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System Neural Network: Evolution and Change
based Structure Learning

Animesh Chaturvedi, Aruna Tiwari, Shubhangi Chaturvedi, and Pietro Lid

Abstract— System evolution analytics with artificial neural
networks is a challenging and path-breaking direction, which
could ease intelligent processes for systems that evolve over time.
In this paper, we contribute an approach to do Evolution and
Change Learning (ECL), which uses an evolution representor and
forms a System Neural Network (SysNN). We proposed an
algorithm System Structure Learning (SSL), which is divided in two
steps. First step uses the evolution representor as an evolving
matrix Evolving Design Structure Matrix (EDSM) for intelligent
design learning. Second step uses a Deep Evolution Learner (DEL)
that learns from evolution and changes patterns of an EDSM to
generate Deep SysNN. The result demonstrates application of the
proposed approach to analyze four real-world system domains:
software, natural-language, retail market, and movie genre. We
achieved significant learning over highly imbalanced datasets. The
learning from previous states formed SysNN as a feed-forward
neural network, and then memorized information as an output
matrix that has recommendations for entity-connections.

Impact Statement — It is useful and challenging to apply
machine learning to analyze the multiple states of an evolving
system. To do this, we represented existing states of an evolving
system as EDSM that is used to generate SysNN. The SysNN
generates an output matrix that helps to analyze and make
recommendations about that evolving system. We present
experiments to study imbalanced data of evolving systems.

Index Terms— Systems Engineering and Theory, Artificial
Neural Networks, Machine Learning, and Graph theory.

I. INTRODUCTION

YSTEM has several entities (or component) that are inter-

connected to each other. Some systems evolve with time
contains evolving entity-connections; such a system is referred
as an evolving system. Such an evolving system generates time-
variant (or non-stationary) data. Bertalanfy [1] “growth of
components within a system... applies to many growth
phenomena in biology (evolution)”. Growth of evolving
systems both in numbers of components (or entities) and in the
size of an entity — makes it challenging to learn a system.

We are considering a system with the following two
properties. First, the system contains entities (or features)
interacting with each other to make connections between
entities. These entities and connections can be represented as a
matrix. Second, the system evolves over time, which makes
states that can be represented as a series of matrices.

System network structure example 1, in Fig. 1, assumes
software contains procedures (or functions) as entities (or
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nodes) that make procedure-calls as connections (or edges),
which makes a call-graph G;. The call-graph G; evolves to G
then to Gs for three software version series. System network
structure example 2, in Fig. 1, assumes three graphs (Gi, G2,
G3) represent three phrases of a natural-language paragraph
such that vertices represent keywords and edges represent
keyword-connections. This makes keyword-network means in
a sentence source-keyword A appears before target-keyword B.

Fig 1. Evolution of a system graph from G; to G, to G; when a system
evolves from state Sy to S, to Ss.

Structure, designing, or representation of a system can
support system analysis. We can represent a system state with
a Design Structure Matrix (DSM) [2][3], which is a simple,
compact, and visual representation of a system (or project) in
the form of a square matrix. The DSM has various purposes
with multiple names like: Dependency source matrix, Problem
Solving Matrix (PSM), and Design precedence matrix. Our
approach is based on repository or database learning of batch
off-line training applied over system states represented as DSM.

We use Artificial Neural Network (ANN) recommendation
power by using three famous unsupervised deep learning
techniques [4]: Restricted Boltzmann Machines (RBM) [5],
Deep Belief Networks (DBN) [6], and denoising Autoencoders
(dA) [7]. We have chosen them to express and apply system
evolution analytics [9][10][11], which is done by learning
useful knowledge representation from time-variant (or non-
stationary [8]) data of evolving states.

In general, ANN and DNN will have better predictive
capabilities due to complex non-linear optimisation (or
activation) functions (e.g. sigmoid, ReLU, Gaussian, RBM,
encoders etc.), which aims to minimise the recommendation
error. Whereas, other techniques deal with simple equations e.g.
the linear-regression has linear equations f(x) = ax +b, the rule-
mining measures frequency and conditional probability, and so
on. However, there are other complex techniques like ensemble
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learning, active learning etc., which have their pros and cons.

Motivation is to perform system learning to learn evolving
system states over time, which can assist system evolution
analysis. We do system learning on inter-connected entities
represented in DSMs of system state series with evolution
information (or an evolving repository). To do system learning,
we are extending the system evolution recommender theory
[12][13], which made following two extensions in two sections:

- In Section II, we formalized Evolution and Change
Learning (ECL) to form our proposed System Neural Network
(SysNN), which is a new kind of ANN.

- In Section III, we proposed an algorithm to do System
Structure Learning (SSL) based on deep evolution learner on
time-variant data of an evolving system. Firstly, we represented
an evolving system in the form of an evolving matrix, which
captures multiple system states as an Evolving DSM. Secondly,
we expressed system learning to learn evolution and change
information from the Evolving DSM. This learning forms a
Deep SysNN, which helps to construct an output matrix (as a
disk memory) that predicts the evolving system.

These two contributory Sections (II and III) are followed by
Section IV that presents evaluation of the SSL using two cross
validations: k-Fold and forward-chaining, which helps to
empirically evaluate our algorithm. Section V demonstrates the
applications and experiments on six real-world evolving
systems of four domains. Thereafter, related works (in Section
VI) and concluding remarks (in Section VII).

II. EVOLUTION AND CHANGE LEARNING BASED
SYSTEM NEURAL NETWORK

This section describes our key idea to do Evolution and
Change Learning (ECL) that forms a System Neural Network
(SysNN). Suppose each state (S;) of the state series has a data
(Di). This makes a time-variant dataset TVD = {Dy, D, ... Dn,
Dn+1} of a state series SS = {Si, Sz ... Sx, Sn+1} at (N+1) time
points {ti, tz ... tn, tn+1 }. Fundamentally, three types of changes
are possible: addition (or insertion), modification (or
alteration), and deletion (or removal), which need to be
represented for learning.

The proposed approach ECL has two steps to generate a
SysNN. In the first step, the state series of an evolving system
is represented into an evolution representor. To intelligently
manage a system (or project), we denote an evolution
representor as ER for a state series of an evolving system. In
the second step, the algorithm uses this hidden vector ER to
calculate an output vector Y. We describe this in the context of
system learning of time-variant or non-stationary data.

Definition 1: Evolution and Change Learning (ECL) is
defined as a machine learning that learns evolution and changes
from an Evolution Representor ER that represents previous
states in a state series SS. The ER is determined as follows.

- The ER represents time-variant data TVD in a SS by a
function f(SS) given as equation (1)

ER = f(SS) .. (D)
ER= f({al 1.. &jk ... amm}, {b]] . bjk bmm} {X] 1. Xjk -« - Xmm}).

- The calculation is done by a hidden function g(ER), named
as Evolution Learner in equation (2). The purpose of the
function g(ER) is to learn evolution and changes happening to
the system entities.

Y = g(ER) = g(f(SS)) - (2)
Y = ({yi1.. Yik --- Yim}»> {Y21-- Yik -+ Y2m} -+ {Yml-- Yik --- Ymm})-
The ER are 2-dimensional tensor or array mentioning (mxm)
x N connectivities. The tensor contains entity-connections, aj,
bik... Xjk is 1 or 0, the ‘jk’ represents between two entities ‘j’
and ‘k’. The a, b, x denotes input states and y denotes output.
Series of ‘a’, ‘b’ and ‘x’ represent 1%, 2" and N' states. In state
‘a’, if there exists a connection between j™ and k™" entities, then
ajk is 1 otherwise 0, similarly for bjx... xj. Here, m is the total
number of distinct entities in all N+1 states. The Y is a desired
output vector that has a variable y;x whose value is in between
0 to 1. The yjx gives probability in range 1 < yj < 0 for existence
of a connection between j* and k™ entities, and yj = 0 means
no-connection between j and k™ entities. This ER constructed
from a state series is used for learning evolution information.

The ECL learns from ER make a computer capable enough
to understand the evolution and changes of a system without
any explicit programming. While learning, the input layer
depends on the size of elements in the evolution representor
ER, a user provides the number of hidden layers L, and the
output layer depends on the size of the output vector. Initialize
these three parameters for evolution and change learning, which
forms a neural network defined as follows.

Definition 2: System Neural Network (SysNN) is a feed-
forward artificial neural network, which contains information
and understanding of system structure by learning evolution
represented in an evolution representor ER of a state series SS.
The SysNN contains evolution information in the form of
adjustment between weights and neurons such that it makes a
matrix, which gives probable connections (occurrences) of two
entities (features) together in a system state. The ECL forms a
SysNN, which recommends system evolution using memorized
output vector Y.

A machine with SysNN can recommend the time-variant (or
non-stationary) data of an evolving system. The SysNN learns
evolution information that constructs an output matrix (in a disk
memory as a trained model). The evolution information in the
memory can be useful to forecast the possible future of the
system data. It is perceivable that the SysNN is a unique and
novel kind of cybernetics.

The SysNN learns system evolution information by adjusting
weights between its neurons. The neuron weight adjustments
are according to the probability for existence of connections
between system entities. The SysNN reconstruct a zero vector
into an output vector, both containing mxm elements. Convert
the output vector into output matrix Mo of size mxm such that
this Mo is an ECL information. The Mo is a disk memory that
stores information about the evolving states of a system. This
memory will help to make recommendations about the evolving
system.

Next section describes the algorithmic form of the proposed
approach to realize our approach for ECL that makes a SysNN.

lll. SYSTEM STRUCTURE LEARNING

This section describes contributory algorithm System
Structure Learning (SSL). It uses N Design Structure Matrices
(N_DSMs) to represent N states of an evolving system. Fig. 2
gives an overview of SSL that internally uses Evolving DSM
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and Deep Evolution Learner (DEL). The DEL uses evolution
representor to learn the evolution of a time-variant data of a
state series. The DEL reconstructs an input zero vector to an
output vector, which is transformed to an output matrix that is
further normalized. First, we define the Evolving DSM (EDSM)
as shown in the left-top of Fig. 2.

Definition 3:_Evolving Design Structure Matrix (EDSM) is
a type of DSM that represents an ordered series of N vectors for
time-variant data of N states in a state series SS of an evolving
system (or project). EDSM intelligently designs a state series to
represent evolution as the 2-dimensional tensor of (mxm) x N
containing entity-connections (ecix) between entity ‘j” and ‘k’.

Algorithm SSL(N_DSMs)

Initialize a zero matrix as My

zero_vector = matrixToRowVector(M7)

EDSM = evolutionRepresentor(N_DSMs)

output vector = deep_evolution_learner (EDSM, zero_vector)
Mo = rowVectorToMatrix(output_vector)

Mno = normalize(Mo)

Return Mo

Next, we describe details about the Algorithm SSL. We
elaborate the time-variant data of ECL, which works as input
for unsupervised system learning. The evolutionRepresentor
transforms N DSMs (N _DSMs) into N vectors, which
represents N training states in an EDSM. The algorithm
transforms a DSM of state S; into vector i. For a state, its DSM
has size mxm and each vector (vector i) has mxm elements.
Then, each vector i combines to form an EDSM. The EDSM
given in equation (3) is a type of evolution representor ER as
described in the equation (1).

EDSM = f(SS)
EDSM = evolutionRepresentor(Npsys) ... (3)

Algorithm evolutionRepresentor(N_DSMs)

For each DSM iin N _DSMs where i € state number
vector_i = matrixToRowVector(DSM i)

vector i
EDSM = +
EDSM
End for
Return EDSM

Fig. 2 shows a graphical schematization of the relationships
between SSL, DEL, EDSM, ECL, and SysNN. The SSL uses
DEL (deep_evolution_learner) that elaborates the evolution
learner g(ER) mentioned as equation (2). An unsupervised
learning on the EDSM (unlabeled data) can detect evolution and
change patterns. The SSL depends on the EDSM and the DEL
(unsupervised learning). The DEL learns evolution and change
patterns in the EDSM (time-variant data) of a state series. The
DEL makes a machine capable enough to understand the
evolution and changes happening between states without
explicit programming. The DEL is an extension of deep
learning that learns from an EDSM and outputs a vector
(output_vector). The DEL makes the machine intelligent by
generating Deep System Neural Network (Deep SysNN) shown
in Figs. 2 and 3.

In Figs 2 and 3, the deep_evolution_learner takes the EDSM
of size N x (mxm) for training purposes, where N is the number
of states and m X m is the size of square DSM. The DEL makes
a Deep SysNN (in the form of weight matrices) based on the
training by delTrain (means deep evolution learner training).
The three main training parameters (frainParameters) control
deep learning: learning rate (LR), epoch (Ep), and number of
hidden layers (L). Deep learning can use matrices, but the DEL
uses evolution representor (i.e., EDSM), which is the crux of

Evolution Representor

vectory  [(x).. X Xy (Rare X Xow) o (X X

System Structure Learning (SSL) that uses Deep Evolution Learner (DEL)

Evolving Design Structure Matrix (EDSM), where vector, represents ith state
veetor;  [{aj.ag .. ap), {2k 3} {ag. 2.

vectory  [{by. by ... byt (ba b bay) oo (b, by

] zero_vector (m x m)
Conversion I

Deep System Neural Network (Deep SysNN)

1
Ay § ]

buull}] ‘
DEL

X))

Conversion

Symbol Description 00 ]..[0O
SS (vector,, vector, .... vectory) Yir.Yiz o Yik o Yim My My .. My oo My
ER EDSM = (SS) Normalization|  ................
A by X Elements of EDSM (] 0 ¥its ¥jzs oo Y oor ¥im e LTI ORI VR T
input zero veclor Y it (N Sl
= Zero Matrix
g(ER) Hl‘ H:, HL of size (m x m) Yl > Ym2--- Yk -+ Ymm Ny s Daee D -2 Ay
Y output_vector (m x m) Output Matrix M, (m x m) Normalized Output Matrix
Mxo binary output matrix (m x m) Myo (m x m)

Here, the ‘jk’ represents connection between two entities j" and ‘k".

The a, b, x denotes input states, y denotes outputs, and n denotes normalized values.

Series of ‘a’, ‘b’ and ‘x’ represent 1%, 2"d and N' state. The L is the number of hidden layers H with weight set W.

The ay, by, X, nj are either 1 or 0 depending upon connection exist or not. The yj, is the range between O to 1such that 0<y; <1
The EDSM size is (m*m) % N, where the m is the total number of entities in all the (N+1) states and N is number of training states .

Fig 2. An overview of Algorithm SSL using DEL on EDSM as a time-variant data (or non-stationary data) consisting of the N data vector of a state
series to construct a Deep SysNN, whose three variants are explained in Fig. 3.
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DEL usingRBM |

EDSiVI Hidden Reconstructed
Visible layer layerh DSM

g “~.Deep SysNN

h, h,
Hidden Layers

Reconstruction error

I LWEDSM, EDSM) I

Hidden code

DEL usingdA |

ol elelo OIIOO‘-----‘O|

Reconstruction
EDSM output DSM

Corruptedinput EDSM  Raw input EDSM
dA based Deep SysNN

Fig 3. Three kinds of Deep SysNN constructed by three DEL variants
based on the: RBM (in top), DBN (in middle), and dA (in bottom).

our approach. The Deep SysNN consists of information about
patterns of entity-connections in the form of a matrix of neural
networks. The training time mainly depends upon the number
of states and number entities i.e. Nxmxm. The delReconstruct
uses Deep SysNN to reconstruct a zero vector to an
output_vector with mxm elements.

Algorithm deep_evolution_learner (EDSM, zero_vector)

Initialize List trainParameters< LR, Ep, L >
Initialize a matrix Deep SysNN
Deep SysNN = delTrain(EDSM, trainParameters)
// three variant of Deep SysNN based on Equation 4 to 10
output_vector = delReconstruct(Deep_SysNN, zero_vector)

Return output_vector

The computational complexity of the SSL algorithm depends
on the deep_evolution_learner algorithms, which further
depends upon the delTrain and delReconstruct approach. Both
are optimization problems (not decision problems) for the
purpose of probabilistic solutions to do recommendations or
predictions. Our technique uses optimization functions to
provide an approximate solution based on probabilistic
modeling in polynomial runtime O(Nxm?), where N is the
number of states and m is the number of entities. In Fig. 3, we
describe how delTrain (hidden layer or code) and
delReconstruct works in the DEL using extended objective
functions of three well-known deep learning techniques: RBM,
DBN, and dA. RBM and DBN are used because they are
fundamental techniques of Deep learning.

First, the DEL reformulates the Restricted Boltzmann
Machine’s energy model as equation (4) with E(EDSM, h) =

Z(ai ecjk) + Z(bl h) + Z Z(ecjk wi hy) . (4)
[ T 1

L
where i represent i state, the EDSM represents an evolution
representor that contains ecj; as an entity-connection between
two entities j and k. In the Deep SysNN matrix of size (mxm)
x L, this wy represents the weight of i and [ position. The

weight matrix represents connections in SysNN such that a
DSM is a visible unit of size mxm and the h is hidden unit. The
RBM equation, there are two bias weights (offsets): the a;
and b; for visible and hidden units respectively. Reformulate
the energy model E(EDSM,h) into a probabilistic model
makes equation

P(EDSM, h) = %e—E(EDSM' h) - (5).

Then find conditional probability 4 of hidden layer when
EDSM is given as input, which makes equation
L
g(ER) = P(h|EDSM) = | | P(h|EDSM)  ...(6).
=1

For best recommendation by equation (6), the reconstruction
error needs to be minimized objective function as equation

dlogP(h|EDSM)
AW, ~< ecjkhl >data —< ecjkhl >reconstruct .
J

Second, the DEL reformulates the Deep Belief Network as a
stack of RBMs working together for training on EDSM. This
greedy learning forms the Deep Belief Network. Therefore, the
reformulation makes equation (8) with g(ER) =

L-2

P(EDSM,h', h? .. ht) = (np(hl|hl+1)) P(hv1L L)  ..(8)
=0

where L denotes a user-defined number of hidden layers and h'
denotes the I hidden layer.

Third, the DEL reformulates the auto-encoder to make a
neural network by encoding the input EDSM into c(EDSM).
The objective is to reconstruct c(EDSM) using a decoder
function with least error. The DEL minimizes reconstruction
error by minimizing the objective function of negative log-
likelihood of conditional entropy given as equation (9)

RE = —log P(EDSM|c(EDSM)) . (9)
RE == " ccj, logf,(c(EDSM))
+(1- ecjk) log (1 - fi(C(EDSM)))

where f;(x) decode xi, and fi(c(EDSM)) reconstruct i’ state
of EDSM using the Deep SysNN.

The input of denoising Autoencoder (dA) is stochastically
corrupted, and uncorrupted input is used to reconstruct the
target. The dA recommends the entity-connection patterns with
reformulated equation to reconstruct negative log-likelihood

...(10)

where EDSM is the uncorrupted input, EDSM is the
stochastically corrupted input, and c(EDSM) is the encoded
form of EDSM. To obtain best recommendations, minimize the
equation (10) as an objective function.

In SSL algorithm, the output vector is converted to form a
matrix Mo of size (mxm). The elements (yjk) in Mo are between
0 and 1, which gives probability of connections between two
entities. The Mo is normalized to a normalized matrix output
Mpyo. In normalization, the element (yj) in the Mo is converted
to element njx of Myo according to the normal distribution

RE = —log(g(ER)) = —log P (EDSM|c(EDSM))
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threshold. Thus, Mo is a binary matrix with njx is either 1 or 0
depending upon whether the connection exists or not. The Mno
is a kind of memorized information about an evolving system,
which is useful for decision-making and taking action. This
helps to deal with adaptation, control, and analysis of evolution
and changes in a system over evolving states.

For example, In Table I, an evolving system named as “List
of Multi-sport events” has 7 states for training and 1 state for
testing. The Fig. 4 show 7 adjacency matrix, which makes 7
DSMs as input to the SSL algorithm. This will result in three
different reconstructed matrices, which is compared with
testing matrix. The results of comparisons are given in Table II.

IV. EVALUATION USING K-FOLD AND FORWARD-CHAINING

This section describes evaluation of our System Structure
Learning (SSL) approach wusing two techniques for
experimental cross validation: k-Fold and forward-chaining
(also known as time series cross validation). Our model has four
parts to test SSL algorithms: training data, testing data, target
output, and classifier metrics. The training data of DEL is an
EDSM. The DEL learns evolution patterns from EDSM of a
state series in an ‘unsupervised manner’. The training data is
the connection patterns between a set of entities (features) in the
form of EDSM for a state series. After training, the DEL creates
Deep SysNN. Learning and recommendation of changes rely on
frequency of occurrence of connection between two entities
(features) in an EDSM. The Deep SysNN supports
reconstruction of a zero matrix Mz to an output matrix Mo.

The testing data is a testing matrix Mr, which represents

entity-connections of a state for testing. The testing data is a
DSM of a state that is unused during the training phase. The
target output is the output matrix Mo that can reflect evolution
information about the evolving system. Using Deep SysNN, we
can automatically produce an output matrix Mo (containing
patterns of entity-connections) that recommends evolving
entity-connections of an evolving system.

There are four well-known binary classifier metrics
(accuracy, precision, recall, and f-measure), which checks
whether the output is correct or incorrect. The four metrics can
analyze the output Mno according to the desired correctness.

Next, we discuss two cross validation techniques using the
four binary classifier metrics. The k-Fold is a well-known
technique [14], thus we skip its basic explanation. The forward-
chaining [15] is used for time (state) series based data where
learning from earlier states has importance. To do the two types
of cross validation, we made two types of directory (folder) that
contains training and testing data.

1. k-Fold: We made a k-Fold folder containing N+1
subfolder, where each subfolder contains N training matrix and
1 testing matrix My i of state S;. The name of the subfolder is
the testing state name (or number), and we denote it as ‘i’. Here,
k stands for the N states used for training purpose.

2. forwardChaining: We made a forwardChaining folder
containing N subfolders. Each subfolder contains training
matrices of previous states and 1 testing matrix Mt _i of current
(i.e., testing) state S;. The name of the subfolder is the current
state name (or number), and we denoted it as ‘i’. For example,
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Fig 4. lllustrative example of Algorithm SSL using DEL on input: 7 learning states and a testing state. This output 3 reconstructed matrices.
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Algorithm k-Fold_forwardChaining( )
Initialize accuracy, precision, recall, f~-measure, test_metric
For each i subfolder in k-Fold and i € state number

Mno = SSL(Matrixy)

accuracy = accuracy(Myo, Mr i)

precision = precision(Myo, Mr i)

recall = recall(Myo, Mr i)

f-measure = f~-measure(precision, recall)

test_metric = line(i, accuracy, precision, f-measure, recall)
End for
Calculate four averages as (Acc., Pre., Fme., Rec.) of all four
metrics as over the number of states in fest_metric.
Then, calculate the average (Avg.) of the four averages.

For each i” subfolder in forwardChaining and i € state number

Mno = SSL(Matr Z'JCpreviausjmtes)

accuracy = accuracy(Mno, Mr i)

precision = precision(Myo, Mt i)

recall = recall(Myo, Mr i)

f-measure = f~-measure(precision, recall)

test_metric = line(i, accuracy, precision, f~-measure, recall)
End for
Calculate four averages as (Acc., Pre., Fme., Rec.) of all four
metrics over the number of states in fest_metric.
Then, calculate the average (Avg.) of the four averages.
Return k-Fold<Acc., Pre., FMe., Rec., Avg.> and

forwardChaining<Acc., Pre., FMe., Rec., Avg.>

suppose a training data varies from 1 to N states, where N = 4.

k-Fold folder where k = 4:
folder 1: train [2 3 4] and test

forwardChaining folder

1 folder 1: train [1] and test [2]

(1]
folder 2: train [1 3 4] and test [2]  folder 2: train [1 2] and test [3]
folder 3: train [1 2 4] and test [3]  folder 3: train [1 2 3] and test [4]
folder 4: train [1 2 3] and test [4]

The k-Fold_forwardChaining algorithm performs two types
of cross validations: k-Fold and forward-chaining. The first and
second ‘for-loop’ identifies the result for the k-Fold folder and
the forwardChaining folder respectively. Both the loop
calculates four binary classifier metrics over their folder, and
then stores the calculated values in their test_metric. After each
loop, the fest metric is used to calculate the four averages
(Acc., Pre., FMe., Rec.) of accuracy, precision, f-measure, and
recall over the number of subfolders in the k-Fold folder and
forwardChaining folder. Then, for both the validations, these
four averages are further averaged as (Avg.). All this will return
five results to both: k-Fold<Acc., Pre., FMe., Rec., Avg.> and
forwardChaining<Acc., Pre., FMe., Rec., Avg.>.

In the next section, we present analysis of six different
evolving systems. Our approach helps to intelligently manage
an evolving system represented as a state series of DSM.

V. EXPERIMENTS OF SSL AND SYSNN

This section demonstrates intelligent project management
application of our approach on the six real-world evolving
systems of four domains. We collected the six evolving systems
from four kinds of repositories: software (Maven), natural
language (Wikipedia), retail market (UCI), and movies genres
(IMDb). Four applications of these domains include: software

evolution analytics, natural-language evolution analytics,
market evolution analytics, and movie evolution analytics,
respectively (as mentioned in the first column of Table I).

Based on the proposed SSL approach, we developed and
experimented with a prototype tool named as SysEvoRecomd-
Tool to analyze time variant (or non-stationary) data of the six
evolving systems (mentioned in second column). For each
evolving system, we evaluate recommendations by
SysEvoRecomd-Tool. For each experiment, there are N+1
states of an evolving system (as mentioned in the third column
of Table I). Only N states are used in the training phase and the
remaining one state is used for the testing phase. Each of the
evolving systems is represented with a set of N+1 evolving
graphs over time that is further converted to N+1 DSMs. To
demonstrate applied intelligent management, we performed the
following three steps on each evolving system.

- First, in the SSL, the evolutionRepresentor algorithm
transforms N DSMs into N vectors such that each vector
contains mxm elements. Then, the algorithm combines the N
vectors to form an EDSM as training input. An EDSM
represents the non-stationary data due to its property of varying
with time. Each EDSM has size (N x (mxm)), given in the
fourth column, where N is the number of states (e.g. software
versions) and m is the number of entities (e.g. procedures in
software).

- Second, in the SSL, the deep evolution_learner (DEL)
uses an EDSM to generate a Deep SysNN. The DEL variants
have its own advantages to analyze the system evolution. The
learning an evolving matrix (i.e. EDSM) over time is a non-
stationary learning of a full system data. This learning depends
upon the following variables: number of states (N), number of
entities (m), and training parameters: Learning Rate (LR),
Epoch (Ep), and number of hidden units/layers of neurons (L).
The (LR-Ep-L) value used in each experiment is mentioned in
the sixth column of Table I. These training parameter values
resulted in high accuracy and f-measure. The DEL works like a
feed-forward neural network learning algorithm, which uses
many iterations (i.e. epochs) in the learning phase. Learning
rate controls the learning of an algorithm. To keep it simple, for
all the dA experiments data corruption rate used is 0.3, and for
DBN the same learning rate for pre-training and for fine-tuning
is used.

The DEL in the SysEvoRecomd-Tool extended deep
learning (source code of RBM [5], DBN [6], and dA [7] written
in java https:/github.com/yusugomori/DeepLearning by
Sugomori Yusuke [18]). We used these codes to make three
variants of deep evolution learner (DEL). For each evolving
system, the fifth column of Table I contains a group of three
rows for three DEL variants: RBM, DBN, and dA.

We did many experiments to determine the best training
parameters. Like other optimization techniques, while
performing the experiments, we used Explore (search region for
candidate solutions outside neighborhood) and Exploit (search
best solution within the neighborhood) to tune the parameters
[16]. Initially, we keep on exploring the region (by making
large changes in the parameter values) till we get significantly
better results (f-measure and accuracy). Thereafter, we exploit
the region (by making small changes in the parameter values)
till we get the best result of that region.
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TABLE |
INTELLIGENT MANAGERIAL INFORMATION ABOUT EVOLVING SYSTEMS, STATE SERIES, EDSM SIZE, AND EXPERIMENTAL RESULTS
. Forward-chaining for time
N DSMs k-Fold, where k is (N) number of i
Domain of m k Traini states, which is constant for an (state) series, here number of
Evolving Evolving States makes DEL raining parameters ? . ¢ states used for training varies
i i experimen
System system (N+1) EDSMsize Variant LR-Ep-L p from 1 to N
N x mxm
Acc. Pre. FMe. Rec. Avg. | Ace. Pre. FMe. Rec. Avg.
A) RBM 0.5-50-50 0.999 0.742 0.838 0.973| 0.888 |0.999 0.901 0.886 0.875 [0.915
Evolving Hadoog- s 14 x
HDFS DBN 0.01-10-(10x 5 0.999 0.718 0.831 0.997| 0.886 |0.999 0.883 0.913 0.952 [0.936
Software 3129 x 3129 (10x3)
System
dA 0.1-10-10 0.999 0.726 0.830 0.978| 0.883 ]0.999 0.889 0.907 0.931 [0.931
RBM 0.01-100-100 0.882 0.378 0.464 0.872| 0.649 | 0.96 0.612 0.522 0.657 |0.687
List of Bible 4 x
®) Translation? 5 DBN 0.001-100-(100%5) 0.966 0.548 0.598 0.886| 0.749 |0.977 0.685 0.615 0.657 [0.733
25 %25
Evolving dA 0.01-100-100 0.966 0.548 0.598 0.886| 0.749 |0.977 0.685 0.615 0.657 [0.733
Natural
language RBM 0.1-100-100 0.895 032 0475 0958 0.662 | 0.93 0.394 0.515 0.784 |0.655
Systems  List of Multi- 7 x
sport events® 8 DBN 0.001-100- (100x5)  [0.921  0.408 0.565 0.964 | 0.714 [0.936 0.418 0.531 0.748 [0.658
14 x 14
dA 0.01-100-100 0918 0.383 0.536 0.947| 0.696 |0.932 0.404 0.524 0.784 |0.661
© RBM 0.2-100-100 0.965 0.582 0.663 0.81 0.755 10.969 0.66 0.69 0.784 |0.775
Evolving . . 13 x
Retail Retail Market 13
DBN 0.001-100-(100%5) 0.965 0.555 0.664 0.859| 0.760 | 0.97 0.651 0.686 0.770 |0.769
Market 118 < 118
System dA 0.1-100-100 0953 0484 0.616 0.896| 0.737 |0.966 0.624 0.685 0.806 |0.770
RBM 0.01-100-100 0.914 0.349 0.496 0.961 0.68 10.935 0.405 0.529 0.823 |0.673
Positive
DOTIVE 11 %
D) sentiment”of =, DBN 0.001-100-(100x5) | 0.914 0349 0496 0.961| 068 |0.945 0444 0564 0823 |0.694
( movie genres® 25 x 25 : : : : : : : : : : :
Evolving
IMDb dA 0.01-100-100 0914 035 0.498 0.961| 0.680 |0.945 0.444 0.565 0.823 |0.694
movie
genre RBM 0.01-100-100 0.89 0.277 0.404 0.924| 0.623 |0.937 0.374 0.479 0.689 |0.619
systemss Negative 11 x
sentiment®of |, DBN 0.001-100-(1005
. 5 .001-100- ) 0915 0.313 0.446 0.885| 0.639 |0.947 0.435 0.518 0.682 [0.645
movie genres; 45 x 45
dA 0.001-100-100 0.891 0.291 0.421 0.921| 0.631 |0.947 0.435 0.518 0.682 |0.645
1. https:// mvnltel')osit.ory.com'/ a»rtif.act/org‘apaghe.hafioop/hadool? -hdfs Oct 2016. 4. https://archive.ics.uci.edu/ml/datasets/Online+Retail Oct 2016.
2. https://en.w%k¥ped}a.org/w¥k%/L}st70f7Engl'1sh7B1bleftranslat10ns Oct 2016. 5. http://www.imdb.com/interfaces/ Oct 2016.
3. https://en.wikipedia.org/wiki/List_of multi-sport_events Oct 2016. 6. hitps://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html

For each evolving system, the DEL variants (RBM, DBN,
and dA) make three Deep SysNNs as described in Fig. 3. Each
Deep SysNN reconstructs a zero matrix Mz into an output
matrix Mo of size (mxm). The Mo is transformed to a binary
normalized output matrix Mo of size mxm.

- Third, in testing, the k-Fold_forwardChaining algorithm
compares the normalized output matrix Mo with the testing
matrix Mr. The similarity between the binary matrices (Mo
and Mr) will provide a measure of — “how well the Mno mimics
the pattern of the old states”. The algorithm calculates similarity
between the two binary matrices (Mno and Mr) using statistical
metrics: accuracy, precision, recall and f~-measure.

The accuracy is the measure of “how many of all connections
and no-connections have been recommended correctly”. The
precision is the measure of “how many of all connections have
been recommended correctly”. The recall is the measure of
“how many connections have been recommended correctly”.

The f-measure is the harmonic mean of the precision and recall.
These four metrics results are used to evaluate the
SysEvoRecomd-Tool. Higher value of a metric represents high
similarity (means good result) and low value of a metric
represents dissimilarity (means bad result).

In both the matrices (Mno and Mr), an entity-connection ecix
(at j® row and k™ column), each ‘1’ represents there exist
connection and each ‘0’ represents no-connection (i.e.
connection do not exist) between two entities (‘j” and ‘k’). The
accuracy metric represents the similarity between all the values
(0’s and 1’s) of two binary matrices, whereas precision, recall,
and f-measure represent the similarity between all the values of
1’s. The matrices used in the experiments have imbalancing of
few 1s and many Os.

Mathematically, we re-formulate these well-known metrics
for our goal in the following way, where, # denotes “count of”
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( correctly recommended connections +>
correctly recommended no connections

accuracy = - - - - —
# all possible entity connections i.e matrix size
L # correctly recommended connections
recision = -
p # all connections recommended by the tool
# correctly recommended connections
recall =

(#correctly recomended connections + incorrectly)
recommended connections as no connections

In Table 1, k-Fold and forward-Chaining results provide an
assessment of the tool’s performance. In Figs. 5 and 6, we
plotted all the results mentioned in Table 1. The plots show our
recommender system is good at learning binary input patterns
to generate binary output matrices. The k-Fold and forward-
chaining is used to provide explainability and interpretability,
we inferred following conclusions.

- In Fig. 5, we presented the two kinds of cross-validation
results in the two graphical plots. The figure provides
explainability that the accuracy and recall are high as compared
to the f-measure and precision.

- The Fig. 6 demonstrates interpretability that the k-Fold and
the forward-chaining produced almost similar results.

Graph Neural Network and System Network Reconstruction:

There are three reconstructed networks Mo, which is system
network reconstructions generated from 3 variants SysNN. The
recommendation by system network reconstruction, we used
four metrics: precision, recall, accuracy, and f-measure. The
quality of recommendation by the system network
reconstruction can be seen in the Figs. 5 and 6.

k-Fold experimentation results
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Intelligent Managerial Observations: Finally, we discuss
our experience while conducting experiments. Our experiments

are novel for studying system evolution. Nevertheless, we
present following outcomes of our observations.

1. For learning purposes, our DEL solves the problem for
learning of an evolving system. As expected, we observed that
recommendation done by DBN and dA has outperformed the
RBM. The DEL generates Deep SysNN that has information
about evolution and changes happened in a system state series.
We found SysNN consist of information about the relationship
between system entities in various evolving system states.

2. Like human beings, a machine also needs both logical and
memory oriented learning. Logical learning (or generalization)
provides analytical power to the machines, whereas memorized
learning (or specialization) provides recommendation power to
the machine. Thus, memorization of old memory helps machine
to recommend an upcoming and non-existing data. Generally,
the patterns are almost constant in every system state, which
can be learned and stored as a memory. We did entity-
connection patterns learning and then stored in disk memory in
the form of a reconstructed information (normalized output
matrix Mxo). This makes our results accurate and precise.
Hence, we found learning and memorization both are useful for
a machine to mimic patterns like a human.

3. Figure 5 and 6 shows natural-language based domains (B
and D) are harder to learn as compared to software and market
based domains (A and C). We made two inferences. First,
natural-language based system data (list of bible translation and
multi-sport events) are hard to learn for recommendation.

Forward-chaining experimentation results
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Fig 5. Explainability: Each plot shows 4 series for 4 metrics results on 18 experiments (3 DEL variants x 6 evolving systems). The experiments on
four domains (A, B, C, and D) at the horizontal axis as mentioned in Table 1 (with the same sequence of the values).
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Fig 6. Interpretability: Inferred the Average of k-Fold and Forward-chaining over all the 18 experiments are almost similar. Inferred the 3 DEL
variants are producing almost similar recommendations with Average k-Fold and Average forward-changing of all evolving systems.
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Second, inter-procedural calls of software are easier to learn for
recommendation. The medium of communications (e.g.
natural-languages) used by humans are significantly complex,
whereas the medium of communications (e.g. inter-procedural
calls) used by the computers are relatively less complex in
nature. Hence, we found learning of software systems (used by
machines) relatively easier as compared to learning of natural-
language systems (used by humans).

4. When an entity (or feature) is present in some states of
training data but missing in other states of training data, it is
hard to learn and recommend about such an entity. Generally,
in machine learning algorithms the size of features are fixed.
However, in our case the number of entities (as features) is
different in the different states. For example, some entities
(software procedures or natural-language words) exist in some
states but do not exist in other states. Thus, in the DSM, the
entities that do not exist in the state are used with zeros at its
row and column. For example, when new procedures are added
to a new version of an evolving software corresponding to new
functionalities. It is hard to recommend these new procedures
that never existed in old software versions used for training.
Hence, we found it is hard to recommend the future connections
for the entities (or features) that are absent in many training
states or present in few training states.

5. Accuracy metrics alone cannot give a justified measure
for the correctness of a model, thus we used precision, recall
and f-measure. It is because of imbalanced data, which means
classes (0s and 1s) are not distributed equally and learning from
an imbalanced dataset is a challenging task [17]. The datasets
used in our experiments are imbalanced, which means number
of entity-connections (ecjx = 1 or 0) are unevenly distributed in
EDSM. In our case (see Table II), distribution of zeroes (‘0’s)
and ones (‘1’s) are uneven i.e. the number of ‘0’s are
significantly higher than the number of ‘1’s. For entity-
connection recommendation, true positive TP (connection
recommended correctly) has more significance as compared to
TN (true negative). Similarly, false positive FP (connection
recommended incorrectly) has more significance as compared
to FN (false negative). Due to an imbalanced dataset, we are
getting a high value of accuracy metric as compared to f-
measure. Because accuracy metric compares the two matrices
bit-by-bit assuming each recommendation has the same
significance, whereas this fails on imbalanced data. Thus, we
used precision, recall and f-measure metric. Hence, for
imbalanced data, we found that along with accuracy metrics, it
is also required to use other evaluation metrics: precision,
recall, and f-measure.

Intelligent Managerial Applications: Our approach helps
to intelligently automate the management process of system
development, evolution, and maintenance. For both existing
and upcoming states, we used the time variant (or non-
stationary) data of four system domains. This leads to the
following advantages for a project manager. First, it can help to
predict connection between entities: call between two
procedures, link between two words, purchasing of items by a
customer, and relation between two movies. Second, it can also
be helpful while upgrading software systems, correcting
natural-language errors, improving retail market distribution,
and targeting audience for a genre. Third, it is helpful during
software development, rephrasing a text, doing target

marketing, and while naming a movie. Fourth, it can assist
system employees e.g., software programmer, writers (of book,
article, and novel), retail market (sales, finance, and marketing
team), and film production team. Fifth, it can help to speed-up
the software development, predictive text, customer billing, and
selecting movie names. Sixth, it can do automatic correction of
some errors during software debugging, autocorrecting while
writing text, customer satisfaction, and re-making a movie.
Seventh, it can determine the possible future of the software,
text usage trend, market analysis, and videos naming.

VI. RELATED WORKS AND COMPARISONS

This section describes and compares the current state-of-the-
arts with our work. Our approach is sufficiently new, best to our
knowledge it is hard to find other quantitatively comparable
approaches that provide statistical or empirical evaluation. We
will discuss qualitative comparison of our System Structure
Learning (SSL) and SysNN with other machine learning
techniques. Assuming every technique has its pros and cons, we
discuss comparison under the following three categories.

a) Well-known DSM techniques: Kosari et al. [19] provided
equivalency between properties of dynamic systems modeled in
state space and numerical process DSMs. Representation
Learning techniques use graphs efficiently e.g. Biomedical
networks [20]. We extended DSM and graph theory as EDSM
for training a SysNN. As compared to other techniques, the
advantage of SysNN is that it is used to model non-linear
relationships between entities (or features) in time-variant data.

b) Advanced ANN: There are different types of ANN and
DNN e.g. Graph Neural Network (GNN) [21], Deep Recurrent
Neural Network (RNN) [22], Long Short-Term Memory
(LSTM) [23], and Graph Attention Network (GAT) [24], which
has directed cycle to capture dynamic behavior of time-variant
or sequence data. The ANN is extended to RNN and GNN.
Similarly, we extended the DNN to SysNN, which learns from
multiple evolving graphs of a system state series. The Deep
RNN, GNN, GAT, and SysNN are advanced ANNSs, but they
are defined for different purposes. SysNN is better than RNN
and GNN for system analysis because SysNN has system
information as it is trained from entity-connections in DSM of
multiple states. The SysNN covers broader applications for
evolving systems as compared to other NN.

Memory Networks [25] is a network that learns a given
knowledge for answering questions, e.g. Sukhbaatar et al. [26]
demonstrated an ANN trained using back-propagation and

TABLEII. INFORMATION ABOUT IMBALANCED DATASET USED.

. Testing matrix Number Number
Evolving Systems
(Mr) of 1s of 0s
Hadoop HDFS Version 2.7.2 2938 9787703
List of Bible Translation 20t Century 46 579
. . 201 i.e. 2010-2017
List of Multi-sport Events 8 188
decade
Frequent Market Basket 1211 i.e. Dec. 2011 617 13307
Positive sentiment of 201 i.e. 2010-2019
. 47 578
movie genres decade
Negative sentiment of 201 i.e. 2010-2019
) 177 1848
movie genres decade
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Ankit et al. [27] introduced Dynamic Memory Network
(DMN). Gulli et al. [31] invented a method and a system to
store, extract, and analyze entities from the temporal content to
present temporal trends according to user search query.

Lin et al. [32] proposed Knowledge Graph Neural Network
(KGNN) that learns structures of drugs from a knowledge graph
to predict drug-drug interaction. Zhang et al. [33] proposed
Heterogeneous Graph Neural Network (HetGNN) that aims to
resolve learning issue due to heterogeneous information in
nodes; this to helps in graph mining tasks for example link
prediction, recommendation, and node classification &
clustering. Wang et al. [34] proposed Heterogeneous graph
Attention Network (HAN) using hierarchical attentions at node
and semantic-level; this helps in classification and clustering.
Kosan et al. [35] proposed Dynamic Graph Event Detection
(DyGED, which combines a Graph CNN and RNN to learn
labeled events.

There are some analogies between a natural neural network,
and a SysNN. In biology, memories are also found in dolphins
[28], chimpanzees and orangutans [29], and hyenas [30].
Similarly, SysNN enhanced capablity to remember and
understand relationships between two separate entities, objects,
and features. Extending the state-of-the-art, we proposed an
ECL model that creates SysNN (a novel feed-forward ANN),
which represents a system structure. The Deep SysNN learns
and memorizes useful repeating (or mimic) patterns of system
entity-connections for intelligent state series management. We
found that SysNN generates Mo stored in disk memory, which
is useful to make recommendation about the evolving systems.
Usually, the SSL will be superior to most of the simple machine
learning techniques. It is hard to do comparative analysis with
complex techniques.

¢) System Network Evolution mining: Our system network
evolution subgraph (graphlet and motif) mining [36], which
provides frequency and complexity information about patterns
formed by connections between entities over multiple states.
Our Stable Network Evolution Rule mining [37], which
provides rules only for frequently co-occurring entities over
multiple states. The six evolving systems used in experiments
are also used in our previous publications to retrieve evolution
subgraphs and rules for calculating system network complexity
[36] and system changeability metric [37]. Both approaches
[36][37] have their own importance and applications, the SSL
(with the SysNN) is better to make recommendations for all
connections between entities i.e. (mxm X N).

Limitations: We found following two limitations

- As the approach extends the deep learning and the deep
neural network, which also have some drawbacks. Our SSL and
SysNN also has similar drawbacks e.g. it is complex to
understand, significant amounts of states (as data) required for
training, and it takes time to learn. Relatively some algorithms
(e.g. support vector machine, decision trees, and regression) are
simpler, faster, and easier to learn a dataset. The SSL approach
is computationally expensive as compared to our other
approaches on the same evolving system’s dataset [36][37].
Still we found SSL is much superior at recommendations as
compared to both [36][37].

- Large size matrice take a long time to do deep learning. For
example, as Hadoop-HDFS has the large EDSM size 14 x (3129
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x 3129), it took more time to learn as compared to other five
systems. In the same environment, we found learning smaller
EDSM took lesser time as compared to the large EDSM. The
six EDSM used as input are huge and computationally
expensive for real-world applications. However, our efficient
Java codes of SysEvoRecomd-Tool based on SSL algorithm
solved such real-world applications in feasible-time.

VIl. CONCLUSIONS

We introduced Evolution and Change Learning (ECL) that
forms System Neural Network (SysNN). We elaborated this to
propose a System Structure Learning (SSL) algorithm, which
internally uses evolution representor (Evolving DSM) and deep
evolution learner (DEL). The DEL uses EDSM to construct a
Deep SysNN representing information of system states. Three
DEL variants generated three Deep SysNNs. We conducted
experiments on six evolving systems collected from open
internet repositories of four domains. This demonstrated four
intelligent applications with satisfactory accuracy, precision, f-
measure, and recall. The experiments present the study over
challenging imbalanced data of the evolving systems.

In future, instead of unsupervised deep learning another
technique can be used for example, supervised (e.g. active
learning), semi-supervised, and reinforcement learning.
Applying such techniques on evolving systems is still a research
topic. Our approach helps to intelligently manage other kinds
of systems in temporal analysis. The SysNN may be useful to
realize a hardware device on Spiking Neural Network (SNN)
[38]. Our approach could be applicable to systems including
IoT and software network evolution [39], which may have
devices, procedures, and components working together as
interacting or connected entities. Our algorithms are linear, in
future scalable parallel-programming can be introduced. Our
approach could be an innovative way to analyse evolution of
technological systems, Hughes [40]. Further we expect
application of our approach to study and analyze the Complex
Adaptive Systems (CAS) [41] and Systems of Systems (SoS)
[42]. Effort toward developing CAS and SoS has raised
maintenance and evolution issues of versioning or states, where
our approach would be helpful.
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