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1 IntroductionThe Steiner tree is an NP-hard combinatorial optimization problem [50] with along history[11, 93, 66]. The study of Steiner trees received great attentions in1990s since many important open problems, including Gilbert-Polak conjectureon the Euclidean Steiner ratio, the existence of better approximation, and theexistence of polynomial-time approximation schemes (PTAS), have been solvedwith inuence in the general theory of designs and analysis of approximationalgorithms for combinatorial optimizations, and also, many new important ap-plications in VLSI designs, optical networks, wireless communications, etc. havebeen discovered and studied extensively. Those applications usually requiresome modi�cations on classical Steiner tree problems and hence require newtechniques for solving them. Therefore, studying various variations of Steinertrees forms a hot point recently. In this article, we will review important devel-opments in 1990s and discuss some open problems which may induce importantdevelopments in this centrary.2 On the Proof of Gilbert-Pollak's ConjectureGiven a set of points in a metric space, the problem is �nding a shortest networkinterconnecting the points in the set. Such a shortest network is called a Steiner�Department of Computer Science and Engineering University of Minnesota Minneapolis,MN 55455 USA. Emails: fdzd,blu,hngog@cs.umn.eduyCenter for Applied Optimization Department of Industrial and Systems Engineering Uni-versity of Florida Gainesville, FL 32611 USA. Email: pardalos@u.edu1



minimum tree on the point set. The Steiner tree problem can be seen as ageneralization of Fermat's problem. Three hundred years ago, Fermat proposeda problem of �nding a point to minimize the total distance from this pointsto three given points in the Euclidean plane; its solution is exactly the Steinerminimum tree on the three points. The general form of Steiner minimum treeproblem was proposed by Gauss [26]. However, Courant and Robbins [27] intheir famous 1941 book \ What is Mathematics" referred to it as the Steinerproblem. The popularity of their book was responsible for bringing the Steinertree problem to people's attention. Two important papers in the 1960's furtherlaid a solid groundwork for further study. Melzak [75] �rst gave a �nite algorithmfor the euclidean Steiner trees. Gilbert and Pollak [52] produced an excellentsurvey of the problem, raised many new topics including Steiner ratio problem,and extended the problem to other metric space. Since then, more than threehundred research papers have been contributed to the Steiner tree problem. Foran excellent survey, one may refer to the book of Hwang, Richards, and Winter[55].An important developments on the Steiner tree problem that took placein the beginning of 1990s is the proof of Gilbert-Pollak's conjecture on theEuclidean Steiner ratio [34, 35]. This new development is based on a discoveryof new approach with a new minimax theorem.A minimum spanning tree on a set of points is the shortest network inter-connecting the points in the set with all edges between the points. While theSteiner tree problem is intractable, the minimum spanning tree can be computedpretty fast. The Steiner ratio in a metric space is the largest lower bound forthe ratio between lengths of a minimum Steiner tree and a minimum spanningtree for the same set of points in the metric space, which is a measure of perfor-mance for the minimum spanning tree as a polynomial-time approximation ofthe minimum Steiner tree. Determining the Steiner ratio in each metric space isa traditional problem on Steiner trees. In 1976, Hwang [54] determined that theSteiner ratio in rectilinear plane is 2/3. However, it took 22 years for complet-ing the story of determining the Steiner ratio in the Euclidean plane. In 1968,Gilbert and Pollak conjectured that the Steiner ratio in the euclidean plane isp3=2. Through e�orts made by Pollak [80], Du, Hwang and Yao [31, 32], Friedeland Widmayer[46], Booth [14], Rubinstein and Thomas [86, 87], Graham andHwang [53], Chung and Hwang [24], Du and Hwang [31], and Chung and Gra-2



ham [23], the conjecture was �nally proved by Du and Hwang [34, 35] in 1990.The signi�cance of their proof stems also from the potential applications of thenew approach included in the proof.In their approach, the central part is a new minimax theorem about minimiz-ing the maximum value of several concave functions over a simplex as follows.Theorem 1 (Du-Hwang Minimax Theorem) Let f(x) = maxi2I gi(x) whereI is a �nite set and gi(x) is a continuous, concave function in a polytope X.Then the minimum value of f(x) over the polytope X is achieved at some criticalpoint, namely, a point satisfying the following property:(*) There exists an extreme subset Y of X such that x 2 Y and the indexset M(x) (= fi j f(x) = gi(x)g) is maximal over Y .The Steiner ratio problem is �rst transfered to such a minimax problem(gi(x)= (the length of a Steiner tree) - (the Steiner ratio)�(the length of a span-ning tree with graph structure i) where x is a vector whose components areedge-lengths of the Steiner tree) and the minimax theorem reduces the minimaxproblem to the problem of �nding the minimax value of the concave functionsat critical points. Then each critical point is transfered back to an input setof points with special geometric structure; it is a subset of a lattice formedby equilateral triangles. This special structure enables us to verify the con-jecture corresponding to the non-negativeness of minimax value of the concavefunctions.Clearly, in order to use the minimax approach, for each problem three ques-tions will be addressed:(1) How do we transfer the problem to such a minimax problem meeting thecondition that the functions are concave?(2) How do we determine the critical geometric structure?(3) How do we verify the function value on the critical structure?Developping techniques for answering these three questions will enable us tosolve more open problems. Let us explain it by some examples in the following.2.1 Chung-Gilbert's ConjectureSteiner trees in Euclidean spaces have an application in constructing phylo-genetic trees [17]. It was also conjectured by Gilbert and Pollak [52] that inany Euclidean space the Steiner ratio is achieved by the vertex set of a regular3



simplex. Chung and Gilbert [22] constructed a sequence of Steiner trees onregular simplices. The lengths of constructed Steiner trees goes decreasinglyto p3=(4 � p2). Although the constructed trees are not known to be Steinerminimum trees, Chung and Gilbert conjectured that p3=(4 � p2) is the bestlower bound for Steiner ratios in Euclidean spaces. Clearly, if p3=(4 �p2) isthe limiting Steiner ratio in d-dimensional Euclidean space as d goes to in�nity,then Chung-Gilbert's conjecture is a corollary of Gilbert and Pollak's generalconjecture. However, this general conjecture of Gilbert and Pollak has beendisproved by Smith [92] for dimension from three to nine and by Du and Smithfor dimension larger than two. Now, interesting questions which arise in thissituation are about Chung and Gilbert's conjecture. Could Chung-Gilbert'sconjecture also be false? If the conjecture is not false, can we prove it by theminimax approach?First, we claim that Chung-Gilbert's conjecture could be true. In fact, wecould get rid of Gilbert-Pollak's general conjecture, and use another way to reachthe conclusion that the limiting Steiner ratio for regular simplex is the best lowerbound for Steiner ratios in Euclidean spaces. To support our viewpoint, let usanalyze a possible proof of such a conclusion as follows.Consider n points in (n�1)-dimensional Euclidean space. Then all of n(n�1)=2 distances between the n points are independent. Suppose that we could doa similar transformation and the minimax theorem could apply to these n pointsto obtain a similar result in the proof of Gilbert-Pollak's conjecture for Euclideanplane, i.e. a point set with critical geometric structure has the property thatthe union of all minimum spanning trees contains as many equilateral trianglesas possible. Then such a critical structure must be a regular simplex.The above observation tells us two facts:(a) Chung-Gilbert's conjecture can follow from the following two conjectures.Conjecture 1 The Steiner ratio for n points in an euclidean space is notsmaller than the Steiner ratio for the vertex set of (n � 1)-dimensional regu-lar simplex.Conjecture 2 (Smith [92]) p3=(4�p2) is the limiting Steiner ratio for sim-plex.(b) It may be possible to prove Conjecture 1 by the minimax approach if wecould �nd a right transformation. 4



One may wonder why we need to �nd a right transformation. What hap-pens to the transformation used in proof of Gilbert-Pollak's conjecture in theEuclidean plane? Here, we remark that such a transformation does not workfor Conjecture 1. In fact, in the Euclidean plane, with a �xed graph structure,all edge-lengths of a full Steiner tree can determine the set of original pointsand furthermore the length of a spanning tree for a �xed graph structure is aconvex function of the edges-lengths of the Steiner tree. However, in Euclideanspaces of dimension more than two , edge-lengths of a full Steiner tree are notenough to determine the set of original points. Moreover, adding other param-eters may destroy the convexity of the length of a spanning tree as a functionof the parameters.Smith [92] showed by an exhaustive computation that for d = 3; � � � ; 7, theSteiner trees constructed by Chung and Gilbert are actually minimum Steinertrees, but, for d = 8, their Steiner tree is not minimum. He also conjecturedthat the trees of Chung and Gilbert are minimum if d is of the form d = 3 � 2p.Conjecture 2 is a corollary of this more speci�c conjecture.>From the above, we see that proving Chung-Gilbert's conjecture requires afurther develoment of the minimax appoach.2.2 Graham-Hwang's ConjectureA Steiner tree with rectilinear distance is called a rectilinear Steiner tree. Whilerectilinear Steiner trees in plane have many applications on CAT and VLSI, rec-tilinear Steiner trees in high dimensional space can be found in biology [17, 48]and optimal tra�c multicasting for some communication networks [13, 19]. Al-though the Steiner ratio in rectilinear plane was determined by Hwang [54] inearlier stage of the study of Steiner trees, there is still no progress on the Steinerratio in rectilinear spaces by now. The Steiner ratio in a d-dimensional recti-linear space was conjectured to be d=(2d� 1) by Graham and Hwang [53]. Thedi�culty for extending Hwang's approach to proving Graham-Hwang's conjec-ture is due to the lack of knowledge on the full rectilinear Steiner trees in highdimensional spaces. (A full Steiner tree has a property that all original pointsare leaves.) In fact, for a full rectilinear Steiner tree in plane, all Steiner pointslie on a path. However, it is not known whether a similar result holds for fullrectilinear Steiner trees in a space of dimension more than two.Graham-Hwang's conjecture can be easily transfered to a minimax problem5



requested by our minimax approach. For example, choose lengths of all straightsegments of a Steiner tree. When connection pattern of the Steiner tree is �xed,the set of original points can be determined by such segments-lengths, the lengthof the Steiner tree is a linear function and the length of a spanning tree is aconvex function of such segment-lengths, so that gi is a concave function of suchsegment-lengths. However, for this transformation, it is hard to determine thecritical structure. To explain the di�culty, we notice that in general the criticalpoints could exist in both the boundary and interior of the polytopy. (See theminimax theorem.) In the proof of Gilbert-Pollak's conjecture in plane, a crutialfact is that only interior critical points need to be considered in a contradictionargument. The critical structure of interior critical points are relatively easy tobe determined. However, for the current transformation on Graham-Hwang'sconjecture, we have to consider some critical points on the boundary. It requiresa new technique, either determine critical structure for such critical points oreliminate them from our consideration.One possible idea is to combine the minimax approach and Hwang's method.In fact, by the minimax approach, we may get useful condition on the set oforiginal points. With such a condition, the point set can have only certaintype of full Steiner trees. This may reduce the di�culty of extending Hwang'smethod to high dimension.The signi�cance of developping techniques for determining critical structurecorresponding to critical points on the boundary is not only for solving Graham-Hwang's conjecture, but also for solving some other problems. For example, itcan be immediately applied to some packing problems. One of typical packingproblems is to �nd the maximum number of objects which can be put in acertain container. When the objects are discs or spheres, the problem can betransfered to a minimax problem that meets our requirement. To determine sucha number exactly, we have also to deal with critical points on the boundary ofthe polytope.2.3 The Steiner Ratio in Banach SpacesExamining the proof of Gilbert-Pollak's conjecture in Euclidean plane, we ob-serve that the proof has nothing concerning the property of Euclidean normexcept the last part, veri�cation of the conjecture on point sets of critical struc-ture. This means that using the minimax approach to determine the Steiner6



ratio in Minkowski plane (2-dimensional Banach space), we would have no prob-lem on �nding a transformation and determining critical structures. We wouldmeet only a problem on veri�cation for point sets with critical structure.Steiner minimum trees in Minkowski planes have been studied by [1, 25, 70,39, 90, 33]. In these papers, some fundamental properties of Steiner minimumtrees in Minkowski planes have been established. Two nice conjectures aboutthe Steiner ratio in Minkowski planes were proposed respectively by [25, 39] and[39] as follows:Conjecture 3 In any Minkowski plane, the Steiner ratio is between 2/3 andp3=2.Conjecture 4 The Steiner ratio in a Minkowski plane equals that in its dualplane.With new techniques in the critical structures, Gao, Du, and Graham [49]proved the �rst half of Conjecture 3 that in any Minkowski plane, the Steinerratio is at least 2/3, and Wan, Du, and Graham [97] showed that Conjecture 4is true for three, four, and �ve points. With a di�erent approach, Du et al [39]also proved that in any Minkowski plane, the Steiner ratio is at most 0.8766.Chung-Gilbert conjectur and conjecture 4 can be extended to high-dimensionalBanach spaces as follows.Conjecture 5 In any in�nite dimensional Banach space, the Steiner ratio isbetween 1=2 and p3=(2�p2).Conjecture 6 The Steiner ratio in any Banach space equals that in its dualspace.Signi�cant results on these two conjectures could be produced by furtherdevelopments of inimax approach from successful application in two-dimensionalproblems to high-dimension.3 On Better ApproximationsStarting from a minimum spanning tree, improve it by adding Steiner points.This is a natural idea to obtain an approximation solution for the Steiner min-imum tree. Every approximation solution obtained in this way would have a7



performance ratio at most the inverse of the Steiner ratio. The problem is howmuch better than the inverse of the Steiner ratio one can make.Over more than twenty years numerous heuristics [6, 13, 18, 44, 61, 63, 64,65, 67, 94, 100] for Steiner minimum trees have been proposed for points invarious mertic spaces. Their superiority over minimum spanning trees wereoften claimed by computation expierements. But no theoretical proof of supe-riority was ever given. It was a long-standing problem whether there exists apolynomial-time approximation with performance ratio better than the inverseof the Steiner ratio or not. For simplicity, a polynomial-time approximationwith performance ratio smaller than the inverse of the Steiner ratio will becalled a better approximation. The �rst signi�cant work on better approx-imations was made by Bern [10]. He proved that for the rectilinear metricand Poisson distributed regular points, a greedy approximation obtained by avery simple improvement over a minimum spanning tree has a shorter averagelength. Later, Hwang and Yao [56] extended this result to the usual case whenthe number of regular points is �xed.In 1991, Zelikovsky [101] made the �rst breakthrough to the problem bygiving a better heuristic for the Steiner minimum trees in graph. This is thesecond important development on Steiner trees in 1990s. To explain his ideaand review further development from his work, let us start from comparing hiswork with a previous work with a similar idea.3.1 Chang's IdeaChang [18, 19] proposed the following approximation algorithm for Steiner min-imum trees in the Euclidean plane: Start from a minimum spanning tree and ateach iteration choose a Steiner point such that using this Steiner point to con-nect three vertices in the current tree could replace two edges in the minimumspanning tree and this replacement achieves the maximum saving among suchpossible replacements.Smith, Lee, and Liebman [91] also use the idea of the greedy improvement.But, they start with Delaunay triangulation instead of a minimum spanning tree.Since every minimum spanning tree is contained in Delaunay triangulation, theperformance ratio of their approximation algorithm can also be bounded by theinverse of the Steiner ratio. The advantage of Smith-Lee-Liebman algorithm ison the running time. While Chang's algorithm runs in O(n3) time, Smith-Leeh-8



Liebman algorithm runs only in O(n logn) time.Kahng and Robin [60] proposed an approximation algorithm for Steiner min-imum trees in the rectilinear plane by using the same idea as that of Chang. Forthese three algorithms, it can be proved that for any particular set of points,the ratio of lengths of the approximation solution and the Steiner minimumtree is smaller than the inverse of the Steiner ratio. Some experiemental resultsalso show that the approximation solution obtained by these algorithms are verygood. However, no proof has been found to show any one of them being a betterapproximation.3.2 Zelikovsky's IdeaZelikovsky's idea [101] is based on the decomposition of a Steiner tree (namely,a tree, not necessarily minimum, interconnecting original points): An originalpoint in a Steiner tree can be either a leaf or a junction. In the latter case, theSteiner tree can be decomposed at this point. In this way, every Steiner tree canbe decomposed into edge-disjoint union of several Steiner trees for subsets oforiginal points; each of them has no junction being an original point. A Steinertree with no original point being a junction is called a full Steiner tree. The fullSteiner trees in the decomposition are called full components. The size of a fullcomponent is the number of original points in the component.Clearly, for any k � 3, a k-size Steiner minimum tree usually has shorterlength compared with a minimum spanning tree. It is natural to think aboutusing a minimum k-size Steiner tree to approximate the Steiner minimum tree.However, this does not work because computing a k-size Steiner minimum treeis still an intractable problem. Zelikovsky's idea is to approximate the Steinerminimum tree by a 3-size Steiner tree generated by a polynomial-time greedyalgorithm. The key fact is that the length of such a heuristic is smaller thanthe arithmetic mean of lengths of a minimum spanning tree and a 3-size Steinerminimum tree; that is, the performance ratio of his approximation satis�esPR � ��12 + ��132where �k is the k-Steiner ratio. Thus, if the 3-Steiner ratio �3 is bigger thanthe Steiner ratio �2, then this greedy algorithm is a better approximation forthe Steiner minimum tree. Zelikovsky was able to prove that 3-Steiner ratio ingraphs is at least 3/5 which is bigger than 1/2, the Steiner ratio in graphs [61].9



So, he solved the better approximation problem in graphs. Zelikovsky's ideahas been extensively studied in the literature.Du, Zhang, and Feng [36] generalized Zelikovsky's idea to the k-size Steinertree. They showed that a generalized Zelikovsky's algorithm has performanceratio PR � (k � 2)��12 + ��1kk � 1 :Berman and Ramaiyer [9] employed a di�erent idea to generalize Zelikovsky'sresult. They obtained an algorithm with the performance ratio satisfyingPR � ��12 � kXi=3 ��1i�1 � ��1ii� 1 :They also showed that in the rectilinear plane, the 3-Steiner ratio is at least72/94 which is bigger than 2/3 [54], the Steiner ratio in rectilinear plane. So,they solved the better heuristic problem in rectilinear plane.Du, Zhang, and Feng [36] proved a lower bound for the k-Steiner ratio inany metric space. This lower bound goes to one as k goes to in�nity. So, in anymetric space with the Steiner ratio less than one, there exists a k-Steiner ratiobigger than the Steiner ratio. Thus, they proved that the better heuristic existsin any metric space satisfying the following conditions:(1) The Steiner ratio is smaller than one.(2) The Steiner minimum tree on any �xed number of points can be com-puted in polynomial-time.These metric spaces include Euclidean plane and Euclidean spaces.Zelikovsky [104] used a di�erent potential function in his greedy approxima-tion and obtained an approximation with performance ratio satisfyingPR � ��1k (1� ln �2):Although Zelikovsky's idea starts from a point di�erent from Chang's one,the two approximations are actually similar. To see this, let us describe Ze-likovsky's algorithm as follows: Start from a minimum spanning tree and ateach iteration choose a Steiner point such that using this Steiner point to con-nect three regular points could replace two edges in the minimum spanningtree and this replacement achieves the maximum saving among such possiblereplacements. 10



Clearly, they both start from a minimum spanning tree and improve it stepby step by using a greedy principal to choose a Steiner point to connect a tripleof vertices. The di�erence is only that this triple in Chang's algorithm maycontain some Steiner points while it contains only regular points in Zelikovsky'salgorithm. This di�erence makes Chang's approximation hard to be analyzed.Which one will give a better approximation solution? This is an interestingproblem.3.3 The k-Steiner Ratio �kWhile the determination of the k-Steiner ratio plays an important role in estima-tion of the performance ratio of several recent better approximations, Borchersand Du [15] completely determined the k-Steiner ratio in graphs that for k =2r + h � 2, �k = r2r + h(r + 1)2r + hand Borchers, Du, Gao, and Wan [16] completely determined the k-Steinerratio in the rectilinear plane that �2 = 2=3, �3 = 4=5, and for k � 4, �k =(2k � 1)=(2k). However, the k-Steiner ratio in the Euclidean plane for k � 3 isstill an open problem. Du, Zhang, and Feng [36] conjectured that the 3-Steinerratio in the Euclidean plane is (1 +p3)p21 +p2 +p3 :They also analyzed that the k-Steiner ratio in the Euclidean plane might bedetermined in a similar way to the proof of Gilbert-Pollak conjecture. Thedi�culty appears only in the description of \critical structure".3.4 Variable Metric MethodBerman and Ramaiyer [9] introduced an interesting approach to generalize Ze-likovsky's greedy approximation. Let us call the Steiner minimum tree for asubset of k regular points as a k-tree. Their approach consists of two steps. The�rst step processes all i-trees, 3 � i � k, sequentially in the following way: Foreach i-tree T with positive saving in the current graph, put T in a stack and iftwo leaves x and y of T are connected by a path p in a minimum spanning treewithout passing any other leaf of T , then put an edge between x and y with11



weight equal to the length of the longest edge in p minus the saving of T . In thesecond step, it repeatedly pops i-trees from the stack remodifying the originalminimum spanning tree for all regular points and keeping only i-trees with thecurrent positive saving. Adding weighted edges to a point set would change themetric on the points set. Let E be an arbitrary set of weighted edges such thatadding them to the input metric space makes all i-trees for 3 � i � k have non-positive saving in the resulting metric space ME. Denote by tk(P ) a supermumof the length of a minimum spanning tree for the point set P in metric spaceME over all such E's. Then Berman-Ramaiyer's algorithm produces a k-sizeSteiner tree with total length at mostt2(P )� kXi=3 ti�1(P )� ti(P )i� 1 = t2(P )2 + k�1Xi=3 ti(P )(i� 1)i + tk(P )k � 1 :The bound for the performance ratio of Berman-Ramaiyer's approximation insubsection 3.2 is obtained from this bound and the fact that tk(P ) � ��1k SMT (P )where SMT (P ) is the length of the Steiner minimum tree for point set P .Based on the above observation, we may have the following questions. Couldwe �nd other way to vary metric for a better bound? Could we forget thegreedy idea and design a better approximation with only variable metric idea?Answering these questions requires deeper understanding the variable metricmethod. We attempt to obtain new algorithms from this study.Karpinski and Zelikovsky [62] proposed a preprocessing procedure to improveexisting better approximations. First, they use this procedure to choose someSteiner points and then run a better approximation algorithm on the union ofthe set of regular points and the set of chosen Steiner points. This preprocessingimproves the performance ratio for every known better approximation that wementioned previously.The preprocessing procedure is similar to the algorithm of Berman and Ra-maiyer. But, it uses a \related gain" instead of the saving as the greedy function.One of our current ideas is to modify Chang's algorithm in the following way:At each iteration, if a Steiner point is introduced, then computer its relatedgain, and later consider only triples of regular points and Steiner points withpositive related gain. Would this approximation perform better? We attemptto get the answer.Although many better approximations have been found in recent years, noneof them has performance ratio smaller than the inverse of 3-Steiner ratio. The12



inverse of the 3-Steiner ratio seems to be the limit for the performance ratio ofpolynomial-time approximations for Steiner minimum trees to be able to reach.Arora et al. [5] conjectured that their backtrack greedy technique gives apolynomial-time approximation scheme to 3-size Steiner minimum trees. If theirconjecture is true, then their algorithms also give approximations for Steinerminimum trees with performance ratio approach to the inverse of the 3-Steinerratio. This probably is the best possible performance ratio. Thus, the conjectureof Arora et al. is an attractive problem to our further research.A more accurate analysis [104, 62, 102] for the performance ratios of Berman-Ramaiyer's algorithm and Karpinski-Zelikovsky's preprocessing requires boundsfor tk and a similar number tk. The techniques in [15, 16] for determining thek-Steiner ratio seems very promising for establishing tight upper bounds for tkand tk.The knowledge for the lower bound of the performance ratio is widely open.One knows only that for Steiner minimum trees in graphs, if NP 6= P then alower bound larger than one exists, because the problem in this case is MAXSNP-complete [12].4 On PTASJiang et al. [58, 59] brought a quite di�erent idea from previous ones to Steinerminimum trees. They decompose the set of regular points based on the lengthsof edges in a minimum spanning tree. By an interesting analysis, they provedthat if the ratio of lengths between the longest edge and the shortest edge in aminimum spanning tree is bounded by a constant, then there is a polynomial-time approximation scheme (PTAS) for Steiner minimum trees in the rectilinearplane and in the Euclidean plane. This idea can also be used in other geometricoptimization problems, in particular, some variations of Steiner tree problemsdescribed in the next section.In 1995, S. Arora and J. Mitchell independently discovered powerful tech-niques to establish polynomial-time approximation schemes for geometric opti-mization problems, including Euclidean and rectilinear Steiner tree problems.Their results constitute the third important development on Steiner trees in1990s. The signi�cance of their results is not only on Steiner trees, but also onthe design and analysis of aproximation algorithms in combinatorial optimiza-13



tion. Let us review these two remarkable techniques in the following.4.1 Arora's PTASIt is quite interesting to notice that Arora [3] appeared only one week beforeMitchell [77]. Any way, they use very di�erent techniques to reach the same goal.Therefore, both are very interesting. Arora's technique is based on recursivepartition. In Jiang et al [58, 59], although partition can be moved parallelly, thesize of each cell is �xed. It cannot be varied according to local information aboutdistibution of terminals. Therefore, only in case that terminals are distributedalmost evenly, the partition could work well. This is why such a condition thatthe ratio of lengths between the longest edge and the shortest edge in a minimumspanning tree is bounded by a constant is required.However, in Arora's recursive partition, each big cell is partitioned into smallcells independently from other big cells. How to cut only depends on the sit-uation inside of itself. This advantage enables him to discard the condition inJiang et al [58, 59].4.2 Mitchell's PTASMitchell's technique was initiated from studying a minimum length rectangu-lar partition problem. Given a rectilinear region R surrounded by a rectilinearpolygon and some rectilinear holes, a rectangular partition of R is a set of seg-ments in R, which divide R into small rectangles each of which does not containany hole in its interior. The problem is to �nd such a rectangular partition withthe minimum total length. This problem is NP-hard.Du et al. [29] introduced a concept of guillotine subdivision. A guillotinesubdivision is a sequence of cuts performed recursively such that each cut par-titions a piece ito at least two. Du et al. [29] showed that the minimum lengthguillotine rectangular partition can be computed in polynomial-time. However,they were only able to show that this guillotine subdivision is an approximationof the minimum length rectangular partition problem with performance ratiotwo in a special case that the region R is surrounded by a rectangle with somepoints as holes in it. Mitchell [76] showed that this is actually true in general.He also successfully utilized this technique to obtain constant approximationsfor other geometric optimization problems. With the same technique, Mata14



[74] obtained a constant-factor approximation algorithm for red-blue separationproblem improving previous result O(logn).Inspired by this success, Mitchell [77] extended guillotine subdivision to m-guillotine subdivision, a rectangular polygonal subdivision such that there existsa cut whose intersection with the subdivision edges consists of a small number(O(m)) of connected components and the subdivisions on either side of the cutare also m-guillotine. With a minor change of the proof of [76], Mitchell es-tablished a PTAS for minimum length rectangular partition problem. Mitchell[78, 79] further extended this m-guillotine subdivision technique to other geo-metric optimization problems, including Euclidean and rectlinear Steiner treeproblems, and obtained PTAS for them.5 Variations of Steiner TreesSuccessful researches on classical Steiner tree problems encourage extensivestudy on variations of Steiner trees with various application backgrounds. Cur-rently, they form a quite active research direction in Steiner trees.In VLSI design, one considers several sets of terminals and �nds a minimumtotal length packing of Steiner trees for these sets under the following situation[82]: The edges of the Steiner trees are required to lie in channels betweencells. Each channel has a capacity which tells at most how many edges can runthrough it.A complicated computer network usually consists of several nets of di�erentspeeds. The following problem was proposed based on such a background: Con-sider an undirected network with multiple edge weights (c1(e); c2(e); :::; ck(e))(c1(e) > c2(e) > � � � > ck(e)). Given a subset N of vertices and a partitionfN1; N2; :::; Nkg of N with jN1j � 2, �nd a subnetwork interconnecting N withminimum total weight such that the length of any edge e on a path between apair of vertices in Nj is at least cj(e) [57, 43].To construct roads of minimum total length to interconnect n highwaysunder the constraint that the roads can intersect each highway only at one pointin a designated interval which is a line-segment, a generalization of EuclideanSteiner trees has been proposed and studied. Du, Hwang, and Xue [40] presenteda set of optimality conditions for the problem and showed how to construct asolution to meet this set of optimality conditions.15



Constructing phylogenetic trees is an important topic in computer biology.One of formulations is as follows: For a �xed alphabet A, let d denote theHamming distance on An, i.e. d((a1; � � � ; an); (b1; � � � ; bn)) equals the number ofindices i such that ai 6= bi. Given a set P of points in the metric space (An; d),�nd a Steiner minimum tree for P . This problem is known to be NP-hard. (See[48].)When a new customer is out of original telephone network, the company hasto build a new line to connect the customer into the network. This situationbrings us an on-line Steiner tree problem as follow: Assume that a sequence ofpoints in a metric space are given step by step. In the ith step, only locationsof the �rst ni points in the sequence are known. The problem is to constructa shorter network at each step based on the network constructed in previoussteps. The study of on-line problems was initiated from Sleator and Tarjan [89]and Manase, McGeoch, and Sleator [73]. A criterion for the performance of anon-line algorithm is to compare the solution generated by the on-line algorithmwith the solution of corresponding o�-line problem. In the Euclidean plane, ithas been known that the worest-case ratio of lengths between on-line solutionand o�-line solution is between O(n logn= log logn) and O(n logn) [2, 96, 99].Listing all variations and review each of them may take tremendous timeand space. It should not be the job of this shorter article. Therefore, we nextreview a few for which some signi�cant results are obtained recently.5.1 Steiner ArborescenceGiven a weighted directed graph G, a vertex r, and a subset P of n vertices,a Steiner arborescence is a directed tree with root r such that for each x 2 Pthere exists a path from r to x. The shortest Steiner arborescence is also calleda minimum Steiner arborescence. Computing minimum Steiner arborescenceis an NP-hard problem. Also, one knows that if NP 6= P, then the best pos-sible performance ratio of polynomial-time approximation for this problem isO(logn). This means that although, like the minimim spanning tree, the mini-mum arborescence as a shortest arborescence tree without Steiner points can becomputed in polynomial-time, the Steiner ratio (the maximum lower bound forthe ratio of lengths between the minimum Steiner arborescence and the mini-mum arborescence for the same set of given points) in directed graphs is zero.Dai et al [28, 20] apply Arora's techniques to this problem and obtained the best16



known result that for any " > 0 there exists a polynomial-time approximationwith performance ratio O(n"). An open problem reamins for closing the gapbetween the lower bound and the upper bound for the performance ratio.A version of this problem in the rectilinear plane has a great interest in VLSIdesigns and an interesting story in the literature. Given a set P of n points inthe �rst quadrant of the rectilinear plane, a rectilinear Steiner arborescence treeis a directed tree rooted at the origin, consisting of all paths from the root topoints in P with horizontal edges oriented in left-to-right direction and verticaledges oriented in bottom-up direction. What is the complexity of computingthe minimum rectilinear arborescence? First, it was claimed that a polynomial-time algorithm was found. However, Rao, Sadayappan, Hwang, and Shor [84]found a serious ow in this algorithm. Although they could not show the NP-completeness of the problem, they pointed out the di�culties of computing theminimum rectilinear arborescence in polynomial-time. They also showed thatwhile the ratio of lengths between a minimum arborescence tree and a minimumSteiner tree for the same set of points tends to in�nity, there is a polynomial-time approximation with performance two. Recently, Shi and Su [88] showedthat computing the minimum rectilinear arborecence is NP-hard. Lu and Ruan[72] showed, by employing Arora's techniques, that there is a polynomial-timeapproximation scheme for the problem.5.2 Edge-length and Number of Steiner PointsIn wavelength-division multiplexing (WDM) optical network design [68, 83],suppose we need to connect n sites located at p1; p2; � � � ; pn with WDM opticalnetwork. Due to the limit in transmission power, signals can only travel alimited distance (say R) for guaranteed correct transmission. If some of theinter-site distances are greater than R, we need to provide some ampli�ers orreceivers/transmitters at some locations in order to break it into shorter pieces.This situation requires us to consider the problem of minimizing the maximumedge-length and the number of Steiner points in design of WDM optical network.To do so, two variations of Steiner trees have been studied.The �rst is to minimize the number of Steiner points under upper boundfor edge-length. That is, given a set of n terminals X = fp1; p2; � � � ; png in theEuclidean planeR2, and a positive constant R, the problem is to compute a treeT spanning a superset of X such that each edge in the tree has a length no more17



than R and with the minimum number C(T ) of points other than those in X ,called Steiner points. This problem is called Steiner tree problem with minimumnumber of Steiner points, denoted by STP-MSP for short. Lin and Xue[69]showed that the STP-MSP problem is NP-hard. They also showed that theapproximation obtained from the minimum spanning tree by simply breakingeach edge into small pieces within the upper bound (called steinerized spanningtree) has a worst-case performance ratio at most �ve. Chen et al [21] showed thatthis approximation has a performance ratio exactly four. They also presented anew polynomial-time approximation with a performance ratio at most three anda polynomial-time approximation scheme under certain conditions. Lu et al [71]studied the STP-MSP in rectilinear plane. They showed that in the rectilinearplane, the steinerized spanning tree has performance ratio exactly three andthere exists a polynomial-time approximation two.The second is to minimize the maximum edge-length under an upper boundon the number of Steiner points. That is, given a set P = fp1; p2; : : : ; png of nterminals and an positive integer k, we want to �nd a Steiner tree with at most kSteiner points such that the length of the longest edges in the tree is minimized.This is one of the bottleneck Steiner tree problems. Wang and Du [98] showedthat (a) if NP 6= P , then the performance ratio of any polynomial-time approx-imation for the problem in the Euclidean plane is at least p2; (b) if NP 6= P ,then the performance ratio of any polynomial-time approximation for the prob-lem in the rectilinear plane is at least two; (c) there exists a polynomial-timeapproximation with performance ratio two for the problem in both rectilinearand Euclidean planes.5.3 MultiphaseGiven an edge-weighed complete graph with vertex set X (jX j = n) and subsetsX1; � � � ; Xm of vertices, the problem is to �nd a minimum weighed subgraphG such that for every i = 1; � � � ;m, G contains a spanning tree for Xi. Thisproblem is called subset interconnection designs or multiphase spanning networkproblem [37, 38]. Du et al [?] showed that if NP 6= P, then the best performanceratio of polynomial-time approximation for this problem is lnn+O(1).Given an edge-weighed graphB with vertex setX and subsetsX1; Y1; � � � ; Xm; Ymof X with Xi \ Yi = ;, the problem is to �nd a minimum weighed subgraph Gsuch that for every i = 1; � � � ;m, G contains a Steiner tree for Xi without using18



vertices not in Yi. This problem is called multiphase Steiner network problem.Both multiphase spanning network and Steiner network problems arose in com-munication network design [81] and vacuum system design [38]. For the formerone, when the solution is a forest, the system (X1; � � � ; Xm) is called subtree hy-pergraph. Such a system has various applications in computer database schemes[7] and statistics. It is also related to chordal graphs [42, 45]. Tarjan and Yan-nakakis [95] gave a O(m + n)-time algorithm to tell whether a set system is asubtree hypergraph or not.Comparing the phylogenetic tree problem with multi-phase Steiner networkproblem, we would �nd some similarities between them if we look at each co-ordinate like a phase. For multi-phase Steiner tree problem, if the solution isa tree, then we have either a good heuristic or a polynomial-time computableexact solution[38]. This suggests that studying the relationship between the twoproblems will hopefully �nd a new construction of phylogenetic trees.Ruan et al [85] found that multi-weight Steine tree problem can be trans-formed to multiphase Steiner tree problem. This initiates new line to studyboth problems.References[1] M. Alfaro, M. Conger, K. Hodges, A. Levy, R. Kochar, L. Kuklinski,Z. Mahmood, and K. von Haam, The structure of singularities of �-minimizing networks in R2, Pac. J. Math. 149 (1991) 201-210.[2] N. Alon and Y. Azar, On-line Steiner trees in the Euclidean plane. DiscreteComput. Geom. 10 (1993), no. 2, 113{121.[3] S. Arora, Polynomial time approximation schemes for Euclidean TSP andother geometric problems, Proceedings of 37th FOCS, 1996, pp. 2-12.[4] S. Arora, \More e�cient approximation schemes for Euclidean TSP andother geometric problems,"[5] V. Arora, V. Santosh, H. Saran, and V. Vazirani, A limited-backtrackgreedy schema for approximation algorithms, manuscript, 1994.[6] J.E. Beasley, A heuristic for the euclidean and rectilinear Steiner problems,Technical Report of Manage School, Imperial College, London, 1989.19



[7] C. Beeri, R. Fagin, D. Maier, M. Yannakakis, On the desirability of acyclicdatabase schemes, J. ACM 30 (1983) 479-513.[8] P. Berman, U. F�'o�meier, M. Karpinski, M. Kaufmann, and A. Zelikovsky,Approaching the 5/4-approximations for rectilinear Steiner trees, LNCS855 (1994) 60-71.[9] P. Berman and V. Ramaiyer, Improved approximations for the Steiner treeproblem, J. of Algorithm 17 (1994) 381-408.[10] M. Bern, Two probabilistic results on rectilinear Steiner trees, Proceedings,18th STOC (1986) 433-441.[11] M.W. Bern and R.L. Graham, The shortest-network problem, Scienti�cAmerican January (1988) 84-89.[12] M. Bern and P. Plassmann, The Steiner problem with edge lengths 1 and2, Information Processing Letters 32 (1989) 171-176.[13] K. Bharath-Kumar and J.M. Ja�e, Routing to multipe destinations in com-puter networks, IEEE Trans. Communications, COM-31 (1983) 343-351.[14] R.S. Booth, Analytic formulas for full Steiner trees. Discrete Comput.Geom. 6 (1991), no. 1, 69{82.[15] A. Borchers and D.-Z. Du: The k-Steiner ratio in graphs, Proceedings of27th ACM Symposium on Theory of Computing, 1995.[16] A. Borchers, D.-Z. Du, B. Gao, P.-J. Wan: The k-Steiner ratio in therectilinear plane, Journal od Algorithms 29 (1998) 1-17.[17] L.L. Cavalli-Sforza and A.W. Edwards, Phylogenetic analysis: models andestimation procedures, Am. J. Human Genetics, 19 (1967) 233-257.[18] S.-K. Chang, The generation of minimal trees with a Steiner topology, J.ACM, 19 (1972) 699-711.[19] S.-K. Chang, The design of network con�gurations with linear or piecewiselinear cost functions, Symp. on Computer-Communications, Networks, andTeletra�c, (1972) 363-369. 20



[20] M. Charikar, C. Chekuri, T.Y. Cheung, A. Dai, A. Goel, S. Guha, andM. Li, Approximation algorithms for directed Steiner problems, Proc. 9thSODA, 1998, pp.199-209.[21] D. Chen, D.-Z. Du, X. Hu, G.-H. Lin, L. Wang, and G. Xue, Approxima-tions for Steiner trees with minimum number of Steiner points, acceptedby Journal of Global Optimization.[22] F.R.K. Chung and E.N. Gilbert, Steiner trees for the regular simplex, Bull.Inst. Math. Acad. Sinica, 4 (1976) 313-325.[23] F.R.K. Chung and R.L. Graham, A new bound for euclidean Steiner min-imum trees, Ann. N.Y. Acad. Sci., 440 (1985) 328-346.[24] F.R.K. Chung and F.K. Hwang, A lower bound for the Steiner tree problem,SIAM J.Appl.Math., 34 (1978) 27-36.[25] D. Cieslik, The Steiner ratio of Banach-Minkowski planes, ContemporaryMethods in Graph Theory (ed. R. Bodendiek), (BI-Wissenschatteverlag,Mannheim, 1990) 231-248.[26] D. Cieslik, Steiner Minimal Trees, (Kluwer, 1998).[27] R. Crourant and H. Robbins, What Is Mathematics?, (Oxford Univ. Press,New York, 1941).[28] Z. Dai, Algorithm design and analysis for the Steiner and p-median prob-lems, Ph.D. Thesis in Department of Computer Science, City University ofHong Kong, 1998.[29] D.-Z. Du, L.-Q. Pan, and M.-T. Shing, \Minimum edge length guillotinerectangular partition," Report 02418-86, Math. Sci. Res. Inst., Univ. Cal-ifornia, Berkeley, CA 1986.[30] D.Z. Du, E.N. Yao, and F.K. Hwang, A short proof of a result of Pollak onSteiner minimal trees, J. Combinatorial Theory, Ser. A, 32 (1982) 396-400.[31] D.Z. Du and F.K. Hwang, A new bound for the Steiner ratio, Trans. Amer.Math. Soc. 278 (1983) 137-148.[32] D.Z. Du, F.K. Hwang, and E.Y. Yao, The Steiner ratio conjecture is truefor �ve points, J. Combinatorial Theory, Series A, 38 (1985) 230-240.21



[33] D.-Z. Du, F.K. Hwang: Reducing the Steiner Problem in a normed spacewith a d-dimensional polytope as its unit sphere, SIAM J. of Computing21 (1992) 1001-1007.[34] D.Z. Du and F.K. Hwang, The Steiner ratio conjecture of Gilbert-Pollak istrue, Proceedings of National Academy of Sciences, 87 (1990) 9464-9466.[35] D.Z. Du and F.K. Hwang, An approach for proving lower bounds: solu-tion of Gilbert-Pollak's conjecture on Steiner ratio, Proceedings 31th FOCS(1990) 76-85.[36] D.Z. Du, Y. Zhang, and Q. Feng, On better heuristic for euclidean Steinerminimum trees, Proceedings 32nd FOCS (1991).[37] D.-Z. Du, An optimization problem, Discrete Appl. Math., 14 (1986) 101-104.[38] D.-Z. Du and Z. Miller, Matroids and subset interconnection design, SIAMJ. Disc. Math., 1 (1988) 416-424.[39] D.-Z. Du, B. Gao, R.L. Graham, Z.-C. Liu, and P.-J. Wan, MinimumSteiner trees in normed planes, Discrete and Computational Geometry, 9(1993) 351-370.[40] D.-Z. Du, F.K. Hwang, G. Xue, Intersecting highways, SIAM DiscreteMathematics 12 (1999) 252-261.[41] X. Du, W. Wu, and D. Kelley, Approximations for subset interconnec-tion designs. In memoriam of Ronald V. Book. Theoret. Comput. Sci. 207(1998), no. 1, 171{180.[42] P. Duchet, Propriete de Helly et problemes de representation, in: ColloqueInternational Paris-Orsay 260 (1978) 117-118.[43] C. Duin, T. Volgenant, The multi-weighted Steiner tree problem, Annalsof Operations Research 33 (1991)451-469.[44] C. El-Arbi, Une heuristique pour le probleme de l'Arbre de Steiner, RAIRO12 (1978) 207-212.[45] C. Flament, Hypergraphes arbores, Discrete Mathematics 21 (1978) 223-227. 22



[46] J. Friedel and P. Widmayer, A simple proof of the Steiner ratio conjecturefor �ve points, SIAM J. Appl. Math. 49 (1989) 960-967.[47] U. F�o�meier, M. Kaufman, and A. Zelikovsky, Fast approximation algo-rithms for the rectilinear Steiner tree problem, LNCS 762 (1993) 533-542.[48] L.R. Foulds and R.L. Graham, The Steiner problem in Phylogeny is NP-complete, Advanced Applied Mathematics, 3 (1982) 43-49.[49] B. Gao, D.-Z. Du, and R.L. Graham, A tight lower bound for the Steinerratio in Minkowski planes, Discrete Mathematics 142 (1995) 49-63.[50] M.R. Garey, R.L. Graham and D.S. Johnson, The complexity of computingSteiner minimal trees, SIAM J. Appl. Math., 32 (1977) 835-859.[51] G. Georgakopoulos and C.H. Papadimitriou, The 1-Steiner tree problem,J. Algorithms 8 (1987) 122-130.[52] E.N. Gilbert and H.O. Pollak, Steiner minimal trees, SIAM J. Appl. Math.,16 (1968) 1-29.[53] R.L. Graham and F.K. Hwang, Remarks on Steiner minimal trees, Bull.Inst. Math. Acad. Sinica, 4 (1976) 177-182.[54] F.K. Hwang, On Steiner minimal trees with rectilinear distance, SIAM J.Appl. Math., 30 (1976) 104-114.[55] F.K. Hwang, D.S. Richards, and P. Winter, Steiner tree problems, (North-Holland, Amsterdam, 1992).[56] F.K. Hwang and Y.C. Yao, Comments on Bern's probabilistic results onrectilinear Steiner trees, Algorithmica 5 (1990) 591-598.[57] A. Iwainsky, Optimal trees - a short overview on problem formulations,in A. Iwainsky (ed.) Optimization of Connections Structures in Graphs,CICIP, East Berlin, GDR (1985) 121-133.[58] T. Jiang, E.L. Lawler, and L. Wang, Aligning sequences via an evolutionarytree: complexity and approximation, Proceedings of 26th STOC, 1994.[59] T. Jiang and L. Wang, An approximation scheme for some Steiner treeproblems in the plane, LNCS 834 (1994) 414-422.23



[60] A. Kahng and G. Robins, A new family of Steiner tree heuristics with goodperformace: the iterated 1-Steiner approach, Tech.Rep., UCLA CS Dept.,1990.[61] R.M. Karp, Reducibility among combinatorial problems, in R.E. Miller andJ.W. Tatcher (ed.), Complexity of Computer Computation (Plenum Press,New York, 1972) 85-103.[62] M. Karpinski and A.Z. Zelikovsky, New approximation algorithms forSteiner tree problems, Journal of Combinatorial Optimization 1 (1997) 47-65.[63] P. Korthonen, An algorithm for transforming a spanning tree into a Steinertree, Survey of Mathematical Programming (2), (North-Holland, 1979) 349-357.[64] L. Kou and K. Makki, An even faster approximation algorithm for theSteiner tree problem in graph, Congressus Numerantium 59 (1987) 147-154.[65] L. Kou, G. Markowsky and L. Berman, A fast algorithm for Steiner trees,Acta Informatica 15 (1981) 141-145.[66] H.W. Kuhn, Steiner's problem revisited, in Studies in Optimization, G.B.Dantzig and B.C. Eaves (editor), (Math Assoc. of America, 1975) 98-107.[67] A.J. Levin, Algorithm for the shortest connection of a group of vertices,Sovirt Math. Dokl. 12 (1971) 1477-1481.[68] C.-S. Li, F.F. Tong, C.J. Georgiou and M. Chen, Gain equalization inmetropolitan and wide area optical networks using optical ampli�ers, Proc.IEEE INFOCOM'94, pp. 130{137, June 1994.[69] G.-H. Lin and G.L. Xue, Steiner tree problem with minimum number ofSteiner points and bounded edge-length, Information Processing Letters,69(1999) 53{57.[70] Z.C. Liu and D.Z. Du, On Steiner minimal trees with Lp distance, Algo-rithmica (1991). 24



[71] B. Lu, J. Gu, X. Hu, and E. Shragowitz, Wire segmenting for bdBu�erinsertion based on RSTP-MSP, accepted by Theoretical Computer Science.[72] B. Lu and L. Ruan, Polynomial-time approximation scheme for rectilin-ear Steiner arborescence problem, accepted by Journal of CombinatorialOptimization.[73] M.S. Manase, L.A. McGeoch, and D.D. Sleator, Competitive algorithmsfor on-line problems, Proc. of 20th STOC, Chacago, 1988.[74] C. Mata, \A constant factor approximation algorithm for the red-blue sepa-ration problem," Technical report, Manuscript, Dept. of Computer Science,SUNY Stony Brook, NY, 1995.[75] Z.A. Melzak, On the problem of Steiner, Canada. Math. Bull., 4 (1961)143-148.[76] J. S. B. Mitchell, \Guillotine subdivisions approximate polygonal subdivi-sions: A simple new method for the geometric k-MST problem," Proc. 7thACM-SIAM Sympos. Discrete Algorithms, 1996, pp. 402-408.[77] J. S. B. Mitchell, \Guillotine subdivisions approximate polygonal subdivi-sions: Part II - A simple polynomial-time approximation scheme for geo-metric k-MST, TSP, and related problems," SIAM J. Comp.[78] J. S. B. Mitchell, A. Blum, P. Chalasani, and S. Vempala, \A constant-factor approximation for the geometric k-MST problem in the plane",SIAM J. Comp.[79] J. S. B. Mitchell, \Guillotine subdivisions approximate polygonal subdivi-sions: Part III - Faster polynomial-time approximation scheme for geomet-ric network optimization," Proc. ninth Canadian conference on computa-tional geometry, 1997, pp. 229-232.[80] H.O. Pollak, Some remarks on the Steiner problem, J.Combinatorial The-ory, Ser.A, 24 (1978) 278-295.[81] E. Prisner, Two algorithms for the subset interconnection design, Networks22 (1992) 385-395. 25



[82] W.R. Pulleyblank, Two Steiner tree packing problems, 27th STOC, pp.383-387.[83] B. Ramamurthy, J. Iness and B. Mukherjee, Minimizing the number of op-tical ampli�ers needed to support a multi-wavelength optical LAN/MAN,Proc. IEEE INFOCOM'97, pp. 261{268, April 1997.[84] S.K. Rao, P. Sadayappan, F.K. Hwang, and P.W. Shor, The rectilinearSteiner arborescence problem, Algorithmica 7 (1992) 277-288.[85] L. Ruan and B. Lu, Approximations for multi-weight Steiner trees,manuscript.[86] J.H. Rubinstein and D.A. Thomas, A variational approach to the Steinernetwork problem, Proceedings of NATO Workshop on Topological Net-works, Copenhagen, Denmark, 1989.[87] J.H. Rubinstein and D.A. Thomas, The Steiner ratio conjecture for sixpoints, J. of Combinatorial Theory, Ser.A 58 (1991) 54-77.[88] W. Shi and C. Su, The rectilinear Steiner arboresence problem is NP-complete, Proc. SODA, 2000.[89] D.D. Sleator and R.E. Tarjan, Amortized e�ciency of list uptate and pagingrules, Commications of ACM 28 (1985) 202-208.[90] J.M. Smith and J.S. Liebman, Steiner trees, Steiner circuits and interfer-ence problem in building design, Engineering Optimization, 4 (1979) 15-36.[91] J.M. Smith, D.T. Lee, and J.S. Liebman, An O(N logN) heuristic forSteiner minimal tree problems in the Euclidean metric" Networks 11 (1981)23-39.[92] W.D. Smith, How to �nd Steiner minimal trees in euclidean d-space, Algo-rithmica 7 (1992) 137-177.[93] I. Stewart, Trees, telephones and tiles, New Scientist 16 (1991) 26-29.[94] A. Suzuki and M. Iri, A heuristic method for euclidean Steiner problem asa geographical optimization problem, Asia-Paci�c Journal of OperationsResearch, 3 (1986) 106-122. 26



[95] R.E. Tarjan and M. Yannakakis, Simple linear-time algorithms to testchordality of graphs, test acyclicity of hypergraphs, and selectively reduceacyclic hypergraphs, SIAM J. Comput. 13 (1984) 566-579.[96] Y.T. Tsai, C.Y. Tang, and Y.Y. Chen, An average case analysis of a greedyalgorithm for the on-line Steiner tree problem, Comput. Math. Appl. 31(1996), no. 11, 121{131.[97] P.-J. Wan, D.-Z. Du, and R.L. Graham, The Steiner ratio on the dualnormed plane, Discrete Mathematics 171 (1997) 261-275.[98] L. Wang and D.-Z. Du, Approximations for a Bottleneck Steiner Tree Prob-lem, submitted for publication.[99] J. Westbrook and D.C.K. Yan, The performance of greedy algorithms forthe on-line Steiner tree and related problems, Math. Systems Theory 28(1995), no. 5, 451{468.[100] Y.F. Wu, P. Widmayer, and C.K. Wong, A faster approximation algorithmfor the Steiner problem in graphs, Acta Informatica, 23 (1986) 223-229.[101] A.Z. Zelikovsky, The 11/6-approximation algorithm for the Steiner prob-lem on networks, Algorithmica 9 (1993) 463-470.[102] A.Z. Zelikovsky, An 11/8-approximation algorithm for the Steiner problemon networks with rectilinear distance, Coll. Math. Soc. J. Bolyai 60 (1992)733-745.[103] A.Z. Zelikovsky, A fast approximation algorithm for the Steiner tree prob-lem in graphs, Inf. Process. Lett. 46 (1993) 79-83.[104] A.Z. Zelikovsky, Better approximation bounds for the network and Eu-clidean Steiner tree problem, manuscript, 1995.
27


