+ 3
2 −𝐖𝜅+1⟩ + 𝑈𝐿

2
‖𝐖𝜅+ 3

2 −𝐖𝜅+1‖2

+

𝑝∑
𝑗=1

𝑃𝜆

(
|𝑊 𝜅+1

𝑗 − 𝑞𝜅+1𝑗 |
)

(A.33)

where the last inequality is due to the fact that 𝐖𝜅+ 3
2 is an optimal

solution to the per-iteration problem (2.13). As a result,

𝑓 (𝐖𝜅+ 3
2) +

𝑝∑
𝑗=1

𝑃𝜆

(
|𝑊 𝜅+ 3

2
𝑗 − 𝑞

𝜅+ 3
2

𝑗 |
)

≤ 𝑓 (𝐖𝜅+1) +

𝑝∑
𝑗=1

𝑃𝜆

(
|𝑊 𝜅+1

𝑗 − 𝑞𝜅+1𝑗 |
)
. (A.34)

Because the algorithm terminates when 𝑈𝐿
2
‖𝐖𝜅+1 − 𝐖𝜅‖2 < 𝜖2

2𝑈𝐿
,

the above inequality (A.30) implies that, if the algorithm does not
terminate at the 𝜅th iteration, then 𝑓 (𝐖𝜅+1)+

∑𝑝

𝑗=1
𝑃𝜆(|𝑊 𝜅+1

𝑗 − 𝑞𝜅+1𝑗 |)−
𝑓 (𝐖𝜅) −

∑𝑝

𝑗=1
𝑃𝜆(|𝑊 𝜅

𝑗 − 𝑞𝜅𝑗 |) ≤ −
𝜖2

4𝑈𝐿
. Since the algorithm terminates

at iteration 𝒦, the above inequality holds for all 𝜅 = 1,… ,𝒦 − 1.
Combining these inequalities, we have

𝑓 (𝐖𝒦+1) +

𝑝∑
𝑗=1

𝑃𝜆(|𝑊𝒦+1
𝑗 − 𝑞𝜅+1𝑗 |) − 𝑓 (𝐖0) −

𝑝∑
𝑗=1

𝑃𝜆(|𝑊 0
𝑗 − 𝑞0𝑗 |)

≤ −
𝜖2

4𝑈𝐿
⋅ (𝒦 − 1).

Apparently, 𝒦 ≤
⌈

4𝑈𝐿⋅
(
𝑓𝜆(𝐖

0)−𝑓∗
𝜆

)

𝜖2

⌉
+ 1, because, otherwise,

𝑓𝜆(𝐖
𝒦+1) < 𝑓 ∗

𝜆
. This is impossible due to the definition of 𝑓 ∗

𝜆
.

Because, if𝐖
𝒦+

3
2

𝑗 ∉ S𝛥, then the second-order necessary conditions
to (2.13) (at the (𝒦 − 1)th iteration) yield that 𝑈𝐿 − 1∕𝑎 ≥ 0, which
contradicts with the assumption that 𝑎 < 𝑈−1

𝐿
. Therefore, it holds that

𝐖
𝒦+

3
2 ∈ S

𝑝
𝛥
and verifiably the wSONC is satisfied, as claimed.

Finally, combining (A.30), we have that 𝑓 (𝐖𝜅+1) + 𝑅(𝐖𝜅+1;𝒬) ≤
𝑓 (𝐖𝜅)+𝑅(𝐖𝜅 ;𝒬), for all 𝜅 ≥ 0. Applying this inequality recursively, we
know that 𝑓 (𝐖𝜅) +𝑅(𝐖𝜅 ;𝒬) ≤ 𝑓 (𝐖0) +𝑅(𝐖0;𝒬), for all 𝜅 = 0,… ,𝒦∗.

Further invoking (A.34), we have the desired result that 𝑓𝜆(𝐖
𝜅+ 3

2) ≤
𝑓𝜆(𝐖

0) for all 𝜅 = 1,… ,𝒦∗. □

A.7. Proof of Theorem 2.20

Proof. We divide the proof into four steps. The first three steps are
necessary components to be combined in Step 4, which completes the
proof. We denote by 𝑐1, 𝑐2,… potentially different universal constants.

Step 1. Step 1 is focused on verifying that 𝐶𝑔(𝜉) ⋅max{𝜉⊤𝐱, 0}, for a
fixed 𝐱 ∈ 𝒳 and a standard Gaussian random vector with i.i.d. entries
𝜉 ∈ ℜ𝑑 , is a sub-exponential random variable.

To see this, observe that 𝜉⊤𝐱 follows a standard normal distri-
bution, because ‖𝐱‖ = 1 and 𝜉 have i.i.d. standard normal entries.
Thus, ‖𝜉⊤𝐱‖𝜓2 ≤ 𝑐1, where ‖ ⋅ ‖𝜓2 is the subgaussian norm. Conse-
quently, P[|𝜉⊤𝐱| ≥ 𝑡] ≤ 2 exp(−𝑐 ⋅ 𝑡2∕𝑐1), for any 𝑡 ≥ 0. Observe that

P

[|||max
{
0, 𝜉⊤𝐱

}||| ≥ 𝑡
]
= P

[|||max
{
0, 𝜉⊤𝐱

}||| ≥ 𝑡
||| 𝜉⊤𝐱 ≥ 0

]
⋅ P[𝜉⊤𝐱 ≥ 0] =

P
[
𝜉⊤𝐱 ≥ 𝑡

] ≤ P
[|𝜉⊤𝐱| ≥ 𝑡

] ≤ 2 exp
(
−𝑐 ⋅ 𝑡2∕𝑐1

)
, for any 𝑡 ≥ 0. Thus, by

the definition of a subgaussian random variable, ‖‖max{0, 𝜉⊤𝐱}‖‖𝜓2 ≤ 𝑐2.

Let ‖ ⋅ ‖𝜓1 be the sub-exponential norm. Then, by Lemma 2.7.7
of Vershynin (2018), ‖𝐶𝑔(𝜉) ⋅ max{0, 𝜉⊤𝐱}‖𝜓1 ≤ ‖𝐶𝑔(𝜉)‖𝜓2 ⋅

‖max{0, 𝜉⊤𝐱}‖𝜓2 ≤ 𝑐3, and thus ‖𝐶𝑔(𝜉) ⋅ max{0, 𝜉⊤𝐱} − E𝜉 [𝐶𝑔(𝜉) ⋅

max{0, 𝜉⊤𝐱}]‖𝜓1 ≤ 𝑐4, which means that both 𝐶𝑔(𝜉) ⋅ max{0, 𝜉⊤𝐱} and
𝐶𝑔(𝜉) ⋅ max{0, 𝜉⊤𝐱} − E𝜉 [𝐶𝑔(𝜉) ⋅ max{0, 𝜉⊤𝐱}] are sub-exponential, as
desired in Step 1.

Step 2. This step employs the epsilon-net argument to derive an
upper bound on

sup
𝐱∶ ‖𝐱‖=1

||||||
1

𝑇

𝑇∑
𝑘=1

𝐶𝑔(𝜉𝑘) ⋅max{0, 𝜉⊤𝑘 𝐱} − E
[
𝐶𝑔(𝜉) ⋅max{0, 𝜉⊤𝐱}

]||||||
.

This bound will later be useful to show the efficacy of the initialization
algorithm in Algorithm 1. For the purpose of epsilon-analysis, we need
two components:

• The first component is a concentration inequality implied by the
proven subexponentiality in Step 1. Let 𝜉𝑘, 𝑘 = 1,… , 𝑇 , (for any
integer 𝑇 ≥ 1) be i.i.d. samples of 𝜉. Invoking the Bernstein’s
inequality, we have, for any 𝐱 ∈ 𝒳,

P

[||||||
1

𝑇

𝑇∑
𝑘=1

𝐶𝑔(𝜉𝑘) ⋅max{0, 𝜉⊤𝑘 𝐱} − E𝜉

[
𝐶𝑔(𝜉) ⋅max{0, 𝜉⊤𝐱}

]||||||
≤ 𝑐5 ⋅

(
1

𝑇
+

√
1

𝑇

)]
≥ 1 − 2 exp(−𝑡) (A.35)

• The second component consists of the Lipschitz constants of both

𝐶𝑔(𝜉𝑘) ⋅max
{
0, 𝜉⊤𝑘 𝐱

}

and E𝜉

[
𝐶𝑔(𝜉) ⋅max

{
0, 𝜉⊤𝐱

}]
w.r.t. 𝐱. Observe that

‖‖‖‖
1√
𝑇

∑𝑇
𝑘=1 𝜉𝑘

‖‖‖‖
2

is an 𝜒2-distribution, whose degree of freedom is 𝑑. There-
fore, by a well-known tail bound for the 𝜒2-distribution,

P

[‖‖‖‖
1√
𝑇

∑𝑇
𝑘=1 𝜉𝑘

‖‖‖‖
2 ≤ 𝑑 ⋅

(
1 + 2

√
𝑡 + 2𝑡

)] ≥ 1 − exp(−𝑑𝑡), which

implies that P

[‖‖‖‖
1√
𝑇

∑𝑇
𝑘=1 𝜉𝑘

‖‖‖‖
2 ≤ 5𝑑𝑇

]
= P

[‖‖‖
1

𝑇

∑𝑇
𝑘=1 𝜉𝑘

‖‖‖
2 ≤ 5𝑑

]
≥

1 − exp(−𝑑 ⋅ 𝑇). Also by properties of 𝜒2-distribution,(
E𝜉

[‖‖‖‖
1√
𝑇

∑𝑇
𝑘=1 𝜉𝑘

‖‖‖‖
])2

≤ E𝜉

[‖‖‖‖
1√
𝑇

∑𝑇
𝑘=1 𝜉𝑘

‖‖‖‖
2]

= 𝑑. These have

ensured that both the sample average and the expected functions
follow Lipschitz conditions. More specifically, observe that

||||||
1

𝑇

𝑇∑
𝑘=1

𝐶𝑔(𝜉𝑘) ⋅max{0, 𝜉⊤𝑘 𝐱1} −
1

𝑇

𝑇∑
𝑘=1

𝐶𝑔(𝜉𝑘) ⋅max{0, 𝜉⊤𝑘 𝐱2}

||||||
≤ sup
𝜉∈ℜ𝑑

|𝐶𝑔(𝜉)| ⋅ ‖ 1

𝑇

𝑇∑
𝑘=1

𝜉𝑘‖ ⋅ ‖𝐱1 − 𝐱2‖

for all (𝜉𝑘), 𝐱1, and 𝐱2. As a result,

sup
𝐱1 , 𝐱2∈𝒳

{
|||
1

𝑇

𝑇∑
𝑘=1

𝐶𝑔(𝜉𝑘) max{0, 𝜉⊤𝑘 𝐱1}

−
1

𝑇

𝑇∑
𝑘=1

𝐶𝑔(𝜉𝑘) max{0, 𝜉⊤𝑘 𝐱2}
||| −

√
5𝑑 ⋅ ‖𝐱1 − 𝐱2‖

}
≤ 0,

with probability at least 1 − exp(−𝑑 ⋅ 𝑇), and|||E𝜉
[
𝐶𝑔(𝜉) ⋅max{0, 𝜉⊤𝐱1}

]
− E𝜉

[
𝐶𝑔(𝜉) ⋅max{0, 𝜉⊤𝐱2}

]||| ≤
sup𝜉∈ℜ𝑑 |𝐶𝑔(𝜉)| ⋅

√
𝑑 ⋅ ‖𝐱1 − 𝐱2‖ ≤ √

𝑑 ⋅ ‖𝐱1 − 𝐱2‖.
We are now ready for the epsilon-net analysis. Construct a net of

grids ℬ𝛿 such that, for any 𝐱 ∶ ‖𝐱‖ = 1, there exists 𝐳 ∈ ℬ𝛿 such that

‖𝐱 − 𝐳‖ ≤ 𝛿

(
√
5+1)⋅

√
𝑑
. It suffices to have as many as |𝒢𝛿| ∶=

[
2⋅(

√
5+1)𝑑

𝛿

]𝑑

grids. Therefore,

P

[
max
𝐱∈ℬ𝛿

||||||
1

𝑇

𝑇∑
𝑘=1

𝐶𝑔(𝜉𝑘) ⋅max{𝜉⊤𝑘 𝐱, 0} − E𝜉

[
𝐶𝑔(𝜉) ⋅max{𝜉⊤𝐱, 0}

]||||||

Expert Systems With Applications 213 (2023) 118736

12

C. Hernandez et al.

≥ 𝑐5 ⋅

(
𝑡

𝑇
+

√
𝑡

𝑇

)]

≤ 2

[
2 ⋅ (

√
5 + 1)𝑑

𝛿

]𝑑
exp(−𝑡). (A.36)

Notice that, for any 𝐳 ∈ ℬ𝛿 , given the events that

ℰ1 ∶=

{||||||
1

𝑇

𝑇∑
𝑘=1

𝐶𝑔(𝜉𝑘) ⋅max{𝜉⊤𝑘 𝐱, 0} − E𝜉 [𝐶𝑔(𝜉) ⋅max{𝜉⊤𝐱, 0}]

||||||
≤ 𝑐5 ⋅

(
𝑡

𝑇
+

√
𝑡

𝑇

)}

and that

ℰ2 ∶=

{||||||
1

𝑇

𝑇∑
𝑘=1

𝐶𝑔(𝜉𝑘) max{0, 𝜉⊤𝑘 𝐱1} −
1

𝑇

𝑇∑
𝑘=1

𝐶𝑔(𝜉𝑘) max{0, 𝜉⊤𝑘 𝐱2}

||||||
≤ √

5𝑑 ⋅ ‖𝐱1 − 𝐱2‖, ∀ 𝐱1, 𝐱2 ∶ ‖𝐱1‖ = 1, ‖𝐱2‖ = 1

}
,

it holds that, for any 𝐱 ∈ ℜ𝑑 and 𝐳 ∈ ℬ𝛿 ∶ ‖𝐱 − 𝐳‖ ≤ 𝛿

(
√
5+1)𝑑

,

||||||
1

𝑇

𝑇∑
𝑘=1

𝐶𝑔(𝜉𝑘) ⋅max{𝜉⊤𝑘 𝐱, 0} − E𝜉

[
𝐶𝑔(𝜉) ⋅max{𝜉⊤𝐱, 0}

]||||||
≤
||||||
1

𝑇

𝑇∑
𝑘=1

𝐶𝑔(𝜉𝑘) ⋅max{𝜉⊤𝑘 𝐱, 0} −
1

𝑇

𝑇∑
𝑘=1

𝐶𝑔(𝜉𝑘) ⋅max{𝜉⊤𝑘 𝐳, 0}

||||||
+

||||||
1

𝑇

𝑇∑
𝑘=1

𝐶𝑔(𝜉𝑘) ⋅max{𝜉⊤𝑘 𝐳, 0} − E𝜉

[
𝐶𝑔(𝜉) ⋅max{𝜉⊤𝐳, 0}

]||||||
+
|||E𝜉

[
𝐶𝑔(𝜉) ⋅max{𝜉⊤𝐱, 0}

]
− E𝜉

[
𝐶𝑔(𝜉) ⋅max{𝜉⊤𝐳, 0}

]|||
≤√5𝑑‖𝐳 − 𝐱‖ +

||||||
1

𝑇

𝑇∑
𝑘=1

𝐶𝑔(𝜉𝑘) ⋅max
{
0, 𝜉⊤𝑘 𝐳

}
− E𝜉

[
𝐶𝑔(𝜉) ⋅max{𝜉⊤𝐳, 0}

]||||||
+
√
𝑑‖𝐳 − 𝐱‖

≤𝑐5 ⋅
(
𝑡

𝑇
+

√
𝑡

𝑇

)
+ (

√
5 + 1)

√
𝑑‖𝐳 − 𝐱‖ ≤ 𝑐5 ⋅

(
𝑡

𝑇
+

√
𝑡

𝑇

)
+ 𝛿.

Notice that P[ℰ1∩ℰ2] ≥ 1−2

[
2(
√
5+1)𝑑

𝛿

]𝑑
⋅exp(−𝑡)−exp(−𝑑⋅𝑇). Combining

the above, we have that, for any 𝛿 > 0 and any 𝑡 ≥ 0,

P

[
sup

𝐱∶ ‖𝐱‖=1

||||||
1

𝑇

𝑇∑
𝑘=1

𝐶𝑔(𝜉𝑘) ⋅max{𝜉⊤𝑘 𝐱, 0} − E𝜉

[
𝐶𝑔(𝜉) ⋅max

{
𝜉⊤𝐱, 0

}]||||||
≤ 𝑐5 ⋅

(
𝑡

𝑇
+

√
𝑡

𝑇

)
+ 𝛿

]

≥1 − 2

[
2 ⋅ (

√
5 + 1)𝑑

𝛿

]𝑑
⋅ exp(−𝑡) − exp(−𝑑 ⋅ 𝑇)

=1 − 2 exp

(
−𝑡 + 𝑑 ln

[
2 ⋅ (

√
5 + 1)𝑑

𝛿

])
− exp(−𝑑 ⋅ 𝑇). (A.37)

We may as well let 𝛿 = 1∕𝑇 and 𝑡 = 2𝑑 ln

[
2⋅(

√
5+1)𝑑

𝛿

]
= 2𝑑 ln(2(

√
5 +

1)𝑑𝑇). Consequently, (A.37) is reduced to

P

[
sup

𝐱∶ ‖𝐱‖=1

||||||
1

𝑇

𝑇∑
𝑘=1

𝐶𝑔(𝜉𝑘) ⋅max{𝜉⊤𝑘 𝐱, 0} − E𝜉

[
𝐶𝑔(𝜉) ⋅max

{
𝜉⊤𝐱, 0

}]||||||
≤ 𝑐7 ⋅

√
𝑑 ln (𝑑𝑇)

𝑇

]

≥ 1 − 2 exp
(
−𝑑 ln

(
2 ⋅ (

√
5 + 1)𝑑𝑇

))
− exp(−𝑑 ⋅ 𝑇). (A.38)

This completes Step 2.
Step 3. In this step, we evaluate the initial sub-optimality gap

generated by Algorithm 1, making use of results from Steps 1 and 2.

Notice that the initialization essentially yields a neural network as a
subnetwork to the original model. This subnetwork can be captured
by

𝐹𝑁𝑁 (𝐱, 𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙) ∶=

𝐿−1∑
𝓁=1

(𝐰𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝓁,𝐿

)⊤𝜎
(
(𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙

0,𝓁
)⊤𝐱

)
. (A.39)

Let 𝐰𝑖𝑛𝑖𝑡𝑖𝑎𝑙
0,𝓁,𝑘

be the 𝑘th column of 𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙
0,𝓁

; that is, the weights for the
connections that joins the 𝑘th neuron in the 𝓁th layer from the input
layer. Observe that, via Algorithm 1, the sequence of 𝐰𝑖𝑛𝑖𝑡𝑖𝑎𝑙

0,𝓁,𝑘
, for all

𝑘 = 1,… , 𝐾 and 𝓁 = 1,… , 𝐿−1, are (𝐿−1)⋅𝐾-many i.i.d. samples of 𝜉 in
Step 1. Invoking (A.38), with 𝑇 ∶= 𝐾 ⋅(𝐿−1), we have (c.f., 𝑦 ∈ {−1, 1}),

with probability 1−2 exp
(
−𝑑 ln

(
2 ⋅ (

√
5 + 1)𝑑𝐾 ⋅ (𝐿 − 1)

))
−exp(−𝑑 ⋅𝐾 ⋅

(𝐿 − 1)),

sup
𝐱∶ ‖𝐱‖=1

|||
𝑦 ln 𝑛

𝐾 ⋅ (𝐿 − 1) ⋅ 𝑣

𝐾∑
𝑘=1

𝐿−1∑
𝓁=1

𝐶𝑔(𝐰
𝑖𝑛𝑖𝑡𝑖𝑎𝑙
0,𝓁,𝑘

) ⋅max

{
0,

(
𝐰𝑖𝑛𝑖𝑡𝑖𝑎𝑙
0,𝓁,𝑘

)⊤
𝐱

}

−
𝑦 ⋅ ln 𝑛

𝑣
E𝜉

[
𝐶𝑔(𝜉) ⋅max

{
0, 𝜉⊤𝐱

}] |||

≤ 𝑐6 ⋅ ln 𝑛 ⋅

√
𝑑 ln (𝑑 ⋅𝐾 ⋅ (𝐿 − 1))

𝐾 ⋅ (𝐿 − 1) ⋅ 𝑣2
. (A.40)

Observe that ℱ′(𝑧) = −
exp(−𝑧)

1+exp(−𝑧)
and ℱ′′(𝑧) =

exp(𝑧)

(1+exp(𝑧))2
. Thus ℱ′ is

0.5-Lipschitz continuous. Consequently,

ℱ(𝑥1) −ℱ(𝑥2) ≤ ℱ′(𝑥2) ⋅ (𝑥1 − 𝑥2) + 0.5∕2 ⋅ (𝑥1 − 𝑥2)
2.

Also observe that 𝑦𝑖 ⋅ 𝐸𝜉
[
𝐶𝑔(𝜉, 𝐱𝑖) ⋅max{0, 𝜉⊤𝐱𝑖}

] ≥ 𝑣 ⟺
ln 𝑛

𝑣
⋅ 𝑦𝑖 ⋅

𝐸𝜉
[
𝐶𝑔(𝜉, 𝐱𝑖) ⋅max{0, 𝜉⊤𝐱𝑖}

] ≥ ln 𝑛 for all 𝑖 by Assumption 2.7 and

|𝐹 ′(𝑧)| = |||−
1∕𝑛

1+1∕𝑛

||| ≤ 1

𝑛
for all 𝑧 ≤ − ln 𝑛. We thus have that

||||||
𝑛−1

𝑛∑
𝑖=1

ℱ

(
𝑦𝑖 ln 𝑛

𝑇 𝑣

𝑇∑
𝑘=1

𝐶𝑔(𝐰
𝑖𝑛𝑖𝑡𝑖𝑎𝑙
0,𝑙,𝑘

) ⋅max

{
0,

(
𝐰𝑖𝑛𝑖𝑡𝑖𝑎𝑙
0,𝑙,𝑘

)⊤
𝐱𝑖

})

−𝑛−1
𝑛∑
𝑖=1

ℱ

(
𝑦𝑖 ⋅ ln 𝑛

𝑣
E𝜉

[
𝐶𝑔(𝜉, 𝐱𝑖) ⋅max{0, 𝜉⊤𝐱𝑖}

])|||||

≤ 𝑐7 ⋅
1

𝑛
⋅ ln 𝑛 ⋅

√
𝑑 ln (𝑑 ⋅𝐾 ⋅ (𝐿 − 1))

𝐾 ⋅ (𝐿 − 1) ⋅ 𝑣2

+𝑐7 ⋅ (ln 𝑛)
2 𝑑 ln (𝑑 ⋅𝐾 ⋅ (𝐿 − 1))

𝐾 ⋅ (𝐿 − 1) ⋅ 𝑣2
. (A.41)

with probability 1 − 2 exp
(
−𝑑 ln

(
2 ⋅ (

√
5 + 1)𝑑𝐾 ⋅ (𝐿 − 1)

))
− exp(−𝑑 ⋅

𝐾 ⋅ (𝐿−1)). By combining (A.41) with the assumption of (2.15) and the
definition of 𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙 in (2.6), we have

𝑛−1
𝑛∑
𝑖=1

ℱ
(
𝑦𝑖 ⋅ 𝐹𝑁𝑁 (𝐱𝑖,𝐖)

)

≤ 𝑛−1
𝑛∑
𝑖=1

ℱ

(
𝑦𝑖 ⋅

ln 𝑛

𝑣 ⋅ 𝑇

𝐿−1∑
𝓁=1

(𝐰𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝓁,𝐿

)⊤𝜎
(
(𝐖𝑖𝑛𝑖𝑡𝑖𝑎𝑙

0,𝓁
)⊤𝐱

))
+ 𝛤

≤ 𝑛−1
𝑛∑
𝑖=1

ℱ

(
𝑦𝑖 ⋅ ln 𝑛

𝑣
E
[
𝐶𝑔(𝜉) ⋅max{0, 𝜉⊤𝐱𝑖}

])
+ 𝜍

+ 𝑐7 ⋅
1

𝑛
⋅ ln 𝑛 ⋅

√
𝑑 ln (𝑑 ⋅𝐾 ⋅ (𝐿 − 1))

𝐾 ⋅ (𝐿 − 1) ⋅ 𝑣2

+ 𝑐7 ⋅ (ln 𝑛)
2 𝑑 ln (𝑑 ⋅𝐾 ⋅ (𝐿 − 1))

𝐾 ⋅ (𝐿 − 1) ⋅ 𝑣2
+ 𝛤

≤ 𝑛−1
𝑛∑
𝑖=1

ℱ
(
ln 𝑛

𝑣
⋅ 𝑣

)
+ 𝑐7 ⋅

1

𝑛
⋅ ln 𝑛 ⋅

√
𝑑 ln (𝑑 ⋅𝐾 ⋅ (𝐿 − 1))

𝐾 ⋅ (𝐿 − 1) ⋅ 𝑣2

+ 𝑐7 ⋅ (ln 𝑛)
2 𝑑 ln (𝑑 ⋅𝐾 ⋅ (𝐿 − 1))

𝐾 ⋅ (𝐿 − 1) ⋅ 𝑣2
+ 𝛤 + 𝜍 (A.42)

= ln(1 + exp(− ln 𝑛))

+ 𝑐7 ⋅
1

𝑛
⋅ ln 𝑛 ⋅

√
𝑑 ln (𝑑 ⋅𝐾 ⋅ (𝐿 − 1))

𝐾 ⋅ (𝐿 − 1) ⋅ 𝑣2

+ 𝑐7 ⋅ (ln 𝑛)
2 𝑑 ln (𝑑 ⋅𝐾 ⋅ (𝐿 − 1))

𝐾 ⋅ (𝐿 − 1) ⋅ 𝑣2
+ 𝛤 + 𝜍

Expert Systems With Applications 213 (2023) 118736

13

C. Hernandez et al.

≤ 1

𝑛
+ 𝑐7 ⋅

1

𝑛
⋅ ln 𝑛 ⋅

√
𝑑 ln (𝑑 ⋅𝐾 ⋅ (𝐿 − 1))

𝐾 ⋅ (𝐿 − 1) ⋅ 𝑣2

+ 𝑐7 ⋅ (ln 𝑛)
2 𝑑 ln (𝑑 ⋅𝐾 ⋅ (𝐿 − 1))

𝐾 ⋅ (𝐿 − 1) ⋅ 𝑣2
+ 𝛤 + 𝜍. (A.43)

with probability at least 1 − exp
(
−𝑑 ln

(
2 ⋅ (

√
5 + 1)𝑑𝐾 ⋅ (𝐿 − 1)

))
−

exp(−𝑑 ⋅ 𝐾 ⋅ (𝐿 − 1)). In the above, (A.42) is due to Assumption 2.7. In
Step 3, we have now shown the global suboptimality of 𝐖 is no more

than 1

𝑛
+ 𝑐7 ⋅

1

𝑛
⋅ ln 𝑛 ⋅

√
𝑑 ln(𝑑⋅𝐾⋅(𝐿−1))

𝐾⋅(𝐿−1)⋅𝑣2
+ 𝑐7 ⋅ (ln 𝑛)

2 𝑑 ln(𝑑⋅𝐾⋅(𝐿−1))

𝐾⋅(𝐿−1)⋅𝑣2
+ 𝛤 + 𝜍, by

further observing that ℱ(𝑥) ≥ 0 for all 𝑥 in the domain.
Step 4. This step invokes another round of epsilon-net analysis

to show that, 𝐖, whose suboptimality gap can be controlled as per
Step 3 above, yields the bounded generalization error as desired in the
statement of this theorem. Below are the details.

Noting that ℱ(𝑧) ∶= ln (1 + exp(−𝑧)) ≥ min {ln (1 + exp(−𝑧)) , ln 2} ≥
1

2
⋅ 1(𝑧 < 0), we may continue from (A.43) to obtain that, with

probability at least 1−𝛿−exp
(
−𝑑 ln

(
2 ⋅ (

√
5 + 1)𝑑𝐾 ⋅ (𝐿 − 1)

))
−exp(−𝑑⋅

𝐾 ⋅ (𝐿 − 1)),

𝑛−1
𝑛∑
𝑖=1

min
{
ln 2, ℱ

(
𝑦𝑖 ⋅ 𝐹𝑁𝑁 (𝐱𝑖,𝐖)

)}

≤ 1

𝑛
+ 𝑐7 ⋅

1

𝑛
⋅ ln 𝑛 ⋅

√
𝑑 ln (𝑑 ⋅𝐾 ⋅ (𝐿 − 1))

𝐾 ⋅ (𝐿 − 1) ⋅ 𝑣2

+𝑐7 ⋅ (ln 𝑛)
2 𝑑 ln (𝑑 ⋅𝐾 ⋅ (𝐿 − 1))

𝐾 ⋅ (𝐿 − 1) ⋅ 𝑣2
+ 𝛤 + 𝜍. (A.44)

Notice that min
{
ln 2, ℱ

(
𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖)

)}
∈ [0, ln 2]; that is, it has a

bounded support. Therefore, the Hoeffding’s inequality yields that

P

[
|||
1

𝑛

𝑛∑
𝑖=1

min
{
ln 2, ℱ

(
𝑦𝑖 ⋅ 𝐹𝑁𝑁 (𝐱𝑖,𝐖)

)}

−E
[
min

{
ln 2, ℱ

(
𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖)

)}] ||| ≥ 𝑡
] ≤ 2 exp

(
−2𝑛𝑡2

(ln 2)2

)
,

for all 𝑡 ≥ 0. The epsilon-net argument again starts below.
Notice that, for any 𝐱 ∈ 𝒳, the Lipschitz constant of 𝐹𝑁𝑁 (𝐱, ⋅) is

𝐿(𝐾 ⋅𝑅𝓁2
)𝑐7⋅𝐿. To see this, by observation, for any𝐖1, 𝐖2 ∈ ℜ𝑝 ∶ ‖𝐖1−

𝐖2‖ ≤ 𝜏 and any 𝜏 > 0, it holds that ||𝐹𝑁𝑁 (𝐱, 𝐖1) − 𝐹𝑁𝑁 (𝐱, 𝐖2)
|| ≤

| (𝐰0,𝐿)
⊤
1
𝐱 +

∑𝐿−1
𝓁=1 (𝐰𝓁,𝐿)

⊤
1
(𝐳𝓁(𝐱))1 − (𝐰0,𝐿)

⊤
2
𝐱 −

∑𝐿−1
𝓁=1 (𝐰𝓁,𝐿)

⊤
2
(𝐳𝓁(𝐱))2| ≤

‖(𝐰0,𝐿+1)1−(𝐰0,𝐿+1)2‖⋅‖𝐱‖+∑𝐿−1
𝓁=1 max

{‖(𝐰𝓁,𝐿)1‖, ‖(𝐰𝓁,𝐿)2‖
}
⋅‖(𝐳𝓁(𝐱))1−

(𝐳𝓁(𝐱))2‖ ≤ 𝜏 +
∑𝐿−1

𝓁=2 𝑅𝓁2
⋅ ‖(𝐳𝓁(𝐱))1 − (𝐳𝓁(𝐱))2‖, where ‖(𝐳𝓁(𝐱))1 −

(𝐳𝓁(𝐱))2‖ ≤ 𝐾 ⋅𝑅𝓁2
⋅‖(𝐳𝓁−1(𝐱))1−(𝐳𝓁−1(𝐱))2‖+∑𝐾

𝑘=1 ‖(𝐰0,𝓁,𝑘)1−(𝐰0,𝓁,𝑘)2‖ ⋅
‖𝐱‖ + ‖(𝐛𝓁)1 − (𝐛𝓁)2‖ ≤ 𝐾 ⋅ 𝑅𝓁2

⋅ ‖(𝐳𝓁−1(𝐱))1 − (𝐳𝓁−1(𝐱))2‖ + 𝐾 ⋅ 𝜏 + 𝜏 ≤
𝑐7 ⋅ (𝐾 ⋅ 𝑅𝓁2

)𝐿 ⋅ 𝜏. Combining the above, we thus have

||𝐹𝑁𝑁 (𝐱, 𝐖2) − 𝐹𝑁𝑁 (𝐱, 𝐖2)
|| ≤ 𝐿(𝐾 ⋅ 𝑅𝓁2

)𝑐7⋅𝐿 ⋅ ‖𝐖1 −𝐖2‖. (A.45)

Therefore, 𝐿(𝐾 ⋅ 𝑅𝓁2
)𝑐7⋅𝐿 is an upper bound on the Lipschitz constant

of 𝐹𝑁𝑁 (𝐱, ⋅) for any 𝐱. Thus, min{ln 2, ℱ(𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖))} is Lipschitz
continuous w.r.t. 𝐖 with constant 𝐶ℒ ∶= 𝐿(𝐾 ⋅ 𝑅𝓁2

)𝑐8⋅𝐿. Then, a
standard epsilon-net argument leads to that, for any 𝜖 > 0 and 𝑡 ≥ 0,

P

[
sup

𝐖∶ ‖𝐖‖≤𝑅𝓁2

|||||
1

𝑛

𝑛∑
𝑖=1

min
{
ln 2, ℱ

(
𝑦𝑖 ⋅ 𝐹𝑁𝑁 (𝐱𝑖,𝐖)

)}

−E
[
min

{
ln 2, ℱ

(
𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖)

)}]|||
≤ 𝑐8 ⋅

(
𝑡

𝑛
+

√
𝑡

𝑛

)
+ 𝜖

]
≥ 1 −

[
𝑅𝓁2

⋅ 𝐶ℒ

𝜖

]𝑝
⋅ exp(−𝑡)

= 1 − exp

(
−𝑡 + 𝑝 ln

[
𝑅𝓁2

⋅ 𝐶ℒ

𝜖

])
. (A.46)

Combining (A.44) and (A.46) (where we let 𝑡 ∶= 2𝑛−1𝑝 ln(𝑅𝓁2
⋅𝐶ℒ𝑛) and

𝜖 = 1∕𝑛), we then have that

E

[
min

{
ln 2, ℱ

(
𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖)

)}]

≤ 1

𝑛
+ 𝑐9 ⋅

1

𝑛
⋅ ln 𝑛 ⋅

√
𝑑 ln (𝑑 ⋅𝐾 ⋅ (𝐿 − 1))

𝐾 ⋅ (𝐿 − 1) ⋅ 𝑣2

+𝑐9 ⋅ (ln 𝑛)
2 𝑑 ln (𝑑 ⋅𝐾 ⋅ (𝐿 − 1))

𝐾 ⋅ (𝐿 − 1) ⋅ 𝑣2
+ 𝛤 + 𝜍 + 𝑐9

√
𝑝 ln(𝑅𝓁2

⋅ 𝐶ℒ𝑛)

𝑛
(A.47)

to be satisfied with probability at least 1 − exp
(
−𝑝 ln

(
𝑅𝓁2

⋅ 𝐶ℒ𝑛
))

−

2 exp
(
−𝑑 ln

(
2 ⋅ (

√
5 + 1)𝑑 ⋅𝐾 ⋅ (𝐿 − 1)

))
− exp(−𝑑 ⋅𝐾 ⋅ (𝐿 − 1)).

Furthermore, because E

[
min

{
ln 2, ℱ

(
𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖)

)}] ≥ 0.5 ⋅

E

[
1

(
𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖) < 0

)]
, we have

E

[
1

(
𝑦 ⋅ 𝐹𝑁𝑁 (𝐱,𝐖) < 0

)] ≤ 2

𝑛
+ 𝑐10 ⋅

1

𝑛
⋅ ln 𝑛 ⋅

√
𝑑 ln (𝑑 ⋅𝐾 ⋅ (𝐿 − 1))

𝐾 ⋅ (𝐿 − 1) ⋅ 𝑣2

+𝑐10 ⋅ (ln 𝑛)
2 𝑑 ln (𝑑 ⋅𝐾 ⋅ (𝐿 − 1))

𝐾 ⋅ (𝐿 − 1) ⋅ 𝑣2
+ 2𝛤 + 2𝜍 + 𝑐10

√
𝑝 ln(𝑅𝓁2

⋅ 𝐶ℒ𝑛)

𝑛
(A.48)

to be satisfied with probability at least 1 − exp
(
−𝑝 ln

(
𝑅𝓁2

⋅ 𝐶ℒ𝑛
))

−

2 exp
(
−𝑑 ln

(
2 ⋅ (

√
5 + 1)𝑑 ⋅𝐾 ⋅ (𝐿 − 1)

))
− exp(−𝑑 ⋅𝐾 ⋅ (𝐿 − 1)). Further

invoking the fact that ln(𝐶ℒ) ∶= ln(𝑐8 ⋅𝐿 ⋅ (𝐾 ⋅𝑅𝓁2
)𝑐8𝐿) = ln(𝑐8 ⋅𝐿) + 𝑐8 ⋅

𝐿 ⋅ ln(𝐿 ⋅𝑅𝓁2
), we immediately have the desired results of this theorem

after simplification. □

A.8. Proof of Corollary 2.22

Proof. Immediately from simplifying Theorem 2.20 by letting 𝛤 = 0,
𝜍 = 1∕𝑛, and 𝐾 = 𝑂(1) ⋅ 𝑛1∕4. □

References

Affonso, C., Rossi, A. L. D., Vieira, F. H. A., de Leon Ferreira, A. C. P., et al. (2017).
Deep learning for biological image classification. Expert Systems with Applications,
85, 114–122.

Ahn, B. S., Cho, S., & Kim, C. (2000). The integrated methodology of rough set theory
and artificial neural network for business failure prediction. Expert Systems with
Applications, 18(2), 65–74.

Baskin, C., Liss, N., Chai, Y., Zheltonozhskii, E., Schwartz, E., Giryes, R., et al. (2018).
Nice: Noise injection and clamping estimation for neural network quantization.
arXiv preprint arXiv:1810.00162.

Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal on Imaging Sciences, 2(1), 183–202.

Bengio, Y., Léonard, N., & Courville, A. (2013). Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.
3432.

Berner, J., Elbrächter, D., Grohs, P., & Jentzen, A. (2019). Towards a regularity
theory for ReLU networks–chain rule and global error estimates. arXiv preprint
arXiv:1905.04992.

Bertsimas, D., Gupta, V., & Kallus, N. (2018). Robust sample average approximation.
Mathematical Programming, 171(1–2), 217–282.

Brutzkus, A., Globerson, A., Malach, E., & Shalev-Shwartz, S. (2017). Sgd learns over-
parameterized networks that provably generalize on linearly separable data. arXiv
preprint arXiv:1710.10174.

Bu, Y., Gao, W., Zou, S., & Veeravalli, V. V. (2019). Information-theoretic understanding
of population risk improvement with model compression. arXiv preprint arXiv:
1901.09421.

Cao, Y., & Gu, Q. (2019a). Generalization bounds of stochastic gradient descent for
wide and deep neural networks. In Advances in neural information processing systems
(pp. 10835–10845).

Cao, Y., & Gu, Q. (2019b). A generalization theory of gradient descent for learning
over-parameterized deep relu networks. arXiv preprint arXiv:1902.01384.

Courbariaux, M., & Bengio, Y. (2016). Binarynet: Training deep neural networks with
weights and activations constrained to +1 or -1. CoRR arXiv:1602.02830, URL
http://arxiv.org/abs/1602.02830.

Daniely, A. (2017). SGD learns the conjugate kernel class of the network. In Advances
in neural information processing systems (pp. 2422–2430).

Ding, Y., Liu, J., Xiong, J., & Shi, Y. (2018). On the universal approximability and
complexity bounds of quantized relu neural networks. arXiv preprint arXiv:1802.
03646.

Dong, Z., Yao, Z., Gholami, A., Mahoney, M. W., & Keutzer, K. (2019). Hawq: Hessian
aware quantization of neural networks with mixed-precision. In Proceedings of the
IEEE/CVF international conference on computer vision (pp. 293–302).

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., et
al.

Edunov, S., Ott, M., Auli, M., & Grangier, D. (2018). Understanding back-translation
at scale. arXiv preprint arXiv:1808.09381.

http://refhub.elsevier.com/S0957-4174(22)01754-7/sb1
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb1
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb1
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb1
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb1
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb2
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb2
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb2
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb2
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb2
http://arxiv.org/abs/1810.00162
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb4
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb4
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb4
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1905.04992
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb7
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb7
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb7
http://arxiv.org/abs/1710.10174
http://arxiv.org/abs/1901.09421
http://arxiv.org/abs/1901.09421
http://arxiv.org/abs/1901.09421
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb10
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb10
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb10
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb10
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb10
http://arxiv.org/abs/1902.01384
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1602.02830
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb13
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb13
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb13
http://arxiv.org/abs/1802.03646
http://arxiv.org/abs/1802.03646
http://arxiv.org/abs/1802.03646
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb15
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb15
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb15
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb15
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb15
http://arxiv.org/abs/1808.09381

Expert Systems With Applications 213 (2023) 118736

14

C. Hernandez et al.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., & Bengio, S. (2010).
Why does unsupervised pre-training help deep learning? Journal of Machine Learning
Research, 11(Feb), 625–660.

Foret, P., Kleiner, A., Mobahi, H., & Neyshabur, B. (2020). Sharpness-aware min-
imization for efficiently improving generalization. arXiv preprint arXiv:2010.
01412.

Fragoso, V., Gauglitz, S., Zamora, S., Kleban, J., & Turk, M. (2011). Translatar: A mobile
augmented reality translator. In 2011 IEEE workshop on applications of computer
vision (pp. 497–502). IEEE.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics (pp. 249–256).

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks.
In Proceedings of the fourteenth international conference on artificial intelligence and
statistics (pp. 315–323).

Goncharenko, A., Denisov, A., Alyamkin, S., & Terentev, E. (2018). Fast adjustable
threshold for uniform neural network quantization (winning solution of LPIRC-II).
arXiv preprint arXiv:1812.07872.

Goncharenko, A., Denisov, A., Alyamkin, S., & Terentev, E. (2019). Fast adjustable
threshold for uniform neural network quantization. International Journal of Computer
and Information Engineering, 13(9), 499–503.

Guresen, E., Kayakutlu, G., & Daim, T. U. (2011). Using artificial neural network
models in stock market index prediction. Expert Systems with Applications, 38(8),
10389–10397.

Han, S., Mao, H., & Dally, W. J. (2015). Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 770–778).

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with
neural networks. Science, 313(5786), 504–507.

Hinton, G., Srivastava, N., & Swersky, K. (2012). Neural networks for machine learning.
Coursera, Video Lectures, 264, 1.

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et
al. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2017). Quan-
tized neural networks: Training neural networks with low precision weights and
activations. Journal of Machine Learning Research, 18(1), 6869–6898.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K.
(2016). Squeezenet: AlexNet-level accuracy with 50x fewer parameters and< 0.5
MB model size. arXiv preprint arXiv:1602.07360.

Idelbayev, Y. (2020). Proper ResNet implementation for CIFAR10/CIFAR100 in
PyTorch. Accessed: 20xx-xx-xx.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., et al. (2018).
Quantization and training of neural networks for efficient integer-arithmetic-only
inference. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 2704–2713).

Kabir, H., Abdar, M., Jalali, S. M. J., Khosravi, A., Atiya, A. F., Nahavandi, S., et
al. (2020). Spinalnet: Deep neural network with gradual input. arXiv preprint
arXiv:2007.03347.

Kim, S., Pasupathy, R., & Henderson, S. G. (2015). A guide to sample average
approximation. In Handbook of simulation optimization (pp. 207–243). Springer.

Krizhevsky, A., Nair, V., & Hinton, G. (2014). Cifar-10 (canadian institute for advanced
research). http://www.cs.toronto.edu/kriz/cifar.html.

Laine, M., & Nevalainen, O. S. (2006). A standalone OCR system for mobile camera-
phones. In 2006 IEEE 17th international symposium on personal, indoor and mobile
radio communications (pp. 1–5). IEEE.

LeCun, Y. (1998). The MNIST database of handwritten digits. http://yann.lecun.com/
exdb/mnist/.

LeCun, Y. A., Bottou, L., Orr, G. B., & Müller, K.-R. (2012). Efficient backprop. In Neural
networks: tricks of the trade (pp. 9–48). Springer.

Li, Y., & Liang, Y. (2018). Learning overparameterized neural networks via stochastic
gradient descent on structured data. In Advances in neural information processing
systems (pp. 8157–8166).

Li, F., Zhang, B., & Liu, B. (2016). Ternary weight networks. arXiv preprint arXiv:
1605.04711.

Liu, X., Duh, K., Liu, L., & Gao, J. (2020). Very deep transformers for neural machine
translation. arXiv preprint arXiv:2008.07772.

Meller, E., Finkelstein, A., Almog, U., & Grobman, M. (2019). Same, same but different-
recovering neural network quantization error through weight factorization. arXiv
preprint arXiv:1902.01917.

Mishkin, D., & Matas, J. (2015). All you need is a good init. arXiv preprint arXiv:
1511.06422.

Mishra, A., & Marr, D. (2017). Apprentice: Using knowledge distillation techniques to
improve low-precision network accuracy. arXiv preprint arXiv:1711.05852.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A. Y. (2011). Reading
digits in natural images with unsupervised feature learning.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
Pytorch: An imperative style, high-performance deep learning library. In Advances
in neural information processing systems (pp. 8026–8037).

Petersen, P., & Voigtlaender, F. (2018). Optimal approximation of piecewise smooth
functions using deep relu neural networks. Neural Networks, 108, 296–330.

Phan, H., David, W., Zafar, & Song, H. (2020). PyTorch CIFAR10 github repository.
URL https://github.com/huyvnphan/PyTorch_CIFAR10.

Polino, A., Pascanu, R., & Alistarh, D. (2018). Model compression via distillation and
quantization. arXiv preprint arXiv:1802.05668.

Saxe, A. M., McClelland, J. L., & Ganguli, S. (2013). Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.
6120.

Shapiro, A., Dentcheva, D., & Ruszczyński, A. (2014). Lectures on stochastic programming:
modeling and theory. SIAM.

Tann, H., Hashemi, S., Bahar, R. I., & Reda, S. (2017). Hardware-software codesign
of accurate, multiplier-free deep neural networks. In 2017 54th ACM/EDAC/IEEE
design automation conference (pp. 1–6). IEEE.

Tao, A., Sapra, K., & Catanzaro, B. (2020). Hierarchical multi-scale attention for
semantic segmentation. arXiv preprint arXiv:2005.10821.

Tsai, C.-F., & Wu, J.-W. (2008). Using neural network ensembles for bankruptcy
prediction and credit scoring. Expert Systems with Applications, 34(4), 2639–2649.

Vershynin, R. (2018). vol. 47, High-dimensional probability: an introduction with
applications in data science. Cambridge University Press.

Wang, G., Giannakis, G. B., & Chen, J. (2019). Learning ReLU networks on linearly
separable data: Algorithm, optimality, and generalization. IEEE Transactions on
Signal Processing, 67(9), 2357–2370.

Wu, J., Leng, C., Wang, Y., Hu, Q., & Cheng, J. (2016). Quantized convolutional neural
networks for mobile devices. In Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 4820–4828).

Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S. S., & Pennington, J. (2018).
Dynamical isometry and a mean field theory of cnns: How to train 10,000-layer
vanilla convolutional neural networks. arXiv preprint arXiv:1806.05393.

Yin, P., Lyu, J., Zhang, S., Osher, S., Qi, Y., & Xin, J. (2019). Understanding straight-
through estimator in training activation quantized neural nets. arXiv preprint
arXiv:1903.05662.

Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Zhang, Z., Lin, H., et al. (2020). Resnest:
Split-attention networks. arXiv preprint arXiv:2004.08955.

Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 6848–6856).

Zhao, L., & Tsai, R. (2015). Locking and unlocking a mobile device using facial
recognition. US Patent 8, 994, 499.

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., & Zou, Y. (2016). Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160.

http://refhub.elsevier.com/S0957-4174(22)01754-7/sb18
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb18
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb18
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb18
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb18
http://arxiv.org/abs/2010.01412
http://arxiv.org/abs/2010.01412
http://arxiv.org/abs/2010.01412
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb20
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb20
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb20
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb20
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb20
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb21
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb21
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb21
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb21
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb21
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb22
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb22
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb22
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb22
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb22
http://arxiv.org/abs/1812.07872
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb24
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb24
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb24
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb24
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb24
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb25
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb25
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb25
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb25
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb25
http://arxiv.org/abs/1510.00149
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb27
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb27
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb27
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb27
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb27
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb28
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb28
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb28
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb29
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb29
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb29
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1704.04861
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb32
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb32
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb32
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb32
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb32
http://arxiv.org/abs/1602.07360
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb34
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb34
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb34
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb35
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb35
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb35
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb35
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb35
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb35
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb35
http://arxiv.org/abs/2007.03347
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb37
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb37
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb37
http://www.cs.toronto.edu/kriz/cifar.html
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb39
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb39
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb39
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb39
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb39
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb41
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb41
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb41
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb42
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb42
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb42
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb42
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb42
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/2008.07772
http://arxiv.org/abs/1902.01917
http://arxiv.org/abs/1511.06422
http://arxiv.org/abs/1511.06422
http://arxiv.org/abs/1511.06422
http://arxiv.org/abs/1711.05852
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb48
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb48
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb48
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb49
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb49
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb49
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb49
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb49
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb50
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb50
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb50
https://github.com/huyvnphan/PyTorch_CIFAR10
http://arxiv.org/abs/1802.05668
http://arxiv.org/abs/1312.6120
http://arxiv.org/abs/1312.6120
http://arxiv.org/abs/1312.6120
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb54
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb54
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb54
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb55
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb55
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb55
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb55
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb55
http://arxiv.org/abs/2005.10821
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb57
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb57
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb57
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb58
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb58
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb58
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb59
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb59
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb59
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb59
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb59
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb60
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb60
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb60
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb60
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb60
http://arxiv.org/abs/1806.05393
http://arxiv.org/abs/1903.05662
http://arxiv.org/abs/2004.08955
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb64
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb64
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb64
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb64
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb64
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb65
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb65
http://refhub.elsevier.com/S0957-4174(22)01754-7/sb65
http://arxiv.org/abs/1606.06160

	Training generalizable quantized deep neural nets
	Introduction
	Related works on quantized DL
	Notation and network architecture

	Main results
	Generalizability of globally optimal quantized solutions
	Generalizability of computable quantized solutions
	The data generation process
	Initialization
	Weak second-order necessary conditions
	Theoretically generalizable quantization

	A novel quantization algorithm and its theoretical guarantee
	Almost-algorithm-independent generalizability at tractably computable solutions

	Numerical experiments
	Experiment on synthetic data
	Experiment on CIFAR-10, MNIST, and SVHN datasets

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix
	Proof of Quantized Gen Theorem
	Proof of Quantized Piecewise Corollary
	Semi-closed form to subproblem (second subproblem2.13) in Step 3 in Algorithm 2
	Proof of Generalizability corollary on quantized training
	Proof of Generalizability corollary on quantized training fully
	Proof of Algorithm complexity theorem
	Proof of Generalizability theorem
	Proof of Generalizability theorem corollary

	References

