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ABSTRACT 
 

Clustering of high dimensionality data which can be seen in almost all fields these days is becoming 
very tedious process. The key disadvantage of high dimensional data which we can pen down is curse 
of dimensionality. As the magnitude of datasets grows the data points become sparse and density of 
area becomes less making it difficult to cluster that data which further reduces the performance of 
traditional algorithms used for clustering. Semi-supervised clustering algorithms aim to improve 
clustering results using limited supervision. The supervision is generally given as pair wise 
constraints; such constraints are natural for graphs, yet most semi-supervised clustering algorithms are 
designed for data represented as vectors [2]. In this paper, we unify vector-based and graph-based 
approaches. We first show that a recently-proposed objective function for semi-supervised clustering 
based on Hidden Markov Random Fields, with squared Euclidean distance and a certain class of 
constraint penalty functions, can be expressed as a special case of the global kernel k-means objective 
[3]. A recent theoretical connection between global kernel k-means and several graph clustering 
objectives enables us to perform semi-supervised clustering of data. In particular, some methods have 
been proposed for semi supervised clustering based on pair wise similarity or dissimilarity 
information. In this paper, we propose a kernel approach for semi supervised clustering and present in 
detail two special cases of this kernel approach. The semi supervised clustering problem is thus 
formulated as an optimization problem for kernel learning [4]. An attractive property of the 
optimization problem is that it is convex and, hence, has no local optima. While a closed-form 
solution exists for the first special case, the second case is solved using an iterative majorization 
procedure to estimate the optimal solution asymptotically. Experimental results based on both 
synthetic and real-world data show that this new kernel approach is promising for semi supervised 
clustering [5]. We consider the problem of clustering a given dataset into k clusters subject to an 
additional set of constraints on relative distance comparisons between the data items. The additional 
constraints are meant to reflect side-information that is not expressed in the feature vectors, directly. 
Relative comparisons can express structures at finer level of detail than must-link (ML) and cannot-
link (CL) constraints that are commonly used for semi-supervised clustering [6]. Relative 
comparisons are particularly useful in settings where giving an ML or a CL constraint is difficult 
because the granularity of the true clustering is unknown. Our main contribution is an efficient 
algorithm for learning a kernel matrix using the log determinant divergence (a variant of the Bregman 
divergence) subject to a set of relative distance constraints. Given the learned kernel matrix, a 
clustering can be obtained by any suitable algorithm, such as kernel k-means. We show empirically 
that kernels found by our algorithm yield clustering’s of higher quality than existing approaches that 
either use ML/CL constraints or a different means to implement the supervision using relative 
comparisons [7]. The proposed algorithm detects arbitrary shaped clusters in the dataset and also 
improves the performance of clustering by minimizing the intra-cluster distance and maximizing the 
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inter-cluster distance which improves the cluster quality. 
 

KEYWORDS: Data Mining, Clustering, Semi-Supervised Clustering, High Dimensional Data, 
Pairwise Constraints, Kernel K-means, Kernel Matrix, Hidden Markov Random Fields, Similarity.  

I. INTRODUCTION 

The aim of cluster analysis is to identify either a grouping into a specified number of clusters or a 
hierarchy of nested partitions. Recently, kernel methods, such as kernel PCA [5], kernel LDA [6] and 
kernel ICA [7], have been introduced to extract features for recognition. However, kernel parameter 
selection is difficult. One method is by trial-and-error heuristics, which is easy to implement but not 
efficient and also causes overfitting problem. The second is using boosting method [8] to learn the 
combination of kernel functions with different kernel types or different kernel parameters. In [9] one 
transformed kernel function is discussed, which is good in theory but cannot give an easy and efficient 
way to obtain the transformation matrix [4]. It is to give an efficient and convenient approach to 
extract features for high-dimensional data classification problems by generalizing the Gaussian kernel 
function. We analyze the NN classifier for high-dimensional data classification problems. To obtain 
better performance, we generalize the Gaussian Kernel to the so-called Data Dependent kernel, which 
can be easier to calculate compared with the invariant kernel in [9] and obtain better performance than 
conventional Gaussian kernel and Bayesian Face Matching method [10]. Semi Supervised clustering 
for classification can be formalized as the problem of inferring a function f(x) from a set of n training 
samples xi ∈RJ and their corresponding class labels yi. The model developed in this paper is aimed at 
multi-category classification problems. Of particular interest is classification of high dimensional data, 
where each sample is defined by hundreds or thousands of measurements, usually concurrently 
obtained? Such data arise in many application domains [2]. 

The proposed classifier performs classification of high dimensional data without any pre-processing 
steps to reduce the number of variables. RKHS methods allow for nonlinear generalization of linear 
classifiers by implicitly mapping the classification problem into a high dimensional feature space 
where the data is thought to be linearly separable [3]. Kernel methods were first introduced into 
statistical learning by (1) and later reintroduced by (2) who constructed the Support Vector Machine, 
a generalization of the optimal hyper plane algorithm for binary classification. Bayesian treatments of 
this popular deterministic statistical learning method were motivated by the need to overcome the 
problem of quantifying uncertainty of SVM predictions, as Bayesian framework allows for 
probabilistic outputs to be obtained from the predictive distribution [5]. Statistical learning models 
usually have complex structure and contain parameters that need to be tuned, which is often done via 
cross-validation. In can be argued, see for example (3), that the Bayesian framework is a natural 
setting for statistical learning algorithms, as decisions on the complexity of structure and parameter 
settings can be approached by specifying prior distributions, which formalizes the prior beliefs about 
which inputs are relevant, what a distribution of a parameter is or how smooth a function is [7]. 

We propose an adaptive Semi-supervised Clustering Kernel Method based on Metric learning 
(SCKMM) to mitigate the above problems. Specifically, we first construct an objective function from 
pair wise constraints to automatically estimate the parameter of the Gaussian kernel [3]. Then, we use 
pair wise constraint-based K-means approach to solve the violation issue of constraints and to cluster 
the data. Furthermore, we introduce metric learning into nonlinear semi-supervised clustering to 
improve separability of the data for clustering [6]. Finally, we perform clustering and metric learning 
simultaneously. Experimental results on a number of real-world data sets validate the effectiveness of 
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the proposed method. Semi-supervised clustering, which employs both supervised and unsupervised 
data for clustering, has received significant amount of attention in recent studies on data mining and 
machine learning communities [8]. 

Generally, existing methods for semi-supervised clustering can be grouped into two categories. The 
first category is the linear method including both metric-based and constraint-based approaches, 
which either aims to guide clustering process towards a more appropriate data partitioning by making 
use of pair wise instance constraints [2] or initializes cluster centroids by those labelled instances [4]. 
Specifically, the idea behind the linear constraint-based approach is to modify the objective function 
of existing unsupervised clustering so as to satisfy pair wise constraints. The metric-based approach 
learns a distance metric from pair wise constraints, and then utilizes an existing clustering algorithm 
to learn the similarity between data by using the learned distance metric [1]. In practice, many real-
world applications may involve data along with nonlinear patterns, which may not be effectively dealt 
with by those linear methods. The second one is the nonlinear method or kernel method, which is 
recently presented and proved powerful. These methods map the data into the feature space implicitly 
through a mapping induced by a kernel function such that a cluster assignment is performed with the 
help of the nonlinear boundary in the original space [3].  

Clustering a weighted undirected graph by subsequently removing edges with low weights may be 
hindered by chaining nodes. Like in a single linkage agglomerative clustering a chain of adjacent 
nodes may connect two distant clusters and thus hinder a splitting of spatially separated clusters [5]. 
We enhance the elimination of these nodes by applying a pre-processing based on random walks. In 
the current semi-supervised learning methods, the selection of initial seeds for the clustering 
algorithm is done randomly by the user, which may cause the data to be selected not from all the 
clusters; as a result, achieving a clustering model with a high degree of accuracy is not possible [6]. 
Innovation in this paper is the more accurate way of selecting the initial seeds for the constrained k-
means algorithm which results in increased accuracy of the algorithm [7]. 

II.   RELATED WORK 

In recent years various partitional cluster algorithms were adapted to make use of this kind of 
background information either by constraining the search process or by modifying the underlying 
metric [1]. It has been shown that including background knowledge might improve the accuracy of 
cluster results, i.e. the computed clusters better match a given classification of the data. Semi-
supervised clustering approaches have been shown to outperform their linear competitors [1] for real 
world tasks. However, existing nonlinear approaches have the following two disadvantages: 1) they 
do not necessarily improve the separability of the data for clustering; 2) they cannot effectively solve 
the violation issue of pair wise constraints. In addition, the selection of the kernel parameters is left to 
manually tuning due to the fact that no sufficient supervision is provided [4]. In practice, it is well-
known that the chosen values of the kernel parameters can largely affect the quality of the clustering 
results [3]. Therefore, it is necessary to overcome the difficulties described above for both conforming 
to the user’s preferences and improving the performance of semi-supervised clustering. The key 
challenge in improving separability of the data is how we can solve the violation issue of pair wise 
constraints such that the unlabeled data can still capture the available cluster information [5]. To this 
end, we present a new adaptive semi-supervised clustering kernel method based on metric learning, 
called SCKMM, which simultaneously performs clustering and metric learning by studying several 
important issues.  
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For the linear method for semi-supervised clustering, [2] proposed the constrained K-means algorithm 
by adjusting the cluster memberships to be consistent with the pair wise constraints. In [7], the authors 
presented probabilistic models for semi-supervised clustering where the pair wise constraints are 
incorporated into the clustering algorithms through the Bayesian priors [4]. It proposed a seeded K-
means which tries to get better initial cluster centroids from the labelled instances and restricts the 
clustering process to be consistent with the constraints. It combined the gradient descent method and 
the iterative projections together as a convex optimization to learn a Mahalanobis distance for the K-
means clustering. It proposed the relevant component analysis algorithm which learned a Mahalanobis 
distance by making use of the must-link constraints only this method is able to learn individual 
metrics for each cluster, which permits of different shapes [5]. However, the violation of pair wise 
constraints is not effectively solved in the clustering process. It provided a way to improve the semi-
supervised clustering for high-dimensional data by the constraint-guided feature projection instead of 
the metric learning [6].  

Another approach to the semi-supervised clustering is to cluster the data in terms of the kernel 
function. Kulis et al. It is to a kernel-based semi-supervised clustering. Instead of adding penalty term 
for pair wise constraints violated, a reward was given for the satisfaction of the constraints in this 
method [4]. Analogously, it presented an adaptive kernel learning method for semi-supervised 
clustering which kernelizes the objective function of Basu’s method [6] in the input space. Different 
from Kulis’ method that the setting of the kernel parameter was left to manually tuning, Yan’s method 
optimized the parameter of a Gaussian Kernel iteratively during the clustering process [2]. The above 
two nonlinear methods, Bayesian method for clustering points using a kernel matrix determinant 
based measure of similarity between data points. It is nonparametric in that prior mass is assigned to 
all possible partitions of the data. The proposed method explores this neglected aspect by introducing 
weights to the views which are learned automatically [3].  

From the viewpoint of how the view kernels are combined under our framework, semi supervised 
multiple kernel learning can also be considered as related work. Kernel k-means is an extension of the 
standard -means clustering algorithm that identifies nonlinearly separable clusters [2]. In order to 
overcome the cluster initialization problem associated with this method, we propose the global kernel 
k-means algorithm, a deterministic and incremental approach to kernel-based clustering [4]. Our 
method adds one cluster at each stage, through a global search procedure consisting of several 
executions of kernel -means from suitable initializations [5]. This algorithm does not depend on 
cluster initialization, identifies nonlinearly separable clusters, and, due to its incremental nature and 
search procedure, locates near-optimal solutions avoiding poor local minima [6].  

Furthermore, two modifications are developed to reduce the computational cost that do not 
significantly affect the solution quality. The proposed methods are extended to handle a weighted data 
point, which enables their application to graph partitioning. We experiment with several data sets and 
the proposed approach compares favourably to kernel k-means with random restarts [1]. Kernel k-
means [3] is an extension of the standard k-means algorithm that maps data points from the input 
space to a feature space through a nonlinear transformation and minimizes the clustering error in 
feature space. Thus, nonlinearly separated clusters in input space are obtained, overcoming the second 
limitation of k-means. This algorithm suffers from two serious limitations [2]. First the solution 
depends heavily on the initial positions of the cluster centres, resulting in poor minima, and second it 
can only find linearly separable clusters [4]. A simple but very popular workaround for the first 
limitation is the use of multiple restarts where the centres of the clusters are randomly placed to 
different initial positions and thus better local minima can be found. The number of restarts and also 
we are never sure if the initializations tried are good so as to obtain a near optimal minimum [5]. 
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III. KERNEL APPROACH FOR SEMI SUPERVISED CLUSTERING 

A key advantage to this approach is that the algorithm assumes a similarity matrix as input. As given 
in the derivation, the similarity matrix is the matrix of vector inner products (i.e. the Gram matrix), 
but one can easily generalize this by applying a kernel function on the vector data to form the 
similarity matrix [1]. The constraint information gives us important clues about the cluster structure, 
and this information may be incorporated into the initialization step of the algorithm [3]. After this 
step, we generate initial clusters by using a farthest-first algorithm. We compute the connected 
components and then choose k of these as the k initial clusters [4].  

The farthest first algorithm selects the largest connected component, and then iteratively chooses the 
cluster farthest away from the currently chosen cluster, where the distance between clusters is 
measured by the total pair wise distance between the points in these clusters [5]. Once these k initial 
clusters are chosen, we initialize all points by placing them in their closest cluster. Note that all the 
distance computations in this procedure can be performed efficiently in kernel space. We must show 
that each of these objectives can be written as a special case of the weighted kernel k -means objective 
function [6]. n other words, we explicitly assume that the distance function δ is in fact the Euclidean 
distance in some unknown vector space. This is equivalent to assume that the evaluators base their 
distance-comparison decisions on some implicit features, even if they might not be able to quantify 
these explicitly [8]. 

IV. KERNEL APPROACH FOR HIGH DIMENSIONAL DATA 

The high dimensional data contains more number of attributes, in which some attributes are more 
important for representing the data points. In order to identify the important attributes in the dataset, 
the Kernel Principal Component Analysis is used. The kernel principal components are used for 
defining the kernel function [3]. By using the kernel function [6], i.e., an appropriate non-linear 
mapping from the original input space to a higher dimensional feature space, clusters that are non-
linearly separable in input space can be extracted.  The number of clusters is determined automatically 
using kernel score of all points. The initial clusters are formed using kernel principal components and 
the kernel scores [2]. The number of clusters and the initial clusters are used as input parameters for 
kernel clustering algorithm. This algorithm is expected to offer improvement by providing higher 
inter-cluster distance and lower intra-cluster distance. Since kernel mapping is applied, the algorithm 
detects arbitrary shaped clusters [4]. After mapping the samples into a higher feature space by a 
nonlinear mapping function ϕ, the samples in the feature space are observed as Φ.  However, once the 
kernel function is known, we can easily deal with the nonlinear mapping problem by replacing the 
mapping functions by the kernel functions [7]. 

V. PROPOSED WORK 

V a. KERNEL MULTIVARIATE ANALYSIS (KMVA) 

The framework of kernel MVA (kMVA) algorithms is aimed at extracting nonlinear projections while 
actually working with linear algebra. Let us first consider a function φ : Rd → F that maps input data 
into a Hilbert feature space F [1]. The new mapped data set is defined as Φ = [φ(x1), ···, φ (xl)]>, and 
the features extracted from the input data will now be given by Φ0 = ΦU, where matrix U is of size 
dim (F) ×nf [2]. The direct application of this idea suffers from serious practical limitations when the 
dimension of F is very large, which is typically the case. To implement practical kernel MVA 
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algorithms we need to rewrite the equations in the first half of Table II in terms of inner products in F 
only [3]. For doing so, we rely on the availability of a kernel matrix Kx = ΦΦ> of dimension l×l, and 
on the Representer’s Theorem [7], which states that the projection vectors can be written as a linear 
combination of the training samples, i.e, U = Φ>A, matrix A = [α1,...,αnf ] . The same σ has been 
used for all methods, so that features are extracted from the same mapping of the input data [4]. We 
can see that the non-linear mapping improves class separability. 

 

V b. SEMI-SUPERVISED CLUSTERING USING HIDDEN MARKOV RANDOM 
FIELDS (SSCHMRF) 

Semi-supervised clustering is to use a small number of labelled data to aid the clustering of unlabeled 
data. We propose a novel iterative algorithm to realize semi-supervised clustering considering local 
constraints [5]. It considers a labelling problem as a Markov process, where each intermediates state 
stands for a distribution of labels over data points. The goal is to preserve the locality, namely, local 
constraints as much as possible in the final clusters [6]. Topologically speaking, the clustering process 
creates a projection, which brings a certain data point from the configuration space to a graph space. It 
has been proved that the local embedding relations to k nearest neighbours are preserved for such 
projection [8]. 

V b1. ALGORITHM FOR SEMI-SUPERVISED CLUSTERING USING HIDDEN MARKOV 
RANDOM FIELDS (SSCHMRF) 

1: Proposed Semi-supervised clustering  
Input:  
Set of data points X ←{x1, x2... xN}, xi ∈<d,  
Number of clusters C, 
Initially labelled data set S = {s1...sc...sC},  
Models for each cluster Mc.  
Output:  
A partitional clustering [16] result {X1...Xc}, where ∪C c Xc = X;  
While # (unclustered points) > 0 and! Stop do 
1 Denote the set of labelled data: ˆ X; 
2 Get set of nearest neighbour’s Λ ⊂ X \ {ˆ X} of ˆ X; 
3 for each unlabeled point xu ∈ Λ do 
4 Knnu ←k-nearest-neighbour (xu, k, X); 
5 each labelled point in Knnu votes for the cluster 
6 of xu using its own label;  
7. Update the set for labelled data ˆ X; 
 

V b2. PROPERTIES OF SEMI-SUPERVISED CLUSTERING USING HIDDEN MARKOV 
RANDOM FIELDS (SSCHMRF) 

1) The distances definition between any pair of points  
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2) The number of nearest neighbours k that should be considered for k-nearest-neighbour ( ). The 
selection of k depends on the expected sparseness of the target dataset.  
3) A stop condition for the cluster. E.g. when the distance to the nearest unlabeled point is greater than 
a rational threshold, the cluster model should be considered as stable, hence the clustering should not 
extend the current cluster further. 
 

V c. MAXIMUM-LIKELIHOOD KERNEL DENSITY ESTIMATION (MLKDE) 

KDEs estimate the probability density function of a D dimensional dataset X, consisting of N 
independent and identically distributed samples x1... xN with the sum [9]. This formulation shows 
that the density estimated with the KDE is non-parametric, since no parametric distribution is imposed 
on the estimate; instead the estimated distribution is defined by the sum of the kernel functions 
centred on the data points. KDEs thus require the selection of two design parameters, namely the 
parametric form of the kernel function and the bandwidth matrix [10]. It has been shown that the 
efficiencies of kernels with respect to the mean squared error between the true and estimated 
distribution do not differ significantly and that the choice of kernel function should rather be based on 
the mathematical properties of the kernel function, since the estimated density function inherits the 
smoothness properties of the kernel function [11]. Based on the formulation of the leave-one-out ML 
objective function. We derive a new kernel bandwidth estimator named the minimum leave-one-out 
entropy (MLE) estimator [12]. (To our knowledge, this is the first attempt where partial derivatives 
are used to derive variable bandwidths in a closed form solution). 

 

 

 

 

V d. ADAPTIVE-SEMI SUPERVISED-KERNEL-KMEANS (ASSKKM) 

The problem of setting kernel’s parameters, and of finding in general a proper mapping in feature 
space, is even more di�cult when no labelled data are provided, and all we have available is a set of 
pair wise constraints [2]. In this paper we utilize the given constraints to derive an optimization 
criterion to automatically estimate the optimal kernel’s parameters. Our approaches integrate the 
constraints into the clustering objective function, and optimize the kernel’s parameters iteratively 
while discovering the clustering structure [3]. Specifically, we steer the search for optimal parameter 
values by measuring the amount of must link and cannot-link constraint violations in feature space. 
Following the method proposed in [4], we scale the penalty terms by the distances of points that 
violate the constraints, in feature space. That is, for violation of a must-link constraint (xi,xj), the 
larger the distance between the two points xi and xj in feature space, the larger the penalty; for 
violation of a cannot-link constraint (xi,xj), the smaller the distance between the two points xi and xj 
in feature space, the larger the penalty [5].  
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V d1. ALGORITHM FOR ADAPTIVE-SEMI SUPERVISED-KERNEL-KMEANS 

Input: 
 
 – Set of data points X = {xi}N i=1 
 – Set of must-link constraints ML 
 – Set of cannot-link constraints CL 
 – Number of clusters k  
 – Constraint violation costs wij and wij 
Output: 
 
– Partition of X into k clusters 
Method:  
 
1. Initialize clusters {π (0) c} k c=1 using the given constraints; set t = 0.  
2. Repeat Step3 - Step6 until convergence.  
3. E-step: Assign each data point xi to a cluster π (t) c so that Jkernel−obj is minimized.  
4. M-step (1): Re-compute B (t) cc, forc =1, 2, ···, k.  
5. M-step (2): Optimize the kernel parameter σ using gradient descent according to the rule: σ (new) = 
σ (old) −ρ∂Jkernel−obj ∂σ.  
6. Increment t by 1. 
 
 

V e. GLOBAL KERNEL K-MEANS (GKKM) 

In this paper we propose the global kernel k-means algorithm for minimizing the clustering error in 
feature space, defined. Our method builds on the ideas of the global k-means and kernel k-means 
algorithms [6]. Global kernel kmeans maps the dataset points from input space to a higher 
dimensional feature space with the help of a kernel matrix as kernel k-means does. In this way 
nonlinearly separable clusters are found in input space [7]. Also global kernel k-means finds near 
optimal solutions to the M -clustering problem by incrementally and deterministically adding a new 
cluster centre at each stage and by applying kernel kmeans as a local search procedure instead of 
initializing all M clusters at the beginning of the execution [8]. Thus the problems of initializing the 
cluster centres and getting trapped in poor local minima are also avoided. In a nutshell global kernel 
k-means combines the advantages of both global kmeans (near optimal solutions) and kernel k-means 
(clustering in feature space). 
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V e1. ALGORITHM FOR GLOBAL KERNEL K-MEANS (GKKM) 

 

 

V f. FAST GLOBAL KERNEL K –MEANS (FGKKM) 
 

The fast global kernel k-means algorithm is a simple method for lowering the complexity of the 
original algorithm. We significantly reduce the complexity by overcoming the need to execute kernel -
means times when solving the -clustering problem given the solution for the -clustering problem [9]. 
Specifically, kernel -means is employed only once and the kth cluster is initialized to include the point 
that guarantees the greatest reduction in clustering error. The above upper bound is derived from the 
following arguments [10]. First, when the kth cluster is initialized to include point. Second, since 
kernel k-means converges monotonically, we can be sure that the final error will never exceed our 
bound. When using this variant of the global kernel k-means algorithm to solve the M-clustering 
problem, we must execute kernel k-means M times instead of MN times [11]. In general, this 
reduction in complexity comes at the cost of finding solutions with higher clustering error than the 
original algorithm. However, as our experiments indicate, in several problems, the performance of the 
fast version is comparable to that of global kernel k-means, which makes it a good fast alternative 
[12]. 
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V g. WEIGHTED KERNEL K-MEANS (WKKM) 

If we associate a positive weight with each data point the weighted kernel k-means algorithm is 
derived [5]. The weights play a crucial role in proving an equivalence of clustering to graph 
partitioning, which is the reason we are interested in this version of kernel k-means. Again, suppose 
we want to solve the M-clustering problem [2]. The objective function is expressed as follows, where 
is the weight associated with data point. Algorithm can be applied with the slightest modification to 
get the weighted global kernel k-means algorithm. Specifically, we must include on the input the 
weights and run weighted kernel k-means instead of kernel k-means [3]. All other steps remain the 
same. The centre of the cluster in feature space is the weighted average of the points that belong to the 
cluster [4]. Once again, we can take advantage of the kernel trick and calculate the squared Euclidean 
distances. 

 

VI. EXPERIMENTS 
 

 In this section, we empirically demonstrate that our proposed semi-supervised clustering for kernel 
approach is both e�cient and e�ective.  
 

VII a. DATASETS 
 

The data sets used in our experiments include six UCI data sets1. Here is some basic information of 
those data sets. Table 5 summarizes the basic information of those data sets. 
• Balance. This data set was generated to model psychological experimental results. There are totally 
625 examples that can be classified as having the balance scale tip to the right, tip to the left, or be 
balanced. 
• Iris. This data set contains 3 classes of 50 instances each, where each class refers to a type of iris 
plant. 
• Ionosphere. It is a collection of the radar signals belonging to two classes. The data set contains 
351 objects in total, which are all 34-dimensional. 
• Soybean. It is collected from the Michalski’s famous soybean disease databases, which contains 
562 instances from 19 classes. 
 

Datasets Size Classes Dimensions 
Balance 625 3 4 

Iris 150 3 4 
Ionosphere 351 2 34 
Soybean 562 19 35 
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VIII. EXPERIMENTAL RESULTS 
 

VIII a. BALANCE DATASET RESULTS 
 

Balance Dataset 

Algorithm  Accuracy Precision Recall F-Measure 

KMVA 89.45 87.91 92.77 90.89 
SSCHMRF 79.91 76.08 74.78 86.56 

MLKDE 70.92 79.67 79.89 85.78 
ASSKKM 84.67 90.67 86.78 77.67 

GKKM 90.07 83.66 82.33 72.88 
FGKKM 75.66 70.89 90.75 80.34 
WKKM 91.78 80.34 70.89 92.55 

 

 

The above graph shows that performance of Balance dataset. The Accuracy of WKKM algorithm is 
91.78 which is higher when compare to other six (KMVA, SSCHMRF, MLKDE, ASSKKM, GKKM, 
FGKKM) algorithms. The Precision of ASSKKM algorithm is 90.67 which is higher when compare 
to other six (KMVA, SSCHMRF, MLKDE, WKKM, GKKM, FGKKM) algorithms. The Recall of 
KMVA algorithm is 92.77 which is higher when compare to other six (WKKM, SSCHMRF, 
MLKDE, ASSKKM, GKKM, FGKKM) algorithms. The F-Measure of WKKM algorithm is 92.55 
which is higher when compare to other six (KMVA, SSCHMRF, MLKDE, ASSKKM, GKKM, 
FGKKM) algorithms. 

VIII b. IRIS DATASET RESULTS 
 

Iris  Dataset 
 Algorithm Accuracy Precision Recall F-Measure 

KMVA 70.45 85.91 94.79 88.89 
SSCHMRF 70.91 86.08 94.78 60.56 

MLKDE 70.92 90.67 91.89 85.78 
ASSKKM 80.67 96.67 70.78 88.67 

GKKM 90.78 78.76 82.54 90.89 
FGKKM 84.56 75.9 87.23 76.12 
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WKKM 91.09 70.89 73.44 70.34 

 

The above graph shows that performance of Iris dataset. The Accuracy of WKKM algorithm is 91.09 
which is higher when compare to other six (KMVA, SSCHMRF, MLKDE, ASSKKM, GKKM, 
FGKKM) algorithms. The Precision of ASSKKM algorithm is 96.67 which is higher when compare 
to other six (KMVA, SSCHMRF, MLKDE, WKKM, GKKM, FGKKM) algorithms. The Recall of 
KMVA algorithm is 94.78 which is higher when compare to other six (WKKM, SSCHMRF, 
MLKDE, ASSKKM, GKKM, FGKKM) algorithms. The F-Measure of GKKM algorithm is 90.89 
which is higher when compare to other six (KMVA, SSCHMRF, MLKDE, ASSKKM, WKKM, 
FGKKM) algorithms. 
 

VIII c. IONOSPHERE DATASET RESULTS 
 

Ionosphere Dataset
Algorithm  Accuracy Precision Recall F-Measure 

KMVA 79.45 88.91 84.77 88.89 
SSCHMRF 74.91 90.08 90.78 70.56 

MLKDE 80.98 76.67 72.89 85.78 
ASSKKM 88.67 70.67 77.78 90.67 

GKKM 90.56 83.45 88.34 75.89 
FGKKM 72.12 73.9 80.67 75.66 
WKKM 84.67 79.23 70.21 82.78 
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The above graph shows that performance of Ionosphere dataset. The Accuracy of GKKM algorithm is 
90.56 which is higher when compare to other six (KMVA, SSCHMRF, MLKDE, ASSKKM, WKKM, 
FGKKM) algorithms. The Precision of SSCHMRF algorithm is 90.08 which is higher when compare 
to other six (KMVA, WKKM, MLKDE, ASSKKM, GKKM, FGKKM) algorithms. The Recall of 
SSCHMRF algorithm is 90.78 which is higher when compare to other six (KMVA, WKKM, 
MLKDE, ASSKKM, GKKM, FGKKM) algorithms. The F-Measure of ASSKKM algorithm is 90.67 
which is higher when compare to other six (KMVA, SSCHMRF, MLKDE, WKKM, GKKM, 
FGKKM) algorithms. 

 
VIII d. SOYBEAN DATASET RESULTS 

 
Soybean Dataset 

 Algorithm Accuracy Precision Recall F-Measure 
KMVA 79.89 88.65 84.23 88.34 

SSCHMRF 74.03 90.89 90.67 71.23 
MLKDE 81.08 76.32 72.45 85.9 

ASSKKM 88.54 71.32 77.89 90.56 
GKKM 90.08 83.78 88.78 75.9 

FGKKM 85.09 70.89 82.33 81.23 
WKKM 70.45 80.67 71.33 79.78 

 

 

The above graph shows that performance of Soybean dataset. The Accuracy of GKKM algorithm is 
90.08 which is higher when compare to other six (KMVA, WKKM, MLKDE, ASSKKM, WKKM, 
FGKKM) algorithms. The Precision of SSCHMRF algorithm is 90.89 which is higher when compare 
to other six (KMVA, WKKM, MLKDE, ASSKKM, GKKM, FGKKM) algorithms. The Recall of 
SSCHMRF algorithm is 90.67 which is higher when compare to other six (KMVA, WKKM, 
MLKDE, ASSKKM, GKKM, FGKKM) algorithms. The F-Measure of ASSKKM algorithm is 90.56 
which is higher when compare to other six (KMVA, WKKM, MLKDE, SSCHMRF, GKKM, 
FGKKM) algorithms. 
 

IX. CONCLUSION 

We have shown that none of the ML estimators investigated performed optimally on all tasks, and 
based on theoretical motivations confirmed with empirical results it is clear that the optimal estimator 
depends on the degree of scale variation between features and the degree of changes in scale variation 
with features [2]. The results show that the full covariance ML-KBE and global MLE estimators 
(which estimate an identical full and diagonal covariance matrix respectively for each kernel) 
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performed optimally on three of the four datasets investigated, while the MLE estimator (which 
estimates a unique bandwidth for each kernel) performed optimally on only one dataset [3]. This is an 
interesting case of the bias-variance trade off: having fewer parameters, the full covariance ML-KBE 
and global MLE estimators are less flexible than the MLE and MLL estimators; however, those 
parameters can be estimated with greater reliability, leading to the best performance in many cases 
[4].  

From the theoretical and empirical results in this work it is clear that the optimal estimator should 
somehow function like the full covariance ML-KBE estimator in regions with low spatial variability, 
and must function like the MLE estimator and be able to adapt bandwidths in regions with high spatial 
variability, especially for outliers [5]. We therefore believe that it would be interesting to investigate a 
hybrid kernel bandwidth estimator by first detecting and removing outliers. We have presented the 
global kernel k-means clustering algorithm, an algorithm that maps data points from input space to a 
higher dimensional feature space through the use of a kernel function and optimizes the clustering 
error in the feature space by locating near optimal minima [6]. The main advantages of this method 
are its deterministic nature, which makes it independent of cluster initialization, and the ability to 
identify nonlinearly separable clusters in input space. Another important feature of the proposed 
algorithm is that in order to solve the M -clustering problem all intermediate clustering problems, with 
1… M clusters, are solved [7]. This may prove useful in problems where we seek the actual number 
of clusters. Moreover we developed the fast global kernel k-means algorithm which considerably 
reduces the computational cost of the original algorithm without degrading significantly the quality of 
the solution [8]. 

We proposed a new adaptive semi-supervised Kernel K-Means algorithm. Our approach integrates the 
given constraints with the kernel function, and is able to automatically embed, during the clustering 
process, the optimal non-linear similarity within the feature space [9]. As a result, the proposed 
algorithm is capable of discovering clusters with non-linear boundaries in input space with high 
accuracy. Our technique enables the practical utilization of powerful kernel-based semi-supervised 
clustering approaches by providing a mechanism to automatically set the involved critical parameters 
[10]. In this approach, we observed that weighted kernel k-means updating of views according to their 
conveyed information resulting higher clustering accuracy, if the sparsity of the weights is 
appropriately moderated [11]. The threads concept we used in the algorithm for initializing clusters is 
working good and resulting in reduced run time and also provided us an interesting direction for 
developing and improving multi-view clustering algorithms [12]. 

 

X. FUTURE WORK 

Clustering can then be performed on the remaining data and the full covariance ML-KBE bandwidth 
estimator can be used to estimate a unique full covariance kernel bandwidth for each cluster-each 
kernel will thus make use of the full covariance bandwidth matrix of the cluster to which it is assigned 
[1]. The MLE estimator can then be used to estimate a unique bandwidth for each outlier; since the 
MLE estimator can model scale variations, this will ensure that outliers have sufficiently wide 
bandwidths [2]. This proposed hybrid approach will thus generally function like the full covariance 
ML-KBE estimator in the clustered regions and has the added ability to change the direction of local 
scale variations between clusters [4]. This estimator will also be capable of making the bandwidths of 
kernel function centred on outliers sufficiently wide. We therefore propose to implement this hybrid 
ML kernel bandwidth estimator in future work and perform a comparative study between this 
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approach, the MLE, full covariance ML-KBE and the first hybrid approach proposed above [3]. As for 
future work a possible direction is the use of parallel processing to accelerate the global kernel k-
means algorithm since the local search performed when solving the k clustering problem requires 
running kernel k-means N  times and these executions are independent of each other [8]. Another 
important issue is the development of theoretical foundations behind the assumptions of the method. 
As already mentioned kernel k-means is closely related to spectral clustering. So extending the 
proposed algorithm by associating weights with each data point, following the ideas in [6], and using 
it to solve graph cut problems and comparing it to spectral methods is another possible research 
direction. Finally we plan to use the global kernel k-means in conjunction with criteria and techniques 
for estimating the optimal number of clusters [5]. 

As for future work, a possible direction is the use of parallel processing to accelerate the global kernel 
k-means algorithm, since the local search performed when solving the -clustering problem requires 
running kernel k-means times and these executions are independent of each other [7]. Another 
important issue is the development of theoretical results concerning the near-optimality of the 
obtained solutions [1]. Also, we plan to use global kernel k-means in conjunction with criteria and 
techniques for estimating the optimal number of clusters and integrate it with other exemplar-based 
techniques. Finally, the application of this algorithm to graph partitioning needs further investigation 
and a comparison with spectral methods and other graph clustering techniques is required [10]. In our 
future work we will consider active learning as a methodology to generate constraints which are most 
informative. We will also consider other kernel functions (e.g., polynomial) in our future experiments, 
as well as combinations of di�erent types of kernels [9]. In future, we planned to parallelize the same 
algorithm using multi-core processing environment for reducing the run time to overcome the 
synchronization problem raised from thread concept. And we also planned to extend the algorithm for 
larger multi-modal Datasets (Big Data) [11].  

There are a number of interesting potential avenues for future research in kernel methods for semi-
supervised clustering. Along with learning the kernel matrix before the clustering, one could 
additionally incorporate kernel matrix learning in to the clustering iteration ,as was done [4] .One way 
to incorporate learning in to the clustering step is to devise away to learn the weights in weighted 
kernel k-means, by using the constraints [2]. Another possibility would be to explore the 
generalization of techniques in this paper beyond squared Euclidean distance, for unifying semi-
supervised graph clustering with kernel-based clustering on an HMRF using other popular clustering 
distortion measures, e.g., KL-divergence, or cosine distance [12]. We would also like to extend the 
work of to explore techniques of active learning and model selection in the context of semi-supervised 
kernel clustering. To speed up the algorithm further, the multi-level methods of can be employed [13]. 
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