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Background-—Short-term exposure to elevated air pollution has been associated with higher risk of acute cardiovascular diseases,
with systemic oxidative stress induced by air pollution hypothesized as an important underlying mechanism. However, few
community-based studies have assessed this association.

Methods and Results-—Two thousand thirty-five Framingham Offspring Cohort participants living within 50 km of the Harvard
Boston Supersite who were not current smokers were included. We assessed circulating biomarkers of oxidative stress including
blood myeloperoxidase at the seventh examination (1998–2001) and urinary creatinine-indexed 8-epi-prostaglandin F2a (8-
epi-PGF2a) at the seventh and eighth (2005–2008) examinations. We measured fine particulate matter (PM2.5), black carbon, sulfate,
nitrogen oxides, and ozone at the Supersite and calculated 1-, 2-, 3-, 5-, and 7-day moving averages of each pollutant. Measured
myeloperoxidase and 8-epi-PGF2a were loge transformed. We used linear regression models and linear mixed-effects models with
random intercepts for myeloperoxidase and indexed 8-epi-PGF2a, respectively. Models were adjusted for demographic variables,
individual- and area-level measures of socioeconomic position, clinical and lifestyle factors, weather, and temporal trend. We found
positive associations of PM2.5 and black carbon with myeloperoxidase across multiple moving averages. Additionally, 2- to 7-day
moving averages of PM2.5 and sulfate were consistently positively associated with 8-epi-PGF2a. Stronger positive associations of
black carbon and sulfate with myeloperoxidase were observed among participants with diabetes than in those without.

Conclusions-—Our community-based investigation supports an association of select markers of ambient air pollution with
circulating biomarkers of oxidative stress. ( J Am Heart Assoc. 2016;5:e002742 doi: 10.1161/JAHA.115.002742)
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I ncreasing evidence indicates that short-term exposure to
elevated air pollution is associated with higher risk of

incident ischemic stroke, myocardial infarction, and other
acute cardiovascular events.1–3 Oxidative stress, an imbal-
ance between the production of the reactive oxygen species
and the human body’s antioxidant defense mechanism,4 has
been proposed as an important underlying biological

mechanism mediating this association.3,5–7 Increased oxida-
tive stress may induce endothelial dysfunction, which is
characterized by increased endothelial permeability, altered
vascular tone, platelet adhesion and aggregation, and
enhanced thrombogenicity.8,9

Myeloperoxidase is an enzyme that is abundantly stored in
inflammatory cells such as neutrophils, macrophages, and
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monocytes and is involved in a wide range of activities that
generate reactive oxygen and nitrogen species.10–13 Prior
studies have yielded mixed results.14–18 In a recent study,
positive associations of short-term exposure to fine particu-
late matter (diameter ≤2.5 lm [PM2.5]), black carbon (BC),
and nitrogen oxides (NOx) with myeloperoxidase were found in
a group of potentially genetically susceptible participants.14

8-Epi-prostaglandin F2a (8-epi-PGF2a) is formed from
peroxidation of arachidonic acid19 and is detectable in human
plasma and urine. The quantification of 8-epi-PGF2a has been
widely used as a noninvasive method to assess lipid
peroxidation.20,21 Higher short-term air pollution has been
associated with higher 8-epi-PGF2a sampled from exhaled
breath condensate in children, adolescents, and healthy
young adults22–25; however, few studies have assessed the
relationship between exposure to ambient air pollution and
urinary 8-epi-PGF2a

26,27 or in older populations at increased
risk of cardiovascular events.

Epidemiologic studies conducted in the Boston area have
reported positive associations of short-term exposure to air
pollution with acute stroke onset,28 atrial fibrillation,29 and
myocardial infarction onset.30 In the present study, we
evaluated whether short-term (1–7 days) ambient air pollution
exposure is associated with systemic levels of oxidative
stress, measured by plasma myeloperoxidase and urinary
creatinine-indexed 8-epi-PGF2a, in the community-based
Framingham Heart Study. Our study catchment region and
study period largely overlap with the above-mentioned
studies, and a closer look at the relationship may enable us
to elucidate underlying biologic pathways that could in part
explain previous findings.

Methods

Study Sample
The study participants were from the Framingham Heart Study
Offspring cohort living within 50 km of the Harvard Supersite
air pollution monitor in Boston, Massachusetts.31 The study
design and selection criteria of the Framingham Offspring
cohort has been described elsewhere.32 We included 2035
participants from the Offspring cohort seventh examination
(1998–2001) and/or eighth examination (2005–2008) who
were not current smokers and had at least one valid
measurement of plasma myeloperoxidase or urinary crea-
tinine-indexed 8-epi-PGF2a (3386 observations in total). At
each examination, physical examinations were performed
according to standardized protocols, and data on demograph-
ics, medication history, smoking history, and alcohol intake
were collected via questionnaires. All participants provided
written informed consent for the Framingham Heart Study
examinations, and institutional review boards at Beth Israel

Deaconess Medical Center and Boston University Medical
Center approved the study.

Biomarkers of Oxidative Stress
Fasting morning plasma samples and urine samples were
collected at the examination visits. Plasma myeloperoxidase
(ng/mL) was measured in duplicate in examination 7 by using
the commercially available Enzyme Immunoassay Kit (OXIS
Health Products), and 8-epi-PGF2a (pg/mL) was measured in
duplicate with the Enzyme Immunoassay Kit (Cayman Chem-
ical) in examinations 7 and 8. Measured 8-epi-PGF2a was
adjusted for urinary creatinine and was expressed in
nanograms per millimole of creatinine. The levels of myeloper-
oxidase and indexed 8-epi-PGF2a were loge transformed.

Air Pollution and Meteorological Variables
Air pollution levels were measured at the Harvard Supersite,
located on the rooftop of the Francis A. Countway Library of
Medicine (5 stories above ground level) and 50 m from the
nearest street. Measurement methods have been described
previously.31 PM2.5 (lg/m

3) was measured by using a tapered
element oscillating microbalance (Model 1400A; Rupprecht &
Patashnick Co Inc), and BC (lg/m3) was measured by using
an aethalometer (Model AE-16; Magee Scientific Corp). Ozone
(O3, ppm) and NOx were estimated by averaging available data
from local state monitors within the greater Boston area. Daily
sulfate (SO4

2�, lg/m3) was calculated from elemental sulfur
measured with x-ray fluorescence analysis of the PM2.5 filter
samples. On days when SO4

2� x-ray fluorescence measure-
ments were not available, an SO4

2� analyzer (Model 5020;
Thermo Electron Corp) was used. Temperature and relative
humidity were monitored at the Boston Logan International
Airport Weather Station, located 12 km from the Supersite.

Statistical Methods
We calculated 1-, 2-, 3-, 5-, and 7-day moving averages for
measured pollutants based on the daily means. For each
moving average of a pollutant, we fit multivariable linear
regression models (for plasma myeloperoxidase) and multivari-
able linear mixed-effects models with subject-specific random
intercepts (for indexed urinary 8-epi-PGF2a). We adjusted for
individual- and area-level covariates in the models, including
centered age, and (centered age)2; sex; body mass index;
smoking status (former or never smoker); pack years; alcohol
intake; educational level; and the quartile of median household
income in the participant’s census tract from the 2000 US
Census. An examination identifier (examination 7 or 8) was
added to the linear mixed models. We additionally adjusted for
season, linear time trend, temperature, and relative humidity.
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In secondary analyses, we explored the associations within
current US Environmental Protection Agency (EPA) National
Ambient Air Quality Standards by excluding observations with
any of the 7 days before the examination date that had a
24-hour PM2.5 >35 lg/m3. We also explored whether asso-
ciations differed when we included current smokers. Addi-
tionally, we repeated our analyses after restricting the study
population to participants who lived within 40 km of the
Harvard Supersite air pollution monitor. Further, we examined
whether associations varied by age (>65/≤65 years), sex,
obesity (31.8%), diabetes (16.8%), cardiovascular disease
(15.0%), antihypertensive medication use (46.8%), statin use
(31.5%), and season (warm [April to September] versus cold
[October to March]) by adding an interaction term to these
models.

Analyses were scaled to 5 lg/m3 for PM2.5, 0.4 lg/m3 for
BC, 2 lg/m3 for SO4

2�, and 0.01 ppm for NOx and O3, which
approximated the IQR.

Estimated percent changes were reported with 95% CIs.
For primary analyses, we focused on describing the associ-
ation patterns between pollutants and the biomarkers. For
sensitivity analyses in which effect modification was explored,
the 2-tailed P-value from the Wald test of the interaction term
was used to decide whether the observed association differed
between subgroups; however, only consistent association
patterns were considered important and highlighted. A 2-
tailed P<0.05 value was considered statistically significant in
these analyses. Primary analyses were performed using PROC
GLM and PROC Mixed in SAS 9.4 (SAS Institute, Inc). Figures
were plotted using Stata 13 (StataCorp LP).

Results
Table 1 shows the population characteristics. PM2.5 was
strongly correlated with BC and SO4

2�. NOx was moderately
correlated with BC and negatively correlated with O3

(Table 2). The correlation structure was similar for longer-
term moving averages. Figure 1 shows the distributions of
myeloperoxidase and indexed urinary 8-epi-PGF2a, and
Figure 2 shows the distribution of the daily concentrations
of each air pollutant.

We found positive associations of PM2.5 and BC with
plasma myeloperoxidase across multiple moving averages
(Figure 3A). Additionally, 3- to 7-day moving averages of
SO4

2� were weakly associated with plasma myeloperoxidase;
however, 95% CIs were rather wide.

We also observed consistent positive associations for
PM2.5 and SO4

2� with indexed urinary 8-epi-PGF2a, with
stronger associations appearing in 3- to 7-day moving
averages of PM2.5 and 2- to 7-day moving averages of
SO4

2� (Figure 3B). Similar but weaker positive associations
were observed for 2- to 7-day moving averages of BC.

Excluding observations with any 24-hour average PM2.5

above the EPA National Ambient Air Quality Standards (19
observations for plasma myeloperoxidase and 38 observa-
tions for urinary 8-epi-PGF2a) did not change our findings
substantially. As before, 3- to 7-day moving averages of
PM2.5 and 2- to 7-day moving averages of SO4

2� were
positively associated with indexed urinary 8-epi-PGF2a with
95% CIs that did not overlap the null. Results were not
materially altered after we included current smokers and
adjusted for smoking status and pack years in the primary
analyses or after we restricted study participants to those
who lived within 40 km of the Harvard Supersite air
pollution monitor. We tested the robustness of our results
by including BC and SO4

2� simultaneously; the associa-
tions were slightly attenuated but without any substantial
change.

There was no consistent evidence of differing associations
between pollutants and either biomarker by age, sex, obesity,
cardiovascular disease, antihypertensive medication use,
statin use, or season. However, stronger associations of BC
and SO4

2� with plasma myeloperoxidase were observed
among participants with diabetes than those without
(Figure 4A).

Table 1. Characteristics of the 3386 Observations From the
Framingham Offspring Cohort Examination 7 (1998–2001)
and/or 8 (2005–2008) Participants

No. (%) or Mean [SD]

Examination cycle 7 1878 (55.5%)

Age, y 64.1 [9.7]

Women 1789 (52.8%)

BMI, kg/m2 28.5 [5.4]

Alcohol, drinks/wk 4.2 [6.9]

Diabetes 569 (16.8%)

Former smoker 2018 (59.6%)

Education

<High school 161 (4.8%)

High School 1051 (31.0%)

Some college 1050 (31.0%)

College graduate 1094 (32.3%)

Antihypertensive medication use 1583 (46.8%)

Statins 1066 (31.5%)

Plasma myeloperoxidase*, ng/mL 40.6 [22.5]

Urinary 8-epi-PGF2a*, pg/mL 897.9 [842.3]

Urine creatinine, mg/100 mL 115.2 [69.1]

Indexed urinary 8-epi-PGF2a*, ng/mmol creatinine 108.7 [69.6]

BMI indicates body mass index; 8-epi-PGF2a, 8-epi-prostaglandin F2a.
*Geometric mean [SD of the geometric mean].
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Discussion
In our community-based study, we found positive associations
of PM2.5 and BCwith plasmamyeloperoxidase and of PM2.5 and
SO4

2� with urinary 8-epi-PGF2a across multiple moving aver-

ages. The association of BC and SO4
2� with plasma myeloper-

oxidase appeared to be stronger among participants with
diabetes. To our knowledge, we report the largest community-
based study to date on the association of short-term ambient air
pollution with oxidative stress biomarkers.
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Figure 1. Histograms of (A) myeloperoxidase, (B) loge transformed myeloperoxidase, (C) indexed 8-epi-prostaglandin F2a (8-epi-PGF2a), and (D)
loge transformed indexed 8-epi-PGF2a among the Framingham Offspring cohort examination 7 (1998–2001) and/or 8 (2005–2008) participants.
Solid line indicates the normal-density plot; dashed line indicates the kernel-density plot.

Table 2. Characteristics of the 1-Day Moving Averages of Air Pollutants Previous to the Examination Date in the Study Population
(1998–2001, 2005–2008)

Pollutant
No. of
Observations Mean (SD) IQR BC SO4

2� NOx O3

PM2.5, lg/m
3 3380 9.86 (5.34) 6.28 0.76 0.79 0.47 �0.05

BC, lg/m3 3376 0.84 (0.46) 0.57 — 0.53 0.61 �0.25

SO4
2�, lg/m3 2758 2.98 (2.25) 2.22 — — 0.33 0.05

NOx, ppm 3081 0.04 (0.02) 0.02 — — — �0.52

O3, ppm 3377 0.02 (0.01) 0.01 — — — —

BC indicates black carbon; NOx, nitrogen oxides; O3, ozone; PM2.5, fine particulate matter; SO4
2�, sulfate.
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Myeloperoxidase can be involved in diverse oxidation
reactions, including lipid peroxidation by acting as an enzyme
in generating multiple reactive oxygen and nitrogen species,
and may promote endothelial dysfunction.10 Accumulation of

lipid peroxidation products in vascular walls promotes
disruption of vulnerable plaques,33,34 which likely contributes
to the risk of acute cardiovascular events. Some,14–16 but not
all,17,18 prior studies have found an association between
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Figure 2. Histograms of the 1-day moving average concentrations of air pollutants previous to the examination date in the study population
(1998–2001, 2005–2008): (A) fine particulate matter (PM2.5), (B) black carbon (BC), (C) sulfate (SO4

2�), (D) nitrogen oxides (NOx), and (E) ozone
(O3). Solid line indicates the normal-density plot; dashed line indicates the kernel-density plot.
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short-term air pollution and plasma myeloperoxidase. Ruckerl
et al found higher myeloperoxidase levels were associated
with the BC, NO, NO2, and PM2.5 within 5 days in a group of
potentially genetically susceptible participants who were free
of type 2 diabetes or impaired glucose tolerance.14 However,
Delfino et al reported no association between measured air
pollutants and myeloperoxidase among 29 nonsmoking

elderly participants with a history of coronary artery dis-
ease.17

Urinary 8-epi-PGF2a is a reliable and stable biomarker of
lipid peroxidation that may promote vasoconstriction and
platelet activation.20 Prior studies have found increased 8-epi-
PGF2a in exhaled breath condensate after exposure to air
pollutants.22,24,25 However, systemic oxidative stress may be
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Figure 3. Associations of moving averages of air pollutants with (A) myeloperoxidase and (B) indexed 8-epi-prostaglandin F2a (8-epi-PGF2a).
Scaled to 5 lg/m3 for fine particulate matter (PM2.5), 0.4 lg/m3 for black carbon (BC), 2 lg/m3 for sulfate (SO4

2�), and 0.01 ppm for nitrogen
oxides (NOx) and ozone (O3). Models are adjusted for centered age, (centered age)2, sex, body mass index, smoking status, pack years, alcohol
intake, education level, quartile of median household income in the participants’ census tracts from the 2000 US Census, sine and cosine of the
day of year, examination date, day of the week, temperature, and relative humidity, and an examination identifier is added to models with
indexed 8-epi-PGF2a as the dependent variable. Error bars indicate the 95% CIs.
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Figure 4. Associations of moving averages of air pollutants with (A) myeloperoxidase and (B) indexed 8-epi-prostaglandin F2a (8-epi-PGF2a)
among participants with diabetes and those without (triangle, participants with diabetes; circle, participants without diabetes). Scaled to 5 lg/
m3 for fine particulate matter (PM2.5), 0.4 lg/m3 for black carbon (BC), 2 lg/m3 for sulfate (SO4

2�), and 0.01 ppm for nitrogen oxides (NOx)
and ozone (O3). Models are adjusted for centered age, (centered age)2, sex, bpdy mass index, smoking status, pack years, alcohol intake,
education level, quartile of median household income in the participants’ census tracts from the 2000 US Census, sine and cosine of the day of
year, examination date, day of the week, temperature, and relative humidity, and an examination identifier is added to models with indexed 8-
epi-PGF2a as the dependent variable. Error bars indicate the 95% CIs.
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better reflected by 8-epi-PGF2a measured in plasma or urine.
Mixed results have been seen between air pollution and 8-epi-
PGF2a

26,35,36 or other oxidative stress markers.37

Prior studies of short-term ambient air pollution exposure
with acute cardiovascular outcomes38–41 and markers of
vascular reactivity42 and inflammation43 suggest that individ-
uals with diabetes are more sensitive to air pollution, as a
result of baseline chronic inflammation and endothelial
dysfunction.44 We observed tendencies for participants with
diabetes to have higher levels of myeloperoxidase in relation
to BC and SO4

2�. There was no evidence suggesting differing
associations between pollutants and 8-epi-PGF2a.

In this study region, local traffic sources and regional
pollution both contribute to PM2.5 mass concentrations.45

Locally emitted or transported BC is a product of incomplete
combustion and is associated with different sources such as
traffic, residential heating and cooking, and biomass burning.
SO4

2� is primarily from regional sulfur-related pollution
sources such as coal-fired power plants, and some is
generated from local diesel exhaust.46 When we included
both BC and SO4

2� in the models, we observed potential
positive association between BC and myeloperoxidase but not
SO4

2�, suggesting that local sources may play an important
role, whereas for 8-epi-PGF2a, the stronger association with
SO4

2� suggests that the transported pollutants may play a
stronger role, consistent with the finding of Ren et al.47

There are several limitations that should be noted. We
assigned the ambient air pollution level measured by a central
monitoring site to all participants, which may decrease
precision of our estimates and induce exposure measurement
error. Prior studies in our region have demonstrated moderate
correlation between PM2.5 measured at the Supersite and
personal exposure level.48 In daily time series, most of the
variability in exposure within the study region is related to
temporal, rather than spatial, variability,45 which supports
assigning regional average concentrations to study partici-
pants. In the present investigation, the distribution of
exposure of the participants was primarily related to the date
that participants came for their examination appointment.
Thus, we expect the exposure measurement error caused by
assignment to be nondifferential, leading to attenuated point
estimates and wider CIs. The participants of the Framingham
Offspring Study were predominantly white individuals of
European ancestry and middle-aged to older adults, which
limits the generalizability of our findings to other ethnicities
and to age groups not studied. We acknowledge that we
cannot exclude the possibility of residual confounding and
that we cannot prove causal relations.

There are also several strengths. First, our study sample
was from a large community-based cohort with standardized
protocols for physical examinations and biomarker assess-
ments. Second, we adjusted for demographic characteristics,

lifestyle, individual- and area-level of socioeconomic position,
weather, and temporal trend. Third, assessments of air
pollutants and biomarkers were performed separately. Fourth,
we conducted the study in a region that has pollution levels in
compliance with current air quality standards, and our findings
still suggested adverse associations. Future studies in regions
with higher levels of ambient air pollution are needed to
determine if these associations are stronger in such regions.
Additionally, participants of the Framingham Heart Study
scheduled the date of their examination visit months in
advance, and this was not likely related to the air pollution
level on the days leading up to that prescheduled
appointment.

Conclusions
Our findings suggest positive associations of short-term
exposure to PM2.5 and BC with plasma myeloperoxidase and
of short-term exposure to PM2.5 and SO4

2� with urinary 8-epi-
PGF2a. The associations of BC and SO4

2� with plasma
myeloperoxidase appear stronger among participants with
diabetes. Our findings provide evidence suggesting potential
intermediate biological mechanisms that may in part explain
the observed associations between transiently higher air
pollution levels and the increase of acute cardiovascular events.
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