
Amita Shah, Sanjay Shah, Hiren Patel, Namit Shah
LSA: A LIGHTWEIGHT SYMMETRIC ENCRYPTION ALGORITHM

RT&A, No 3 (74)
Volume 18, September 2023

LSA: A LIGHTWEIGHT SYMMETRIC ENCRYPTION
ALGORITHM FOR RESOURCE-CONSTRAINED IOT

SYSTEMS

Amita Shah1, Sanjay Shah2, Hiren Patel3, Namit Shah4
•

1Ph.D Scholar, Computer/IT Engineering, Gujarat Technological University, Gujarat, India
2Professor & Head, Computer Engineering Dept., Government Engineering College, Rajkot,

Gujarat, India
3Principal, Vidush Somany Institute of Technology and Research, Sarva Vidyalaya Kelavani

Mandal, Kadi, Gujarat, India.
4Student, Computer Engineering Dept., L D College of Engineering, Ahmedabad, Gujarat, India

Abstract

Today, Internet of Things (IoT) systems are being employed in a wide variety of domains, such as
education, healthcare, industrial equipment automation, etc. With gigabytes of data being generated
and processed by even the average IoT system, securing this generated data is crucial task. It requires
a low-cost, high-performance encryption system for constrained IoT systems. The Advanced
Encryption Standard (AES) is widely used for many cryptographic domains because of its strong
security characteristics. AES is designed for general-purpose symmetric encryption algorithm but
there is a need for a lighter algorithm that is specifically tuned for the needs of IoT devices with limited
computation capabilities. Aim: This paper is proposing Lightweight Symmetric Algorithm (LSA) as
a faster and lighter alternative to the standard AES-128 for IoT applications. The primary objective
of its design was to minimize the time and memory usage required for encryption and decryption
processes while retaining the strong security characteristics. Method: The research also demonstrates
the comparative analysis of LSA and AES based on efficiency and resource usage. It also proves the
difficulty of performing a successful brute force attack, confusion and diffusion properties, and
avalanche criterion satisfiability are identical for AES and LSA algorithms. Findings: The
comparison analysis of LSA and AES suggests a 14.68% lower memory usage for encryption and
decryption as well as more than a 50% decrease, on average, in the required time for encryption or
decryption of differently-sized files consisting of the same 128 bit data blocks. The comparisons and
empirical observations show that AES and LSA are both almost identical in terms of their security
characteristics such as the difficulty of performing a successful brute force attack, confusion and
diffusion properties, and avalanche criterion satisfiability. Conclusion: The proposed LSA algorithm
is compared with various available lightweight cipher technologies with respect to time, memory, and
security properties suggests the suitability of LSA for resource constrained IoT devices with strong
security requirements.

Keywords: IoT, Data security, Cryptography, Lightweight Algorithms, Security
Encryption.

44

Amita Shah, Sanjay Shah, Hiren Patel, Namit Shah
LSA: A LIGHTWEIGHT SYMMETRIC ENCRYPTION ALGORITHM

1. INTRODUCTION

The Internet of Things (IoT) is becoming an increasingly significant aspect of daily life as more and
more devices with digital identities are connected to the Internet. The IoT paradigm is based on the
connection between widely used and extremely diverse networked "things" like sensors, actuators,
smartphones, etc., whose widespread use is due to recent advances in communication, sensor
technologies, networking capabilities, mobile devices, cloud computing, etc. Data security is now a
major necessity for many organisations. Security and privacy needs must be met because the IoT
devise are integrated in users' daily lives [1-2].
However, due to the multiple standards and communication technologies involved, the IoT does
not directly support conventional security measures. The term "lightweight cryptography" refers to
a branch of cryptography that aims to create algorithms for use on hardware without the necessary
resources like memory, power, and operational capacity to carry out the operation [3]. Only a few
reliable hybrid cryptosystems are available to protect IoT smart devices. The objective is to create
hybrid cryptosystems that can match the high performance demands of these constrained
environments while possessing similar encryption capabilities. Even though many other new
lightweight algorithms have been developed, there is always potential for development in terms of
security and overhead reduction. [4-6].
The encryption of IoT data can be achieved by two ways, Symmetric and Asymmetric Cryptography.
Symmetric encryption techniques are effective at protecting data, but communicating a secret key
requires a separate mechanism. The key distribution issue is solved by asymmetric encryption
techniques, although they are slower and consume far more resources than symmetric encryption.
According to NIST, information security, like any other information technology management
system, relies on three fundamental aspects: confidentiality, availability, and integrity. [8-10].
In this research, LSA aims to enhance the time and memory efficiency of AES without compromising
the security features. The remaining sections of this paper are organized as follows: Section 2
provides an overview of current lightweight symmetric algorithms suitable for IoT environments.
Section 3 outlines the design of the LSA algorithm being proposed. Section 4 showcases the
performance and security analysis of the implemented algorithms, along with a comparison based
on specific key parameters. At last, in Section 5, the paper is concluded by proving the security
requirements of IoT system along with communication efficiency, resource utilization and strong
encryption methodology.

2. RELATED WORKS

This section presents an overview of the existing lightweight symmetric encryption algorithms and
offers a comparative analysis among them. Additionally, it investigates the suitability of the AES
algorithm for enhancement, specifically to cater to the requirements of resource-constrained devices.

2.1 Lightweight Cryptography

Embedded systems, Internet of Things, and mobile computing devices are used across many
industries [13], which is lacking the security mechanism for resource-constrained network.
Lightweight cryptography is a trade-off between communication efficiency and data security. Due
to its applicability to IoT systems with limited battery life, space, and memory size, lightweight
cryptography has gained popularity [11-12]. Different approaches can be taken to implement
lightweight cryptographic techniques, with some relying on software while others on hardware.
Hardware-based lightweight cryptography aims to address performance limitations such as device
size and power consumption. On the other hand, software-based lightweight cryptography focuses

RT&A, No 3 (74)
Volume 18, September 2023

45

Amita Shah, Sanjay Shah, Hiren Patel, Namit Shah
LSA: A LIGHTWEIGHT SYMMETRIC ENCRYPTION ALGORITHM

on reducing CPU/memory usage, calculation complexity, and energy/power consumption [14].
Lightweight cryptography can be achieved through various methods, such as modifying or
enhancing existing algorithms or creating new algorithms with lightweight characteristics. [15].

2.2. Overview of AES Algorithm

The AES algorithm [20] is built upon the SPN (substitution-permutation network) structure and
incorporates key features such as high sensitivity to initial round and control parameters, random-
like behaviors, and simplicity [18]. In the SPN structure, even slight modifications in the initial state
and parameter configurations within the round function can result in significant and unpredictable
changes in the final state [18][20]. AES operates on 128-bit (16-byte) blocks for both encryption and
decryption of data. Figure 1 illustrates the basic block diagram of the AES algorithm. AES supports
three key sizes: 128, 192, or 256 bits. For 128-bit keys, AES employs 10 rounds, for 192-bit keys it uses
12 rounds, and for 256-bit keys, it utilizes 14 rounds. Each round, except the final one, incorporates
the SubBytes, ShiftRows, AddRoundKey, and MixColumns operations [17], [18], and [19]. It is worth
noting that in this context, the term AES specifically refers to AES-128.
Key Expansion Routine:
The Key Expansion Routine of the standard AES-128 is used without any modification, which
generates 11 keys of 128 bit from one single encryption/decryption key. It generates an array of 11
keys from the original seed key, which now becomes key 0. For our variations with a reduced
number of rounds (7, instead of 10), only the first 8 keys are used. As each key consists of 4 words
of 4 bytes each, we need 44 words in total for 10 rounds of encryption or decryption.

Figure 1: Block diagram of AES-128 [16]

AES-128 Key Expansion
__
for (i = 0 ; i < 4 ; i++)

w[i] = key[i];
for (i = 4; i < 44 ; i++)
temp = w[i – 1];
if (i Mod 4 == 0)
temp = SBox (RotWord (temp)) Xor Rcon[i / 4];
w[i] = w[i – 4] Xor temp
RotWord(): Performs right shift on the word by 1 byte (0, 1, 2, 3 => 1, 2, 3, 0).
SBox(): Substitution from the Rijndael S-Box.
Xor: Bitwise Xor.
Rcon: The round constant array consists of successive powers of 2, one value for each round.
1 word = 4 bytes.
4 words -> 16 bytes -> the key for one round.
__

RT&A, No 3 (74)
Volume 18, September 2023

46

Amita Shah, Sanjay Shah, Hiren Patel, Namit Shah
LSA: A LIGHTWEIGHT SYMMETRIC ENCRYPTION ALGORITHM

2.3. Study of other lightweight algorithms

Examples of some lightweight symmetric algorithms include AES [21], CAST-128 [22], PRESENT
[23], TEA [24], HIGHT [25], BCC [26], MCBB [27], RC5 [28] etc. With the least amount of resource
usage possible, lightweight cryptography strives to provide proper security levels. TEA's initial
release was followed by a subsequent version that included additional features aimed at improving
its security. Meanwhile, Block TEA was introduced as a complement to XTEA, and it operates on
blocks of any size, unlike the original's 64-bit blocks [24] TEA exhibits some vulnerability, primarily
its susceptibility to equivalent keys. In other words, each key is interchangeable with three other
keys, reducing the effective key size to just 126 bits. Consequently, TEA is not suitable for use as a
cryptographic method. Several researchers, including in [28], [29], and [30], focused on reducing the
complexity of common algorithms, and based on their findings, these approaches can be applied in
an IoT environment. Since the S-Box is crucial to AES and causes confusion during the encryption
process, numerous researchers, including those in [31] and [32], have attempted to develop new S-
Boxes to replace the old ones to increase the security of the AES algorithm. The IoT often uses a high
number of resource-constrained nodes, necessitating the adoption of lightweight cryptographic
primitives [33]. PRESENT employs bit-oriented permutations, which make it hardware-oriented and
less suitable for software implementations. Bit permutations can be easily accomplished in hardware
through straightforward wiring, whereas software implementations struggle to achieve similar
performance. The FELICS (Fair Evaluation of Lightweight Cryptographic Systems) benchmarking
framework is used to assess the performance of PRESENT when executed on microcontroller
software environments. However, the results of software-only implementations may be significantly
slower due to the inherent hardware orientation of the algorithm [34]. A hybrid approach was
employed in [35] to merge the symmetric cipher AES, asymmetric cipher RSA, and the hashing
function MD5 to provide confidentiality, data integrity, and authentication. However, the use of
AES in processing occupies a considerable amount of ROM and RAM, while the MD5 algorithm is
vulnerable to differential attacks and the RSA key requires a significant amount of memory for
processing.

Table 1: Comparison of Lightweight Algorithms for IoT Devices

Lightweight
Algorithms

Structure No of Rounds Key Size Block Size

AES SPN 10 128 128
PRESENT SPN 32 80 64

TEA Feistel 32 128 64
HEIGHT GFS 32 128 64

RC5 ARX 20 16 32

To address the limitations of the cryptographic models outlined in Tab 1, the research explores a
variety of suggested cryptosystems that incorporate various mathematical calculations.
Subsequently, it also proposes a resilient and secure lightweight symmetric algorithm that offers
efficient protection for IoT smart devices, as detailed in the upcoming sections.

3. THE PROPOSED ALGORITHM: LSA

In this paper, we propose a lightweight, secure, and fast symmetric encryption algorithm –
Lightweight Symmetric Algorithm (LSA), to provide confidentiality in resource constrained IoT
Devices. LSA can encrypt and decrypt data more quickly than AES.
In the context of the IoT environment, the importance of time and memory usage is on par with
security considerations. This research focuses on reducing the time complexity of the algorithm
while maintaining its security measures. The proposed algorithm aims to provide a lower-

RT&A, No 3 (74)
Volume 18, September 2023

47

Amita Shah, Sanjay Shah, Hiren Patel, Namit Shah
LSA: A LIGHTWEIGHT SYMMETRIC ENCRYPTION ALGORITHM

complexity encryption method compared to AES, making it suitable for resource-constrained
wireless devices. Additionally, it offers enhanced resilience against attacks compared to PRESENT
and TEA. The proposed lightweight symmetric encryption algorithm adopts a substitution-
permutation structure and builds upon the widely-used AES algorithm. By reducing the number of
rounds and replacing the mixcolumn operation with junction jumping in the proposed LSA,
performance improvements are achieved without compromising the security properties of the
algorithm. Further details of the LSA are discussed in the following subsections.
Considering the constraints and requirements of IoT, there is a need to improve the AES algorithm
in terms of time and energy consumption. With this objective in mind, we conducted tests and
evaluations to identify the most time-consuming parts of the AES algorithm, which could be
potential areas for optimization.
Each round of the AES algorithm involves four operation calls: Substitution, Shift Rows, Mix
Columns, and Add Round Key. While AES can be implemented efficiently and cost-effectively in
hardware [36], its software implementation tends to be more computationally intensive in terms of
processing time.
Analysis of Modification in AES Algorithm:
To improve the performance of the algorithm, we developed three different versions of each
operation of AES with the following variations. The research shows modified compute-intensive
operations to make them lighter and examined nine more versions of modified AES.

Three different versions of SubBytes (Disabling ShiftRows and MixColumns).
● SubBytes_v0> Substitution bytes with 100% Substitution (Original)
● SubBytes_v1> Substitution bytes with 50% Substitution (checkerboard pattern)
● SubBytes_v2> Substitution bytes with 25% Substitution (only 1 in every four elements in the

block)
depicts execution time analysis of different variants of SubBytes operation from which SubBytes_v2
is a relatively lightweight operation as per the performance.

Three different versions of ShiftRows (Disabling SubBytes and MixColumns)
● ShiftRows_v0> keep the 1st row unchanged and shift 2nd, 3rd and 4th row by 1,2 and 3 bytes

subsequently (Original)
● ShiftRows_v1> keep the 1st and 3rd row unchanged and shift the 2nd and 4th row by 1 byte
● ShiftRows_v2> Let us keep the 1st, 2nd and 3rd row unchanged and shift the 4th row by 1 byte
The experiment shows the execution time analysis of different variants of ShiftRows operation from
which SubBytes_v2 is a relatively lightweight operation.

Three different versions of MixColumns (Disabling ShiftRows and SubBytes).
● MixColumns_v0> Matrix Multiplication with the constant matrix (Original)
MixColumns_v1> Matrix Addition with the constant
● matrix
● MixColumns_v2> Matrix Subtraction with the constant matrix
This demonstrates that MixColumns_v1 is a lightweight component as per the experimental analysis
of MixColumns variants. The constant matrix, here, refers to the AES Multiplication Matrix [19]. For
V0, the Inverse Multiplication Matrix [19] is also required, while for V1 and V2, the same matrix is
used during decryption as well.

Based on the various performed variations we have developed AES with combination of the fastest
versions of all the 3 operations (SubBytes, ShiftRows & MixColumns) along with AddRoundKey)
which incorporates V2_SubBytes (Substitution bytes with 25% Substitution), V1_ShiftRows (keeps
the 1st and 3rd row unchanged and shift the 2nd and 4th row by 1 byte), V1_MixColumn (Matrix
Addition with the pre-defined constant and simple XORing with the key in the AddRoundKey
operation. It definitely reduces execution time, but at the same time, compromises certain level of

RT&A, No 3 (74)
Volume 18, September 2023

48

Amita Shah, Sanjay Shah, Hiren Patel, Namit Shah
LSA: A LIGHTWEIGHT SYMMETRIC ENCRYPTION ALGORITHM

security.
Optimization Operations: Lightweight Security Algorithm for IoT
Reducing the complexity of operations in the proposed algorithm can potentially compromise its
security level. To address this, the next improvement focuses on enhancing the security measures.
The analysis of this test primarily serves the purpose of benchmarking and facilitating future
experimentation. In the context of this research, the proposed algorithm is denoted as LSA-v1,
which integrates the fastest versions of all the stages in AES002E

To investigate the effect of various operations on the encryption time, the experiment removes the
operations one by one from the encryption process in AES.
First of all, to find heavy components, AES is modified and created the following variations:
● Only keeping ShiftRows and MixColumns and disabling SubBytes
● Only keeping SubBytes and MixColumns and disabling ShiftRows
● Only keeping SubBytes and ShiftRows and disabling MixColumns

The experiment depicts that execution time will be decreased if we remove MixColumns operation
from AES.
The Mix Columns operation is generally the most resource-intensive operation in AES, and its
removal leads to an overall improvement in the algorithm's execution time. The results demonstrate
a significant reduction in encryption time for 1024-byte data, decreasing from 70 milliseconds to 15
milliseconds. Additionally, the Shift Rows operation is identified as the second most time-
consuming operation after Mix Columns. Consequently, it becomes necessary to either remove or
optimize the Shift Rows operation to make the algorithm more lightweight.

For this reason, the research extended experiment by further removing two operations.
● Only keeping SubBytes and disabling ShiftRows and MixColumns
● Only keeping ShiftRows and disabling SubBytes and MixColumns
● Only keeping MixColumns and disabling ShiftRows and SubBytes

In the optimization mentioned earlier, if all the operations are executed in isolation, it becomes
apparent that MixColumns consumes the most time compared to other operations, reaffirming its
heavyweight nature. Therefore, to enhance execution time performance, the most effective solution
is to exclude MixColumns from the main core of the encryption operation. To generate lighter
versions of the AES algorithm and for the replacement of the mixcolumn operation, we have
introduced one more operation - Junction Jumping, which plays an important role to make the
algorithm lightweight in terms of processing needs and to achieve a certain level of security.

Junction Jumping
This stage’s main objective is propagating change from one byte to the next, thus introducing
interdependence and linkage. Unlike the Mix Columns Operation, which is inherently exponential,
this operation is linear, and primarily uses one of the most cost-effective CPU operations, bitwise
XOR [29]. Fig. 2 shows the overall functioning of the newly introduced Junction Jumping operation
on the 128 bits of input data. ‘U’ and ‘L’ refer to the upper and lower nibbles (4 bit groups) of all the
bytes. For this stage, we consider the current state as an array of 16 bytes rather than a 4x4 matrix.
Its main objective is propagating change from one byte to the next, thus introducing
interdependence and linkage. Unlike the MixColumns Operation, which is inherently exponential,
this operation is linear. It primarily uses one of the most cost-effective CPU operations, bitwise XOR.
The proposed algorithm incorporates all the standard operations except MixColumns. It replaces
MixColumns operation with Junction Jumping. The research achieved an improvement in the
security characteristics, whereas the time complexity of the algorithm increases. Fig. 2 exhibits the
process of AES with JJ, which for the research is referred as LSA-v2.

RT&A, No 3 (74)
Volume 18, September 2023

49

Amita Shah, Sanjay Shah, Hiren Patel, Namit Shah
LSA: A LIGHTWEIGHT SYMMETRIC ENCRYPTION ALGORITHM

The Jumping Junction Algorithm
__
Prev ← Initial State of the 16 byte Word.
Next ← The Resultant State.
For ‘i’ in range(16):
Next[i] = Lower_Nibble(Prev[i]) + Xor(Upper_Nibble(Prev[i]), Lower_Nibble(Prev[i – 1]));
Since, only one half of every byte changes, there are no actual additional memory requirements as
Prev is just a temporary state.
The process is also cyclic (1→2, ..., n – 1→n, n→1).

Figure 2: Junction Jumping Operation

The evaluations indicate that by replacing mixcolumn with JJ, time consumption has only decreased
by 15%. To further explore the experimental possibilities, the proposed algorithm removes the
shiftrow operation and reduces the number of rounds from 10 to 7, while maintaining the same block
size of 128 bits. This modification improves the time complexity; however, it comes at the cost of
compromised confusion and diffusion characteristics. The findings of the investigation into time
consumption are depicted in Figure 7. It is important to note that while the round key generation
process in the proposed algorithm resembles that of AES, it possesses inferior security properties.
As a result, the enhanced version of LSA is denoted as LSA-v3.

In order to broaden the range of the experiments, and to maintain the trade-off between security and
performance, a new additional operation - Parity Transformation is introduced which improves
confusion and diffusion characteristics and is performed just after Round 0 during encryption, that
is, once per the encryption / decryption process for a block. Parity Transformation plays an
important role to make the algorithm lightweight in terms of processing needs and to achieve a
certain level of security. It adds non-linearity to the system so that we can improve security
measures, specifically the Average Avalanche Criteria that improved significantly from 32.5% to
43.33%.

Figure 3: Parity Transformation Operation

RT&A, No 3 (74)
Volume 18, September 2023

50

Amita Shah, Sanjay Shah, Hiren Patel, Namit Shah
LSA: A LIGHTWEIGHT SYMMETRIC ENCRYPTION ALGORITHM

Parity Transformation
This stage is performed only once and is incorporated in Round 0 to add non-linearity to the system
so that we can improve security measures. It works on the principle that if an even number of bits
are flipped, the resultant parity remains the same. This ensures that the transformation remains
reversible. Fig. 3 shows the functioning of it.

The Steps: Parity Transformation Operation

Run a loop to find the parity of the word.
Run another loop and 1s complement those bytes whose indices Mod 2 = The_Original_Parity.
Mod here refers to the modulo operation (the remainder).
The_Original_Parity will be 1 if the number of bits in the input block were odd; otherwise it would
be 0.
Basically, if the parity is 1, the bytes at odd indices will be flipped and if it is even, then the bytes at
even indices will be flipped.
__

The research has advanced with the reduced number of rounds (seven), but because of the Parity
Transformation operation there is a huge improvement in the confusion and diffusion characteristics
of the algorithm. In this version it reached the required result, and so the paper is proposing it as
LSA - Lightweight Symmetric Algorithm. The process of proposed LSA is displayed in Fig. 4 for
visualization and clarity purposes. Execution time to process average 20MB data is 1.8s, 1.3s, 1.5s,
0.9s and 0.95s for AES, AES-fastest operations(LSA-v1), AES-JJ(LSA-v2) , AES-JJ-7 rounds(LSA-v3)
and LSA, respectively. Fig. 5 and Fig. 6 illustrate the performance comparison of LSA with
experimental versions. It has also compared with various lightweight symmetric algorithms like
PRESENT and TEA, respectively; which shows that LSA performs better among all in terms of
execution time. The proposed encryption process in LSA is designed and executed as shown in Fig.
4.

Figure 4: Process of LSA

RT&A, No 3 (74)
Volume 18, September 2023

51

Amita Shah, Sanjay Shah, Hiren Patel, Namit Shah
LSA: A LIGHTWEIGHT SYMMETRIC ENCRYPTION ALGORITHM

The encryption process in LSA is outlined and illustrated in Figure 4. It closely resembles the
encryption process in AES with some notable differences. In LSA, a parity transformation operation
is conducted on the initial state during Round-0, and the resulting output becomes the input for the
subsequent stages. In each encryption round of LSA, a round key is applied to encrypt a data block,
similar to the Add Round Key operation in AES. However, instead of using MixColumns and
ShiftRows as in AES, LSA employs the junction jumping operation as replacements.

LSA: Lightweight Security Algorithm

LSA-v1: The research has created a new AES variation with each of the 3 standard stages being
replaced by a version of them from above with the ‘best’ performance characteristics. This version
is used mostly for the purposes of benchmarking and further experimentation. While exhibiting
impressive time complexity and average runtime characteristics, it had dismal security properties.
LSA-v2: In this version, a single modification has made to the Standard AES algorithm, replacing
the high-cost Mix Columns Stage, which happens to be the most time-expensive stage, with the
Junction Jumping Stage. This greatly improved the security characteristics but came at the cost of
significantly longer runtimes and greater time complexity than LSA-v1.
LSA-v3: In this version, the number of rounds is reduced by 3 (7 instead of 10) because of expected
early obfuscation (of a satisfactory level) and to do away with the mixcolumns and shiftrows stages
in LSA-v2. Instead, it is replaced with junction jumping. This, as expected, came at the cost of the
algorithm’s security properties.

Figure 5: Performance of different Versions of Lightweight Symmetric Algorithm (LSA)

Figure 6: Comparison of LSA with other lightweight symmetric algorithms

LSA: This is the final algorithm that is proposed as an optimised solution. It is introduced in one
new stage, Parity Transformation, into LSA-v3 for better confusion and diffusion characteristics
(specifically the Average Avalanche Criteria that improved significantly from 32.5% to 43.33%).

RT&A, No 3 (74)
Volume 18, September 2023

52

Amita Shah, Sanjay Shah, Hiren Patel, Namit Shah
LSA: A LIGHTWEIGHT SYMMETRIC ENCRYPTION ALGORITHM

4. IMPLEMENTATION RESULT ANALYSIS

Cryptographic algorithms are commonly implemented as hardware modules on sensor nodes.
However, for off-the-shelf nodes lacking hardware security implementation, software
implementation or hardware/software co-design approaches are considered suitable alternatives. It
is often impractical to add new hardware circuitry to these nodes, making software implementation
and evaluation of encryption algorithms more feasible. In software implementations, the primary
design objectives are to minimize memory usage and optimize processor throughput and power
efficiency. Consequently, the focus lies on reducing memory occupation while achieving improved
performance and power savings. The forthcoming sections will delve into the analysis and results
of performance and security metric comparisons between LSA, AES, PRESENT, and TEA
algorithms. These discussions will shed light on the achieved performance and security levels of
these algorithms.

4.1. Performance Metrics

Performance metrics hold significance in the comparison of various cipher algorithms.
Consequently, it is essential to establish a consistent platform and mutually agreed-upon metrics.
As part of our study, we have successfully implemented the proposed LSA algorithm and conducted
a comparative analysis with existing algorithms, namely AES, PRESENT, and TEA. Given the
limitations imposed by memory, power, and processing resources in wireless nodes, our evaluation
primarily focuses on measuring time and memory consumption parameters. These metrics allow us
to assess the overall performance of the implemented encryption algorithms in the context of
wireless node constraints.
1) Encryption Time
The performance of an algorithm improves as its speed increases. Based on the findings presented
in Figure 7, it is observed that PRESENT requires the longest time to execute the encryption
operation, followed by AES. However, by reducing the number of rounds from 10 to 7 and replacing
the ShiftRows and MixColumn operations with Junction Jumping, the LSA algorithm demonstrates
a substantial improvement in time complexity. In this section, a more detailed analysis of the LSA
algorithm's security properties will be conducted.
2) Memory Usage
IoT devices, particularly sensors, often have limited storage capacity. This storage space is primarily
allocated to the operating system and the data collected by the sensors. Consequently, there is little
room available for implementing security algorithms. Due to these constraints, it is not feasible to
employ complex encryption algorithms on IoT nodes. In this study, we evaluate the RAM and ROM
usage of each of the aforementioned algorithms. ROM usage refers to the space occupied by
permanent code on the sensor nodes. On the other hand, RAM usage pertains to the space required
for runtime code, including the storage of the stack and variables for intermediate calculation results.
Since RAM directly impacts sensor performance during runtime, it holds greater significance than
ROM [38].
The set up of a test bed for experiments and implemented these algorithms in raspberry pi to observe
the usage of memory. Fig. 7 shows the memory use records for the encryption and decryption
techniques. Compared to other algorithms, the PRESENT algorithm uses the most ROM. LSA uses
less RAM and ROM than AES, PRESENT, and TEA do but less RAM and ROM than TEA do as well.
The implementation of the RAM involves sophisticated technology and is more expensive than the
ROM memory [38]. In LSA compared to AES, round-key generation is reduced, resulting in
decreases in ROM and RAM utilisation of 13.15% and 14.68%, respectively. According to [39], low-
cost implementations call for up to 4 KB ROM and 8 KB RAM, and lightweight implementations call
for up to 4 KB ROM and 256 bytes RAM.

RT&A, No 3 (74)
Volume 18, September 2023

53

Amita Shah, Sanjay Shah, Hiren Patel, Namit Shah
LSA: A LIGHTWEIGHT SYMMETRIC ENCRYPTION ALGORITHM

4.2. Security Metrics

The energy consumption and latency of the encryption operation are increased when the packet size
is increased [37]. As the data packets transmitted by sensor nodes are typically small in size, the
performance evaluation metrics focus on these small-sized packets. For the purpose of evaluating
performance, we consider 10,000 randomly generated blocks, each sized at 128 bits. The encrypted
outputs produced by each algorithm are then used for the analysis of security metrics.
1) Key Size (Length)
The size of the initial key plays a crucial role in determining the security level of encryption
algorithms, particularly in their resistance against brute force attacks. The longer the key size, the
more secure the encryption algorithm becomes. However, longer key sizes also result in increased
key processing time and memory space requirements. Thus, selecting an appropriate key size
depends on the desired security levels and the available resources. According to Table 1, PRESENT
and TEA have a key size of 64 bits, while AES and LSA employ a key size of 128 bits. Among the
algorithms discussed in this paper, LSA has a significantly lower likelihood of a successful brute
force attack due to its larger key size compared to the other algorithms.
2) Information Entropy Analysis
Information entropy is a measure of the probability distribution of random events and can be
utilized to assess diffusion characteristics. A higher level of system diffusion corresponds to a greater
entropy value. In the analysis of entropy, random events can be represented as sequence values in
bytes. In our case, the ideal entropy value is 4, which indicates that the values of the encrypted string
are fully distributed [40]. To calculate the system entropy, we consider each nibble in the output as
a unique symbol, resulting in a total of 24 possible symbols. The Shannon entropy value reflects the
prevalence of diffusion, with a maximum possible value of 4 in our setup. Table 2 presents the results
of the security are parameters for LSA, which comparable to those of AES. These security parameter
results are obtained from the evaluation of 10,000 randomly generated data blocks.
Shannon Entropy equation:

 𝐻(𝑋) = − ∑ (𝑝 . 𝑙𝑜𝑔ଶ(𝑝))
 ୀ ଵ (1)

Where Pi is the probability of every symbol.

Table 2: Comparison of LSA and AES in term of Security metrics

Algorithm Hamming
Distance

Shannon
Entropy

Avalanch
e Effect

AES 50% 3.611 49%
LSA 50% 3.612 46.66%

In the results achieved similarly with the character frequency distribution domain metric, AES and
LSA are the two algorithms with almost equivalent entropy.
3) Diffusion and Confusion Analysis
The design of ciphers incorporates two fundamental principles: diffusion and confusion [41]. These
principles aim to complicate the statistical relationship between the key and the ciphertext, ensuring
that each input bit affects multiple ciphertext bits [42]. Confusion and diffusion serve to prevent the
deduction of secret data and secret keys, and their effectiveness disrupts statistical and other
cryptanalytic methods. Confusion obscures the connection between the ciphertext and the key, while
diffusion conceals the relationship between the plaintext and the ciphertext. Furthermore, the
properties of diffusion and confusion in AES and LSA will be investigated in relation to text
sensitivity. This investigation will consider metrics such as completeness, the avalanche effect, and
the strict avalanche effect. These metrics provide insights into the extent to which AES and LSA
exhibit diffusion and confusion properties.

RT&A, No 3 (74)
Volume 18, September 2023

54

Amita Shah, Sanjay Shah, Hiren Patel, Namit Shah
LSA: A LIGHTWEIGHT SYMMETRIC ENCRYPTION ALGORITHM

4) Avalanche Effect
The avalanche effect metric measures the extent to which a change in a single input bit influences
the output of an encryption algorithm. A secure algorithm is expected to exhibit an avalanche effect
where a single bit change in the input causes approximately half of the output bits to change,
reflecting the desired confusion and diffusion properties. In the multi-order avalanche effect
analysis, LSA demonstrates slightly less growth compared to AES. This decline in metric growth in
LSA can be attributed to the reduction in the number of rounds, which results in lower energy
consumption. The nth order avalanche criterion quantifies the change in the output when n bits are
altered in the input. For AES, the avalanche metric values remain at 49% for the 1st order, 2nd order,
and 3rd order avalanche criteria. On the other hand, LSA exhibits metric values of 49% for the 1st
order, 42% for the second order, and 49% for the 3rd order avalanche criteria. The average avalanche
criterion value for LSA is extremely close to the optimal value of 50%, indicating a high level of
diffusion and confusion in the algorithm.
5) Hamming Distance
The Hamming Distance metric is employed to determine the number of bits that change when data
is transformed. When more than 50% of the bits are flipped, the complement percentage is
considered. This is because any value above 50% (denoted as x%) is equivalent to (100 - x)%. Thus,
50% represents the maximum possible value. The Hamming Distance metric is utilized to assess
confusion and observe the degree of obfuscation in the relationship between the input and output.
Both AES and LSA exhibit results that align with the optimal expectations for secure algorithms in
terms of the Hamming Distance metric.

4.3. Trade-Off Points

The fair trade-off between security and performance is crucial in identifying effective solutions based
on specific applications. In the case of the proposed LSA algorithm, modifications have been made
to AES to improve time complexity and memory utilization. While there are other encryption
algorithms like PRESENT and TEA that are designed for energy-limited systems, they are
susceptible to certain types of security attacks. In comparison, LSA aims to provide better security
in specific areas compared to PRESENT and TEA. LSA demonstrates a higher level of security
against statistical attacks, as indicated by the tested security metrics including entropy, balance
analysis, avalanche effect, and Hamming distance, similar to AES. Moreover, LSA's use of a
nonlinear structure in the substitution box and the Junction Jumping operation enhances its
resistance against differential attacks. Although AES may have slightly stronger security
characteristics, LSA's security properties are very close and only marginally weaker. As depicted in
Figure 7, LSA exhibits significantly lower time and memory overhead compared to the AES
algorithm, while maintaining nearly the same level of security. Furthermore, when compared to
low-energy algorithms such as PRESENT and TEA, the security improvements offered by LSA
outweigh the associated increase in time and memory consumption. Therefore, LSA can be
considered as a suitable encryption algorithm for battery-operated sensors and other resource-
constrained IoT nodes, offering robust security properties.

5. CONCLUSION

Encryption techniques play a crucial role in safeguarding data privacy in IoT devices. However, due
to the limited resources of IoT nodes, it is essential to use algorithms that are energy and memory
efficient. In this paper, we propose LSA, a lightweight symmetric encryption algorithm that is based
on the well-known AES algorithm. Our initial observations indicate that LSA exhibits improved
resistance against specific differential and statistical attacks compared to algorithms like PRESENT
and TEA. This is mainly attributed to the inclusion of nonlinear elements and a larger key space in

RT&A, No 3 (74)
Volume 18, September 2023

55

Amita Shah, Sanjay Shah, Hiren Patel, Namit Shah
LSA: A LIGHTWEIGHT SYMMETRIC ENCRYPTION ALGORITHM

LSA. The algorithm leverages junction jumping and parity transformation stages to reduce the
overall operation time when compared to AES. In terms of performance, LSA demonstrates a
significant decrease in encryption and decryption execution time, averaging over 50% improvement
compared to AES, for a variety of file sizes. Considering the resource consumption and performance
of sensor network nodes, LSA appears to be a more suitable choice than AES. In our security attack
analysis, we evaluated the avalanche effect, which measures the sensitivity of algorithms to changes
in plaintext. The results indicate that AES exhibits slightly higher sensitivity than LSA. Additionally,
LSA shows a marginally higher vulnerability to differential attacks compared to AES. To further
enhance the proposed algorithm, future studies could focus on conducting performance analyses of
the security metrics at different rounds and stages within LSA.

References

[1] Hernández-Ramos, J. L., García-Teodoro, P., Díaz-Verdejo, J. E., Luna-Ramírez, F., García-
Hernández, Á., & Sandoval Orozco, A. L. (2018). Protecting personal data in IoT platform scenarios
through encryption-based selective disclosure. Computer Communications, 130:20-37.

[2] Naru, E. R., Saini, H., & Sharma, M. (2017). A recent review on lightweight cryptography in
IoT. In 2017 International Conference on I-SMAC IoT in social, mobile, analytics and cloud) (I-SMAC) (pp.
1-6)

[3] Xin, M. (2015). A mixed encryption algorithm used in internet of things security transmission
system. In 2015 International Conference on Cyber-enabled Distributed Computing and Knowledge
Discovery (pp. 221-225). IEEE.

[4] Goyal, T. K., & Sahula, V. (2016). Lightweight security algorithm for low power IoT devices.
In 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)
(pp. 2074-2079). IEEE.

[5] Ragab, A., He, Y., Khan, M. I., Tao, X., & Alghathbar, K. (2019). Robust hybrid lightweight
cryptosystem for protecting IoT smart devices. In Y. Pan, J. Chen, T.-H. Kim, X. Li, & R. Niedermeier
(Eds.), International Conference on Security, Privacy and Anonymity in Computation, Communication and
Storage (pp. 155-170). Springer.

[6] Singh, S., Sharma, A., Singh, D., Tyagi, S., & Rodrigues, J. J. (2017). Advanced lightweight
encryption algorithms for IoT devices: survey, challenges and solutions. Journal of Ambient
Intelligence and Humanized Computing, 8(1):1-18.

[7] Pérez, S., Fuentes, E., & Roa, L. M. (2018). A lightweight and flexible encryption scheme to
protect sensitive data in smart building scenarios. IEEE Access, 6:11738-11750.

[8] Dhanda, S. S., Singh, B., & Jindal, P. (2020). Lightweight cryptography: a solution to secure
IoT. Wireless Personal Communications, 112(3):1947-1980.

[9] Yousuf, T., Malik, H., Abdullah, A., Alzahrani, A. I., & Alghathbar, K. (2015). Internet of
things (IoT) security: current status, challenges and countermeasures. International Journal for
Information Security Research (IJISR), 5(4):608-616.

[10] Thabit, F., Alhomdy, S., Al-Ahdal, A. H., & Jagtap, S. (2021). A new lightweight
cryptographic algorithm for enhancing data security in cloud computing. Global Transitions
Proceedings, 2(1): 91-99.

[11] Rao, V., & Prema, K. V. (2021). A review on lightweight cryptography for Internet-of-
Things based applications. Journal of Ambient Intelligence and Humanized Computing, 12:8835-8857.

[12] Prakasam, P., Sivaramakrishnan, S., Iqbal, A. T. M., et al. (2021). An enhanced energy
efficient lightweight cryptography method for various IoT devices. ICT Express, 7(4):487-492.

[13] Eceiza, M., Flores, J. L., & Iturbe, M. (2021). Fuzzing the internet of things: a review on the
techniques and challenges for efficient vulnerability discovery in embedded systems. IEEE Internet
of Things Journal, 8(13):10390-10411.

[14] Prakasam, P., Sivaramakrishnan, S., Iqbal, A. T. M., et al. (2021). An enhanced energy

RT&A, No 3 (74)
Volume 18, September 2023

56

Amita Shah, Sanjay Shah, Hiren Patel, Namit Shah
LSA: A LIGHTWEIGHT SYMMETRIC ENCRYPTION ALGORITHM

efficient lightweight cryptography method for various IoT devices. ICT Express, 7(4):487-492.
[15] Roy, S., Rawat, U., & Karjee, J. (2019). A lightweight cellular automata based encryption

technique for IoT applications. IEEE Access, 7:39782-39793.
[16] Fadhil, M. S., Khalaf, Z. A., Al-Sultani, Z. M., & Dheyab, W. R. (2020). A New Lightweight

AES Using a Combination of Chaotic Systems. In 2020 1st. Information Technology To Enhance e-
learning and Other Applications (IT-ELA) (pp. 1-6). IEEE.

[17] Naif, J. R., Abdul-Majeed, G. H., & Farhan, A. K. (2019). Secure IOT system based on chaos-
modified lightweight AES. In 2019 International Conference on Advanced Science and Engineering
(ICOASE) (pp. 1-8). IEEE.

[18] Salman, R. S., Farhan, A. K., & Shakir, A. (n.d.). Lightweight modifications in the Advanced
Encryption Standard (AES) for IoT applications: a comparative survey.

[19] Chatterjee, R., Chakraborty, R., & Mondal, J. K. (2019). Design of lightweight cryptographic
model for end-to-end encryption in IoT domain. IRO Journal on Sustainable Wireless Systems, 1(4):215-
224.

[20] Lee, A. (1999). NIST Special Publication 800-21, Guideline for Implementing Cryptography
in the Federal Government. National Institute of Standards and Technology.

[21] Sadkhan, S. B., & Salman, A. O. (2018). Fuzzy logic for performance analysis of AES and
lightweight AES. In 2018 International Conference on Advanced Science and Engineering (ICOASE) (pp.
1-6). IEEE.

[22] Muthavhine, K. D., & Sumbwanyambe, M. (2021). Modifying CAST algorithm in order to
Increase Encryption Strength and to Reduce Memory Limitations. In 2021 International Conference on
Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD) (pp. 1-6). IEEE.

[23] Chatterjee, R., & Chakraborty, R. (2020). A modified lightweight PRESENT cipher for IoT
security. In 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA)
(pp. 1-6). IEEE.

[24] Shamala, L. M., Varghese, J., Chacko, V., et al. (2021). Lightweight cryptography algorithms
for internet of things enabled networks: An overview. Journal of Physics: Conference Series,
1717(1):012072.

[25] Hui, Y., Xu, L., Zhang, Z., et al. (2021). BCC: Blockchain-based collaborative crowdsensing
in autonomous vehicular networks. IEEE Internet of Things Journal, 9(6):4518-4532.

[26] Farajallah, M. (2022). Lightweight chaotic block cipher for IoT applications. Journal of
Theoretical and Applied Information Technology, 100(15):2879-2889.

[27] Sharafi M, Eslami M, Safkhani M, et al. A low power cryptography solution based on chaos
theory in wireless sensor nodes. IEEE Access. 2019; 7:8737-8753.

[28] Shahzadi, Romana, et al. "Chaos based enhanced RC5 algorithm for security and integrity
of clinical images in remote health monitoring." IEEE Access 7 (2019): 52858-52870.

[29] Yao X, Chen Z, Tian Y. A lightweight attribute-based encryption scheme for the Internet of
Things. Future Generation Computer Systems. 2015; 49:104-112.

[30] Sevin A, Mohammed AAO. A survey on software implementation of lightweight block
ciphers for IoT devices. Journal of Ambient Intelligence and Humanized Computing. 2021:1-15.

[31] Panahi P, Dehghantanha A, Conti M, et al. Performance evaluation of lightweight
encryption algorithms for IoT-based applications. Arabian Journal for Science and Engineering.
2021;46(4):4015-4037.

[32] Alshammari BM, Alsulaiman FM, Alsulaiman MB, et al. Implementing a symmetric
lightweight cryptosystem in highly constrained IoT devices by using a chaotic S-box. Symmetry.
2021;13(1):129.

[33] Guo Y, Li L, Liu B. Shadow: A lightweight block cipher for IoT nodes. IEEE Internet of Things
Journal. 2021;8(16):13014-13023.

[34] Nath S, Som S, Negi MC. Cryptanalysis of a novel bitwise xor rotational algorithm and

RT&A, No 3 (74)
Volume 18, September 2023

57

Amita Shah, Sanjay Shah, Hiren Patel, Namit Shah
LSA: A LIGHTWEIGHT SYMMETRIC ENCRYPTION ALGORITHM

security for IoT devices. International Journal of Knowledge-based and Intelligent Engineering Systems.
202

[35] Jang K, Lee J, Lee J, Kim K. Grover on GIFT. Cryptology ePrint Archive. 2020.
[36] Harini A, Krishnamurthy R, Venkatesan R, Murugan A. A novel security mechanism using

hybrid cryptography algorithms. In: Proceedings of the 2017 IEEE International Conference Electrical
Instrumentation and Communication Engineering (ICEICE); 2017. p. 1-5.

[37] Zhao W, Ha Y, Alioto M. AES architectures for minimum-energy operation and silicon
demonstration in 65nm with lowest energy per encryption. In 2015 IEEE International Symposium on
Circuits and Systems (ISCAS) 2015 May 24 (pp. 2349-2352). IEEE.

[38] Tech Differences. (2017). Difference Between RAM and ROM Memory (With Comparison
Chart)—Tech Differences. Accessed: Apr. 28, 2018. [Online]. Available:
https://techdifferences.com/difference-between-ram-and-rom-memory.html

[39] C. Manifavas, G. Hatzivasilis, K. Fysarakis, and K. Rantos, ‘‘Lightweight cryptography for
embedded systems—A comparative analysis,’’ in Data Privacy Management and Autonomous
Spontaneous Security. Berlin, Germany: Springer, 2014, pp. 333–349.

[40]Anand K, Bianconi G. Entropy measures for networks: Toward an information theory of
complex topologies. Physical Review E. 2009 Oct 13;80(4):045102.

[41] X.-Y. Wang and Q. Yu, ‘‘A block encryption algorithm based on dynamic sequences of
multiple chaotic systems,’’ Commun. Nonlinear Sci. Numer. Simul., vol. 14, no. 2, pp. 574–581, 2009.

[42] X.-J. Tong, Z. Wang, Y. Liu, M. Zhang, and L. Xu, ‘‘A novel compound chaotic block cipher
for wireless sensor networks,’’ Commun. Nonlinear Sci. Numer. Simul., vol. 22, nos. 1–3, pp. 120–133,
2015.

RT&A, No 3 (74)
Volume 18, September 2023

58

