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Interaction and quadratic effects in latent variable models have to date only rarely been tested in
practice. Traditional product indicator approaches need to create product indicators (e.g., x%, X1X4)
to serve as indicators of each nonlinear latent construct. These approaches require the use of
complex nonlinear constraints and additional model specifications and do not directly address the
nonnormal distribution of the product terms. In contrast, recently developed, easy-to-use distri-
bution analytic approaches do not use product indicators, but rather directly model the nonlinear
multivariate distribution of the measured indicators. This article outlines the theoretical properties
of the distribution analytic Latent Moderated Structural Equations (LMS; Klein & Moosbrugger,
2000) and Quasi-Maximum Likelihood (QML; Klein & Muthén, 2007) estimators. It compares the
properties of LMS and QML to those of the product indicator approaches. A small simulation study
compares the two approaches and illustrates the advantages of the distribution analytic approaches
as multicollinearity increases, particularly in complex models with multiple nonlinear terms. An
empirical example from the field of work stress applies LMS and QML to a model with an inter-
action and 2 quadratic effects. Example syntax for the analyses with both approaches is provided.
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Within the behavioral sciences numerous substantive theories hypothesize interaction, quadratic
effects, or both between multiple independent and dependent variables (Ajzen, 1987; Cronbach
& Snow, 1977; Karasek, 1979; Lusch & Brown, 1996; Snyder & Tanke, 1976). As one
example, in studying the relationship between parents’ educational level and child’s educational
expectations, Ganzach (1997) hypothesized and found results consistent with a model with
complex interactive and quadratic relationships: When the level of education of one parent is
high, the educational expectations of the child will also be high, even if the level of education of
the other parent is quite low. For each parent separately, the strength of the relationship between
parent’s education and child’s educational expectations accelerated as parent’s educational
level increased. This hypothesis was represented by one negative (compensatory) interaction
effect and two positively accelerating quadratic effects (one for each parent’s educational
level). Within the measured variable framework, such hypotheses can be tested using multiple
regression (see Aiken & West, 1991):

CEE = By + BIME + BoFE + w2ME - FE 4+ 0 \ME? + wFE* + ¢ ()

In Equation 1, CEE is the child’s educational expectation, ME is the mother’s level of education,
FE is the father’s level of education, and ¢ is a residual. The Bs are the coefficients of the linear
effects. Following Klein and Moosbrugger’s (2000) and Klein and Muthén’s (2007) notation,
the ws are the coefficients of the nonlinear effects.

Many variables in the behavioral sciences are measured with less than perfect reliability,
resulting in biased estimates of the regression coefficients for the nonlinear effects (Bohrnstedt
& Marwell, 1978; MacCallum & Mar, 1995). Structural equation modeling (SEM) produces
theoretically error-free estimates of the effects of latent variables, overcoming this problem
(Marsh, Wen, & Hau, 2006; Schumacker & Marcoulides, 1998). However, SEM has only
rarely been used in practice, in part because of the difficulty of model specification within the
traditional product indicator (PI) approach. In contrast, newer distribution analytic approaches
(Klein & Moosbrugger, 2000; Klein & Muthén, 2007) are easy to use and provide parameter
estimates that can be more efficient, yielding greater statistical power, particularly with more
complex models. The goals of this article are to provide an introduction to the distribution
analytic approaches and to compare the properties of the distribution analytic and PI approaches
both on a theoretical level and in a simulation study. We also illustrate the use of the approaches
with an empirical example.

COMPLEX NONLINEAR MODELS: LATENT VARIABLE INTERACTIONS
AND QUADRATIC EFFECTS

The early literature focused primarily on models with a single latent variable interaction
or quadratic effect (e.g., Joreskog & Yang, 1996; Kenny & Judd, 1984). More recently the
literature (e.g., Kelava, Moosbrugger, Dimitruk, & Schermelleh-Engel, 2008; Lee, Song, &
Tang, 2007) has begun to consider more complex models that involve simultaneous interaction
and quadratic effects like Ganzach’s (1997) model of children’s educational expectations.
Equation 2 expresses a latent model with one interaction and two quadratic effects analogously
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to Equation 1, but transferred from the manifest variables framework to the latent variables
framework:

N =+ yi& + v28 + w&i1Er + 0kl + w0kl + (2)

In Equation 2, 1 denotes the latent criterion, £, and &, are latent predictors, the product €&,
represents the interaction term, Z% and Z% are quadratic terms, o is the intercept, y; and y»
are linear effects of the predictors, w, is the nonlinear effect of the interaction term, w;; and
wy, are the nonlinear effects of the quadratic terms, and finally { is the latent disturbance. The
more general matrix expression is given in Equation 3:

a+TE+EQRE+TC 3)

&1 011 O &1
(7 Yz)(zz (& &) 0w £ g
In Equation 3, n denotes the latent criterion, o is the latent intercept, I' is the coefficient
vector for the linear effects of n latent predictors (summarized in the & vector), € is the upper
triangular coefficient matrix of the nonlinear effects (with the quadratic effects on the diagonal

and the interactions effects off-diagonal), and finally T is the latent disturbance. Figure 1 depicts
this nonlinear structural equation model with one interaction effect and two quadratic effects.
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FIGURE 1 Nonlinear structural equation model with one latent interaction effect and two latent quadratic
effects. Each linear latent variable (£, &, and n) has three indicator variables (xi,...,x3;X4,...,Xc; and
¥1,..., )3, respectively) as a measurement model. Note that product indicators (e.g., x1x4, xX2Xx5) are only

needed in product indicator approaches as a measurement model for the latent nonlinear terms (£ &>, E% and
E%). Thus, nonlinear measurement models are given in dashed lines. Distribution analytic approaches do not
need measurement models for the latent nonlinear terms.
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Product Indicator (PI) Approaches

Kenny and Judd (1984) initially developed the basic PI approach for nonlinear SEM. Their
approach used multiple PIs for the specification of each nonlinear term’s measurement model.
Suppose that latent variables £, and &, are measured by centered and normally distributed
indicators xp, X3, x3 and X4, X5, X6, respectively (Equation 4):

x=A¥-E+8
X1 1 0 81
X2 )\;1 0 82
X3 _ )\‘;1 0 . 21 83
X4 B 0 1 22 + 84 (4)
X5 0 )\gz 85
X6 0 )»gz 86

The interaction term &€, is measured by products of each latent variable’s indicators, for
example x;x4, X2X5, X3X6, referred to as Pls (see Figure 1). This PI approach has received
subsequent development, particularly as reflected in contributions by Joreskog and Yang (1996),
Algina and Moulder (2001), Wall and Amemiya (2001), and Marsh, Wen, and Hau (2004).

Nonlinear constraints. Unfortunately, this approach has been rarely used by applied re-
searchers. One reason is that the PI approach involves the specification of nonlinear parameter
constraints that are difficult for researchers to implement. As depicted in Figure 1, x, and xs
are indicators of the centered and normally distributed latent predictor variables €; and &;; x, =
75,81 +82and x5 = AL,E> 485, where A, and A%, are factorloadings and 8, and 85 are measurement
errors, respectively. The product indicator x,x5 of the interaction term £,&, can be expressed as:

X2X5 = )»;1)»';22122 + )\';22282 + )\;12185 + 8,85
= Ag;E182 + 8 Q)

For the factor loading Aj;, the first subscript 8 refers to the eighth indicator (x»xs), and
the second subscript 3 refers to the third latent variable £,&, in the model (see Figure 1). The
variance decomposition of the product indicator x,x5, which is required for model specification,
is given by:

Var(xyxs5) = X§32¢33 + 928 , where: (6)
Ag3 = My A5y
b33 = dridm + 3,
03 = 231 011035 + A3 0265, + 63,035
b1 = Var (&), ¢21 = Cov(E;, &), b = Var (&), 65, = Var(8,), 05 = Var(ss)

Because loadings and variances of the indicator products are functions of the loadings and
variances of the linear indicators, this estimation approach demands the specification of non-
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TABLE 1
Specification of Nonlinear Constraints in the Product Indicator Approach

Nonlinear Model Interaction Model Quadratic Model
Product indicators n=oa+viE + 128 +opki§ +T n=a+yi& +1k +onk +¢
Nonlinear constraints X1X4, X2X5, X3X¢ X7, X5, X3

Factor loadings A3 = Lgs = 1A A3 = Mihe Ay =Ly = ()’;1)2 Ay = ()’gl)z

Mean of latent nonlinear effect E(&.8,)=by E (Ef)=<|)11

Variance and covariances of Var(£i£2) = o102 + 63, Var () = 263,

latent nonlinear effect Cov(t12,E1) = Cov(k £, E) =0 Cov(E], &) = Cov(E}, &) =0
Error variances and covariances 05, = 01105, + $20%, + 65,65, 05, = 491,68, +2 (6?1)2

03y = ()551)2 11055 + ()’;2)2 42003, + 03,05 0y =4 ()’;1)2 61163, +2 (932)2
039 = (M1)” 01108 + (&) 92205 + 63,65 05 =4 (A3,)" 011055 +2 (%)

5 b — b — 5 _ g8 — 8 —
Og; = Og; = 055 = 0 Og; = Og; = 055 = 0
X1 1 0 8y
X2 )‘;l 0 82
. . . X3 A3 0 13 83
Note. For both nonlinear models, the linear measurement model is = 0 1 g + 5,
X5 0 A5, 85
\x /) VLo i) \ s )
3 b
3 $21 d»
C 0 0 i\
8 o o0 o 6
with covariance matrix 8, 0 0 0 0 952 . All linear indicators and linear latent
83 o 0o o o o0 6
84 o o o o o o 6
85 o0 o o o o o o 6
8 o 0 o o0 o0 o0 o o 6

variables of the measurement model are assumed to be centered and normally distributed. This table lists the required nonlinear
constraints for the constrained product indicator (PI) approach. For partially constrained and unconstrained approaches of PI,
some nonlinear constraints are released. The required constraints for the unconstrained approach (Marsh et al., 2004, 2006) are
in boldface font and underlined. When linear latent variables are nonnormally distributed, the covariances between higher order
terms and their linear terms (e.g., Cov(§;&,,&;)) are nonzero in general. In the unconstrained approach, these covariances are
estimated freely (Marsh et al., 2004, 2006). The specification of nonlinear constraints will become more complex if additional
product indicators are used. This table summary is made based on earlier work by Algina and Moulder (2001), Joreskog and
Yang (1996), Kenny and Judd (1984), Lee et al. (2004), Marsh et al. (2004, 2006), and Wall and Amemiya (2001).

linear parameter constraints, which is very error prone. Table 1 presents the full set of nonlinear
constraints needed for a model containing a single interaction £, &, between two latent predictors
or a single latent quadratic term Z% for the constrained PI approach when the observed variables
have been centered.

Marsh et al. (2004, 2006) proposed a so-called unconstrained model that relaxes most of the
constraints in the Joreskog and Yang (1996) model for a single latent variable interaction. In
Marsh et al.’s approach, the factor loadings, the variance of the latent nonlinear effect, and the
measurement error variances are all freely estimated' (see Table 1). Only the mean of the latent

'Note that the specification of the parameters in the unconstrained approach is conditional on the distribution of the
variables. For example, when the latent exogenous variables (£, &>)" are nonsymmetrically distributed, the covariance
between higher order terms and their linear terms (e.g., Cov(£1€2,€1) and Cov(E &2, &2)) also has to be specified
(Marsh et al., 2004). In that case, the covariance matrix & is estimated freely.
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nonlinear term is constrained to ¢,; for a model with a single interaction effect and to ¢;; for
a model with a single quadratic effect (in boldface in Table 1). The unconstrained approach has
shown generally good performance in simulation studies in terms of high convergence rates
and small bias in the estimate of the nonlinear latent term under conditions of nonnormally
distributed variables. However, even when the observed x variables have a multivariate normal
distribution, the unconstrained approach shows a modest loss of statistical power in the test
of the latent variable interaction relative to the Joreskog and Yang (1996) fully constrained
approach (Marsh et al., 2004).

Unfortunately, in more complex models involving multiple nonlinear terms, such as the
Ganzach model depicted in Figure 1, the constraints and specifications become much more
complex. Additional specifications are required when each measured indicator variable con-
tributes to more than one product indicator. Recently, Kelava (2009), Kelava and Brandt
(2009), and Moosbrugger, Schermelleh-Engel, Kelava, and Klein (2009) proposed an extended
unconstrained approach that identifies the additional specifications that are needed for proper
estimation in more complex nonlinear models. Table 2 presents the specifications that are
required for Ganzach’s model with one latent interaction and two quadratic effects (see Fig-
ure 1). With other complex models, the required specifications must be developed following
guidelines presented in Kelava and Brandt (2009). Additional complexity in this approach
occurs if unequal numbers of indicators are available for each latent exogenous variable or if
indicators are nonnormally distributed.

Nonnormality of product terms. A second reason for the lack of use of this approach
is that latent variable interactions and quadratic terms do not have a normal distribution, even
when the measured and latent variables have normal distributions (Aroian, 1944; Ma, 2010;
Moosbrugger, Schermelleh-Engel, & Klein, 1997). Therefore, normal theory-based standard
errors and hence significance tests and confidence intervals for the effects of interest will be
incorrect (cf. Joreskog & Yang, 1996).

Distribution Analytic Approaches: LMS and QML

More recently Klein and Moosbrugger (2000) developed a Latent Moderated Structural Equa-
tions (LMS) approach that employs a unique model specification that does not involve PIs. LMS
produces asymptotically correct standard errors for nonlinear effects. Because this approach
becomes computationally (numerically) intensive as the number of nonlinear effects increases,
Klein and Muthén (2007) subsequently developed a Quasi-Maximum Likelihood (QML) ap-
proach. QML permits the estimation of multiple nonlinear effects with a smaller increase of
computational burden by taking a small loss of precision because a “quasi” likelihood (described
later) is maximized. Figure 2 provides estimates of our empirical example from work stress
(discussed in detail in a later section) analyzing a model containing one latent interaction and
two quadratic effects, as specified for LMS or QML; note that there are no PlIs.

The distribution analytic approaches make the same standard assumptions of latent variable
models as the PI approaches (except for normally distributed y variables). On the predictor
side, € and § are assumed to be multivariate normally distributed with means equal to 0. Each
of the measured x variables (xi, xp,..., xq)’ is normally distributed and centered internally
by the program. On the criterion side, the € and { variables are assumed to be multivariate
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TABLE 2
Specification of Ganzach’s Model in the Extended Unconstrained Approach

Nonlinear structural model
n=oa+vi& + y262 + onkif + 01 & + ont +

Linear measurement models

X1 1 0 81
X
iz ;%1 8 gé 22 1 1. 0 €1
XZ = 0" 1 (E; )+ Si 3 R )él 0 |Int| e
X3 0 )\;2 85 3 )\31 0 €3
X6 0 X, 36
Nonlinear measurement model
X1X4 1 0 0 87
X2X5 X33 0 0 83
X3 Ny O 0 89
x12 0 xl 0 EIEZ 810
9= 0 x)l{ a0 g |+ su
X3 0 12,4 0 3 812
x3 0 1 813
X
x52 0 0 )\)1{ 45 814
xZ 0 0 Mss 815
Covariance matrices
8
81 01 s
8 0 0
83 0o o 6,
84 0 0 0 6 ’
85 0 0 0 0 6
% \o o o o o0 o
1
3 O 8
87 0 Ogg
$ 0 0o 6
9 8
810 0107 g 0 910,10
811 0 635 O 0 O
812 0 o 0%, o o 6,
8 8 ) 3
Siz 0137 g 0 0 0 0 01,13 )
815 0 0148 0 0 0 0 0 04,14
0 o 6%, o 0 0 0 0 6.
3 d11
€1 5, 0 0 3 $21 22
& 0 05, 0 |, E&if 0 0 ¢n ()
€ 0 0 65 i 0 0 ¢35 du
3 0 0 53 Psa dss
Latent expectations
E(€18) = k3, E(E]) = x4, E(€)) = &5
Note. All linear indicators (xp,...,Xxs)’, exogenous latent variables (§;,&;)’, mea-
surement errors (81,...,8¢,€1,...,€3)" of the linear measurement models, and the latent

disturbance { are assumed to be centered and normally distributed. This table lists the
required specifications for the extended unconstrained approach (for details, see Kelava &
Brandt, 2009). All parameters are estimated freely. Necessary measurement error covariances
are in boldface font (e.g., 9?0_7). Additional measurement error covariances (e.g., 9?1 ) and
additional covariances of the latent predictors (e.g., ¢31) need to be specified if linear indicator
variables (x1,...,xs)" and latent variables (§;,&)" are non-normally distributed (Kelava &
Brandt, 2009).
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FIGURE 2 Complete nonlinear structural equation model including linear effects of customer-related
stressors and customer orientation, interaction (Customer-Related Stressors X Customer Orientation), and
quadratic effects (customer-related stressors? Customer Orientation?) on burnout. Coefficients are standardized
Quasi-Maximum Likelihood (QML) parameter estimates (variance estimates given in parentheses). With the
exception of the quadratic effect of customer-related stressors, all model coefficients are significant. No product
indicators are required in QML or Latent Moderated Structural Equations.

normally distributed with means equal to 0. As a consequence of the nonlinear effects, the latent
n variable and the measured y variables (y1, y2,...,¥,) will be nonnormal (Kenny & Judd,
1984). This nonnormality can be problematic for SEM procedures that use PIs. This problem
can be solved by using distribution analytic approaches. Distribution analytic approaches
use alternative procedures to maximize the (transformed) likelihood function, which takes
the nonnormality of the nonlinear effects into account. These approaches yield more reliable
estimates of standard errors of the nonlinear effects, but leave the estimates and interpretation
of the nonlinear effects (wi2, W11, W22) unchanged.2 We provide a brief overview of the LMS
and QML estimation methods for a general audience. Readers wishing more detailed technical
presentations should consult the original Klein and Moosbrugger (2000) and Klein and Muthén
(2007) articles.

2All parameters associated with the two original linear latent predictor variables £;,£, and the latent criterion
variable n are identical in the distributional analytic and PI approaches. The distribution analytic approaches do not
rely on PIs. Parameters associated with the PIs and with relationships involving latent exogenous interaction and
quadratic variables and other exogenous variables are not estimated.
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LMS estimator. The LMS procedure builds on two key statistical concepts. The first is
the concept of mixture distributions—the observed (nonnormal) distribution of a variable can
be represented by a combination of normal distributions having different means and variances.
The second is the concept of conditional distribution, which is the distribution of a variable
holding one or more other variables constant, each at a particular value.

To illustrate these ideas, consider the distribution of the height of adults in the United States
which is nonnormal. Males have a distribution that is approximately normal (@ = 69.41,
0 = 4.48 inches) and females have a distribution that is approximately normal (n = 63.86,
o = 4.39 inches; McDowell, Fryar, Ogden, & Flegal, 2008) as well. In other words, there are
two conditional normal distributions, one for gender = male and one for gender = female.
Combining these two conditional distributions into one distribution represents the nonnormal
distribution in the entire population. Statisticians often use this idea and combine several
normal distributions to represent complex nonnormal distributions. The challenge is to find a
conditioning variable like gender in the preceding example that identifies the mean and variance
of the specific conditional normal distributions to be combined.

The LMS procedure builds on these two central ideas. First, although overall interaction
(€1&2) and quadratic (&2, &3) effects are nonlinear, the conditional effects are linear when a
variable is controlled that causes the nonlinearity. Second, the multivariate distribution of the
observed indicator variables (X1, X2, ..., Xg, Y1, Y2, ..., yp)’ can be approximated by a weighted
combination of conditionally normal distributions. For both parts, the challenge is in finding
the proper variable on which to condition.

LMS uses a matrix operation known as a Cholesky decomposition. Like principal com-
ponents analysis (over which it has mathematical advantages), the Cholesky decomposition
permits the analyst to replace the original variables (here, the latent £ variables) with another set
of orthogonal variables. In LMS the Cholesky decomposition is applied to the positive definite
(m x m) covariance matrix ® of the m latent exogenous variables (§1,...,&,,)’, not including
higher order nonlinear terms. Regardless of the number of nonlinear effects in the structural
model, all models considered in this article contain two latent exogenous variables (£, £5),
therefore, m is equal to 2. More formally, the Cholesky decomposition can be expressed as:

® =t = AA' = AIA' = AzZ/A’ = (Az)(Az) ©)

where I is an (m x m) identity matrix. I is replaced by the vector product of a (m x 1) vector
z = (z1,...,zy) with itself. Each z variable from the z vector is standardized and normally
distributed (z ~ N(0, 1)) and is orthogonal to the remaining z variables. As can be seen from
Equation 7, the decomposition of ® replaces the correlated £ variables by an A matrix and by
a z vector of m independent z variables. z can be separated into two subvectors:

2= (21,....2m) = (2}, 2] (8

where z; = (z1,...,2zr) and Z = (Zk+1, ..., zm) . The first k elements in z; are the z variables
that correspond to £ variables involved in nonlinear terms. Here, k is equal to 2 because £; and
&€, were the only latent exogenous variables and both were involved in the nonlinear terms (e.g.,
£1£€,). The remaining elements (k + 1 to m) in z, (here, no elements) are those that are only
involved in linear terms, but not in nonlinear terms. This procedure creates orthogonal compo-
nents that allow us to partition the distribution of the y variables into linear and nonlinear parts.
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The z; vector is used as the conditioning variable. Klein and Moosbrugger (2000) showed
that the joint distribution of the original measured x and y variables is conditionally multivariate
normal when vector z; is used as the basis for conditioning, [((xl, e X Vs yq))/ |z ~
N (1 (z1) , X (z1)), where p and g are the number of observed x and y variables, respectively].
Based on this result, they suggested using a mixture distribution to represent the multivariate
distribution of the x and y variables in which z; is used to determine the means, variances, and
covariances of the set of normal distributions used in the mixture. These multivariate normal
distributions are weighted and summed to represent the multivariate distribution of the observed
variables. A numeric approximation procedure known as Hermite—Gaussian quadrature (see
Freund & Hoppe, 2007) is used to approximate the mixture distribution.> The weights used
by the quadrature process are those that produce the best approximation of the multivariate
surface. Because LMS represents the nonnormal distribution as a mixture of conditionally
normal distributions, no separate indicators of the product terms are needed. Figure 3 presents an
illustration showing in the univariate case how different normal distributions can be combined
to approximate the nonnormal distribution of yj.

As with many difficult estimation problems, particularly mixture models, the expectation-
maximization algorithm (EM; Dempster, Laird, & Rubin, 1977) is used to produce maximum
likelihood estimates and standard errors for each of the parameters. Unlike standard SEM,
LMS uses the full information contained in the raw data, not just the means and covariances.
Wald z tests can be used to evaluate each parameter estimate compared to its standard error.
Alternatively, likelihood ratio tests for nested models can be used to compare the full model to
one in which each key parameter in turn is restricted to 0. Although asymptotically equivalent,
likelihood ratio tests could be more accurate than Wald tests given realistic sample sizes. Klein
and Moosbrugger (2000) provide the full technical details of the LMS procedure.

QML estimator. The QML procedure takes a different approach to solving the same
problem of the nonnormality of the y variables.

The first key idea is that all but one of the measured y variables are corrected for the
nonnormality that is caused by the nonlinear effects on 1. For ease of presentation, we consider
the special case in which the measured y variables have a t-equivalent measurement structure*
in which each of the indicators has the same unstandardized loading (A = 1) on the underlying
latent variable. For each measured y variable, we have y; = n+c¢;. Under standard assumptions,
the most reliable y variable is designated as y;, termed the scaling variable, which is taken as a
proxy for n. As long as all variables are sufficiently reliable, another variable could be chosen
as the scaling variable with little change in the results. However, the choice of an unreliable
scaling variable could lead to substantially poorer estimates. Because the structural model for
1 contains latent nonlinear terms (e.g., £1€,), n will be nonnormally distributed. In contrast,
the ¢;s are assumed to have independent normal distributions. If we create a set of difference
scores y* = (y3 = y2 = Y1,¥; = Y3 — V1,---,¥, = ¥p — ¥1)’, then each difference score

3In the unidimensional case, quadrature approximation proceeds by using a series of rectangles to approximate the
area under the curve. By using smaller widths, the rectangles provide better and better approximation of the area under
the curve, but at a cost of increased computational burden. In the multidimensional case, the computational burden
increases rapidly as the number of dimensions increases.

4The QML procedure assumes only the standard congeneric measurement structure so in practice the factor loadings
can differ.
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LMS density function Cov=.50
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FIGURE 3 Latent Moderated Structural Equations (LMS) mixture density f(y;) and single mixture
components: Cov(g;,&2) = .50. The three normal distributions, each conditioned on a different value of
Z1, that are components of the mixture distribution are depicted with thin lines using different line styles. The
resulting nonnormal LMS mixture distribution representing a weighted sum of the component distributions is
depicted with a thick black line.

will reflect the difference in the normally distributed measurement errors (y* = y; — y1 =
[(M+e€)—(M+e)] = (¢ —€1)). The resulting y variables vector (y1, y5, ..., y,)" contains one
nonnormally distributed variable y; and p — 1 difference score variables y* that are normally
distributed. In this formulation y; contains all the nonnormality resulting from the nonlinear
effects on 7.

The second key idea uses the idea of conditioning to remove normal parts from the y;
distribution. A distribution f(y;|x,y*) is created by conditioning y; on the x variables and
the p — 1 difference scores variables y*, both of which are assumed to be normally distributed.
In effect, this conditional distribution partials out the normal parts of (x,y*) from the y;
distribution, leaving the nonnormal parts.

The third key idea is that the joint multivariate nonnormal distribution f(x,y) of the x and
y variables can be represented as the product of the conditional distribution f(y1|x, y*) and an
unconditional distribution f(x,y*). The unconditional distribution f(x,y*) is a multivariate
normal distribution of the x variables and the y* difference score variables. This idea is
expressed in Equation 9.

fxy) = fOilxy") f(x.y%) )
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Estimating the density of the original multivariate distribution f(x,y) is difficult because
the conditional distribution f(y;|x,y*) is nonnormal and complex. QML solves this problem
by replacing the nonnormal distribution f(y|x,y*) with f*(y|x,y*) which is a normal
distribution having the same mean and variance. The product of f*(y;|x,y*) and f(x,y*)
provides an approximation f*(x,y) of the original multivariate nonnormal distribution f(x,y)
of the x and y variables as expressed in Equation 10.

Using standard numerical procedures commonly used in maximum likelihood estimation
(e.g., Newton-type procedures), the likelihood of this approximation expressed in Equation 10
is maximized and estimates of each of the linear and nonlinear effects and their standard errors
are obtained. The procedure of replacing the nonnormal distribution with a normal one and
maximizing the approximation of the likelihood function is termed quasi-maximum likelihood.
The cost of this procedure is a small loss of efficiency compared to LMS. The information
about the nonlinear effects is provided by the nonnormality of the y; indicator; no separate
indicators of the product terms are needed.

Similarities and differences between the LMS and QML estimators. LMS uses a
proper maximum likelihood function and represents the nonnormal distribution by a mixture of
normal distributions. In contrast, QML uses a quasi-maximum likelihood estimation procedure
that only approximates the true likelihood function. We focus here on theoretical implications
associated with the different estimators that might be important for users. These implications
will be most apparent in models with a larger magnitude and number of nonlinear effects.

1. When predictor variables and measurement error variables are normally distributed, LMS
and QML should provide nearly identical estimates. LMS should have a small advantage
in precision of estimates because it utilizes the true maximum likelihood function, instead
of an approximation of it.

2. As the correlation between the latent predictors (here £, and &;) that form the higher order
terms in the structural equation increases (multicollinearity), a slight advantage should
be found for LMS. With increasing multicollinearity, the distribution of the measured y
variables becomes more nonnormal. The quality of the approximation of the conditional
distribution of y; used in QML will decrease, leading to a slightly higher bias of the
estimates relative to LMS.

3. When predictor variables and measurement error variables are normally distributed, QML
should provide also slightly more biased estimates than LMS as the number of nonlinear
terms increases. Once again, the distribution of the conditional y; variable will become
more nonnormal and therefore the approximation will be less precise in QML.

4. When the assumption of normality of the predictor variables and measurement errors
(8, ¢, &,0) is violated, QML is likely to produce less biased estimates than LMS, unless
the distribution of the latent exogenous variables (£s), the measurement errors (8s), or
both are substantially skewed (Klein & Muthén, 2007). The ability of the mixture model
representation in LMS to represent these more extreme forms of multivariate nonnor-
mality decays more quickly than the approximation of the conditional y; distribution in
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QML. For example, LMS assumes that its mixture components are normally distributed
after conditioning for the mixing variable z;. If this assumption is violated, LMS applies a
likelihood function for parameter estimation that is a (finite) sum of misspecified models.
LMS is only able to approximate the nonnormality that is due to the nonlinear effects
(w12, etc.). Conditioning on zj, the joint distribution of the indicator variables (x,y)
becomes a (weighted) sum of normal distributions only when assumptions are met.

5. For more complex models with many nonlinear terms, the computational burden will
increase. Of importance, this burden increases exponentially faster in LMS than in QML
and can exceed the capacity of current personal computers when several nonlinear terms
are involved. Complex models might also require far more computer time than is typical
for problems not having nonlinear effects.

6. LMS is currently implemented in Mplus (Muthén & Muthén, 1998-2007), a standard
latent variable analysis software package in which one simply states the equations to
be estimated. QML is currently a freestanding program that uses a matrix-based format
similar to LISREL (Joreskog & Sorbom, 1996). QML is available from Andreas Klein
(aklein25 @uwo.ca).

Differences Between the LMS/QML and Pl Approaches

Recall that the PI approaches use products of observed variables to serve as indicators of
latent variable interactions and quadratic effects. LMS and QML use conditional distributions
to represent the nonlinear effects. The result is that the nonnormality of the y variables that is
due to nonlinearity is directly addressed in LMS and QML, but not in PI approaches. Maximum
likelihood estimation in PI approaches assumes multivariate normality, which will be violated
by the product variables (Aroian, 1944) and the y variables.

Again, we focus next on theoretical implications associated with the different estimators for
users.

1. In PI approaches, the distribution of the terms representing interactions and quadratic
effects will always be nonnormal with the degree of nonnormality increasing as the latent
predictor correlation and the magnitude of the interaction and quadratic effects increase
(Aroian, 1944; Dimitruk, Schermelleh-Engel, Kelava, & Moosbrugger, 2007; Klein &
Moosbrugger, 2000; Ma, 2010).> When maximum likelihood estimation rests on normal
theory, the standard errors will be underestimated. This result will lead to an increased
Type I error rate and confidence intervals that are too narrow. Consequently, estimates
of standard errors should be corrected for nonnormality. Simulation studies using the
constrained PI approach (e.g., Moulder & Algina, 2002) have found that common meth-
ods of correcting standard errors for nonnormality (e.g., Satorra & Bentler, 1994) fail
to yield improved standard errors. Bootstrapping procedures (Brandt, 2009) might be
able to improve estimates of standard errors, leading to acceptable Type I error rates at
a modest cost in statistical power. In contrast, the LMS and QML estimators address
the issue of nonnormality directly and provide more accurate standard errors and test

3The product term &£, has a skewness of 2.33 and a kurtosis of 9.84 when the latent predictors £; and &, are
standard normally distributed and correlated at ¢p; = .50 (Ma, 2010).
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statistics without correction. More accurate standard errors offer an important theoretical
benefit: Adequate statistical power (e.g., .80) can be achieved with a smaller sample size
than with PI approaches.

In PI approaches, the nonlinear effects are represented by second-order product terms
(e.g., x1x2, xlz). The variances of these product terms are based on fourth-order moments.
Estimation of these higher order moments is highly unstable. LMS and QML do not
utilize product terms and do not require the estimation of higher moments, so their
estimates should be more reliable.

The calculation of the x2 test of goodness of fit requires specification of a saturated
model. The standard saturated model implemented in current SEM software that is used
by PI approaches is not correct for nonlinear latent variable models, because these models
include restrictions on the mean and covariance structures that are not appropriate for a
saturated model (Klein & Schermelleh-Engel, 2010). Conclusions based on the %? test of
fit and practical fit indexes based on the x? statistic are suspect. LMS appropriately does
not provide measures of fit. QML includes a new measure of fit based on a theoretically
appropriate saturated model; however, its performance has not yet been investigated.
x? difference (likelihood ratio) tests can be implemented in all approaches, permitting
appropriate comparison of nested models. The Akaike’s Information Criterion (AIC) and
Bayesian Information Criterion (BIC) can also be calculated, permitting comparison of
nonnested models.

PI approaches provide modification indexes (Lagrange multiplier tests) that can be used
for exploratory model improvement, although modification indexes will often be mis-
leading. Even under the theoretically ideal conditions of a model involving no nonlinear
terms with data that are multivariately normal, these tests must be used cautiously
(MacCallum, 1986) as they can potentially capitalize on chance, identifying incorrect
aspects of the model for modification. These tests will be further compromised with
latent variable models involving nonlinear terms because the %2 values associated with the
nonlinear latent terms and their indicators will be inflated by nonnormality, exacerbating
the problem of identifying inappropriate model modifications. LMS and QML do not
offer misleading model modification indexes.

In PI approaches, measurement models using the products of measured x variables have
to be constructed for latent variable interactions and quadratic effects. The correlations
between higher order terms (e.g., §1&> and &2) have to be estimated. In contrast, LMS
and QML bypass the construction of indicators of latent nonlinear variables so that these
correlations are not estimated.

SIMULATION STUDY

To illustrate some finite sample differences between the distribution analytic approaches and
the PI approach, we specified a nonlinear model with one interaction and two quadratic
effects corresponding to Ganzach’s model (Equation 2; see also Figure 1), using the population
parameter values given in Table 3. We investigated the performance of LMS, QML, and the
extended unconstrained approach (Kelava, 2009; Kelava & Brandt, 2009; Moosbrugger et al.,
2009). We varied the correlation between the two latent first-order variables £; and &, to study
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TABLE 3
Six True Models: Variation of the Multicollinearity Conditions and Nonlinear Effects
Type I Error Rate Simulations Power simulations
Parameter True Value True Value

i1 0.000 0.101

$21 = .000 012 0.000 0.148

wn 0.000 0.101

i1 0.000 0.101

d21 = .375 o012 0.000 0.139

099 0.000 0.101

i1 0.000 0.101

d21 = .625 12 0.000 0.126

wn 0.000 0.101

Note. The following parameters were constant across conditions: Var(%l) = Var(%z) =
Ly = y2 = 316; My _>‘42_>‘11 =1 >‘21 =My =M = Mg =y =y = 894
981 —984—9‘1 = .25,92 —93 —95 —966 = 05, = 05; = .20. See Figure 1 for a path
diagram defining the parameters.

the effects of increasing multicollinearity. We also examined the Type I error rates for test
statistics when there are no true nonlinear effects in the population (w;; = w1z = wy = 0).
The key nonlinear effects wi;, w12, and wy; and the linear effects y; and vy, that are of
central interest to researchers are theoretically expected to be identical in the extended PI and
distribution analytic approaches so they can be directly compared. More accurate estimation of
the nonlinear effects associated with the distribution analytic approaches effects was expected to
be reflected in smaller standard errors and higher statistical power for the tests of the nonlinear
effects without an increase in the Type I error rate.

Design of the Simulation Study

Data were generated specifying the latent predictor correlations to be .000,.375, and .625.
These latent predictor correlations correspond to correlations between measured indicators of
.000, .300, and .500 when indicators have a reliability of .800. In terms of Cohen’s 1988
norms, correlations between measured variables of .300 and .500 are described as moderate
and strong, respectively. Linear effects explained a total of 10% of the latent criterion’s variance
in each structural model. First, we examined the Type I error rates, setting all nonlinear
effects to zero. Second, we specified three nonlinear effects that each explained 2.2% of
the latent criterion’s variance. Champoux and Peters (1987) and Chaplin (1991, 2007) have
documented the small effect size of continuous variable interactions that typify personality and
industrial-organizational literatures. Theoretically, larger magnitudes of nonlinear effects would
be expected to produce greater nonlinearity of the observed y variables, further improving the
performance of LMS and QML (Klein & Moosbrugger, 2000; Klein & Muthén, 2007) relative
to the extended unconstrained approach.

The sample size was N = 400, a relatively large but realistic value (see MacCallum &
Austin, 2000). The reliability of each indicator of £, and &, was set to be .800. Indicator
variances were homogenous. The latent linear predictor variables, latent disturbances, and
measurement error variables were normally distributed and centered. These specifications imply
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that the observed predictor variables x; to x¢ were also normally distributed in the population.
A total of 500 replications were generated from each of the three true population models. A
solution was considered proper and selected when there were no negative variances or standard
error estimates (cf. Paxton, Curran, Bollen, Kirby, & Chen, 2001). Table 3 provides a summary
of the true parameter values of the three true models.

The 500 replication samples from each of the three true nonlinear models were analyzed
using LMS, QML, and the extended unconstrained approach, always specifying a nonlinear
model with one interaction and two quadratic effects. The parameter estimates and standard
errors of the nonlinear latent effects were examined.

Software and Implementations

Data were generated using PRELIS version 2.7 (Joreskog & Sorbom, 1999). Analyses with
the extended unconstrained approach were conducted using LISREL version 8.72 (Joreskog
& Sorbom, 1996). Analyses with Klein and Moosbrugger’s LMS approach were carried out
using Mplus version 5.21 (Muthén & Muthén, 1998-2007). Analyses with Klein and Muthén’s
QML approach were conducted using the QML stand-alone software version 3.11 (Klein,
2007). Examples of syntax files for these approaches are included in Appendices A and B
available at http://www.augustin.kelava.de/pubs. In this simulation study, we always used the
default settings (e.g., default start values, default number of iterations, and default numerical
algorithms) supplied by the programs, reflecting the typical practice of most users.

Results of the Simulation Study

We focus next on the results for the central nonlinear effects of interest (w1, w12, W22). No
appreciable differences among LMS, QML, and the extended unconstrained approach for the
linear effects y;, and y, or the factor loadings on £; and &, were expected or observed.

Table 4 shows the results of the simulations when no nonlinear effects are present in the true
model. In other words, w1, w12, and w;; were set to 0 in Equation 2 in the data generation
process. In each multicollinearity condition, mean parameter estimates of the nonlinear effects
produced by LMS, QML, and the extended unconstrained approach were close to zero. The
standard error estimates were good approximations of the observed standard deviations of the
parameter estimates. None of the standard errors was severely underestimated, using 10% as a
criterion for severe bias. Across all multicollinearity conditions, Type I error rates were within
acceptable ranges and not systematically inflated or deflated. The convergence rate for LMS
and the extended unconstrained approach was always 100%. For QML, the convergence rate
was slightly lower (96.2%-98.2%).

Table 5 shows the results when the three nonlinear effects are present in the true model.
Again, the convergence rate of LMS and the extended unconstrained approach was always
100%. For QML, the convergence rate ranged between 98.0% and 99.4% with higher conver-
gence rates as multicollinearity increased.

When the latent predictors were uncorrelated, unbiased mean parameter estimates of the
nonlinear effects were obtained for each approach (Table 5, Panel A). LMS, QML, and the
extended unconstrained approach provided accurate standard error estimates. The largest bias
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TABLE 4
Type | Error Rates for the Three Approaches
Type 1
True Value Approach N (Converged) M Est. SD SE SE/SD  Error Rate
Panel A LMS 500 .002 .038 .036 958 .048
w;; =.000 QML 481 .002 .038 .037 980 .058
Unconstrained 500 .002 .039 .038 976 .056
LMS 500 —.003 .051 .052 1.002 .052
d21 =.000  wpp =.000 QML 481 —.003 .052 .051 991 .050
Unconstrained 500 —.003 .052 .053 1.023 .048
LMS 500 .003 .039 .036 933 .062
wy =.000 QML 481 .003 .039 .037 948 .067
Unconstrained 500 .003 .040 .038 938 .052
Panel B LMS 500 .004 .043 .042 963 .064
w;; =.000 QML 491 .003 .043 .042 969 .063
Unconstrained 500 .004 .045 .044 976 .058
LMS 500 —.005 .065 .064 974 .074
b2 =.375  w;p =.000 QML 491 —.006 .065 .066 1.014 .055
Unconstrained 500 —.005 .067 .066 992 .060
LMS 500 .003 044 041 947 .060
wy =.000 QML 491 .003 044 043 968 .061
Unconstrained 500 .003 .046 .044 957 .042
Panel C LMS 500 .006 064 061 955 .064
w;; =.000 QML 491 .006 064 061 957 .067
Unconstrained 500 .006 .068 .066 973 .054
LMS 500 —.009 109 104 956 .064
b2 =.625  w;p =.000 QML 491 —.011 .108 104 959 .059
Unconstrained 500 —.009 114 112 977 .048
LMS 500 .005 064 061 957 .060
wy =.000 QML 491 .005 064 061 957 .059
Unconstrained 500 .005 .068 .066 974 .028

Note. LMS = Latent Moderated Structural Equations; QML = Quasi-Maximum Likelihood.

of the nonlinear parameter estimates was 4.5%. Relative to the actual standard deviation of the
parameter estimates, the bias in the mean standard error estimate never exceeded 10%. But
there were differences among approaches with respect to power for detecting interaction and
quadratic effects. For each nonlinear effect, the power for detecting the effect was lowest with
the extended unconstrained approach.

With a latent predictor correlation of .375, acceptable parameter estimates were obtained
using all three approaches (Table 5, Panel B). All approaches slightly overestimated the two
quadratic effects and underestimated the interaction effect. But, the highest overestimation did
not exceed 6.0%. The standard error estimates were acceptable for all three approaches and did
not deviate substantially from the standard deviations of the parameters. The highest empirical
standard deviations of the parameter estimates were shown by the extended unconstrained
approach. Accordingly the power for detecting a nonlinear effect was lower with the extended
unconstrained approach than with LMS or QML.

Given a correlation between latent predictors of .625, the extended unconstrained approach
produced a slightly larger bias in the estimates of the nonlinear effects than LMS and QML
(Table 5, Panel C). For example, the extended unconstrained approach overestimated the first
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TABLE 5
Results for Three Models with One Interaction Effect and Two Quadratic Effects in the Context of
Increasing Multicollinearity

True Value Approach N (Converged) M Est.  Difference  Bias % SD SE SE/SD  Power

Panel A LMS 500 .104 .003 3.10 .037 .036 970 .826
oy =.101 QML 490 .104 .003 3.00 .037 .036 975 .824
Unconstrained 500 .106 .005 450 .038 .037 965 812

LMS 500 .145 —.003 —1.80 .051 .051 994 816

$21 =.000 wp =.148 QML 490 145 —.003 —2.00 .051 .051 1.004 818
Unconstrained 500 147 —.001 —1.00 .052 .052 998 .800

LMS 500 .104 .003 250 .038 .036 935 .832

wyp =.101 QML 490 .104 .003 260 .039 .036 921 816
Unconstrained 500 105 .004 4.00 .040 .037 923 792

Panel B LMS 500 .106 .005 470  .041 .040 975 .760
oy =.101 QML 496 .106 .005 450 .041 .040 970 762
Unconstrained 500 107 .006 6.00 .042 .041 975 744

LMS 500 134 —.005 —=3.30 .062 .060 963 598

$21 =.375 w2 =.139 QML 496 134 —.005 —=3.60 .062 .060 972 615
Unconstrained 500 135 —.004 —3.00 .064 .063 976 .602

LMS 500 .104 .003 280 .042 .039 945 752

wyp =.101 QML 496 .104 .003 3.00 .042 .039 941 758
Unconstrained 500 .106 .005 450 .044 .041 939 718

Panel C LMS 500 .108 .007 6.60 .059 .057 958 464
oy =.101 QML 497 .108 .007 6.70  .059 .057 960 483
Unconstrained 500 110 .009 8.80 .063 .061 973 440

LMS 500 119 —.007 —6.00 .100 .095 943 276

b1 =.625 o =.126 QML 497 118 —.008 —6.40 .099 .095 952 274
Unconstrained 500 118 —.008 —6.20 .105 .102 970 228

LMS 500 .105 .004 390 .059 .056 952 474

wyp =.101 QML 497 .105 .004 380 .059 .056 952 A7
Unconstrained 500 107 .006 630 .063 .061 960 446

Note. LMS = Latent Moderated Structural Equations; QML = Quasi-Maximum Likelihood.

quadratic effect by 8.8%. The extended unconstrained approach showed the highest empirical
standard deviations of its parameter estimates. For each nonlinear effect, the power for detecting
the effect was again lower with this approach. LMS and QML showed a power of approximately
46.4% to 48.3% to detect a quadratic effect, whereas the power of the extended unconstrained
approach was approximately 44.0% to 44.6%. The power for detecting the interaction effect
was low for LMS (27.6%) and QML (27.4%), but even lower for the extended unconstrained
approach (22.8%).

EMPIRICAL EXAMPLE

We illustrate the analysis of nonlinear models using an empirical example. In certain service
jobs, employees frequently encounter customer-related social stressors (Dormann & Zapf,
2004), ranging from annoyances (e.g., customers disturbing an employee’s workflow) to harass-
ment (e.g., customers insulting an employee). Regular exposure to customer-related stressors
can seriously affect employees’ well-being, leading to burnout (Dormann & Zapf, 2004). For
coping with customer-related stressors, an employee’s personal resources can be crucial: Con-
fronted with an angry customer, an employee possessing a high personal customer orientation
might try to empathize and remain friendly. This strategy ideally leads to both customer
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satisfaction and a sense of professional efficacy on the employee’s part. In contrast, an employee
with a low personal customer orientation might interpret the customer’s anger as a personal
attack and escalate the conflict, resulting in customer dissatisfaction and emotional exhaustion
on the employee’s part. Thus, customer orientation can be expected to moderate the effect of
customer-related stressors on employee burnout.

In addition to an interaction effect, nonlinear effects of stressors and resources could
be expected as well. Severe stressor levels might have a particularly detrimental effect on
health, corresponding with a positive quadratic effect of the stressor. On the other hand, if
customer orientation serves as a resource in coping with customer-related stressors, high levels
of customer orientation could be expected to be particularly effective in changing stressor
appraisal and facilitating coping, leading to a negative quadratic effect of customer orientation
on burnout.

Based on these predictions, we estimated the following model (Equation 11, cf. Equation 2),
where BO represents the latent criterion burnout and CRS and CO represent the latent predictors
customer-related stressors and customer orientation (cf. Figure 2):

BO = o + v, CRS + y> CO + w2CRS - CO + w1 CRS? + w2 CO* + (11)

This model was tested in a sample of 400 employees from a public welfare agency in
Germany. Customer-related social stressors were measured by 27 items, mostly taken from
Dormann and Zapf (2004). Three correlated subscales, Customer Aggression (9 items), Cus-
tomer Coordination Problems (15 items), and Disliked Customers (3 items), were used as
indicators of the latent predictor, customer-related stressors. Customer orientation was measured
by 16 items that were essentially unidimensional; three item parcels of 5 or 6 items each were
used as indicators of customer orientation.® Burnout was measured with the Maslach Burnout
Inventory (MBI; Maslach, Jackson, & Leiter, 1996) in its German version (Biissing & Perrar,
1992). For this example, the Depersonalization and Emotional Exhaustion subscales were used
as indicators of the latent burnout variable.’

We illustrate the statistical analysis of the hypothesized nonlinear effects using the stand-
alone QML program (Klein & Muthén, 2007), the Mplus implementation of LMS (Klein &
Moosbrugger, 2000, cf. Muthén & Muthén, 1998-2007), and the extended unconstrained PI
approach (Kelava, 2009; Kelava & Brandt, 2009; Moosbrugger et al., 2009; cf. Marsh et al.,
2004, 2006), using default settings for estimation.

The distribution analytic QML and LMS approaches require raw data for analysis, and can
use data files in free format or space-delimited fixed format. By default, the latent variables
constituting the interaction and quadratic terms are modeled as centered by the software, and
intercepts (1, T,) for measurement equations are estimated (Equations 12 and 13):

X=1+A,-E+8 (12)

y=1+Ay-n+te (13)

SIn practice, item parcels have strengths and weaknesses; the effects of parceling and conditions for their proper
use are described in Bandalos (2002) and Little, Cunningham, Shahar, and Widaman (2002).

"The third subscale, Personal Accomplishment, was not used as it showed relationship patterns distinct from the
other subscales (cf. Leiter, 1993, for models of MBI subscales’ relationships).
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Annotated QML input syntax and LMS input syntax using Mplus (cf. Muthén & Muthén,
1998-2007, Example 5.13) for our illustrative example are included in Appendices A and B
available at http://www.augustin-kelava.de/pubs. Results of the LMS analysis using Mplus were
generally similar to those obtained by QML. To help readers understand the results, we also
present annotated output obtained from QML and LMS in Appendices C and D.

QML and LMS provide unstandardized parameter estimates and standard error estimates.
As in linear structural equation models, unstandardized estimates are based on the specified
structural model (Equation 11) and the measurement models (Equations 12 and 13), thus
are linked to the manifest variables’ empirical variances and the latent variables’ variances
(irrespective of data transformations employed in estimating the likelihoods used by the QML
and LMS algorithms, which remain internal to the program and are not seen by the user).
Unstandardized estimates could be preferred for interpretation if manifest variables possess
well-defined, empirically meaningful metrics and can thus serve as marker variables for latent
variables linked to them. In typical applications, though, standardized estimates might be
preferred for interpretation. QML also includes a properly standardized solution. In general,
for PI approaches, standardization is complicated by product constructs (see Aiken & West,
1991, chap. 3), so that current SEM software produces improperly standardized coefficients.
The distribution analytic QML and LMS approaches, by contrast, estimate interaction and
curvilinear effects (i.e., effects involving product terms) without separate product constructs,
making proper standardization very straightforward. Special procedures must be taken to
produce properly standardized solutions using the PI approach (Wen, Marsh, & Hau, 2010).

We present the results for the complete nonlinear model with all standardized QML parame-
ter estimates, including the interaction and both quadratic effects in Figure 2. The corresponding
structural model for the relationships between the latent variables is given in Equation 14:

BO = —.007 + .646 CRS — .284 CO — 200 CRS - CO + .034 CRS? — .084 CO* +¢  (14)

Unstandardized solutions for the LMS, QML, and extended PI approaches are presented
in Table 6. A comparison of the standardized QML effect estimates for the structural model
with the respective results obtained by the extended unconstrained PI approach is also given
in Table 6, including both the improperly standardized solution supplied by standard SEM
software for PI models, and a corrected standardization based on the standard deviations
of the constructs customer-related stressors, customer orientation, and burnout (analogous
to the procedure described in Wen et al., 2010, for the standardization of latent interaction
coefficients).

In addition to parameter estimates and standard errors of individual parameter estimates,
QML offers likelihood ratio tests for nested structural models. Nested model tests permit easy
comparison of the complete nonlinear model represented in Equation 11 to a model with only
linear effects, or to test any particular nonlinear (or linear) effect for significance against a
nested model without this effect.

Suppose a researcher wishes to compare the complete nonlinear model represented in
Equation 11 to a model without any nonlinear effects as represented in Equation 15:

BO =0o+ 7y CRS+v,CO +¢ (15)
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TABLE 6
Effect Estimates in the Structural Model for Predicting Burnout (Empirical Example)

Linear Quadratic Interaction

CRS co CRS? co? CRS x CO
Estimation Y1 Y2 Wy w22 wj2

QML (distribution analytic)

Unstandardized 558 —.256 .033 —.089 —.204

Standardized .646 —.284 .034 —.084 —.200
LMS/Mplus (distribution analytic)

Unstandardized 556 —.263 .032 —.099 —.220
Extended unconstrained (product indicators)

Unstandardized?® 546 —.251 .053 —.063 —.117

Improperly standardized (software-supplied)® 624 —.285 .091 —.082 —.125

Standardized according to Wen, Marsh, and Hau (2010)b 624 —.285 058 —.068 —.127

Note. Complete nonlinear model with predictors CRS = customer-related stressors; CO = customer orientation;
QML = Quasi-Maximum Likelihood; LMS = Latent Moderated Structural Equations.

ALISREL estimation. PDescribed for interaction effects in Wen et al. (2010), analogous procedures applied to
quadratic effects here.

Employing the likelihood ratio test, the researcher could compare the fit of the two models. In
our example, the complete nonlinear model showed a superior fit to the linear model, as can be
seen from the QML test results in Table 7 (for comparison, results from LMS/Mplus and the
extended unconstrained approach are also included). The researcher could also probe whether
each term made a significant contribution to the model fit. Each successive nonlinear term can
be omitted from the complete nonlinear model and the effect tested. In our example, QML
showed that the small quadratic effect of customer-related stressors (w;;) was not statistically
significant. The other two nonlinear effects, the interaction effect (w;2) and the quadratic effect
of customer orientation (w), were both statistically significant. LMS in Mplus led to identical

TABLE 7
Likelihood Ratio Test Results for Nonlinear Effects on Burnout Using Different Approaches
(Empirical Example)

Extended
OML LMS/Mplus Unconstrained
Model Comparison dfa XZA P XZA P XZA P
Complete nonlinear vs. linear 3 18.061 .001 12.653 .005 7.693 .053
Complete nonlinear vs. wj; =0 1 0.671 410 0.270 .603 1.365 243
Complete nonlinear vs. wj; =0 1 11.171 .001 4.994 .025 4282 .039
Complete nonlinear vs. wy; =0 1 4.243 .040 8.693 .003 1.385 239

Note. The complete nonlinear model included quadratic effects w;; (customer-related stressors2), wyy (customer
orientation?), and the interaction effect w;, (Customer-Related Stressors X Customer Orientation) on burnout. For the
linear model, all three effects were fixed to zero. QML = Quasi-Maximum Likelihood; LMS = Latent Moderated
Structural Equations.
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results. However, in contrast to the results of both LMS and QML, w,, failed to achieve
statistical significance using the extended unconstrained approach, likely reflecting its lower
statistical power.

In cases in which the researcher desires to compare nonnested models, QML and LMS
in Mplus provide the AIC (Akaike, 1974) and the BIC (Schwarz, 1978). Researchers should
choose the model with the smallest AIC and BIC as the optimal model according to these
criteria. The values of the AIC and BIC calculated by the distribution analytic approaches will
differ from those calculated by the PI approaches because additional product terms are not
estimated in the distribution analytic approaches.

Complex nonlinear effects can be difficult to visualize; two-dimensional and three-
dimensional representations can be helpful. Figure 4 shows a two-dimensional representation of
the results of our example. This graph illustrates the quadratic relationship between customer
orientation and burnout at different levels of customer-related stressors (at 1 SD below the
mean, at the mean value, and at 1 SD above the mean). These figures can be plotted using any
graphics package and overlaying lines corresponding to substituting values of —1, 0, and +1
into the standardized structural model equation (here, Equation 14).

At customer-related stressors values of +1 SD, the value of burnout showed continual
but declining increases as the value of the latent variable customer orientation decreases.
At customer-related stressors values of —1 SD, the value of burnout initially increases to a
maximum for medium values of customer orientation, and then decreases in value.

Three-dimensional plots can also be helpful in interpreting nonlinear effects. In three-
dimensional plots a surface corresponding to the structural model equation (Equation 14)
is constructed, potentially using color graphics to highlight changes in the level of the de-
pendent variable. Such plots can be constructed using specialized graphical software (e.g., R,
Statgraphics) or increasingly in standard statistical packages (e.g., SAS, SPSS).

2 - Customer-Related Stressors
_High (z=+1)
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FIGURE 4 Effect of customer orientation on burnout, depicted for high, average, and low levels of customer-
related stressors (latent variables, all standardized, Quasi-Maximum Likelihood estimates): The effect of
customer orientation on burnout is curvilinear (quadratic effect) and additionally depends on the level of
customer-related stressors (interactive effect).



NONLINEAR SEM: THE LMS AND QML ESTIMATORS 487

Burnout

FIGURE 5 Linear effects of customer-related stressors and customer orientation, interaction effect Customer-
Related Stressors X Customer Orientation, and quadratic effect of customer orientation on burnout (standardized
Quasi-Maximum Likelihood estimates). Given low customer orientation, customer-related stressors predict
increased burnout, whereas for high customer orientation, this relation disappears (interaction). Given high
customer-related stressors, increasing customer orientation predicts a pronounced decrease in burnout (negative
quadratic effect).

As can be seen in Figure 5, given low customer orientation, increasing customer-related stres-
sors predict increased burnout, whereas for high customer orientation, customer-related stressors
are essentially unrelated to burnout (interaction effect). Furthermore, given the presence of
customer-related stressors, increasing customer orientation leads to a particularly pronounced
reduction in burnout (negative quadratic effect).

DISCUSSION

In this article we provided a nontechnical introduction to two distribution analytic approaches,
LMS and QML, for the estimation and testing of nonlinear effects in latent variable models.
We provided a description of the key ideas underlying each approach and how they differ
from PI approaches. LMS and QML do not require the specification of nonlinear constraints.
This is a particular advantage in complex models for which the needed constraints and model
specifications required in the PI approaches might not be available in the published literature.
Nonlinear effects are also easily implemented in the Mplus package (Muthén & Muthén, 1998—
2007) and freestanding QML (Klein, 2007) software. In a small-scale simulation, LMS and
QML consistently showed acceptable Type I error rates and a modest advantage (2%—4%) in
statistical power compared with the extended unconstrained approach (Kelava, 2009; Kelava &
Brandt, 2009; Moosbrugger et al., 2009), which is based on the most commonly used of the
PI approaches (Marsh et al., 2004, 2006). This advantage could be important in practice given
the small effect sizes (1%—3% of variation accounted for) that have typified interaction effects
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between measured variables (Champoux & Peters, 1987; Chaplin, 1991, 2007; Donovan &
Radosevich, 1998). LMS and QML detected an additional hypothesized nonlinear (quadratic)
effect of interest in an actual data set on work stress and job burnout, perhaps due to the greater
statistical power of the distribution analytic approaches.

The results of the simulation study were obtained using the default settings provided by
the software packages. LMS and the extended unconstrained PI approach achieved 100%
convergence; QML convergence rates were only slightly lower, exceeding 96% in all conditions.
These results were obtained with a sample size of 400 and measured x variables that were
normally distributed. Analyses conducted with smaller sample sizes or with nonnormal x
variables would be more likely to have problems in estimation, potentially leading to lower
convergence rates.

Users wishing to consider LMS or QML might wonder which approach to choose. The
answer to this question depends on both practical considerations and the specific research
questions of the user. On a practical level, LMS is currently implemented in commercial Mplus
software (Muthén & Muthén, 1998-2007), a general package for latent variable models. QML
is currently implemented as a noncommercial stand-alone package, as of this writing at no
cost. Users need to consider the trade-off between the cost versus the availability of a technical
support infrastructure associated with commercial and noncommercial programs. Users familiar
with equation-based programs (e.g., Mplus, EQS) will find their programming experience
readily generalizes to LMS. Users familiar with matrix-based programs (e.g., LISREL) will
find that their programming experience readily generalizes to QML. Neither LMS nor QML
currently offer point-and-click analyses.

In terms of research questions, the types of models that can be addressed and the content of
the output that is produced by LMS and QML largely overlap. However, there are important
exceptions that exist in the current implementations of the two programs.

1. LMS allows researchers to build more complicated SEM models involving multiple latent
endogenous variables, whereas QML is currently limited to models with only one latent
outcome variable. As one example, a latent variable moderated mediation model in which
the path from the mediator to the outcome is moderated by another latent variable can
be specified in the Mplus package, but not using QML software.

2. QML might have an advantage in computational speed in models with several nonlinear
terms because of the heavier computational demand in LMS.

3. QML will compute a properly standardized solution if requested by the user, whereas
the user must compute the proper standardized solution by hand in LMS.

In conclusion, for applied researchers, employing distribution analytic approaches leads to
more powerful tests that address the specific hypothesized substantive effects of interest in their
data. With the advent of user-friendly SEM software implementing these approaches, employing
LMS and QML for empirical analyses becomes feasible. Our simulation study and empirical
example illustrated the advantages of these new approaches in terms of ease of specification
and by providing slightly more powerful tests of nonlinear effects in latent variable models.
The advantages of LMS and QML over the extended PI approaches are theoretically expected
to increase as the correlation between the latent exogenous variables and the effect size of the
latent nonlinear effects increase. Readers should note that these models demand larger sample
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sizes than those often seen in practice. For this simulation study and empirical illustration
involving a complex nonlinear model with two small quadratic effects and small interaction,
a sample size of 400 was adequate for estimation. Even larger sample sizes will be needed to
achieve adequate statistical power given high multicollinearity. For a model involving only a
single interaction or quadratic effect, a sample size of 200 might be sufficient for estimation. A
fuller understanding of the performance of each of the approaches under conditions in which
there are severe levels of excess kurtosis, skewness, or both in the distributions of the observed
variables will require further study. Our hope is that this article provides applied researchers
with the information necessary to use distribution analytic approaches when they wish to
include interaction, quadratic, or both types of nonlinear terms in latent variable models.
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