
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/357916473

System Neural Network: Evolution and Change Based Structure Learning

Article in IEEE Transactions on Artificial Intelligence · June 2022

DOI: 10.1109/TAI.2022.3143778

CITATIONS

7
READS

83

4 authors, including:

Animesh Chaturvedi

Indian Institute of Information Technology Dharwad

25 PUBLICATIONS 148 CITATIONS

SEE PROFILE

Shubhangi Chaturvedi

Saffrony Institute of Technology

5 PUBLICATIONS 29 CITATIONS

SEE PROFILE

All content following this page was uploaded by Animesh Chaturvedi on 08 October 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/357916473_System_Neural_Network_Evolution_and_Change_based_Structure_Learning?enrichId=rgreq-ef9ddf17f2f1e98e992349122eba6a9c-XXX&enrichSource=Y292ZXJQYWdlOzM1NzkxNjQ3MztBUzoxMTQzMTI4MTA4ODY4MTQ0MUAxNjY1MjM0NjY3MTc0&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/357916473_System_Neural_Network_Evolution_and_Change_based_Structure_Learning?enrichId=rgreq-ef9ddf17f2f1e98e992349122eba6a9c-XXX&enrichSource=Y292ZXJQYWdlOzM1NzkxNjQ3MztBUzoxMTQzMTI4MTA4ODY4MTQ0MUAxNjY1MjM0NjY3MTc0&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ef9ddf17f2f1e98e992349122eba6a9c-XXX&enrichSource=Y292ZXJQYWdlOzM1NzkxNjQ3MztBUzoxMTQzMTI4MTA4ODY4MTQ0MUAxNjY1MjM0NjY3MTc0&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Animesh-Chaturvedi?enrichId=rgreq-ef9ddf17f2f1e98e992349122eba6a9c-XXX&enrichSource=Y292ZXJQYWdlOzM1NzkxNjQ3MztBUzoxMTQzMTI4MTA4ODY4MTQ0MUAxNjY1MjM0NjY3MTc0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Animesh-Chaturvedi?enrichId=rgreq-ef9ddf17f2f1e98e992349122eba6a9c-XXX&enrichSource=Y292ZXJQYWdlOzM1NzkxNjQ3MztBUzoxMTQzMTI4MTA4ODY4MTQ0MUAxNjY1MjM0NjY3MTc0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Indian_Institute_of_Information_Technology_Dharwad?enrichId=rgreq-ef9ddf17f2f1e98e992349122eba6a9c-XXX&enrichSource=Y292ZXJQYWdlOzM1NzkxNjQ3MztBUzoxMTQzMTI4MTA4ODY4MTQ0MUAxNjY1MjM0NjY3MTc0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Animesh-Chaturvedi?enrichId=rgreq-ef9ddf17f2f1e98e992349122eba6a9c-XXX&enrichSource=Y292ZXJQYWdlOzM1NzkxNjQ3MztBUzoxMTQzMTI4MTA4ODY4MTQ0MUAxNjY1MjM0NjY3MTc0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shubhangi-Chaturvedi-4?enrichId=rgreq-ef9ddf17f2f1e98e992349122eba6a9c-XXX&enrichSource=Y292ZXJQYWdlOzM1NzkxNjQ3MztBUzoxMTQzMTI4MTA4ODY4MTQ0MUAxNjY1MjM0NjY3MTc0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shubhangi-Chaturvedi-4?enrichId=rgreq-ef9ddf17f2f1e98e992349122eba6a9c-XXX&enrichSource=Y292ZXJQYWdlOzM1NzkxNjQ3MztBUzoxMTQzMTI4MTA4ODY4MTQ0MUAxNjY1MjM0NjY3MTc0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Saffrony-Institute-of-Technology?enrichId=rgreq-ef9ddf17f2f1e98e992349122eba6a9c-XXX&enrichSource=Y292ZXJQYWdlOzM1NzkxNjQ3MztBUzoxMTQzMTI4MTA4ODY4MTQ0MUAxNjY1MjM0NjY3MTc0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shubhangi-Chaturvedi-4?enrichId=rgreq-ef9ddf17f2f1e98e992349122eba6a9c-XXX&enrichSource=Y292ZXJQYWdlOzM1NzkxNjQ3MztBUzoxMTQzMTI4MTA4ODY4MTQ0MUAxNjY1MjM0NjY3MTc0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Animesh-Chaturvedi?enrichId=rgreq-ef9ddf17f2f1e98e992349122eba6a9c-XXX&enrichSource=Y292ZXJQYWdlOzM1NzkxNjQ3MztBUzoxMTQzMTI4MTA4ODY4MTQ0MUAxNjY1MjM0NjY3MTc0&el=1_x_10&_esc=publicationCoverPdf

IEEE Transactions on Artificial Intelligence (TAI) 1

Abstract— System evolution analytics with artificial neural

networks is a challenging and path-breaking direction, which

could ease intelligent processes for systems that evolve over time.

In this paper, we contribute an approach to do Evolution and

Change Learning (ECL), which uses an evolution representor and

forms a System Neural Network (SysNN). We proposed an

algorithm System Structure Learning (SSL), which is divided in two

steps. First step uses the evolution representor as an evolving

matrix Evolving Design Structure Matrix (EDSM) for intelligent

design learning. Second step uses a Deep Evolution Learner (DEL)

that learns from evolution and changes patterns of an EDSM to

generate Deep SysNN. The result demonstrates application of the

proposed approach to analyze four real-world system domains:

software, natural-language, retail market, and movie genre. We

achieved significant learning over highly imbalanced datasets. The

learning from previous states formed SysNN as a feed-forward

neural network, and then memorized information as an output

matrix that has recommendations for entity-connections.

Impact Statement — It is useful and challenging to apply

machine learning to analyze the multiple states of an evolving

system. To do this, we represented existing states of an evolving

system as EDSM that is used to generate SysNN. The SysNN

generates an output matrix that helps to analyze and make

recommendations about that evolving system. We present

experiments to study imbalanced data of evolving systems.

Index Terms— Systems Engineering and Theory, Artificial

Neural Networks, Machine Learning, and Graph theory1.

I. INTRODUCTION

YSTEM has several entities (or component) that are inter-

connected to each other. Some systems evolve with time

contains evolving entity-connections; such a system is referred

as an evolving system. Such an evolving system generates time-

variant (or non-stationary) data. Bertalanfy [1] “growth of

components within a system… applies to many growth

phenomena in biology (evolution)”. Growth of evolving

systems both in numbers of components (or entities) and in the

size of an entity – makes it challenging to learn a system.

We are considering a system with the following two

properties. First, the system contains entities (or features)

interacting with each other to make connections between

entities. These entities and connections can be represented as a

matrix. Second, the system evolves over time, which makes

states that can be represented as a series of matrices.

System network structure example 1, in Fig. 1, assumes

software contains procedures (or functions) as entities (or

Animesh Chaturvedi is with the Indian Institute of Information Technology

Dharwad, Dharwad Karnataka. Email: animesh.chaturvedi88@gmail.com.

Aruna Tiwari is with the Indian Institute of Technology Indore, Indore, MP,
India. E-mail: artiwari@iiti.ac.in.

nodes) that make procedure-calls as connections (or edges),

which makes a call-graph G1. The call-graph G1 evolves to G2

then to G3 for three software version series. System network

structure example 2, in Fig. 1, assumes three graphs (G1, G2,

G3) represent three phrases of a natural-language paragraph

such that vertices represent keywords and edges represent

keyword-connections. This makes keyword-network means in

a sentence source-keyword A appears before target-keyword B.

Fig 1. Evolution of a system graph from G1 to G2 to G3 when a system
evolves from state S1 to S2 to S3.

Structure, designing, or representation of a system can

support system analysis. We can represent a system state with

a Design Structure Matrix (DSM) [2][3], which is a simple,

compact, and visual representation of a system (or project) in

the form of a square matrix. The DSM has various purposes

with multiple names like: Dependency source matrix, Problem

Solving Matrix (PSM), and Design precedence matrix. Our

approach is based on repository or database learning of batch

off-line training applied over system states represented as DSM.

We use Artificial Neural Network (ANN) recommendation

power by using three famous unsupervised deep learning

techniques [4]: Restricted Boltzmann Machines (RBM) [5],

Deep Belief Networks (DBN) [6], and denoising Autoencoders

(dA) [7]. We have chosen them to express and apply system

evolution analytics [9][10][11], which is done by learning

useful knowledge representation from time-variant (or non-

stationary [8]) data of evolving states.

In general, ANN and DNN will have better predictive

capabilities due to complex non-linear optimisation (or

activation) functions (e.g. sigmoid, ReLU, Gaussian, RBM,

encoders etc.), which aims to minimise the recommendation

error. Whereas, other techniques deal with simple equations e.g.

the linear-regression has linear equations f(x) = ax +b, the rule-

mining measures frequency and conditional probability, and so

on. However, there are other complex techniques like ensemble

Shubhangi Chaturvedi is with the Indian Institute of Information

Technology, Design and Manufacturing, Jabalpur, Jabalpur, MP, India. E-

mail: chaturvedishubhangi51@gmail.com.
Pietro Liò is with the University of Cambridge, Cambridge, U. K. Email:

Pietro.Lio@cl.cam.ac.uk

System Neural Network: Evolution and Change
based Structure Learning

Animesh Chaturvedi, Aruna Tiwari, Shubhangi Chaturvedi, and Pietro Liò

S

IEEE Transactions on Artificial Intelligence (TAI) 2

learning, active learning etc., which have their pros and cons.

Motivation is to perform system learning to learn evolving

system states over time, which can assist system evolution

analysis. We do system learning on inter-connected entities

represented in DSMs of system state series with evolution

information (or an evolving repository). To do system learning,

we are extending the system evolution recommender theory

[12][13], which made following two extensions in two sections:

- In Section II, we formalized Evolution and Change

Learning (ECL) to form our proposed System Neural Network

(SysNN), which is a new kind of ANN.

- In Section III, we proposed an algorithm to do System

Structure Learning (SSL) based on deep evolution learner on

time-variant data of an evolving system. Firstly, we represented

an evolving system in the form of an evolving matrix, which

captures multiple system states as an Evolving DSM. Secondly,

we expressed system learning to learn evolution and change

information from the Evolving DSM. This learning forms a

Deep SysNN, which helps to construct an output matrix (as a

disk memory) that predicts the evolving system.

These two contributory Sections (II and III) are followed by

Section IV that presents evaluation of the SSL using two cross

validations: k-Fold and forward-chaining, which helps to

empirically evaluate our algorithm. Section V demonstrates the

applications and experiments on six real-world evolving

systems of four domains. Thereafter, related works (in Section

VI) and concluding remarks (in Section VII).

II. EVOLUTION AND CHANGE LEARNING BASED

SYSTEM NEURAL NETWORK

This section describes our key idea to do Evolution and

Change Learning (ECL) that forms a System Neural Network

(SysNN). Suppose each state (Si) of the state series has a data

(Di). This makes a time-variant dataset TVD = {D1, D2 … DN,

DN+1} of a state series SS = {S1, S2 ... SN, SN+1} at (N+1) time

points {t1, t2 … tN, tN+1}. Fundamentally, three types of changes

are possible: addition (or insertion), modification (or

alteration), and deletion (or removal), which need to be

represented for learning.

The proposed approach ECL has two steps to generate a

SysNN. In the first step, the state series of an evolving system

is represented into an evolution representor. To intelligently

manage a system (or project), we denote an evolution

representor as ER for a state series of an evolving system. In

the second step, the algorithm uses this hidden vector ER to

calculate an output vector Y. We describe this in the context of

system learning of time-variant or non-stationary data.

Definition 1: Evolution and Change Learning (ECL) is

defined as a machine learning that learns evolution and changes

from an Evolution Representor ER that represents previous

states in a state series SS. The ER is determined as follows.

- The ER represents time-variant data TVD in a SS by a

function f(SS) given as equation (1)

𝐄𝐑 = f(𝐒𝐒) … (1)

ER = f({a11.. ajk … amm}, {b11 .. bjk ... bmm} … {x11.. xjk … xmm}).

- The calculation is done by a hidden function g(ER), named

as Evolution Learner in equation (2). The purpose of the

function g(ER) is to learn evolution and changes happening to

the system entities.

𝐘 = g(𝐄𝐑) = g(f(𝐒𝐒)) … (2)

Y = ({y11.. yjk … y1m}, {y21.. yjk … y2m}… {ym1.. yjk … ymm}).

The ER are 2-dimensional tensor or array mentioning (m×m)

× N connectivities. The tensor contains entity-connections, ajk,

bjk… xjk is 1 or 0, the ‘jk’ represents between two entities ‘j’

and ‘k’. The a, b, x denotes input states and y denotes output.

Series of ‘a’, ‘b’ and ‘x’ represent 1st, 2nd and Nth states. In state

‘a’, if there exists a connection between jth and kth entities, then

ajk is 1 otherwise 0, similarly for bjk… xjk. Here, m is the total

number of distinct entities in all N+1 states. The Y is a desired

output_vector that has a variable yjk whose value is in between

0 to 1. The yjk gives probability in range 1 ≤ yjk ≤ 0 for existence

of a connection between jth and kth entities, and yjk = 0 means

no-connection between jth and kth entities. This ER constructed

from a state series is used for learning evolution information.

The ECL learns from ER make a computer capable enough

to understand the evolution and changes of a system without

any explicit programming. While learning, the input layer

depends on the size of elements in the evolution representor

ER, a user provides the number of hidden layers L, and the

output layer depends on the size of the output vector. Initialize

these three parameters for evolution and change learning, which

forms a neural network defined as follows.

Definition 2: System Neural Network (SysNN) is a feed-

forward artificial neural network, which contains information

and understanding of system structure by learning evolution

represented in an evolution representor ER of a state series SS.

The SysNN contains evolution information in the form of

adjustment between weights and neurons such that it makes a

matrix, which gives probable connections (occurrences) of two

entities (features) together in a system state. The ECL forms a

SysNN, which recommends system evolution using memorized

output vector Y.

A machine with SysNN can recommend the time-variant (or

non-stationary) data of an evolving system. The SysNN learns

evolution information that constructs an output matrix (in a disk

memory as a trained model). The evolution information in the

memory can be useful to forecast the possible future of the

system data. It is perceivable that the SysNN is a unique and

novel kind of cybernetics.

The SysNN learns system evolution information by adjusting

weights between its neurons. The neuron weight adjustments

are according to the probability for existence of connections

between system entities. The SysNN reconstruct a zero vector

into an output vector, both containing m×m elements. Convert

the output vector into output matrix MO of size m×m such that

this MO is an ECL information. The MO is a disk memory that

stores information about the evolving states of a system. This

memory will help to make recommendations about the evolving

system.

Next section describes the algorithmic form of the proposed

approach to realize our approach for ECL that makes a SysNN.

III. SYSTEM STRUCTURE LEARNING

This section describes contributory algorithm System

Structure Learning (SSL). It uses N Design Structure Matrices

(N_DSMs) to represent N states of an evolving system. Fig. 2

gives an overview of SSL that internally uses Evolving DSM

IEEE Transactions on Artificial Intelligence (TAI) 3

and Deep Evolution Learner (DEL). The DEL uses evolution

representor to learn the evolution of a time-variant data of a

state series. The DEL reconstructs an input zero vector to an

output vector, which is transformed to an output matrix that is

further normalized. First, we define the Evolving DSM (EDSM)

as shown in the left-top of Fig. 2.

Definition 3: Evolving Design Structure Matrix (EDSM) is

a type of DSM that represents an ordered series of N vectors for

time-variant data of N states in a state series SS of an evolving

system (or project). EDSM intelligently designs a state series to

represent evolution as the 2-dimensional tensor of (m×m) × N

containing entity-connections (ecjk) between entity ‘j’ and ‘k’.

Algorithm SSL(N_DSMs)

Initialize a zero matrix as MZ

zero_vector = matrixToRowVector(MZ)

EDSM = evolutionRepresentor(N_DSMs)

output_vector = deep_evolution_learner (EDSM, zero_vector)

MO = rowVectorToMatrix(output_vector)

MNO = normalize(MO)

Return MNO

Next, we describe details about the Algorithm SSL. We

elaborate the time-variant data of ECL, which works as input

for unsupervised system learning. The evolutionRepresentor

transforms N DSMs (N_DSMs) into N vectors, which

represents N training states in an EDSM. The algorithm

transforms a DSM of state Si into vector_i. For a state, its DSM

has size m×m and each vector (vector_i) has m×m elements.

Then, each vector_i combines to form an EDSM. The EDSM

given in equation (3) is a type of evolution representor ER as

described in the equation (1).

EDSM = f(𝐒𝐒)

EDSM = 𝒆𝒗𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝑹𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒐𝒓(𝑁𝐷𝑆𝑀𝑠) … (3)

Algorithm evolutionRepresentor(N_DSMs)

For each DSM_i in N_DSMs where i ∈ state number

vector_i = matrixToRowVector(DSM_i)

EDSM =

vector_i

+

EDSM

End for

Return EDSM

Fig. 2 shows a graphical schematization of the relationships

between SSL, DEL, EDSM, ECL, and SysNN. The SSL uses

DEL (deep_evolution_learner) that elaborates the evolution

learner g(ER) mentioned as equation (2). An unsupervised

learning on the EDSM (unlabeled data) can detect evolution and

change patterns. The SSL depends on the EDSM and the DEL

(unsupervised learning). The DEL learns evolution and change

patterns in the EDSM (time-variant data) of a state series. The

DEL makes a machine capable enough to understand the

evolution and changes happening between states without

explicit programming. The DEL is an extension of deep

learning that learns from an EDSM and outputs a vector

(output_vector). The DEL makes the machine intelligent by

generating Deep System Neural Network (Deep SysNN) shown

in Figs. 2 and 3.

In Figs 2 and 3, the deep_evolution_learner takes the EDSM

of size N × (m×m) for training purposes, where N is the number

of states and m × m is the size of square DSM. The DEL makes

a Deep SysNN (in the form of weight matrices) based on the

training by delTrain (means deep evolution learner training).

The three main training parameters (trainParameters) control

deep learning: learning rate (LR), epoch (Ep), and number of

hidden layers (L). Deep learning can use matrices, but the DEL

uses evolution representor (i.e., EDSM), which is the crux of

Fig 2. An overview of Algorithm SSL using DEL on EDSM as a time-variant data (or non-stationary data) consisting of the N data vector of a state

series to construct a Deep SysNN, whose three variants are explained in Fig. 3.

IEEE Transactions on Artificial Intelligence (TAI) 4

our approach. The Deep SysNN consists of information about

patterns of entity-connections in the form of a matrix of neural

networks. The training time mainly depends upon the number

of states and number entities i.e. N×m×m. The delReconstruct

uses Deep SysNN to reconstruct a zero_vector to an

output_vector with m×m elements.

Algorithm deep_evolution_learner (EDSM, zero_vector)

Initialize List trainParameters< LR, Ep, L >

Initialize a matrix Deep_SysNN

Deep_SysNN = delTrain(EDSM, trainParameters)

// three variant of Deep SysNN based on Equation 4 to 10

output_vector = delReconstruct(Deep_SysNN, zero_vector)

Return output_vector

The computational complexity of the SSL algorithm depends

on the deep_evolution_learner algorithms, which further

depends upon the delTrain and delReconstruct approach. Both

are optimization problems (not decision problems) for the

purpose of probabilistic solutions to do recommendations or

predictions. Our technique uses optimization functions to

provide an approximate solution based on probabilistic

modeling in polynomial runtime O(N×m2), where N is the

number of states and m is the number of entities. In Fig. 3, we

describe how delTrain (hidden layer or code) and

delReconstruct works in the DEL using extended objective

functions of three well-known deep learning techniques: RBM,

DBN, and dA. RBM and DBN are used because they are

fundamental techniques of Deep learning.

First, the DEL reformulates the Restricted Boltzmann

Machine’s energy model as equation (4) with 𝐸(𝑬𝑫𝑺𝑴, 𝒉) =

∑(𝑎𝑖 𝑒𝑐𝑗𝑘)

𝑖

+ ∑(𝑏𝑙 ℎ𝑙)

𝑙

+ ∑ ∑(𝑒𝑐𝑗𝑘 𝑤𝑖𝑙 ℎ𝑙)

𝑙𝑖

 … (4)

where 𝑖 represent ith state, the 𝑬𝑫𝑺𝑴 represents an evolution

representor that contains 𝑒𝑐𝑗𝑘 as an entity-connection between

two entities 𝑗 𝑎𝑛𝑑 𝑘. In the Deep_SysNN matrix of size (m×m)

× L, this 𝑤𝑖𝑙 represents the weight of 𝑖 and 𝑙 position. The

weight matrix represents connections in SysNN such that a

DSM is a visible unit of size m×m and the 𝒉 is hidden unit. The

RBM equation, there are two bias weights (offsets): the 𝑎𝑖

and 𝑏𝑙 for visible and hidden units respectively. Reformulate

the energy model 𝐸(𝑬𝑫𝑺𝑴, 𝒉) into a probabilistic model

makes equation

𝑃(𝑬𝑫𝑺𝑴, 𝒉) =
1

𝑍
𝑒−𝐸(𝑬𝑫𝑺𝑴, 𝒉) … (5).

Then find conditional probability h of hidden layer when

EDSM is given as input, which makes equation

g(𝐄𝐑) = 𝑃(𝒉|𝑬𝑫𝑺𝑴) = ∏ 𝑃(𝒉𝒍|𝑬𝑫𝑺𝑴) … (6)

𝐿

𝑙=1

.

For best recommendation by equation (6), the reconstruction

error needs to be minimized objective function as equation

𝑑𝑙𝑜𝑔𝑃(𝒉|𝑬𝑫𝑺𝑴)

𝑑𝑾𝑗𝑘𝑙
≈ < 𝑒𝑐𝑗𝑘ℎ𝑙 >𝑑𝑎𝑡𝑎 −< 𝑒𝑐𝑗𝑘ℎ𝑙 >𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 … (7).

Second, the DEL reformulates the Deep Belief Network as a

stack of RBMs working together for training on EDSM. This

greedy learning forms the Deep Belief Network. Therefore, the

reformulation makes equation (8) with g(𝐄𝐑) =

𝑃(𝑬𝑫𝑺𝑴, ℎ1, ℎ2 … ℎ𝐿) = (∏ 𝑃(ℎ𝑙|ℎ𝑙+1)

𝐿−2

𝑙=0

) 𝑃(ℎ𝐿−1, ℎ𝐿) … (8)

where 𝐿 denotes a user-defined number of hidden layers and ℎ𝑙

denotes the 𝑙th hidden layer.

Third, the DEL reformulates the auto-encoder to make a

neural network by encoding the input 𝑬𝑫𝑺𝑴 into 𝑐(𝑬𝑫𝑺𝑴).

The objective is to reconstruct 𝑐(𝑬𝑫𝑺𝑴) using a decoder

function with least error. The DEL minimizes reconstruction

error by minimizing the objective function of negative log-

likelihood of conditional entropy given as equation (9)

𝑅𝐸 = − log 𝑃(𝑬𝑫𝑺𝑴|𝑐(𝑬𝑫𝑺𝑴)) … (9)

𝑅𝐸 = − ∑ 𝑒𝑐𝑗𝑘 𝑙𝑜𝑔𝑓𝑖(𝑐(𝑬𝑫𝑺𝑴))

𝑖

+ (1 − 𝑒𝑐𝑗𝑘) log (1 − 𝑓𝑖(𝑐(𝑬𝑫𝑺𝑴)))

where 𝑓𝑖(𝑥) decode xi, and 𝑓𝑖(𝑐(𝑬𝑫𝑺𝑴)) reconstruct ith state

of 𝑬𝑫𝑺𝑴 using the Deep SysNN.

The input of denoising Autoencoder (dA) is stochastically

corrupted, and uncorrupted input is used to reconstruct the

target. The dA recommends the entity-connection patterns with

reformulated equation to reconstruct negative log-likelihood

𝑅𝐸 = − log(g(𝐄𝐑)) = − log 𝑃 (𝑬𝑫𝑺𝑴|𝑐(𝑬𝑫𝑺𝑴̃)) …(10)

where 𝑬𝑫𝑺𝑴 is the uncorrupted input, 𝑬𝑫𝑺𝑴̃ is the

stochastically corrupted input, and c(𝑬𝑫𝑺𝑴̃) is the encoded

form of 𝑬𝑫𝑺𝑴̃. To obtain best recommendations, minimize the

equation (10) as an objective function.

In SSL algorithm, the output_vector is converted to form a

matrix MO of size (m×m). The elements (yjk) in MO are between

0 and 1, which gives probability of connections between two

entities. The MO is normalized to a normalized matrix output

MNO. In normalization, the element (yjk) in the MO is converted

to element njk of MNO according to the normal distribution

Fig 3. Three kinds of Deep SysNN constructed by three DEL variants
based on the: RBM (in top), DBN (in middle), and dA (in bottom).

IEEE Transactions on Artificial Intelligence (TAI) 5

threshold. Thus, MNO is a binary matrix with njk is either 1 or 0

depending upon whether the connection exists or not. The MNO

is a kind of memorized information about an evolving system,

which is useful for decision-making and taking action. This

helps to deal with adaptation, control, and analysis of evolution

and changes in a system over evolving states.

For example, In Table I, an evolving system named as “List

of Multi-sport events” has 7 states for training and 1 state for

testing. The Fig. 4 show 7 adjacency matrix, which makes 7

DSMs as input to the SSL algorithm. This will result in three

different reconstructed matrices, which is compared with

testing matrix. The results of comparisons are given in Table II.

IV. EVALUATION USING K-FOLD AND FORWARD-CHAINING

This section describes evaluation of our System Structure

Learning (SSL) approach using two techniques for

experimental cross validation: k-Fold and forward-chaining

(also known as time series cross validation). Our model has four

parts to test SSL algorithms: training data, testing data, target

output, and classifier metrics. The training data of DEL is an

EDSM. The DEL learns evolution patterns from EDSM of a

state series in an ‘unsupervised manner’. The training data is

the connection patterns between a set of entities (features) in the

form of EDSM for a state series. After training, the DEL creates

Deep SysNN. Learning and recommendation of changes rely on

frequency of occurrence of connection between two entities

(features) in an EDSM. The Deep SysNN supports

reconstruction of a zero matrix MZ to an output matrix MO.

The testing data is a testing matrix MT, which represents

entity-connections of a state for testing. The testing data is a

DSM of a state that is unused during the training phase. The

target output is the output matrix MO that can reflect evolution

information about the evolving system. Using Deep SysNN, we

can automatically produce an output matrix MO (containing

patterns of entity-connections) that recommends evolving

entity-connections of an evolving system.

There are four well-known binary classifier metrics

(accuracy, precision, recall, and f-measure), which checks

whether the output is correct or incorrect. The four metrics can

analyze the output MNO according to the desired correctness.

Next, we discuss two cross validation techniques using the

four binary classifier metrics. The k-Fold is a well-known

technique [14], thus we skip its basic explanation. The forward-

chaining [15] is used for time (state) series based data where

learning from earlier states has importance. To do the two types

of cross validation, we made two types of directory (folder) that

contains training and testing data.

1. k-Fold: We made a k-Fold folder containing N+1

subfolder, where each subfolder contains N training matrix and

1 testing matrix MT_i of state Si. The name of the subfolder is

the testing state name (or number), and we denote it as ‘i’. Here,

k stands for the N states used for training purpose.

2. forwardChaining: We made a forwardChaining folder

containing N subfolders. Each subfolder contains training

matrices of previous states and 1 testing matrix MT_i of current

(i.e., testing) state Si. The name of the subfolder is the current

state name (or number), and we denoted it as ‘i’. For example,

Fig 4. Illustrative example of Algorithm SSL using DEL on input: 7 learning states and a testing state. This output 3 reconstructed matrices.

IEEE Transactions on Artificial Intelligence (TAI) 6

suppose a training data varies from 1 to N states, where N = 4.

k-Fold folder where k = 4: forwardChaining folder

folder 1: train [2 3 4] and test [1] folder 1: train [1] and test [2]

folder 2: train [1 3 4] and test [2] folder 2: train [1 2] and test [3]

folder 3: train [1 2 4] and test [3] folder 3: train [1 2 3] and test [4]

folder 4: train [1 2 3] and test [4]

The k-Fold_forwardChaining algorithm performs two types

of cross validations: k-Fold and forward-chaining. The first and

second ‘for-loop’ identifies the result for the k-Fold folder and

the forwardChaining folder respectively. Both the loop

calculates four binary classifier metrics over their folder, and

then stores the calculated values in their test_metric. After each

loop, the test_metric is used to calculate the four averages

(Acc., Pre., FMe., Rec.) of accuracy, precision, f-measure, and

recall over the number of subfolders in the k-Fold folder and

forwardChaining folder. Then, for both the validations, these

four averages are further averaged as (Avg.). All this will return

five results to both: k-Fold<Acc., Pre., FMe., Rec., Avg.> and

forwardChaining<Acc., Pre., FMe., Rec., Avg.>.

In the next section, we present analysis of six different

evolving systems. Our approach helps to intelligently manage

an evolving system represented as a state series of DSM.

V. EXPERIMENTS OF SSL AND SYSNN

This section demonstrates intelligent project management

application of our approach on the six real-world evolving

systems of four domains. We collected the six evolving systems

from four kinds of repositories: software (Maven), natural

language (Wikipedia), retail market (UCI), and movies genres

(IMDb). Four applications of these domains include: software

evolution analytics, natural-language evolution analytics,

market evolution analytics, and movie evolution analytics,

respectively (as mentioned in the first column of Table I).

Based on the proposed SSL approach, we developed and

experimented with a prototype tool named as SysEvoRecomd-

Tool to analyze time variant (or non-stationary) data of the six

evolving systems (mentioned in second column). For each

evolving system, we evaluate recommendations by

SysEvoRecomd-Tool. For each experiment, there are N+1

states of an evolving system (as mentioned in the third column

of Table I). Only N states are used in the training phase and the

remaining one state is used for the testing phase. Each of the

evolving systems is represented with a set of N+1 evolving

graphs over time that is further converted to N+1 DSMs. To

demonstrate applied intelligent management, we performed the

following three steps on each evolving system.

- First, in the SSL, the evolutionRepresentor algorithm

transforms N DSMs into N vectors such that each vector

contains m×m elements. Then, the algorithm combines the N

vectors to form an EDSM as training input. An EDSM

represents the non-stationary data due to its property of varying

with time. Each EDSM has size (N × (m×m)), given in the

fourth column, where N is the number of states (e.g. software

versions) and m is the number of entities (e.g. procedures in

software).

- Second, in the SSL, the deep_evolution_learner (DEL)

uses an EDSM to generate a Deep SysNN. The DEL variants

have its own advantages to analyze the system evolution. The

learning an evolving matrix (i.e. EDSM) over time is a non-

stationary learning of a full system data. This learning depends

upon the following variables: number of states (N), number of

entities (m), and training parameters: Learning Rate (LR),

Epoch (Ep), and number of hidden units/layers of neurons (L).

The (LR-Ep-L) value used in each experiment is mentioned in

the sixth column of Table I. These training parameter values

resulted in high accuracy and f-measure. The DEL works like a

feed-forward neural network learning algorithm, which uses

many iterations (i.e. epochs) in the learning phase. Learning

rate controls the learning of an algorithm. To keep it simple, for

all the dA experiments data corruption rate used is 0.3, and for

DBN the same learning rate for pre-training and for fine-tuning

is used.

The DEL in the SysEvoRecomd-Tool extended deep

learning (source code of RBM [5], DBN [6], and dA [7] written

in java https://github.com/yusugomori/DeepLearning by

Sugomori Yusuke [18]). We used these codes to make three

variants of deep evolution learner (DEL). For each evolving

system, the fifth column of Table I contains a group of three

rows for three DEL variants: RBM, DBN, and dA.

We did many experiments to determine the best training

parameters. Like other optimization techniques, while

performing the experiments, we used Explore (search region for

candidate solutions outside neighborhood) and Exploit (search

best solution within the neighborhood) to tune the parameters

[16]. Initially, we keep on exploring the region (by making

large changes in the parameter values) till we get significantly

better results (f-measure and accuracy). Thereafter, we exploit

the region (by making small changes in the parameter values)

till we get the best result of that region.

Algorithm k-Fold_forwardChaining()

Initialize accuracy, precision, recall, f-measure, test_metric

For each ith subfolder in k-Fold and i ∈ state number

MNO = SSL(MatrixN)

accuracy = accuracy(MNO, MT_i)

precision = precision(MNO, MT_i)

recall = recall(MNO, MT_i)

f-measure = f-measure(precision, recall)

test_metric = line(i, accuracy, precision, f-measure, recall)

End for

Calculate four averages as (Acc., Pre., Fme., Rec.) of all four

metrics as over the number of states in test_metric.

Then, calculate the average (Avg.) of the four averages.

For each ith subfolder in forwardChaining and i ∈ state number

MNO = SSL(Matrixprevious_states)

accuracy = accuracy(MNO, MT_i)

precision = precision(MNO, MT_i)

recall = recall(MNO, MT_i)

f-measure = f-measure(precision, recall)

test_metric = line(i, accuracy, precision, f-measure, recall)

End for

Calculate four averages as (Acc., Pre., Fme., Rec.) of all four

metrics over the number of states in test_metric.

Then, calculate the average (Avg.) of the four averages.

Return k-Fold<Acc., Pre., FMe., Rec., Avg.> and

forwardChaining<Acc., Pre., FMe., Rec., Avg.>

IEEE Transactions on Artificial Intelligence (TAI) 7

For each evolving system, the DEL variants (RBM, DBN,

and dA) make three Deep SysNNs as described in Fig. 3. Each

Deep SysNN reconstructs a zero matrix MZ into an output

matrix MO of size (m×m). The MO is transformed to a binary

normalized output matrix MNO of size m×m.

 - Third, in testing, the k-Fold_forwardChaining algorithm

compares the normalized output matrix MNO with the testing

matrix MT. The similarity between the binary matrices (MNO

and MT) will provide a measure of – “how well the MNO mimics

the pattern of the old states”. The algorithm calculates similarity

between the two binary matrices (MNO and MT) using statistical

metrics: accuracy, precision, recall and f-measure.

The accuracy is the measure of “how many of all connections

and no-connections have been recommended correctly”. The

precision is the measure of “how many of all connections have

been recommended correctly”. The recall is the measure of

“how many connections have been recommended correctly”.

The f-measure is the harmonic mean of the precision and recall.

These four metrics results are used to evaluate the

SysEvoRecomd-Tool. Higher value of a metric represents high

similarity (means good result) and low value of a metric

represents dissimilarity (means bad result).

In both the matrices (MNO and MT), an entity-connection ecjk

(at jth row and kth column), each ‘1’ represents there exist

connection and each ‘0’ represents no-connection (i.e.

connection do not exist) between two entities (‘j’ and ‘k’). The

accuracy metric represents the similarity between all the values

(0’s and 1’s) of two binary matrices, whereas precision, recall,

and f-measure represent the similarity between all the values of

1’s. The matrices used in the experiments have imbalancing of

few 1s and many 0s.

Mathematically, we re-formulate these well-known metrics

for our goal in the following way, where, # denotes “count of”

TABLE I
INTELLIGENT MANAGERIAL INFORMATION ABOUT EVOLVING SYSTEMS, STATE SERIES, EDSM SIZE, AND EXPERIMENTAL RESULTS

Domain of

Evolving

System

Evolving

system

States

(N+1)

N_DSMs

makes

EDSM size

N × m×m

DEL

Variant

Training parameters

LR-Ep-L

k-Fold, where k is (N) number of

states, which is constant for an

experiment

Forward-chaining for time

(state) series, here number of

states used for training varies

from 1 to N

Acc. Pre. FMe. Rec. Avg. Acc. Pre. FMe. Rec. Avg.

(A)

Evolving

Software

System

Hadoop-

HDFS1 15
14 ×

3129 × 3129

RBM 0.5-50-50 0.999 0.742 0.838 0.973 0.888 0.999 0.901 0.886 0.875 0.915

DBN 0.01-10-(10× 5) 0.999 0.718 0.831 0.997 0.886 0.999 0.883 0.913 0.952 0.936

dA 0.1-10-10 0.999 0.726 0.830 0.978 0.883 0.999 0.889 0.907 0.931 0.931

(B)

Evolving

Natural

language

Systems

List of Bible

Translation2 5
4 ×

25 × 25

RBM 0.01-100-100 0.882 0.378 0.464 0.872 0.649 0.96 0.612 0.522 0.657 0.687

DBN 0.001-100-(100×5) 0.966 0.548 0.598 0.886 0.749 0.977 0.685 0.615 0.657 0.733

dA 0.01-100-100 0.966 0.548 0.598 0.886 0.749 0.977 0.685 0.615 0.657 0.733

List of Multi-

sport events3 8
7 ×

14 × 14

RBM 0.1-100-100 0.895 0.32 0.475 0.958 0.662 0.93 0.394 0.515 0.784 0.655

DBN 0.001-100- (100×5) 0.921 0.408 0.565 0.964 0.714 0.936 0.418 0.531 0.748 0.658

dA 0.01-100-100 0.918 0.383 0.536 0.947 0.696 0.932 0.404 0.524 0.784 0.661

(C)

Evolving

Retail

Market

System

Retail Market4 13
13 ×

118 × 118

RBM 0.2-100-100 0.965 0.582 0.663 0.81 0.755 0.969 0.66 0.69 0.784 0.775

DBN 0.001-100-(100×5) 0.965 0.555 0.664 0.859 0.760 0.97 0.651 0.686 0.770 0.769

dA 0.1-100-100 0.953 0.484 0.616 0.896 0.737 0.966 0.624 0.685 0.806 0.770

(D)

Evolving

IMDb

movie

genre

systems5

Positive

sentiment6 of

movie genres5
12

11 ×

25 × 25

RBM 0.01-100-100 0.914 0.349 0.496 0.961 0.68 0.935 0.405 0.529 0.823 0.673

DBN 0.001-100-(100×5) 0.914 0.349 0.496 0.961 0.68 0.945 0.444 0.564 0.823 0.694

dA 0.01-100-100 0.914 0.35 0.498 0.961 0.680 0.945 0.444 0.565 0.823 0.694

Negative

sentiment6 of

movie genres5;
12

11 ×

45 × 45

RBM 0.01-100-100 0.89 0.277 0.404 0.924 0.623 0.937 0.374 0.479 0.689 0.619

DBN 0.001-100-(100×5) 0.915 0.313 0.446 0.885 0.639 0.947 0.435 0.518 0.682 0.645

dA 0.001-100-100 0.891 0.291 0.421 0.921 0.631 0.947 0.435 0.518 0.682 0.645

1. https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-hdfs Oct 2016.

2. https://en.wikipedia.org/wiki/List_of_English_Bible_translations Oct 2016.

3. https://en.wikipedia.org/wiki/List_of_multi-sport_events Oct 2016.

4. https://archive.ics.uci.edu/ml/datasets/Online+Retail Oct 2016.

5. http://www.imdb.com/interfaces/ Oct 2016.

6. https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html

IEEE Transactions on Artificial Intelligence (TAI) 8

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(#

 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 +
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑛𝑜 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

)

𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑒𝑛𝑡𝑖𝑡𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑖. 𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑖𝑧𝑒

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑎𝑙𝑙 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑡𝑜𝑜𝑙

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

(#
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑚𝑒𝑛𝑑𝑒𝑑 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 + 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑠 𝑛𝑜 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠
)

In Table 1, k-Fold and forward-Chaining results provide an

assessment of the tool’s performance. In Figs. 5 and 6, we

plotted all the results mentioned in Table 1. The plots show our

recommender system is good at learning binary input patterns

to generate binary output matrices. The k-Fold and forward-

chaining is used to provide explainability and interpretability,

we inferred following conclusions.

- In Fig. 5, we presented the two kinds of cross-validation

results in the two graphical plots. The figure provides

explainability that the accuracy and recall are high as compared

to the f-measure and precision.

- The Fig. 6 demonstrates interpretability that the k-Fold and

the forward-chaining produced almost similar results.

Graph Neural Network and System Network Reconstruction:

There are three reconstructed networks MNO, which is system

network reconstructions generated from 3 variants SysNN. The

recommendation by system network reconstruction, we used

four metrics: precision, recall, accuracy, and f-measure. The

quality of recommendation by the system network

reconstruction can be seen in the Figs. 5 and 6.

Intelligent Managerial Observations: Finally, we discuss

our experience while conducting experiments. Our experiments

are novel for studying system evolution. Nevertheless, we

present following outcomes of our observations.

1. For learning purposes, our DEL solves the problem for

learning of an evolving system. As expected, we observed that

recommendation done by DBN and dA has outperformed the

RBM. The DEL generates Deep SysNN that has information

about evolution and changes happened in a system state series.

We found SysNN consist of information about the relationship

between system entities in various evolving system states.

2. Like human beings, a machine also needs both logical and

memory oriented learning. Logical learning (or generalization)

provides analytical power to the machines, whereas memorized

learning (or specialization) provides recommendation power to

the machine. Thus, memorization of old memory helps machine

to recommend an upcoming and non-existing data. Generally,

the patterns are almost constant in every system state, which

can be learned and stored as a memory. We did entity-

connection patterns learning and then stored in disk memory in

the form of a reconstructed information (normalized output

matrix MNO). This makes our results accurate and precise.

Hence, we found learning and memorization both are useful for

a machine to mimic patterns like a human.

3. Figure 5 and 6 shows natural-language based domains (B

and D) are harder to learn as compared to software and market

based domains (A and C). We made two inferences. First,

natural-language based system data (list of bible translation and

multi-sport events) are hard to learn for recommendation.

Fig 5. Explainability: Each plot shows 4 series for 4 metrics results on 18 experiments (3 DEL variants × 6 evolving systems). The experiments on
four domains (A, B, C, and D) at the horizontal axis as mentioned in Table 1 (with the same sequence of the values).

Fig 6. Interpretability: Inferred the Average of k-Fold and Forward-chaining over all the 18 experiments are almost similar. Inferred the 3 DEL
variants are producing almost similar recommendations with Average k-Fold and Average forward-changing of all evolving systems.

IEEE Transactions on Artificial Intelligence (TAI) 9

Second, inter-procedural calls of software are easier to learn for

recommendation. The medium of communications (e.g.

natural-languages) used by humans are significantly complex,

whereas the medium of communications (e.g. inter-procedural

calls) used by the computers are relatively less complex in

nature. Hence, we found learning of software systems (used by

machines) relatively easier as compared to learning of natural-

language systems (used by humans).

4. When an entity (or feature) is present in some states of

training data but missing in other states of training data, it is

hard to learn and recommend about such an entity. Generally,

in machine learning algorithms the size of features are fixed.

However, in our case the number of entities (as features) is

different in the different states. For example, some entities

(software procedures or natural-language words) exist in some

states but do not exist in other states. Thus, in the DSM, the

entities that do not exist in the state are used with zeros at its

row and column. For example, when new procedures are added

to a new version of an evolving software corresponding to new

functionalities. It is hard to recommend these new procedures

that never existed in old software versions used for training.

Hence, we found it is hard to recommend the future connections

for the entities (or features) that are absent in many training

states or present in few training states.

5. Accuracy metrics alone cannot give a justified measure

for the correctness of a model, thus we used precision, recall

and f-measure. It is because of imbalanced data, which means

classes (0s and 1s) are not distributed equally and learning from

an imbalanced dataset is a challenging task [17]. The datasets

used in our experiments are imbalanced, which means number

of entity-connections (ecjk = 1 or 0) are unevenly distributed in

EDSM. In our case (see Table II), distribution of zeroes (‘0’s)

and ones (‘1’s) are uneven i.e. the number of ‘0’s are

significantly higher than the number of ‘1’s. For entity-

connection recommendation, true positive TP (connection

recommended correctly) has more significance as compared to

TN (true negative). Similarly, false positive FP (connection

recommended incorrectly) has more significance as compared

to FN (false negative). Due to an imbalanced dataset, we are

getting a high value of accuracy metric as compared to f-

measure. Because accuracy metric compares the two matrices

bit-by-bit assuming each recommendation has the same

significance, whereas this fails on imbalanced data. Thus, we

used precision, recall and f-measure metric. Hence, for

imbalanced data, we found that along with accuracy metrics, it

is also required to use other evaluation metrics: precision,

recall, and f-measure.

Intelligent Managerial Applications: Our approach helps

to intelligently automate the management process of system

development, evolution, and maintenance. For both existing

and upcoming states, we used the time variant (or non-

stationary) data of four system domains. This leads to the

following advantages for a project manager. First, it can help to

predict connection between entities: call between two

procedures, link between two words, purchasing of items by a

customer, and relation between two movies. Second, it can also

be helpful while upgrading software systems, correcting

natural-language errors, improving retail market distribution,

and targeting audience for a genre. Third, it is helpful during

software development, rephrasing a text, doing target

marketing, and while naming a movie. Fourth, it can assist

system employees e.g., software programmer, writers (of book,

article, and novel), retail market (sales, finance, and marketing

team), and film production team. Fifth, it can help to speed-up

the software development, predictive text, customer billing, and

selecting movie names. Sixth, it can do automatic correction of

some errors during software debugging, autocorrecting while

writing text, customer satisfaction, and re-making a movie.

Seventh, it can determine the possible future of the software,

text usage trend, market analysis, and videos naming.

VI. RELATED WORKS AND COMPARISONS

This section describes and compares the current state-of-the-

arts with our work. Our approach is sufficiently new, best to our

knowledge it is hard to find other quantitatively comparable

approaches that provide statistical or empirical evaluation. We

will discuss qualitative comparison of our System Structure

Learning (SSL) and SysNN with other machine learning

techniques. Assuming every technique has its pros and cons, we

discuss comparison under the following three categories.

a) Well-known DSM techniques: Kosari et al. [19] provided

equivalency between properties of dynamic systems modeled in

state space and numerical process DSMs. Representation

Learning techniques use graphs efficiently e.g. Biomedical

networks [20]. We extended DSM and graph theory as EDSM

for training a SysNN. As compared to other techniques, the

advantage of SysNN is that it is used to model non-linear

relationships between entities (or features) in time-variant data.

b) Advanced ANN: There are different types of ANN and

DNN e.g. Graph Neural Network (GNN) [21], Deep Recurrent

Neural Network (RNN) [22], Long Short-Term Memory

(LSTM) [23], and Graph Attention Network (GAT) [24], which

has directed cycle to capture dynamic behavior of time-variant

or sequence data. The ANN is extended to RNN and GNN.

Similarly, we extended the DNN to SysNN, which learns from

multiple evolving graphs of a system state series. The Deep

RNN, GNN, GAT, and SysNN are advanced ANNs, but they

are defined for different purposes. SysNN is better than RNN

and GNN for system analysis because SysNN has system

information as it is trained from entity-connections in DSM of

multiple states. The SysNN covers broader applications for

evolving systems as compared to other NN.

Memory Networks [25] is a network that learns a given

knowledge for answering questions, e.g. Sukhbaatar et al. [26]

demonstrated an ANN trained using back-propagation and

TABLE II. INFORMATION ABOUT IMBALANCED DATASET USED.

Evolving Systems
Testing matrix

(MT)

Number

of 1s

Number

of 0s

Hadoop HDFS Version 2.7.2 2938 9787703

List of Bible Translation 20th Century 46 579

List of Multi-sport Events
201 i.e. 2010-2017

decade
8 188

Frequent Market Basket 1211 i.e. Dec. 2011 617 13307

Positive sentiment of

movie genres

201 i.e. 2010-2019

decade
47 578

Negative sentiment of

movie genres

201 i.e. 2010-2019

decade
177 1848

IEEE Transactions on Artificial Intelligence (TAI) 10

Ankit et al. [27] introduced Dynamic Memory Network

(DMN). Gulli et al. [31] invented a method and a system to

store, extract, and analyze entities from the temporal content to

present temporal trends according to user search query.

Lin et al. [32] proposed Knowledge Graph Neural Network

(KGNN) that learns structures of drugs from a knowledge graph

to predict drug-drug interaction. Zhang et al. [33] proposed

Heterogeneous Graph Neural Network (HetGNN) that aims to

resolve learning issue due to heterogeneous information in

nodes; this to helps in graph mining tasks for example link

prediction, recommendation, and node classification &

clustering. Wang et al. [34] proposed Heterogeneous graph

Attention Network (HAN) using hierarchical attentions at node

and semantic-level; this helps in classification and clustering.

Kosan et al. [35] proposed Dynamic Graph Event Detection

(DyGED, which combines a Graph CNN and RNN to learn

labeled events.

There are some analogies between a natural neural network,

and a SysNN. In biology, memories are also found in dolphins

[28], chimpanzees and orangutans [29], and hyenas [30].

Similarly, SysNN enhanced capablity to remember and

understand relationships between two separate entities, objects,

and features. Extending the state-of-the-art, we proposed an

ECL model that creates SysNN (a novel feed-forward ANN),

which represents a system structure. The Deep SysNN learns

and memorizes useful repeating (or mimic) patterns of system

entity-connections for intelligent state series management. We

found that SysNN generates MNO stored in disk memory, which

is useful to make recommendation about the evolving systems.

Usually, the SSL will be superior to most of the simple machine

learning techniques. It is hard to do comparative analysis with

complex techniques.

c) System Network Evolution mining: Our system network

evolution subgraph (graphlet and motif) mining [36], which

provides frequency and complexity information about patterns

formed by connections between entities over multiple states.

Our Stable Network Evolution Rule mining [37], which

provides rules only for frequently co-occurring entities over

multiple states. The six evolving systems used in experiments

are also used in our previous publications to retrieve evolution

subgraphs and rules for calculating system network complexity

[36] and system changeability metric [37]. Both approaches

[36][37] have their own importance and applications, the SSL

(with the SysNN) is better to make recommendations for all

connections between entities i.e. (m×m × N).

Limitations: We found following two limitations

- As the approach extends the deep learning and the deep

neural network, which also have some drawbacks. Our SSL and

SysNN also has similar drawbacks e.g. it is complex to

understand, significant amounts of states (as data) required for

training, and it takes time to learn. Relatively some algorithms

(e.g. support vector machine, decision trees, and regression) are

simpler, faster, and easier to learn a dataset. The SSL approach

is computationally expensive as compared to our other

approaches on the same evolving system’s dataset [36][37].

Still we found SSL is much superior at recommendations as

compared to both [36][37].

- Large size matrice take a long time to do deep learning. For

example, as Hadoop-HDFS has the large EDSM size 14 × (3129

× 3129), it took more time to learn as compared to other five

systems. In the same environment, we found learning smaller

EDSM took lesser time as compared to the large EDSM. The

six EDSM used as input are huge and computationally

expensive for real-world applications. However, our efficient

Java codes of SysEvoRecomd-Tool based on SSL algorithm

solved such real-world applications in feasible-time.

VII. CONCLUSIONS

We introduced Evolution and Change Learning (ECL) that

forms System Neural Network (SysNN). We elaborated this to

propose a System Structure Learning (SSL) algorithm, which

internally uses evolution representor (Evolving DSM) and deep

evolution learner (DEL). The DEL uses EDSM to construct a

Deep SysNN representing information of system states. Three

DEL variants generated three Deep SysNNs. We conducted

experiments on six evolving systems collected from open

internet repositories of four domains. This demonstrated four

intelligent applications with satisfactory accuracy, precision, f-

measure, and recall. The experiments present the study over

challenging imbalanced data of the evolving systems.

In future, instead of unsupervised deep learning another

technique can be used for example, supervised (e.g. active

learning), semi-supervised, and reinforcement learning.

Applying such techniques on evolving systems is still a research

topic. Our approach helps to intelligently manage other kinds

of systems in temporal analysis. The SysNN may be useful to

realize a hardware device on Spiking Neural Network (SNN)

[38]. Our approach could be applicable to systems including

IoT and software network evolution [39], which may have

devices, procedures, and components working together as

interacting or connected entities. Our algorithms are linear, in

future scalable parallel-programming can be introduced. Our

approach could be an innovative way to analyse evolution of

technological systems, Hughes [40]. Further we expect

application of our approach to study and analyze the Complex

Adaptive Systems (CAS) [41] and Systems of Systems (SoS)

[42]. Effort toward developing CAS and SoS has raised

maintenance and evolution issues of versioning or states, where

our approach would be helpful.

ACKNOWLEDGMENT

The authors thank graduate students Krishna Chaitanya and

Harsh Mohan of IIT Indore for their initial help to lead author.

REFERENCES

[1] L. V. Bertalanffy, "General system theory." General systems 1.1 (1956):

11-17.

[2] D. V. Steward "The design structure system: A method for managing the
design of complex systems." IEEE Trans. on Engineering Management 3

(1981): 71-74.

[3] T. R. Browning "Design structure matrix extensions and innovations: a
survey and new opportunities." IEEE Trans. on Engineering

Management 63.1 (2016): 27-52.

[4] Y. LeCun, Y. Bengio, an[1d G. Hinton. “Deep learning.” Nature 521.7553
(2015): 436-444.

[5] G. W. Taylor, G. E. Hinton, and S. T. Roweis. "Modeling human motion

using binary latent variables." Advances in Neural Information
Processing Systems. 2006.

[6] G. E. Hinton, S. Osindero, and Y.-W. Teh. "A fast learning algorithm for

deep belief nets." Neural computation 18.7 (2006): 1527-1554.

IEEE Transactions on Artificial Intelligence (TAI) 11

[7] P. Vincent, et al. "Extracting and composing robust features with
denoising autoencoders." 25th Int. Conf. on Machine learning. ACM,

2008.

[8] G. Ditzler, et al. "Learning in nonstationary environments: A
survey." IEEE Computational Intelligence Magazine 10.4 (2015): 12-25.

[9] A. Chaturvedi, & A. Tiwari. “System Evolution Analytics: Deep
Evolution and Change Learning of Inter-Connected Entities”. 2018 IEEE
Int. Conf. on Systems, Man, and Cybernetics (SMC) (pp. 3075-3080).

[10] A. Chaturvedi and A. Tiwari. “System Evolution Analytics: Evolution
and Change Pattern Mining of Inter-Connected Entities”. 2018 IEEE Int.
Conf. on Systems, Man, and Cybernetics (SMC) (pp. 3877-3882).

[11] A. Chaturvedi, et al. "Service Evolution Analytics: Change and Evolution
Mining of a Distributed System." IEEE Trans. on Engineering
Management 68.1 (2020): 137-148.

[12] A. Chaturvedi, and A. Tiwari. "SysEvoRecomd: Graph Evolution and
Change Learning Based System Evolution Recommender." 2018 IEEE
Int. Conf. on Data Mining Workshops (ICDMW) (pp. 1499-1500). IEEE.

[13] A. Chaturvedi, A. Tiwari and S. Chaturvedi, "SysEvoRecomd: Network

Reconstruction by Graph Evolution and Change Learning," in IEEE
Systems Journal, doi: 10.1109/JSYST.2020.2988037.

[14] J. D. Rodriguez, A. Perez, and J. A. Lozano. "Sensitivity analysis of k-

fold cross validation in prediction error estimation." IEEE Trans. on
Pattern Analysis and Machine Intelligence 32.3 (2010): 569-575.

[15] R. Kohavi, and G. H. John. "Wrappers for feature subset

selection." Artificial intelligence 97.1-2 (1997): 273-324.
[16] M. Črepinšek, S.-H. Liu, and M. Mernik. "Exploration and exploitation in

evolutionary algorithms: A survey." ACM computing surveys

(CSUR) 45.3 (2013): 1-33.
[17] H. He, and E. A. Garcia. "Learning from imbalanced data." IEEE Trans.

on Knowledge and Data Engineering 21.9 (2009): 1263-1284.

[18] S. Yusuke. “Java deep learning essentials.” (2016).
[19] A. Kosari, M. H. Jafari, and M. Fakoor. "On Equivalency Between

Numerical Process DSM and State-Space Representation." IEEE Trans.

on Engineering Management 63.4 (2016): 404-413.
[20] M. M. Li, K. Huang, and M. Zitnik. "Representation Learning for

Networks in Biology and Medicine: Advancements, Challenges, and

Opportunities." arXiv preprint arXiv:2104.04883 (2021).
[21] Z. Wu, et al. "A comprehensive survey on graph neural networks." IEEE

Trans. on Neural Networks and Learning Systems (2020).

[22] M. Hermans, and B. Schrauwen. “Training and analysing deep recurrent

neural networks.” Advances in neural information processing systems 26

(2013): 190-198.
[23] S. Hochreiter, and J. Schmidhuber. "Long short-term memory." Neural

computation 9.8 (1997): 1735-1780.

[24] P. Veličković, et al. "Graph attention networks." arXiv preprint
arXiv:1710.10903 (2017).

[25] J. Weston, S. Chopra, and A. Bordes. "Memory networks." arXiv preprint

arXiv:1410.3916 (2014).
[26] S. Sukhbaatar, J. Weston, and R. Fergus. "End-to-end memory

networks." Advances in Neural Information Processing Systems. 2015.

[27] A. Kumar, et al. "Ask me anything: Dynamic memory networks for
natural language processing." Int. Conf. on Machine Learning. 2016.

[28] J. N. Bruck "Decades-long social memory in bottlenose dolphins."

Proceedings of the Royal Society of London B: Biological Sciences
280.1768 (2013): 20131726.

[29] G. Martin-Ordas, D. Berntsen, and J. Call. "Memory for distant past

events in chimpanzees and orangutans." Current Biology 23.15 (2013):
1438-1441.

[30] H. E. Watts, and K. E. Holekamp. "Interspecific competition influences

reproduction in spotted hyenas." J. of Zoology 276.4 (2008): 402-410.
[31] A. Gulli, F. Tanganelli, and A. Savona. "System and method for

monitoring evolution over time of temporal content." U.S. Patent

Application No. 11/313,584, 2007.
[32] Lin, Xuan, et al. "KGNN: Knowledge Graph Neural Network for Drug-

Drug Interaction Prediction." IJCAI. Vol. 380. 2020.

[33] Zhang, Chuxu, et al. "Heterogeneous graph neural network." Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining. 2019.

[34] Wang, Xiao, et al. "Heterogeneous graph attention network." The World
Wide Web Conference. 2019.

[35] Kosan, Mert, et al. "Event Detection on Dynamic Graphs." arXiv preprint

arXiv:2110.12148 (2021).
[36] A. Chaturvedi and A. Tiwari. “System Network Complexity: Network

Evolution Subgraphs of System State series”. IEEE Trans. on Emerging
Topics in Computational Intelligence (2018).

[37] A. Chaturvedi, A. Tiwari, and N. Spyratos. "minStab: Stable Network
Evolution Rule Mining for System Changeability Analysis." IEEE Trans.
on Emerging Topics in Computational Intelligence (2019).

[38] W. Maass. "Networks of spiking neurons: the third generation of neural
network models." Neural networks 10.9 (1997): 1659-167.

[39] M. A. Fortuna, J. A. Bonachela, and S. A. Levin. "Evolution of a modular
software network." Proceedings of the National Academy of
Sciences 108.50 (2011): 19985-19989.

[40] T. P. Hughes, "The evolution of large technological systems." The social
construction of technological systems: New directions in the sociology
and history of technology 82 (1987).

[41] J. H. Holland. "Complex adaptive systems." Daedalus (1992): 17-30.
[42] A. Gorod, B. Sauser, and J. Boardman. "System-of-systems engineering

management: A review of modern history and a path forward." IEEE
Systems Journal 2.4 (2008): 484-499.

Animesh Chaturvedi is working as an Assistant
Professor at the Data Science and Intelligent
Systems Department of the Indian Institute of
Information Technology Dharwad. He was a
Post-Doctoral Research Assistant at King’s
College London and working with The Alan
Turing Institute. He completed his PhD degree
from IIT Indore. He received the BEng degree
from IET - DAVV, Indore and the MTech degree
from IIITDM, Jabalpur. He did research work with

the IIT-Kanpur, Motorola, and Arris. Dr. Chaturvedi has been selected
as 200 young researcher for Heidelberg Laureate Forum (HLF) 2019.

Aruna Tiwari received the B.Eng., M.Eng., and
Ph.D. degrees in computer engineering. She is
working as an Associate Professor of Computer
Science and Engineering at IIT Indore, since
2012. Dr. Tiwari has been a Reviewer for many
journals and conferences. She has research
collaborations with CSIR CEERI Pilani and the
Indian Institute of Soyabean Research (Indian
Council of Agriculture and Research).

Shubhangi Chaturvedi is working towards the
PhD degree at the Indian Institute of Information
Technology, Design and Manufacturing,
Jabalpur. She received the BEng degree from
RGPV University, and the MTech degree from
National Institute of Technology Bhopal, Bhopal.
She has been Assistant Professor of National
Institute of Technology Bhopal, Bhopal. Her
research interest is in Data mining and Big Data
Analytics.

Pietro Lio is Full Professor at the Department of
Computer Science and Technology of the
University of Cambridge. He is a member of the
AI group and the Cambridge Centre for AI in
Medicine. He holds a PhD in Genetics and a
second PhD in Non-Linear Dynamics and
Complex Systems. He is fellow and member of
the Council of Clare Hall College, the Ellis, the
European Lab for Learning & Intelligent Systems
and the Academia Europaea. His research
interest focuses on AI, Computational Biology,
Graph NN, Explainability and Interpretability.

View publication stats

https://www.researchgate.net/publication/357916473

