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Interaction and quadratic effects in latent variable models have to date only rarely been tested in

practice. Traditional product indicator approaches need to create product indicators (e.g., x
2
1 ; x1x4)

to serve as indicators of each nonlinear latent construct. These approaches require the use of

complex nonlinear constraints and additional model specifications and do not directly address the

nonnormal distribution of the product terms. In contrast, recently developed, easy-to-use distri-

bution analytic approaches do not use product indicators, but rather directly model the nonlinear

multivariate distribution of the measured indicators. This article outlines the theoretical properties

of the distribution analytic Latent Moderated Structural Equations (LMS; Klein & Moosbrugger,

2000) and Quasi-Maximum Likelihood (QML; Klein & Muthén, 2007) estimators. It compares the

properties of LMS and QML to those of the product indicator approaches. A small simulation study

compares the two approaches and illustrates the advantages of the distribution analytic approaches

as multicollinearity increases, particularly in complex models with multiple nonlinear terms. An

empirical example from the field of work stress applies LMS and QML to a model with an inter-

action and 2 quadratic effects. Example syntax for the analyses with both approaches is provided.
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Within the behavioral sciences numerous substantive theories hypothesize interaction, quadratic

effects, or both between multiple independent and dependent variables (Ajzen, 1987; Cronbach

& Snow, 1977; Karasek, 1979; Lusch & Brown, 1996; Snyder & Tanke, 1976). As one

example, in studying the relationship between parents’ educational level and child’s educational

expectations, Ganzach (1997) hypothesized and found results consistent with a model with

complex interactive and quadratic relationships: When the level of education of one parent is

high, the educational expectations of the child will also be high, even if the level of education of

the other parent is quite low. For each parent separately, the strength of the relationship between

parent’s education and child’s educational expectations accelerated as parent’s educational

level increased. This hypothesis was represented by one negative (compensatory) interaction

effect and two positively accelerating quadratic effects (one for each parent’s educational

level). Within the measured variable framework, such hypotheses can be tested using multiple

regression (see Aiken & West, 1991):

CEE D “0 C “1ME C “2FE C ¨12ME � FE C ¨11ME2 C ¨22FE2 C – (1)

In Equation 1, CEE is the child’s educational expectation, ME is the mother’s level of education,

FE is the father’s level of education, and – is a residual. The “s are the coefficients of the linear

effects. Following Klein and Moosbrugger’s (2000) and Klein and Muthén’s (2007) notation,

the ¨s are the coefficients of the nonlinear effects.

Many variables in the behavioral sciences are measured with less than perfect reliability,

resulting in biased estimates of the regression coefficients for the nonlinear effects (Bohrnstedt

& Marwell, 1978; MacCallum & Mar, 1995). Structural equation modeling (SEM) produces

theoretically error-free estimates of the effects of latent variables, overcoming this problem

(Marsh, Wen, & Hau, 2006; Schumacker & Marcoulides, 1998). However, SEM has only

rarely been used in practice, in part because of the difficulty of model specification within the

traditional product indicator (PI) approach. In contrast, newer distribution analytic approaches

(Klein & Moosbrugger, 2000; Klein & Muthén, 2007) are easy to use and provide parameter

estimates that can be more efficient, yielding greater statistical power, particularly with more

complex models. The goals of this article are to provide an introduction to the distribution

analytic approaches and to compare the properties of the distribution analytic and PI approaches

both on a theoretical level and in a simulation study. We also illustrate the use of the approaches

with an empirical example.

COMPLEX NONLINEAR MODELS: LATENT VARIABLE INTERACTIONS

AND QUADRATIC EFFECTS

The early literature focused primarily on models with a single latent variable interaction

or quadratic effect (e.g., Jöreskog & Yang, 1996; Kenny & Judd, 1984). More recently the

literature (e.g., Kelava, Moosbrugger, Dimitruk, & Schermelleh-Engel, 2008; Lee, Song, &

Tang, 2007) has begun to consider more complex models that involve simultaneous interaction

and quadratic effects like Ganzach’s (1997) model of children’s educational expectations.

Equation 2 expresses a latent model with one interaction and two quadratic effects analogously
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to Equation 1, but transferred from the manifest variables framework to the latent variables

framework:

˜ D ’ C ”1Ÿ1 C ”2Ÿ2 C ¨12Ÿ1Ÿ2 C ¨11Ÿ
2
1 C ¨22Ÿ2

2 C — (2)

In Equation 2, ˜ denotes the latent criterion, Ÿ1 and Ÿ2 are latent predictors, the product Ÿ1Ÿ2

represents the interaction term, Ÿ2
1 and Ÿ2

2 are quadratic terms, ’ is the intercept, ”1 and ”2

are linear effects of the predictors, ¨12 is the nonlinear effect of the interaction term, ¨11 and

¨22 are the nonlinear effects of the quadratic terms, and finally — is the latent disturbance. The

more general matrix expression is given in Equation 3:

˜ D ’ C �Ÿ C Ÿ0�Ÿ C — (3)
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In Equation 3, ˜ denotes the latent criterion, ’ is the latent intercept, � is the coefficient

vector for the linear effects of n latent predictors (summarized in the Ÿ vector), � is the upper

triangular coefficient matrix of the nonlinear effects (with the quadratic effects on the diagonal

and the interactions effects off-diagonal), and finally — is the latent disturbance. Figure 1 depicts

this nonlinear structural equation model with one interaction effect and two quadratic effects.

FIGURE 1 Nonlinear structural equation model with one latent interaction effect and two latent quadratic

effects. Each linear latent variable (Ÿ1; Ÿ2, and ˜) has three indicator variables (x1; : : : ; x3I x4; : : : ; x6I and

y1; : : : ; y3 , respectively) as a measurement model. Note that product indicators (e.g., x1x4; x2x5) are only

needed in product indicator approaches as a measurement model for the latent nonlinear terms (Ÿ1Ÿ2; Ÿ2
1 , and

Ÿ2
2). Thus, nonlinear measurement models are given in dashed lines. Distribution analytic approaches do not

need measurement models for the latent nonlinear terms.
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Product Indicator (PI) Approaches

Kenny and Judd (1984) initially developed the basic PI approach for nonlinear SEM. Their

approach used multiple PIs for the specification of each nonlinear term’s measurement model.

Suppose that latent variables Ÿ1 and Ÿ2 are measured by centered and normally distributed

indicators x1; x2; x3 and x4; x5; x6, respectively (Equation 4):
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The interaction term Ÿ1Ÿ2 is measured by products of each latent variable’s indicators, for

example x1x4; x2x5; x3x6, referred to as PIs (see Figure 1). This PI approach has received

subsequent development, particularly as reflected in contributions by Jöreskog and Yang (1996),

Algina and Moulder (2001), Wall and Amemiya (2001), and Marsh, Wen, and Hau (2004).

Nonlinear constraints. Unfortunately, this approach has been rarely used by applied re-

searchers. One reason is that the PI approach involves the specification of nonlinear parameter

constraints that are difficult for researchers to implement. As depicted in Figure 1, x2 and x5

are indicators of the centered and normally distributed latent predictor variables Ÿ1 and Ÿ2; x2 D

œx
21Ÿ1C•2 andx5 D œx

52Ÿ2C•5,whereœx
21 andœx

52 arefactor loadingsand•2 and•5 aremeasurement

errors, respectively. The product indicator x2x5 of the interaction term Ÿ1Ÿ2 can be expressed as:

x2x5 D œx
21œ

x
52Ÿ1Ÿ2 C œx

52Ÿ2•2 C œx
21Ÿ1•5 C •2•5

D œx
83Ÿ1Ÿ2 C •8 (5)

For the factor loading œx
83, the first subscript 8 refers to the eighth indicator (x2x5), and

the second subscript 3 refers to the third latent variable Ÿ1Ÿ2 in the model (see Figure 1). The

variance decomposition of the product indicator x2x5, which is required for model specification,

is given by:

Var.x2x5/ D œx
83

2¥33 C ™•
88 , where: (6)

œx
83 D œx

21œ
x
52

¥33 D ¥11¥22 C ¥2
21

™•
88 D œx

21
2¥11™

•
55 C œx

52
2¥22™

•
22 C ™•

22™
•
55

¥11 D Var.Ÿ1/; ¥21 D Cov.Ÿ1; Ÿ2/; ¥22 D Var.Ÿ2/; ™•
22 D Var.•2/; ™•

55 D Var.•5/

Because loadings and variances of the indicator products are functions of the loadings and

variances of the linear indicators, this estimation approach demands the specification of non-
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TABLE 1

Specification of Nonlinear Constraints in the Product Indicator Approach

Nonlinear Model Interaction Model Quadratic Model

Product indicators ˜ D ’ C ”1Ÿ1 C ”2Ÿ2 C ¨12Ÿ1Ÿ2 C — ˜ D ’ C ”1Ÿ1 C ”2Ÿ2 C ¨11Ÿ2

1
C —

Nonlinear constraints x1x4; x2x5; x3x6 x2

1
; x2

2
; x2

3

Factor loadings œx
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D 1; œx
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�
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�

œx

31

�2

Mean of latent nonlinear effect E .Ÿ1Ÿ2/D¥21 E .Ÿ2
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1
/ D 2¥2
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latent nonlinear effect C ov.Ÿ1Ÿ2 ; Ÿ1/ D C ov.Ÿ1Ÿ2; Ÿ2/ D 0 C ov.Ÿ2

1
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1
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Note. For both nonlinear models, the linear measurement model is
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. All linear indicators and linear latent

variables of the measurement model are assumed to be centered and normally distributed. This table lists the required nonlinear

constraints for the constrained product indicator (PI) approach. For partially constrained and unconstrained approaches of PI,
some nonlinear constraints are released. The required constraints for the unconstrained approach (Marsh et al., 2004, 2006) are
in boldface font and underlined. When linear latent variables are nonnormally distributed, the covariances between higher order
terms and their linear terms (e.g., C ov.Ÿ1Ÿ2; Ÿ1/) are nonzero in general. In the unconstrained approach, these covariances are

estimated freely (Marsh et al., 2004, 2006). The specification of nonlinear constraints will become more complex if additional
product indicators are used. This table summary is made based on earlier work by Algina and Moulder (2001), Jöreskog and
Yang (1996), Kenny and Judd (1984), Lee et al. (2004), Marsh et al. (2004, 2006), and Wall and Amemiya (2001).

linear parameter constraints, which is very error prone. Table 1 presents the full set of nonlinear

constraints needed for a model containing a single interaction Ÿ1Ÿ2 between two latent predictors

or a single latent quadratic term Ÿ2
1 for the constrained PI approach when the observed variables

have been centered.

Marsh et al. (2004, 2006) proposed a so-called unconstrained model that relaxes most of the

constraints in the Jöreskog and Yang (1996) model for a single latent variable interaction. In

Marsh et al.’s approach, the factor loadings, the variance of the latent nonlinear effect, and the

measurement error variances are all freely estimated1 (see Table 1). Only the mean of the latent

1Note that the specification of the parameters in the unconstrained approach is conditional on the distribution of the

variables. For example, when the latent exogenous variables .Ÿ1; Ÿ2/0 are nonsymmetrically distributed, the covariance

between higher order terms and their linear terms (e.g., Cov.Ÿ1Ÿ2; Ÿ1/ and Cov.Ÿ1Ÿ2; Ÿ2/) also has to be specified

(Marsh et al., 2004). In that case, the covariance matrix ˆ is estimated freely.
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nonlinear term is constrained to ¥21 for a model with a single interaction effect and to ¥11 for

a model with a single quadratic effect (in boldface in Table 1). The unconstrained approach has

shown generally good performance in simulation studies in terms of high convergence rates

and small bias in the estimate of the nonlinear latent term under conditions of nonnormally

distributed variables. However, even when the observed x variables have a multivariate normal

distribution, the unconstrained approach shows a modest loss of statistical power in the test

of the latent variable interaction relative to the Jöreskog and Yang (1996) fully constrained

approach (Marsh et al., 2004).

Unfortunately, in more complex models involving multiple nonlinear terms, such as the

Ganzach model depicted in Figure 1, the constraints and specifications become much more

complex. Additional specifications are required when each measured indicator variable con-

tributes to more than one product indicator. Recently, Kelava (2009), Kelava and Brandt

(2009), and Moosbrugger, Schermelleh-Engel, Kelava, and Klein (2009) proposed an extended

unconstrained approach that identifies the additional specifications that are needed for proper

estimation in more complex nonlinear models. Table 2 presents the specifications that are

required for Ganzach’s model with one latent interaction and two quadratic effects (see Fig-

ure 1). With other complex models, the required specifications must be developed following

guidelines presented in Kelava and Brandt (2009). Additional complexity in this approach

occurs if unequal numbers of indicators are available for each latent exogenous variable or if

indicators are nonnormally distributed.

Nonnormality of product terms. A second reason for the lack of use of this approach

is that latent variable interactions and quadratic terms do not have a normal distribution, even

when the measured and latent variables have normal distributions (Aroian, 1944; Ma, 2010;

Moosbrugger, Schermelleh-Engel, & Klein, 1997). Therefore, normal theory-based standard

errors and hence significance tests and confidence intervals for the effects of interest will be

incorrect (cf. Jöreskog & Yang, 1996).

Distribution Analytic Approaches: LMS and QML

More recently Klein and Moosbrugger (2000) developed a Latent Moderated Structural Equa-

tions (LMS) approach that employs a unique model specification that does not involve PIs. LMS

produces asymptotically correct standard errors for nonlinear effects. Because this approach

becomes computationally (numerically) intensive as the number of nonlinear effects increases,

Klein and Muthén (2007) subsequently developed a Quasi-Maximum Likelihood (QML) ap-

proach. QML permits the estimation of multiple nonlinear effects with a smaller increase of

computational burden by taking a small loss of precision because a “quasi” likelihood (described

later) is maximized. Figure 2 provides estimates of our empirical example from work stress

(discussed in detail in a later section) analyzing a model containing one latent interaction and

two quadratic effects, as specified for LMS or QML; note that there are no PIs.

The distribution analytic approaches make the same standard assumptions of latent variable

models as the PI approaches (except for normally distributed y variables). On the predictor

side, Ÿ and • are assumed to be multivariate normally distributed with means equal to 0. Each

of the measured x variables .x1; x2; : : : ; xq/0 is normally distributed and centered internally

by the program. On the criterion side, the – and — variables are assumed to be multivariate



NONLINEAR SEM: THE LMS AND QML ESTIMATORS 471

TABLE 2

Specification of Ganzach’s Model in the Extended Unconstrained Approach

Nonlinear structural model

˜ D ’ C ”1Ÿ1 C ”2Ÿ2 C ¨12Ÿ1Ÿ2 C ¨11Ÿ2
1 C ¨22Ÿ2

2 C —

Linear measurement models
0

B

B

B

B

B

@

x1

x2

x3

x4

x5

x6

1

C

C

C

C

C

A

D

0

B

B

B

B

B

@

1 0
œx

21 0
œx

31 0
0 1
0 œx

52
0 œx

62

1

C

C

C

C

C

A

�

Ÿ1

Ÿ2

�

C

0

B

B

B

B

B

@

•1

•2

•3

•4

•5

•6

1

C

C

C

C

C

A

,

0

@

y1

y2

y3

1

A D

0

@

1 0

œ
y
21 0

œ
y
31 0

1

A ˜C

0

@

–1

–2

–3

1

A

Nonlinear measurement model
0

B

B

B

B

B

B

B

B

B

B

B

@

x1x4

x2x5

x3x6

x2
1

x2
2

x2
3

x2
4

x2
5

x2
6

1

C

C

C

C

C

C

C

C

C

C

C

A

D

0

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0
œx

83 0 0
œx

93 0 0
0 1 0
0 œx

11;4 0

0 œx
12;4 0

0 0 1
0 0 œx

14;5

0 0 œx
15;5

1

C

C

C

C

C

C

C

C

C

C

C

A

0

@

Ÿ1Ÿ2

Ÿ2
1

Ÿ2
2

1

A C

0

B

B

B

B

B

B

B

B

B

B

@

•7

•8

•9

•10

•11

•12

•13

•14

•15

1

C

C

C

C

C

C

C

C

C

C

A

Covariance matrices

•1

•2

•3

•4

•5

•6

0

B

B

B

B

B

B

@

™•
11

0 ™•
22

0 0 ™•
33

0 0 0 ™•
44

0 0 0 0 ™•
55

0 0 0 0 0 ™•
66

1

C

C

C

C

C

C

A

,

•7

•8

•9

•10

•11

•12

•13

•14

•15

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

™•
77

0 ™•
88

0 0 ™•
99

™•
10;7 0 0 ™•

10;10

0 ™•
11;8 0 0 ™•

11;11

0 0 ™•
12;9 0 0 ™•

12;12

™•
13;7 0 0 0 0 0 ™•

13;13

0 ™•
14;8 0 0 0 0 0 ™•

14;14

0 0 ™•
15;9 0 0 0 0 0 ™•

15;15

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

–1

–2

–3

0

@

™–
11 0 0
0 ™–

22 0
0 0 ™–

33

1

A,

Ÿ1

Ÿ2

Ÿ1Ÿ2

Ÿ2
1

Ÿ2
2

0

B

B

B

@

¥11

¥21 ¥22

0 0 ¥33

0 0 ¥43 ¥44

0 0 ¥53 ¥54 ¥55

1

C

C

C

A

, —
�

§
�

Latent expectations

E.Ÿ1Ÿ2/ D ›3; E.Ÿ2
1/ D ›4; E.Ÿ2

2/ D ›5

Note. All linear indicators .x1; : : : ; x6/0, exogenous latent variables .Ÿ1; Ÿ2/0, mea-

surement errors .•1; : : : ; •6; –1; : : : ; –3/0 of the linear measurement models, and the latent
disturbance — are assumed to be centered and normally distributed. This table lists the
required specifications for the extended unconstrained approach (for details, see Kelava &

Brandt, 2009). All parameters are estimated freely. Necessary measurement error covariances

are in boldface font (e.g., ™•
10;7 ). Additional measurement error covariances (e.g., ™•

71 ) and
additional covariances of the latent predictors (e.g., ¥31) need to be specified if linear indicator

variables .x1; : : : ; x6/0 and latent variables .Ÿ1; Ÿ2/0 are non-normally distributed (Kelava &
Brandt, 2009).
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FIGURE 2 Complete nonlinear structural equation model including linear effects of customer-related

stressors and customer orientation, interaction (Customer-Related Stressors � Customer Orientation), and

quadratic effects (customer-related stressors2 Customer Orientation2) on burnout. Coefficients are standardized

Quasi-Maximum Likelihood (QML) parameter estimates (variance estimates given in parentheses). With the

exception of the quadratic effect of customer-related stressors, all model coefficients are significant. No product

indicators are required in QML or Latent Moderated Structural Equations.

normally distributed with means equal to 0. As a consequence of the nonlinear effects, the latent

˜ variable and the measured y variables .y1; y2; : : : ; yp/0 will be nonnormal (Kenny & Judd,

1984). This nonnormality can be problematic for SEM procedures that use PIs. This problem

can be solved by using distribution analytic approaches. Distribution analytic approaches

use alternative procedures to maximize the (transformed) likelihood function, which takes

the nonnormality of the nonlinear effects into account. These approaches yield more reliable

estimates of standard errors of the nonlinear effects, but leave the estimates and interpretation

of the nonlinear effects (¨12; ¨11; ¨22) unchanged.2 We provide a brief overview of the LMS

and QML estimation methods for a general audience. Readers wishing more detailed technical

presentations should consult the original Klein and Moosbrugger (2000) and Klein and Muthén

(2007) articles.

2All parameters associated with the two original linear latent predictor variables Ÿ1; Ÿ2 and the latent criterion

variable ˜ are identical in the distributional analytic and PI approaches. The distribution analytic approaches do not

rely on PIs. Parameters associated with the PIs and with relationships involving latent exogenous interaction and

quadratic variables and other exogenous variables are not estimated.
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LMS estimator. The LMS procedure builds on two key statistical concepts. The first is

the concept of mixture distributions—the observed (nonnormal) distribution of a variable can

be represented by a combination of normal distributions having different means and variances.

The second is the concept of conditional distribution, which is the distribution of a variable

holding one or more other variables constant, each at a particular value.

To illustrate these ideas, consider the distribution of the height of adults in the United States

which is nonnormal. Males have a distribution that is approximately normal (� D 69:41,

¢ D 4:48 inches) and females have a distribution that is approximately normal (� D 63:86,

¢ D 4:39 inches; McDowell, Fryar, Ogden, & Flegal, 2008) as well. In other words, there are

two conditional normal distributions, one for gender D male and one for gender D female.

Combining these two conditional distributions into one distribution represents the nonnormal

distribution in the entire population. Statisticians often use this idea and combine several

normal distributions to represent complex nonnormal distributions. The challenge is to find a

conditioning variable like gender in the preceding example that identifies the mean and variance

of the specific conditional normal distributions to be combined.

The LMS procedure builds on these two central ideas. First, although overall interaction

(Ÿ1Ÿ2) and quadratic (Ÿ2
1, Ÿ2

2) effects are nonlinear, the conditional effects are linear when a

variable is controlled that causes the nonlinearity. Second, the multivariate distribution of the

observed indicator variables .x1; x2; : : : ; xq; y1; y2; : : : ; yp/0 can be approximated by a weighted

combination of conditionally normal distributions. For both parts, the challenge is in finding

the proper variable on which to condition.

LMS uses a matrix operation known as a Cholesky decomposition. Like principal com-

ponents analysis (over which it has mathematical advantages), the Cholesky decomposition

permits the analyst to replace the original variables (here, the latent Ÿ variables) with another set

of orthogonal variables. In LMS the Cholesky decomposition is applied to the positive definite

(m � m) covariance matrix ˆ of the m latent exogenous variables .Ÿ1; : : : ; Ÿm/0, not including

higher order nonlinear terms. Regardless of the number of nonlinear effects in the structural

model, all models considered in this article contain two latent exogenous variables .Ÿ1; Ÿ2/0,

therefore, m is equal to 2. More formally, the Cholesky decomposition can be expressed as:

ˆ D ŸŸ0 D AA0 D AIA0 D Azz0A0 D .Az/.Az/0 (7)

where I is an (m � m) identity matrix. I is replaced by the vector product of a (m � 1) vector

z D .z1; : : : ; zm/0 with itself. Each z variable from the z vector is standardized and normally

distributed (z � N.0; 1/) and is orthogonal to the remaining z variables. As can be seen from

Equation 7, the decomposition of ˆ replaces the correlated Ÿ variables by an A matrix and by

a z vector of m independent z variables. z can be separated into two subvectors:

z D .z1; : : : ; zm/0 D Œz0
1
; z0

2
�0 (8)

where z1 D .z1; : : : ; zk/0 and z2 D .zkC1 ; : : : ; zm/0. The first k elements in z1 are the z variables

that correspond to Ÿ variables involved in nonlinear terms. Here, k is equal to 2 because Ÿ1 and

Ÿ2 were the only latent exogenous variables and both were involved in the nonlinear terms (e.g.,

Ÿ1Ÿ2). The remaining elements (k C 1 to m) in z2 (here, no elements) are those that are only

involved in linear terms, but not in nonlinear terms. This procedure creates orthogonal compo-

nents that allow us to partition the distribution of the y variables into linear and nonlinear parts.
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The z1 vector is used as the conditioning variable. Klein and Moosbrugger (2000) showed

that the joint distribution of the original measured x and y variables is conditionally multivariate

normal when vector z1 is used as the basis for conditioning, [
�

.x1; : : : ; xp; y1; : : : ; yq/
�0

jz1 �

N .�.z1/ ; † .z1/), where p and q are the number of observed x and y variables, respectively].

Based on this result, they suggested using a mixture distribution to represent the multivariate

distribution of the x and y variables in which z1 is used to determine the means, variances, and

covariances of the set of normal distributions used in the mixture. These multivariate normal

distributions are weighted and summed to represent the multivariate distribution of the observed

variables. A numeric approximation procedure known as Hermite–Gaussian quadrature (see

Freund & Hoppe, 2007) is used to approximate the mixture distribution.3 The weights used

by the quadrature process are those that produce the best approximation of the multivariate

surface. Because LMS represents the nonnormal distribution as a mixture of conditionally

normal distributions, no separate indicators of the product terms are needed. Figure 3 presents an

illustration showing in the univariate case how different normal distributions can be combined

to approximate the nonnormal distribution of y1.

As with many difficult estimation problems, particularly mixture models, the expectation-

maximization algorithm (EM; Dempster, Laird, & Rubin, 1977) is used to produce maximum

likelihood estimates and standard errors for each of the parameters. Unlike standard SEM,

LMS uses the full information contained in the raw data, not just the means and covariances.

Wald z tests can be used to evaluate each parameter estimate compared to its standard error.

Alternatively, likelihood ratio tests for nested models can be used to compare the full model to

one in which each key parameter in turn is restricted to 0. Although asymptotically equivalent,

likelihood ratio tests could be more accurate than Wald tests given realistic sample sizes. Klein

and Moosbrugger (2000) provide the full technical details of the LMS procedure.

QML estimator. The QML procedure takes a different approach to solving the same

problem of the nonnormality of the y variables.

The first key idea is that all but one of the measured y variables are corrected for the

nonnormality that is caused by the nonlinear effects on ˜. For ease of presentation, we consider

the special case in which the measured y variables have a £-equivalent measurement structure4

in which each of the indicators has the same unstandardized loading (œ D 1) on the underlying

latent variable. For each measured y variable, we have yi D ˜C–i . Under standard assumptions,

the most reliable y variable is designated as y1, termed the scaling variable, which is taken as a

proxy for ˜. As long as all variables are sufficiently reliable, another variable could be chosen

as the scaling variable with little change in the results. However, the choice of an unreliable

scaling variable could lead to substantially poorer estimates. Because the structural model for

˜ contains latent nonlinear terms (e.g., Ÿ1Ÿ2), ˜ will be nonnormally distributed. In contrast,

the –i s are assumed to have independent normal distributions. If we create a set of difference

scores y� D .y�
2 D y2 � y1; y�

3 D y3 � y1; : : : ; y�
p D yp � y1/0, then each difference score

3In the unidimensional case, quadrature approximation proceeds by using a series of rectangles to approximate the

area under the curve. By using smaller widths, the rectangles provide better and better approximation of the area under

the curve, but at a cost of increased computational burden. In the multidimensional case, the computational burden

increases rapidly as the number of dimensions increases.
4The QML procedure assumes only the standard congeneric measurement structure so in practice the factor loadings

can differ.
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FIGURE 3 Latent Moderated Structural Equations (LMS) mixture density f.y1/ and single mixture

components: Cov.Ÿ1 ; Ÿ2/ D :50. The three normal distributions, each conditioned on a different value of

z1 , that are components of the mixture distribution are depicted with thin lines using different line styles. The

resulting nonnormal LMS mixture distribution representing a weighted sum of the component distributions is

depicted with a thick black line.

will reflect the difference in the normally distributed measurement errors (y�
i D yi � y1 D

Œ.˜C–i /�.˜C–1/� D .–i �–1/). The resulting y variables vector .y1; y�
2 ; : : : ; y�

p /0 contains one

nonnormally distributed variable y1 and p � 1 difference score variables y� that are normally

distributed. In this formulation y1 contains all the nonnormality resulting from the nonlinear

effects on ˜.

The second key idea uses the idea of conditioning to remove normal parts from the y1

distribution. A distribution f .y1jx; y�/ is created by conditioning y1 on the x variables and

the p � 1 difference scores variables y�, both of which are assumed to be normally distributed.

In effect, this conditional distribution partials out the normal parts of (x; y�) from the y1

distribution, leaving the nonnormal parts.

The third key idea is that the joint multivariate nonnormal distribution f .x; y/ of the x and

y variables can be represented as the product of the conditional distribution f .y1jx; y�/ and an

unconditional distribution f .x; y�/. The unconditional distribution f .x; y�/ is a multivariate

normal distribution of the x variables and the y� difference score variables. This idea is

expressed in Equation 9.

f .x; y/ D f .y1jx; y�/f .x; y�/ (9)
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Estimating the density of the original multivariate distribution f .x; y/ is difficult because

the conditional distribution f .y1jx; y�/ is nonnormal and complex. QML solves this problem

by replacing the nonnormal distribution f .y1jx; y�/ with f �.y1jx; y�/ which is a normal

distribution having the same mean and variance. The product of f �.y1jx; y�/ and f .x; y�/

provides an approximation f �.x; y/ of the original multivariate nonnormal distribution f .x; y/

of the x and y variables as expressed in Equation 10.

f .x; y/ � f �.y1jx; y�/f .x; y�/ D f �.x; y/ (10)

Using standard numerical procedures commonly used in maximum likelihood estimation

(e.g., Newton-type procedures), the likelihood of this approximation expressed in Equation 10

is maximized and estimates of each of the linear and nonlinear effects and their standard errors

are obtained. The procedure of replacing the nonnormal distribution with a normal one and

maximizing the approximation of the likelihood function is termed quasi-maximum likelihood.

The cost of this procedure is a small loss of efficiency compared to LMS. The information

about the nonlinear effects is provided by the nonnormality of the y1 indicator; no separate

indicators of the product terms are needed.

Similarities and differences between the LMS and QML estimators. LMS uses a

proper maximum likelihood function and represents the nonnormal distribution by a mixture of

normal distributions. In contrast, QML uses a quasi-maximum likelihood estimation procedure

that only approximates the true likelihood function. We focus here on theoretical implications

associated with the different estimators that might be important for users. These implications

will be most apparent in models with a larger magnitude and number of nonlinear effects.

1. When predictor variables and measurement error variables are normally distributed, LMS

and QML should provide nearly identical estimates. LMS should have a small advantage

in precision of estimates because it utilizes the true maximum likelihood function, instead

of an approximation of it.

2. As the correlation between the latent predictors (here Ÿ1 and Ÿ2) that form the higher order

terms in the structural equation increases (multicollinearity), a slight advantage should

be found for LMS. With increasing multicollinearity, the distribution of the measured y

variables becomes more nonnormal. The quality of the approximation of the conditional

distribution of y1 used in QML will decrease, leading to a slightly higher bias of the

estimates relative to LMS.

3. When predictor variables and measurement error variables are normally distributed, QML

should provide also slightly more biased estimates than LMS as the number of nonlinear

terms increases. Once again, the distribution of the conditional y1 variable will become

more nonnormal and therefore the approximation will be less precise in QML.

4. When the assumption of normality of the predictor variables and measurement errors

(•; –; Ÿ; —) is violated, QML is likely to produce less biased estimates than LMS, unless

the distribution of the latent exogenous variables (Ÿs), the measurement errors (•s), or

both are substantially skewed (Klein & Muthén, 2007). The ability of the mixture model

representation in LMS to represent these more extreme forms of multivariate nonnor-

mality decays more quickly than the approximation of the conditional y1 distribution in
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QML. For example, LMS assumes that its mixture components are normally distributed

after conditioning for the mixing variable z1. If this assumption is violated, LMS applies a

likelihood function for parameter estimation that is a (finite) sum of misspecified models.

LMS is only able to approximate the nonnormality that is due to the nonlinear effects

(¨12, etc.). Conditioning on z1, the joint distribution of the indicator variables (x; y)

becomes a (weighted) sum of normal distributions only when assumptions are met.

5. For more complex models with many nonlinear terms, the computational burden will

increase. Of importance, this burden increases exponentially faster in LMS than in QML

and can exceed the capacity of current personal computers when several nonlinear terms

are involved. Complex models might also require far more computer time than is typical

for problems not having nonlinear effects.

6. LMS is currently implemented in Mplus (Muthén & Muthén, 1998–2007), a standard

latent variable analysis software package in which one simply states the equations to

be estimated. QML is currently a freestanding program that uses a matrix-based format

similar to LISREL (Jöreskog & Sörbom, 1996). QML is available from Andreas Klein

(aklein25@uwo.ca).

Differences Between the LMS/QML and PI Approaches

Recall that the PI approaches use products of observed variables to serve as indicators of

latent variable interactions and quadratic effects. LMS and QML use conditional distributions

to represent the nonlinear effects. The result is that the nonnormality of the y variables that is

due to nonlinearity is directly addressed in LMS and QML, but not in PI approaches. Maximum

likelihood estimation in PI approaches assumes multivariate normality, which will be violated

by the product variables (Aroian, 1944) and the y variables.

Again, we focus next on theoretical implications associated with the different estimators for

users.

1. In PI approaches, the distribution of the terms representing interactions and quadratic

effects will always be nonnormal with the degree of nonnormality increasing as the latent

predictor correlation and the magnitude of the interaction and quadratic effects increase

(Aroian, 1944; Dimitruk, Schermelleh-Engel, Kelava, & Moosbrugger, 2007; Klein &

Moosbrugger, 2000; Ma, 2010).5 When maximum likelihood estimation rests on normal

theory, the standard errors will be underestimated. This result will lead to an increased

Type I error rate and confidence intervals that are too narrow. Consequently, estimates

of standard errors should be corrected for nonnormality. Simulation studies using the

constrained PI approach (e.g., Moulder & Algina, 2002) have found that common meth-

ods of correcting standard errors for nonnormality (e.g., Satorra & Bentler, 1994) fail

to yield improved standard errors. Bootstrapping procedures (Brandt, 2009) might be

able to improve estimates of standard errors, leading to acceptable Type I error rates at

a modest cost in statistical power. In contrast, the LMS and QML estimators address

the issue of nonnormality directly and provide more accurate standard errors and test

5The product term Ÿ1Ÿ2 has a skewness of 2.33 and a kurtosis of 9.84 when the latent predictors Ÿ1 and Ÿ2 are

standard normally distributed and correlated at ¥21 D :50 (Ma, 2010).
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statistics without correction. More accurate standard errors offer an important theoretical

benefit: Adequate statistical power (e.g., .80) can be achieved with a smaller sample size

than with PI approaches.

2. In PI approaches, the nonlinear effects are represented by second-order product terms

(e.g., x1x2; x2
1). The variances of these product terms are based on fourth-order moments.

Estimation of these higher order moments is highly unstable. LMS and QML do not

utilize product terms and do not require the estimation of higher moments, so their

estimates should be more reliable.

3. The calculation of the ¦2 test of goodness of fit requires specification of a saturated

model. The standard saturated model implemented in current SEM software that is used

by PI approaches is not correct for nonlinear latent variable models, because these models

include restrictions on the mean and covariance structures that are not appropriate for a

saturated model (Klein & Schermelleh-Engel, 2010). Conclusions based on the ¦2 test of

fit and practical fit indexes based on the ¦2 statistic are suspect. LMS appropriately does

not provide measures of fit. QML includes a new measure of fit based on a theoretically

appropriate saturated model; however, its performance has not yet been investigated.

¦2 difference (likelihood ratio) tests can be implemented in all approaches, permitting

appropriate comparison of nested models. The Akaike’s Information Criterion (AIC) and

Bayesian Information Criterion (BIC) can also be calculated, permitting comparison of

nonnested models.

4. PI approaches provide modification indexes (Lagrange multiplier tests) that can be used

for exploratory model improvement, although modification indexes will often be mis-

leading. Even under the theoretically ideal conditions of a model involving no nonlinear

terms with data that are multivariately normal, these tests must be used cautiously

(MacCallum, 1986) as they can potentially capitalize on chance, identifying incorrect

aspects of the model for modification. These tests will be further compromised with

latent variable models involving nonlinear terms because the ¦2 values associated with the

nonlinear latent terms and their indicators will be inflated by nonnormality, exacerbating

the problem of identifying inappropriate model modifications. LMS and QML do not

offer misleading model modification indexes.

5. In PI approaches, measurement models using the products of measured x variables have

to be constructed for latent variable interactions and quadratic effects. The correlations

between higher order terms (e.g., Ÿ1Ÿ2 and Ÿ2
1) have to be estimated. In contrast, LMS

and QML bypass the construction of indicators of latent nonlinear variables so that these

correlations are not estimated.

SIMULATION STUDY

To illustrate some finite sample differences between the distribution analytic approaches and

the PI approach, we specified a nonlinear model with one interaction and two quadratic

effects corresponding to Ganzach’s model (Equation 2; see also Figure 1), using the population

parameter values given in Table 3. We investigated the performance of LMS, QML, and the

extended unconstrained approach (Kelava, 2009; Kelava & Brandt, 2009; Moosbrugger et al.,

2009). We varied the correlation between the two latent first-order variables Ÿ1 and Ÿ2 to study
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TABLE 3

Six True Models: Variation of the Multicollinearity Conditions and Nonlinear Effects

Parameter
Type I Error Rate Simulations

True Value
Power simulations

True Value

¨11 0.000 0.101
¥21 D :000 ¨12 0.000 0.148

¨22 0.000 0.101

¨11 0.000 0.101
¥21 D :375 ¨12 0.000 0.139

¨22 0.000 0.101
¨11 0.000 0.101

¥21 D :625 ¨12 0.000 0.126

¨22 0.000 0.101

Note. The following parameters were constant across conditions: Var.Ÿ1/ D Var.Ÿ2/ D

1; ”1 D ”2 D :316; œx
11 D œx

42 D œ
y
11 D 1; œx

21 D œx
31 D œx

52 D œx
62 D œ

y
21 D œ

y
31 D :894;

™•
11 D ™•

44 D ™–
11 D :25; ™•

22 D ™•
33 D ™•

55 D ™•
66 D ™–

22 D ™–
33 D :20. See Figure 1 for a path

diagram defining the parameters.

the effects of increasing multicollinearity. We also examined the Type I error rates for test

statistics when there are no true nonlinear effects in the population (¨11 D ¨12 D ¨22 D 0).

The key nonlinear effects ¨11; ¨12, and ¨22 and the linear effects ”1 and ”2 that are of

central interest to researchers are theoretically expected to be identical in the extended PI and

distribution analytic approaches so they can be directly compared. More accurate estimation of

the nonlinear effects associated with the distribution analytic approaches effects was expected to

be reflected in smaller standard errors and higher statistical power for the tests of the nonlinear

effects without an increase in the Type I error rate.

Design of the Simulation Study

Data were generated specifying the latent predictor correlations to be :000; :375, and :625.

These latent predictor correlations correspond to correlations between measured indicators of

:000; :300, and :500 when indicators have a reliability of :800. In terms of Cohen’s 1988

norms, correlations between measured variables of :300 and :500 are described as moderate

and strong, respectively. Linear effects explained a total of 10% of the latent criterion’s variance

in each structural model. First, we examined the Type I error rates, setting all nonlinear

effects to zero. Second, we specified three nonlinear effects that each explained 2.2% of

the latent criterion’s variance. Champoux and Peters (1987) and Chaplin (1991, 2007) have

documented the small effect size of continuous variable interactions that typify personality and

industrial-organizational literatures. Theoretically, larger magnitudes of nonlinear effects would

be expected to produce greater nonlinearity of the observed y variables, further improving the

performance of LMS and QML (Klein & Moosbrugger, 2000; Klein & Muthén, 2007) relative

to the extended unconstrained approach.

The sample size was N D 400, a relatively large but realistic value (see MacCallum &

Austin, 2000). The reliability of each indicator of Ÿ1 and Ÿ2 was set to be .800. Indicator

variances were homogenous. The latent linear predictor variables, latent disturbances, and

measurement error variables were normally distributed and centered. These specifications imply
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that the observed predictor variables x1 to x6 were also normally distributed in the population.

A total of 500 replications were generated from each of the three true population models. A

solution was considered proper and selected when there were no negative variances or standard

error estimates (cf. Paxton, Curran, Bollen, Kirby, & Chen, 2001). Table 3 provides a summary

of the true parameter values of the three true models.

The 500 replication samples from each of the three true nonlinear models were analyzed

using LMS, QML, and the extended unconstrained approach, always specifying a nonlinear

model with one interaction and two quadratic effects. The parameter estimates and standard

errors of the nonlinear latent effects were examined.

Software and Implementations

Data were generated using PRELIS version 2.7 (Jöreskog & Sörbom, 1999). Analyses with

the extended unconstrained approach were conducted using LISREL version 8.72 (Jöreskog

& Sörbom, 1996). Analyses with Klein and Moosbrugger’s LMS approach were carried out

using Mplus version 5.21 (Muthén & Muthén, 1998–2007). Analyses with Klein and Muthén’s

QML approach were conducted using the QML stand-alone software version 3.11 (Klein,

2007). Examples of syntax files for these approaches are included in Appendices A and B

available at http://www.augustin.kelava.de/pubs. In this simulation study, we always used the

default settings (e.g., default start values, default number of iterations, and default numerical

algorithms) supplied by the programs, reflecting the typical practice of most users.

Results of the Simulation Study

We focus next on the results for the central nonlinear effects of interest (¨11; ¨12; ¨22). No

appreciable differences among LMS, QML, and the extended unconstrained approach for the

linear effects ”1, and ”2 or the factor loadings on Ÿ1 and Ÿ2 were expected or observed.

Table 4 shows the results of the simulations when no nonlinear effects are present in the true

model. In other words, ¨11, ¨12, and ¨22 were set to 0 in Equation 2 in the data generation

process. In each multicollinearity condition, mean parameter estimates of the nonlinear effects

produced by LMS, QML, and the extended unconstrained approach were close to zero. The

standard error estimates were good approximations of the observed standard deviations of the

parameter estimates. None of the standard errors was severely underestimated, using 10% as a

criterion for severe bias. Across all multicollinearity conditions, Type I error rates were within

acceptable ranges and not systematically inflated or deflated. The convergence rate for LMS

and the extended unconstrained approach was always 100%. For QML, the convergence rate

was slightly lower (96.2%–98.2%).

Table 5 shows the results when the three nonlinear effects are present in the true model.

Again, the convergence rate of LMS and the extended unconstrained approach was always

100%. For QML, the convergence rate ranged between 98.0% and 99.4% with higher conver-

gence rates as multicollinearity increased.

When the latent predictors were uncorrelated, unbiased mean parameter estimates of the

nonlinear effects were obtained for each approach (Table 5, Panel A). LMS, QML, and the

extended unconstrained approach provided accurate standard error estimates. The largest bias
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TABLE 4

Type I Error Rates for the Three Approaches

True Value Approach N (Converged) M Est. SD SE SE/SD
Type I

Error Rate

Panel A LMS 500 .002 .038 .036 .958 .048
¨11 D :000 QML 481 .002 .038 .037 .980 .058

Unconstrained 500 .002 .039 .038 .976 .056

LMS 500 �.003 .051 .052 1.002 .052
¥21 D :000 ¨12 D :000 QML 481 �.003 .052 .051 .991 .050

Unconstrained 500 �.003 .052 .053 1.023 .048
LMS 500 .003 .039 .036 .933 .062

¨22 D :000 QML 481 .003 .039 .037 .948 .067

Unconstrained 500 .003 .040 .038 .938 .052
Panel B LMS 500 .004 .043 .042 .963 .064

¨11 D :000 QML 491 .003 .043 .042 .969 .063

Unconstrained 500 .004 .045 .044 .976 .058
LMS 500 �.005 .065 .064 .974 .074

¥21 D :375 ¨12 D :000 QML 491 �.006 .065 .066 1.014 .055

Unconstrained 500 �.005 .067 .066 .992 .060
LMS 500 .003 .044 .041 .947 .060

¨22 D :000 QML 491 .003 .044 .043 .968 .061
Unconstrained 500 .003 .046 .044 .957 .042

Panel C LMS 500 .006 .064 .061 .955 .064

¨11 D :000 QML 491 .006 .064 .061 .957 .067
Unconstrained 500 .006 .068 .066 .973 .054
LMS 500 �.009 .109 .104 .956 .064

¥21 D :625 ¨12 D :000 QML 491 �.011 .108 .104 .959 .059
Unconstrained 500 �.009 .114 .112 .977 .048
LMS 500 .005 .064 .061 .957 .060

¨22 D :000 QML 491 .005 .064 .061 .957 .059
Unconstrained 500 .005 .068 .066 .974 .028

Note. LMS D Latent Moderated Structural Equations; QML D Quasi-Maximum Likelihood.

of the nonlinear parameter estimates was 4.5%. Relative to the actual standard deviation of the

parameter estimates, the bias in the mean standard error estimate never exceeded 10%. But

there were differences among approaches with respect to power for detecting interaction and

quadratic effects. For each nonlinear effect, the power for detecting the effect was lowest with

the extended unconstrained approach.

With a latent predictor correlation of :375, acceptable parameter estimates were obtained

using all three approaches (Table 5, Panel B). All approaches slightly overestimated the two

quadratic effects and underestimated the interaction effect. But, the highest overestimation did

not exceed 6.0%. The standard error estimates were acceptable for all three approaches and did

not deviate substantially from the standard deviations of the parameters. The highest empirical

standard deviations of the parameter estimates were shown by the extended unconstrained

approach. Accordingly the power for detecting a nonlinear effect was lower with the extended

unconstrained approach than with LMS or QML.

Given a correlation between latent predictors of :625, the extended unconstrained approach

produced a slightly larger bias in the estimates of the nonlinear effects than LMS and QML

(Table 5, Panel C). For example, the extended unconstrained approach overestimated the first
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TABLE 5

Results for Three Models with One Interaction Effect and Two Quadratic Effects in the Context of

Increasing Multicollinearity

True Value Approach N (Converged) M Est. Difference Bias % SD SE SE/SD Power

Panel A LMS 500 .104 .003 3.10 .037 .036 .970 .826

¨11 D :101 QML 490 .104 .003 3.00 .037 .036 .975 .824

Unconstrained 500 .106 .005 4.50 .038 .037 .965 .812

LMS 500 .145 �.003 �1.80 .051 .051 .994 .816

¥21 D :000 ¨12 D :148 QML 490 .145 �.003 �2.00 .051 .051 1.004 .818

Unconstrained 500 .147 �.001 �1.00 .052 .052 .998 .800

LMS 500 .104 .003 2.50 .038 .036 .935 .832

¨22 D :101 QML 490 .104 .003 2.60 .039 .036 .921 .816

Unconstrained 500 .105 .004 4.00 .040 .037 .923 .792

Panel B LMS 500 .106 .005 4.70 .041 .040 .975 .760

¨11 D :101 QML 496 .106 .005 4.50 .041 .040 .970 .762

Unconstrained 500 .107 .006 6.00 .042 .041 .975 .744

LMS 500 .134 �.005 �3.30 .062 .060 .963 .598

¥21 D :375 ¨12 D :139 QML 496 .134 �.005 �3.60 .062 .060 .972 .615

Unconstrained 500 .135 �.004 �3.00 .064 .063 .976 .602

LMS 500 .104 .003 2.80 .042 .039 .945 .752

¨22 D :101 QML 496 .104 .003 3.00 .042 .039 .941 .758

Unconstrained 500 .106 .005 4.50 .044 .041 .939 .718

Panel C LMS 500 .108 .007 6.60 .059 .057 .958 .464

¨11 D :101 QML 497 .108 .007 6.70 .059 .057 .960 .483

Unconstrained 500 .110 .009 8.80 .063 .061 .973 .440

LMS 500 .119 �.007 �6.00 .100 .095 .943 .276

¥21 D :625 ¨12 D :126 QML 497 .118 �.008 �6.40 .099 .095 .952 .274

Unconstrained 500 .118 �.008 �6.20 .105 .102 .970 .228

LMS 500 .105 .004 3.90 .059 .056 .952 .474

¨22 D :101 QML 497 .105 .004 3.80 .059 .056 .952 .477

Unconstrained 500 .107 .006 6.30 .063 .061 .960 .446

Note. LMS D Latent Moderated Structural Equations; QML D Quasi-Maximum Likelihood.

quadratic effect by 8.8%. The extended unconstrained approach showed the highest empirical

standard deviations of its parameter estimates. For each nonlinear effect, the power for detecting

the effect was again lower with this approach. LMS and QML showed a power of approximately

46.4% to 48.3% to detect a quadratic effect, whereas the power of the extended unconstrained

approach was approximately 44.0% to 44.6%. The power for detecting the interaction effect

was low for LMS (27.6%) and QML (27.4%), but even lower for the extended unconstrained

approach (22.8%).

EMPIRICAL EXAMPLE

We illustrate the analysis of nonlinear models using an empirical example. In certain service

jobs, employees frequently encounter customer-related social stressors (Dormann & Zapf,

2004), ranging from annoyances (e.g., customers disturbing an employee’s workflow) to harass-

ment (e.g., customers insulting an employee). Regular exposure to customer-related stressors

can seriously affect employees’ well-being, leading to burnout (Dormann & Zapf, 2004). For

coping with customer-related stressors, an employee’s personal resources can be crucial: Con-

fronted with an angry customer, an employee possessing a high personal customer orientation

might try to empathize and remain friendly. This strategy ideally leads to both customer
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satisfaction and a sense of professional efficacy on the employee’s part. In contrast, an employee

with a low personal customer orientation might interpret the customer’s anger as a personal

attack and escalate the conflict, resulting in customer dissatisfaction and emotional exhaustion

on the employee’s part. Thus, customer orientation can be expected to moderate the effect of

customer-related stressors on employee burnout.

In addition to an interaction effect, nonlinear effects of stressors and resources could

be expected as well. Severe stressor levels might have a particularly detrimental effect on

health, corresponding with a positive quadratic effect of the stressor. On the other hand, if

customer orientation serves as a resource in coping with customer-related stressors, high levels

of customer orientation could be expected to be particularly effective in changing stressor

appraisal and facilitating coping, leading to a negative quadratic effect of customer orientation

on burnout.

Based on these predictions, we estimated the following model (Equation 11, cf. Equation 2),

where BO represents the latent criterion burnout and CRS and CO represent the latent predictors

customer-related stressors and customer orientation (cf. Figure 2):

BO D ’ C ”1 CRS C ”2 CO C ¨12CRS � CO C ¨11 CRS2 C ¨22CO2 C — (11)

This model was tested in a sample of 400 employees from a public welfare agency in

Germany. Customer-related social stressors were measured by 27 items, mostly taken from

Dormann and Zapf (2004). Three correlated subscales, Customer Aggression (9 items), Cus-

tomer Coordination Problems (15 items), and Disliked Customers (3 items), were used as

indicators of the latent predictor, customer-related stressors. Customer orientation was measured

by 16 items that were essentially unidimensional; three item parcels of 5 or 6 items each were

used as indicators of customer orientation.6 Burnout was measured with the Maslach Burnout

Inventory (MBI; Maslach, Jackson, & Leiter, 1996) in its German version (Büssing & Perrar,

1992). For this example, the Depersonalization and Emotional Exhaustion subscales were used

as indicators of the latent burnout variable.7

We illustrate the statistical analysis of the hypothesized nonlinear effects using the stand-

alone QML program (Klein & Muthén, 2007), the Mplus implementation of LMS (Klein &

Moosbrugger, 2000, cf. Muthén & Muthén, 1998–2007), and the extended unconstrained PI

approach (Kelava, 2009; Kelava & Brandt, 2009; Moosbrugger et al., 2009; cf. Marsh et al.,

2004, 2006), using default settings for estimation.

The distribution analytic QML and LMS approaches require raw data for analysis, and can

use data files in free format or space-delimited fixed format. By default, the latent variables

constituting the interaction and quadratic terms are modeled as centered by the software, and

intercepts (£x; £y) for measurement equations are estimated (Equations 12 and 13):

x D £x C ƒx � Ÿ C • (12)

y D £y C ƒy � ˜ C – (13)

6In practice, item parcels have strengths and weaknesses; the effects of parceling and conditions for their proper

use are described in Bandalos (2002) and Little, Cunningham, Shahar, and Widaman (2002).
7The third subscale, Personal Accomplishment, was not used as it showed relationship patterns distinct from the

other subscales (cf. Leiter, 1993, for models of MBI subscales’ relationships).
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Annotated QML input syntax and LMS input syntax using Mplus (cf. Muthén & Muthén,

1998–2007, Example 5.13) for our illustrative example are included in Appendices A and B

available at http://www.augustin-kelava.de/pubs. Results of the LMS analysis using Mplus were

generally similar to those obtained by QML. To help readers understand the results, we also

present annotated output obtained from QML and LMS in Appendices C and D.

QML and LMS provide unstandardized parameter estimates and standard error estimates.

As in linear structural equation models, unstandardized estimates are based on the specified

structural model (Equation 11) and the measurement models (Equations 12 and 13), thus

are linked to the manifest variables’ empirical variances and the latent variables’ variances

(irrespective of data transformations employed in estimating the likelihoods used by the QML

and LMS algorithms, which remain internal to the program and are not seen by the user).

Unstandardized estimates could be preferred for interpretation if manifest variables possess

well-defined, empirically meaningful metrics and can thus serve as marker variables for latent

variables linked to them. In typical applications, though, standardized estimates might be

preferred for interpretation. QML also includes a properly standardized solution. In general,

for PI approaches, standardization is complicated by product constructs (see Aiken & West,

1991, chap. 3), so that current SEM software produces improperly standardized coefficients.

The distribution analytic QML and LMS approaches, by contrast, estimate interaction and

curvilinear effects (i.e., effects involving product terms) without separate product constructs,

making proper standardization very straightforward. Special procedures must be taken to

produce properly standardized solutions using the PI approach (Wen, Marsh, & Hau, 2010).

We present the results for the complete nonlinear model with all standardized QML parame-

ter estimates, including the interaction and both quadratic effects in Figure 2. The corresponding

structural model for the relationships between the latent variables is given in Equation 14:

BO D �:007 C :646 CRS � :284 CO � :200 CRS � CO C :034 CRS2 � :084 CO2 C — (14)

Unstandardized solutions for the LMS, QML, and extended PI approaches are presented

in Table 6. A comparison of the standardized QML effect estimates for the structural model

with the respective results obtained by the extended unconstrained PI approach is also given

in Table 6, including both the improperly standardized solution supplied by standard SEM

software for PI models, and a corrected standardization based on the standard deviations

of the constructs customer-related stressors, customer orientation, and burnout (analogous

to the procedure described in Wen et al., 2010, for the standardization of latent interaction

coefficients).

In addition to parameter estimates and standard errors of individual parameter estimates,

QML offers likelihood ratio tests for nested structural models. Nested model tests permit easy

comparison of the complete nonlinear model represented in Equation 11 to a model with only

linear effects, or to test any particular nonlinear (or linear) effect for significance against a

nested model without this effect.

Suppose a researcher wishes to compare the complete nonlinear model represented in

Equation 11 to a model without any nonlinear effects as represented in Equation 15:

BO D ’ C ”1 CRS C ”2 CO C — (15)
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TABLE 6

Effect Estimates in the Structural Model for Predicting Burnout (Empirical Example)

Linear Quadratic Interaction

Estimation
CRS
”1

CO
”2

CRS2

¨11

CO2

¨22

CRS � CO
¨12

QML (distribution analytic)

Unstandardized .558 �.256 .033 �.089 �.204
Standardized .646 �.284 .034 �.084 �.200

LMS/Mplus (distribution analytic)

Unstandardized .556 �.263 .032 �.099 �.220
Extended unconstrained (product indicators)

Unstandardizeda .546 �.251 .053 �.063 �.117

Improperly standardized (software-supplied)a .624 �.285 .091 �.082 �.125

Standardized according to Wen, Marsh, and Hau (2010)b .624 �.285 .058 �.068 �.127

Note. Complete nonlinear model with predictors CRS D customer-related stressors; CO D customer orientation;
QML D Quasi-Maximum Likelihood; LMS D Latent Moderated Structural Equations.

aLISREL estimation. bDescribed for interaction effects in Wen et al. (2010), analogous procedures applied to
quadratic effects here.

Employing the likelihood ratio test, the researcher could compare the fit of the two models. In

our example, the complete nonlinear model showed a superior fit to the linear model, as can be

seen from the QML test results in Table 7 (for comparison, results from LMS/Mplus and the

extended unconstrained approach are also included). The researcher could also probe whether

each term made a significant contribution to the model fit. Each successive nonlinear term can

be omitted from the complete nonlinear model and the effect tested. In our example, QML

showed that the small quadratic effect of customer-related stressors (¨11) was not statistically

significant. The other two nonlinear effects, the interaction effect (¨12) and the quadratic effect

of customer orientation (¨22), were both statistically significant. LMS in Mplus led to identical

TABLE 7

Likelihood Ratio Test Results for Nonlinear Effects on Burnout Using Different Approaches

(Empirical Example)

QML LMS/Mplus
Extended

Unconstrained

Model Comparison df� ¦2

� p ¦2

� p ¦2

� p

Complete nonlinear vs. linear 3 18.061 .001 12.653 .005 7.693 .053

Complete nonlinear vs. ¨11 D 0 1 0.671 .410 0.270 .603 1.365 .243
Complete nonlinear vs. ¨12 D 0 1 11.171 .001 4.994 .025 4.282 .039
Complete nonlinear vs. ¨22 D 0 1 4.243 .040 8.693 .003 1.385 .239

Note. The complete nonlinear model included quadratic effects ¨11 (customer-related stressors2), ¨22 (customer
orientation2), and the interaction effect ¨12 (Customer-Related Stressors � Customer Orientation) on burnout. For the
linear model, all three effects were fixed to zero. QML D Quasi-Maximum Likelihood; LMS D Latent Moderated

Structural Equations.
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results. However, in contrast to the results of both LMS and QML, ¨22 failed to achieve

statistical significance using the extended unconstrained approach, likely reflecting its lower

statistical power.

In cases in which the researcher desires to compare nonnested models, QML and LMS

in Mplus provide the AIC (Akaike, 1974) and the BIC (Schwarz, 1978). Researchers should

choose the model with the smallest AIC and BIC as the optimal model according to these

criteria. The values of the AIC and BIC calculated by the distribution analytic approaches will

differ from those calculated by the PI approaches because additional product terms are not

estimated in the distribution analytic approaches.

Complex nonlinear effects can be difficult to visualize; two-dimensional and three-

dimensional representations can be helpful. Figure 4 shows a two-dimensional representation of

the results of our example. This graph illustrates the quadratic relationship between customer

orientation and burnout at different levels of customer-related stressors (at 1 SD below the

mean, at the mean value, and at 1 SD above the mean). These figures can be plotted using any

graphics package and overlaying lines corresponding to substituting values of �1, 0, and C1

into the standardized structural model equation (here, Equation 14).

At customer-related stressors values of C1 SD, the value of burnout showed continual

but declining increases as the value of the latent variable customer orientation decreases.

At customer-related stressors values of �1 SD, the value of burnout initially increases to a

maximum for medium values of customer orientation, and then decreases in value.

Three-dimensional plots can also be helpful in interpreting nonlinear effects. In three-

dimensional plots a surface corresponding to the structural model equation (Equation 14)

is constructed, potentially using color graphics to highlight changes in the level of the de-

pendent variable. Such plots can be constructed using specialized graphical software (e.g., R,

Statgraphics) or increasingly in standard statistical packages (e.g., SAS, SPSS).

FIGURE 4 Effect of customer orientation on burnout, depicted for high, average, and low levels of customer-

related stressors (latent variables, all standardized, Quasi-Maximum Likelihood estimates): The effect of

customer orientation on burnout is curvilinear (quadratic effect) and additionally depends on the level of

customer-related stressors (interactive effect).
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FIGURE 5 Linear effects of customer-related stressors and customer orientation, interaction effect Customer-

Related Stressors � Customer Orientation, and quadratic effect of customer orientation on burnout (standardized

Quasi-Maximum Likelihood estimates). Given low customer orientation, customer-related stressors predict

increased burnout, whereas for high customer orientation, this relation disappears (interaction). Given high

customer-related stressors, increasing customer orientation predicts a pronounced decrease in burnout (negative

quadratic effect).

As can be seen in Figure 5, given low customer orientation, increasing customer-related stres-

sors predict increased burnout, whereas for high customer orientation, customer-related stressors

are essentially unrelated to burnout (interaction effect). Furthermore, given the presence of

customer-related stressors, increasing customer orientation leads to a particularly pronounced

reduction in burnout (negative quadratic effect).

DISCUSSION

In this article we provided a nontechnical introduction to two distribution analytic approaches,

LMS and QML, for the estimation and testing of nonlinear effects in latent variable models.

We provided a description of the key ideas underlying each approach and how they differ

from PI approaches. LMS and QML do not require the specification of nonlinear constraints.

This is a particular advantage in complex models for which the needed constraints and model

specifications required in the PI approaches might not be available in the published literature.

Nonlinear effects are also easily implemented in the Mplus package (Muthén & Muthén, 1998–

2007) and freestanding QML (Klein, 2007) software. In a small-scale simulation, LMS and

QML consistently showed acceptable Type I error rates and a modest advantage (2%–4%) in

statistical power compared with the extended unconstrained approach (Kelava, 2009; Kelava &

Brandt, 2009; Moosbrugger et al., 2009), which is based on the most commonly used of the

PI approaches (Marsh et al., 2004, 2006). This advantage could be important in practice given

the small effect sizes (1%–3% of variation accounted for) that have typified interaction effects
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between measured variables (Champoux & Peters, 1987; Chaplin, 1991, 2007; Donovan &

Radosevich, 1998). LMS and QML detected an additional hypothesized nonlinear (quadratic)

effect of interest in an actual data set on work stress and job burnout, perhaps due to the greater

statistical power of the distribution analytic approaches.

The results of the simulation study were obtained using the default settings provided by

the software packages. LMS and the extended unconstrained PI approach achieved 100%

convergence; QML convergence rates were only slightly lower, exceeding 96% in all conditions.

These results were obtained with a sample size of 400 and measured x variables that were

normally distributed. Analyses conducted with smaller sample sizes or with nonnormal x

variables would be more likely to have problems in estimation, potentially leading to lower

convergence rates.

Users wishing to consider LMS or QML might wonder which approach to choose. The

answer to this question depends on both practical considerations and the specific research

questions of the user. On a practical level, LMS is currently implemented in commercial Mplus

software (Muthén & Muthén, 1998–2007), a general package for latent variable models. QML

is currently implemented as a noncommercial stand-alone package, as of this writing at no

cost. Users need to consider the trade-off between the cost versus the availability of a technical

support infrastructure associated with commercial and noncommercial programs. Users familiar

with equation-based programs (e.g., Mplus, EQS) will find their programming experience

readily generalizes to LMS. Users familiar with matrix-based programs (e.g., LISREL) will

find that their programming experience readily generalizes to QML. Neither LMS nor QML

currently offer point-and-click analyses.

In terms of research questions, the types of models that can be addressed and the content of

the output that is produced by LMS and QML largely overlap. However, there are important

exceptions that exist in the current implementations of the two programs.

1. LMS allows researchers to build more complicated SEM models involving multiple latent

endogenous variables, whereas QML is currently limited to models with only one latent

outcome variable. As one example, a latent variable moderated mediation model in which

the path from the mediator to the outcome is moderated by another latent variable can

be specified in the Mplus package, but not using QML software.

2. QML might have an advantage in computational speed in models with several nonlinear

terms because of the heavier computational demand in LMS.

3. QML will compute a properly standardized solution if requested by the user, whereas

the user must compute the proper standardized solution by hand in LMS.

In conclusion, for applied researchers, employing distribution analytic approaches leads to

more powerful tests that address the specific hypothesized substantive effects of interest in their

data. With the advent of user-friendly SEM software implementing these approaches, employing

LMS and QML for empirical analyses becomes feasible. Our simulation study and empirical

example illustrated the advantages of these new approaches in terms of ease of specification

and by providing slightly more powerful tests of nonlinear effects in latent variable models.

The advantages of LMS and QML over the extended PI approaches are theoretically expected

to increase as the correlation between the latent exogenous variables and the effect size of the

latent nonlinear effects increase. Readers should note that these models demand larger sample
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sizes than those often seen in practice. For this simulation study and empirical illustration

involving a complex nonlinear model with two small quadratic effects and small interaction,

a sample size of 400 was adequate for estimation. Even larger sample sizes will be needed to

achieve adequate statistical power given high multicollinearity. For a model involving only a

single interaction or quadratic effect, a sample size of 200 might be sufficient for estimation. A

fuller understanding of the performance of each of the approaches under conditions in which

there are severe levels of excess kurtosis, skewness, or both in the distributions of the observed

variables will require further study. Our hope is that this article provides applied researchers

with the information necessary to use distribution analytic approaches when they wish to

include interaction, quadratic, or both types of nonlinear terms in latent variable models.
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