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ABSTRACT
The daily home-office commute of millions of people in crowded cities strains air quality and
increases travel time, whichmotivates the generation of ridesharing. Ridesharing offers many bene-
fits, such as reducing travel costs, congestion, and pollution. Commuter ridesharing is an important
theme of urban transportation. This paper studies a ridesharing problem aiming at enlarging the
ridesharing market at a limited cost, which enlighten the decision-making problem in city logistics.
We establish a novelmulti-objective optimisationmodel based on cumulative prospect theory (CPT)
to address the preferred travel mode of commuters. The commuters’ perceived value influences
their choice of travel mode. Meanwhile, the perceived value changes with the commuters’ expe-
rience of travel mode choice. We give the NP-hardness proof of the ridesharing scheduling problem
and develop a heuristic algorithm to solve it in a small-scale scenario. For large-scale problems, a
hybrid VNS-NSGAII algorithm combining variable neighbourhood search (VNS) with NSGAII (Non-
dominated Sorting Genetic Algorithm II) is proposed to generate an approximate optimal Pareto
front. A series of computational experiments are conducted to demonstrate the effectiveness and
efficiency of the proposed algorithm based on the actual traffic data in Beijing, China.

ARTICLE HISTORY
Received 21 November 2019
Accepted 13 November 2020

KEYWORDS
Ridesharing; multi-objective
optimisation; cumulative
prospect theory; heuristic
algorithm; VNS-NSGAII; city
logistics

1. Introduction

The development of the urban economy and the growth
of population have resulted in severe traffic congestion
in many cities. The permanent population of Beijing
increased from 15.4 million in 2005 to 21.5 million
in 2018, and approximately 86.5% was in urban areas
(https://www.stats.gov.cn/). Large population results in
heavy economic losses due to the increase in travel time
and energy consumption. Long and Thill survey peo-
ple’s home and office location distribution in Beijing,
China (2015). In their survey, office locations in Bei-
jing are concentrated in several hotspots, whereas resi-
dential areas are relatively scattered throughout the city.
Daily commuting by residents has put much pressure
on the transportation network (Feng, Saito, and Liu
2016; Cisneros-Saldana, Hosseinian, and Butenko 2018;
Glover et al. 2018). At the same time, commuting is
one of the significant branches of urban transportation
activities.

CONTACT Lei Guan l_guan126@163.com, Xinbao Liu lxb@hfut.edu.cn, Zhiping Zhou zhouzp@hfut.edu.cn School of Management, Hefei
University of Technology, Hefei 230009, People’s Republic of China; Key Laboratory of Process Optimization and Intelligent Decision-making of the Ministry of
Education, Hefei 230009, People’s Republic of China; and Jun Pei peijun@hfut.edu.cn School of Management, Hefei University of Technology, Hefei
230009, People’s Republic of China; Key Laboratory of Process Optimization and Intelligent Decision-making of the Ministry of Education, Hefei; Center for
Applied Optimization, Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA

Ridesharing can provide more flexible service and
induce lower costs for commuters compared to other
modes of transportation. Bus services typically carry
multiple passengers and can help to reduce total vehicle
operation mileage and alleviate traffic pressure. How-
ever, one drawback of transit services is that they operate
on fixed routes and schedules, which limits their cov-
erage area of the urban network. Taxis provide door-
to-door transportation service, but at a high cost that
not every commuter can afford. Ridesharing refers to
the behaviour in which passengers negotiate to jointly
ride the same car, so as to improve transportation effi-
ciency, reduce fuel consumption and carbon emission
(Dimitrakopoulos, Demestichas, and Koutra 2012; Lin
et al. 2012). In addition, this mode has better flexibility
than public transportation. Ridesharing platforms, such
as Uber, Lyft, Didi, and Ctrip, are widely used in com-
muting by matching drivers and riders in real-time and
coordinating drivers who offer rides to travellers with
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similar itineraries (Tan, Carrillo, and Cheng 2016; Tan
et al. 2017).

Since city transportation is a complex problem con-
cerning managerial, social and engineering aspects, it
is crucial to carefully consider the requirements and
interests of different stakeholders involved. For this pur-
pose, the decision behaviours and revenues of suppli-
ers, retailers, consumers and administrators should be
comprehensively investigated in providing efficient direc-
tions (Dolati Neghabadi, Samuel, and Espinouse 2019;
Jamshidi et al. 2019). The commuters’ willingness of
choosing their travel mode is important to city traffic
optimisation. In Beijing, due to changes in urban plan-
ning, such as the establishment of a large airport, the
collective relocation of households has made commut-
ing difficulties for residents. The dial-a-ride problem
(DARP) provides shared trips between any origin and
destination in response to reserve requests of passen-
gers within a specific area (Masson, Lehuédé, and Péton
2014). As such, it is flexible and efficient to solve the reser-
vation travel problem, however, the demand of perceived
value should be satisfied to improve the ridesharing will-
ingness.

Ridesharing can reduce the cost of commuting, but it
comes with time-related risks. Meanwhile, if the com-
muters’ impression of dissatisfied with this travel mode
exceeds their expectations, they will change their choices.
Figure 1 presents the travel itineraries of commuters 1,
2, 3, and 4, who have nearby trip origins, destinations,
and departure time, and they can be grouped into the
same ride. Solution 1 describes that a single car pro-
vides service for commuters 1, 2, 3, and 4. However, the

commuters have low perceived value due to excessively
extra travel time, which will change the ridesharing deci-
sions of commuters in their subsequent trips. Therefore,
we suggest solution 2 in which commuters 1 and 2 are
grouped into the same ride, and commuters 3 and 4 are
grouped into another ride. This solution can reduce com-
muters’ extra travel time, thus improving the commuters’
perceived value for ridesharing. As such, drivers need to
make a trade-off between ridesharing time of commuters
and the costs of the vehicle. The same is true for passen-
gers 5, 6, 7, and 8. In Figure 1, the vehicles’ cost in solution
2 is higher than that in solution 1. It is essential to balance
the vehicle costs and commuters’ utility in ridesharing
platforms.

This study aims to examine the decision-making
behaviour of the home-to-work commuters to address
the ridesharing problem. Unlike the previous rideshar-
ing studies, our first objective is to maximise the number
of commuters that willing to choose ridesharing, accord-
ing to the decision-making behaviour of commuters in
ridesharing system. Meanwhile, another objective that
minimises the total cost of the vehicles is also consid-
ered. The decision variables are routes and schedules
of the vehicles (including commuter-driver assignment)
in the presence of conflicting objectives. This study can
enlighten the decision-making problem in city logistics.

The main contributions of this work can be sum-
marised as follows:

(a) Considering the perceived value of commuters,
we establish a bi-objective ridesharing model, in
which the decision-making behaviour of ridesharing

Figure 1. Illustration of the commuters’ ridesharing.
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commuters is simulated based on cumulative pros-
pect theory (CPT).

(b) We analyse amethod of fast non-dominated solution
(FNDS). Based on structural properties, a heuristic
algorithm is developed to solve small-scale
problems.

(c) An effective hybrid VNS–NSGAII algorithm which
combines Variable Neighbourhood Search (VNS)
and Non-dominated Sorting Genetic Algorithm II
(NSGAII) is proposed to solve large-scale prob-
lems. A series of computational experiments are
conducted to validate the effectiveness and efficiency
of the proposed algorithm.

The remainder of the paper is organised as follows.
Related studies are reviewed in Section 2. The rideshar-
ing optimisationmodel considering the decision-making
behaviour of commuters is described in Section 3. In
Section 4, the solution algorithm is presented. An exper-
imental case is simulated and analysed in Section 5. The
conclusions of this study are discussed in Section 6.

2. Literature review

In recent years, ridesharing has received growing inter-
est from both academia and business. A comprehensive
review of the conditions for a successful ridesharing sys-
tem can be found in Agatz et al. (2011, 2012). Furuhata
et al. (2013) provided an extensive overview of the litera-
ture by presenting the state of the art of existing rideshar-
ing systems and discussing the critical challenges in the
widespread use of ridesharing.

The extant literature on ridesharing mainly focused
on the optimisation methods of vehicle routes and the
improvment of ridesharing matching rate. For exam-
ple, Manzini and Pareschi (2012) designed an auxiliary
decision support system for ridesharing and matching.
Jiau, Huang, and Lin (2013) applied a genetic algorithm
to address the problems in ridesharing path matching.
As a special application of ridesharing, DARP was first
proposed by Baldacci, Maniezzo, and Mingozzi (2004).
They established a model and developed exact algo-
rithms to solve certain complexities of real-world prob-
lems. The DARP is also similar to the well-known
pick-up and delivery problems with time windows
(PDPTW). A branch-and-cut algorithm was developed
by Lu andDessouky (2004) to optimally solve the integer-
programming formulation of the PDPTW. Le-Anh, De
Koster, and Yu (2010) introduced three basic scheduling
approaches (insertion, combination, and column gen-
eration) for the resolution of the PDPTW in Vehicle-
Based Internal Transport (VBIT) Systems. In a recent
study, Harbaoui Dridi et al. (2019) investigated a problem

considering multiple vehicles, multiple depots, pickup,
and delivery with time windows (m-MDPDPTW), and
developed an algorithm based on the particle swarm
optimisation (PSO) algorithm to solve it.

The objective of optimisation problems in city logistics
research is the focus of logistics research. Considering the
characteristics of stakeholders in logistics, we classify the
following stakeholders: suppliers, retailers, consumers
and administrators. The overview of key relevant papers
delineating the main features of the model, components
of objective function and the solution methods used are
compared in Table A1 of Appendix. Specifically, some
researches have addressed the retailers and administra-
tors considering transportation costs and greenhouse gas
emissions. Other studies have considered both suppliers
and retailers to minimise transportation costs and satisfy
passenger time window requirements. Moreover, several
studies have explored the consumer service processes.
For instance, Pureza, Morabito, and Reimann (2012)
investigated the arrangement of servicemen to improve
customers’ service times, but they did not concern the
multi-period dynamic willingness of consumer service
acceptance.

Prospect Theory (PT) and CPT are widely used in
transportation studies, especially in the route choice
model. It is a model of bounded rational human deci-
sion making. However, the application of the CPT for
mode choice model is still rare. Zhao and Yang (2013)
argued that the mode choice model based on CPT could
be successfully developed to explain a traveller’s mode
choice behaviour. Zhang and He (2014) proposed the
choice of travel mode based on PT and found that the
expected reference point influences the choice of travel
mode greatly.

A flexible ridesharing system can obtain an effec-
tive solution for routeing and ride-matching within
a reasonable time. For the multi-objective ridesharing
problem, many studies have proposed effective solv-
ing methods. The generalised label-correcting (GLC)
algorithm is a deterministic algorithm to search the
Pareto-optimal set of route plans, but its exponential
worst-case complexity is of concern (Skriver and Ander-
sen 2000). Kar et al. (2018) and Majumder et al. (2019)
proposed and solved the uncertain multi-objective solid
transportation problem. NSGAII has been widely used
to solve the multi-objective problems (Deb et al. 2000;
Kannan et al. 2009). Majumder, Kar, and Pal (2019)
applied NSGAII and multi-objective cross-generational
elitist selection, heterogeneous recombination, and cata-
clysmic mutation (MOCHC) algorithms to address the
uncertain multi-objective Chinese postman problem.
However, it performs poorly in terms of convergence
speed and accuracy when the solution space is large
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Figure 2. Operation of ridesharing service.

(Abedi et al. 2015; Majumder, Kar, and Pal 2019). In this
study, we propose a heuristic algorithm based on the
method of FNDS-Gps to solve the small-scale problems.
Since that the complexity of the heuristic algorithm will
increase exponentially as the scale expands, we design a
hybrid algorithom combining NSGAII and VNS to solve
the proposed bi-objective optimisation problem.

3. Problem statement and themodel

In this section, we introduce the ridesharing problem
with the commuter decision-making behaviour consid-
eration. We first give a brief description of the studied
problem. Subsequently, a bi-objectivemodel for rideshar-
ing vehicle scheduling is proposed. Finally, we simulate
commuters’ decision-making behaviour in this model.

3.1. Problem statement

In this subsection, a variant of the PDPTW is used to
model the ridesharing problem. A ridesharing demand
can be regarded as a couple of pick-up and delivery loca-
tions. Drivers select the riders at different pick-up loca-
tions, but with the same drop-off locations. Regarding the
time-constrained feature of both riders and drivers, we
define a hard time window for each ridesharing. That is,
a rider must be delivered to the destination before his lat-
est arrival time. Specifically, a vehicle is allowed to arrive
at a pick-up location after the riders’ earliest start time
window, and the riders wait until the vehicles’ arrival. The
service time at each location is set as zero. Each commuter
has the same daily schedule as the time window. Figure
2 demonstrates the operation of the ridesharing service.

The system satisfies commuters’ requests with arrival
deadlines and destinations. When passengers choose the
service, they have an expected travel time. Figure 2(a)
illustrates the schedule of the vehicle services for four
commuters. The arrival time of the vehicle is later than
the expected time of commuters 1, 2, and 4. Figure 2(b)
shows the schedule of two vehicle services for four com-
muters. The arrival time of the vehicles is earlier than the
expected time of commuters 1, 2, 3, and 4.

In our study problem, the decision on ride matching
and vehicle routeing needs to be made to realise the two
main objectives, which are as follows:

(i) Increasing the number of commuters who choose
ridesharing;

(ii) Reducing the costs of ridesharing services.

3.2. Model structure

In this subsection, a mixed integer linear program
(MILP) model is proposed for the vehicle schedul-
ing problem based on the simulation of commuters’
behaviour rule. Notations of the model are shown in
Table 1.

The optimisation problem is formulated as follows.

F1: max
N∑
i=1

Xi (1)

F2: min
m∑
j=1

L∑
l=1

Costjl =
m∑
j=1

( L∑
l=1

Dor
lj · f +

L∑
l=1

Blj

)

(2)
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Table 1. Notations of the model for vehicle routeing
optimisation.

Notations Definitions

i Index of commuter
N The number of commuters
j Index of day
m The length of people’s memory time of travel perception
L The number of vehicles
l Index of vehicle
Xi 0–1 decision variable, equals to 1 if commuter i decides to take

ridesharing, 0 otherwise
Costlj Cost of vehicle l on day j
or A pair of origin and destination
Dorlij The distance of commuter i in the vehicle l on day j

f Fuel cost per kilometre
Blj Fixed cost of the vehicle l on day j
xijl 0–1decision variable, equals to 1 if commuteri selects ridesharing

on day j, and vehicle l services commuter i, 0 otherwise
LTij The latest arrival time requested by commuter i on dayj
ETij The earliest start time requested by commuter i on dayj
tij Time of commuter i from origin to destination on day j
twij The start service time of the commuter i on day j
CVlj The average speed of vehicle l on day j
MQ The capacity of the vehicle

s.t
L∑
l=1

xijl = 1i = 1, . . . ,N j = 1, . . . ,m (3)

N∑
i=1

xijl ≤ MQ l = 1, . . . , L j = 1, . . . ,m (4)

twij ≥ ETij i = 1, . . . ,N j = 1, . . . ,m (5)

twij + tij ≤ LTij i = 1, . . . ,N j = 1, . . . ,m (6)

tij = Dor
lij/CVlj i = 1, . . . ,N j = 1, . . . ,m l = 1, . . . , L

(7)

Equations (3)–(7) express the constraints of the
model. Specifically, Equation (3) indicates that the
commuters can only be served once a day. Equation
(4) indicates that the number of commuters in a vehi-
cle cannot exceed the capacity of the vehicle. Equa-
tions (5) and (6) describe the time-constrained feature
of riders and drivers. Equation (7) reflects the relation-
ship between the commuter’s travel time, distance, and
speed.

3.3. Simulation of commuters’ behaviour

The decision of commuters’ ridesharing is affected by
many factors, among which travel time and cost are
two critical indicators of commuters’ perceived utility.
A scheduling scheme for ridesharing will generate com-
muters’ perceived time and price. Figure 3 illustrates the
relationship between ridesharing scheme and commuter
decision behaviour. A period of ridesharing experiences
forms the perceived value of commuters in this travel
mode. The perceived value is the basis for the commuters’
decision-making.

The simulation system is on the basis of CPT, which
models the commuters’ choice of ridesharing. In order to
reflect the impact of time and commuting costs on com-
muters’ perceived utility, this study analyses the prospect
value by separately using time and commuting costs as
two factors under different conditions. Commuters can
choose between two travel modes, namely, ridesharing
or ride alone in a vehicle. Travel mode is defined as s =
(1, 2). We calculate the prospect value under different
modes as follows.

Figure 3. Relationship of ridesharing scheme and commuter decision behaviour.
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3.3.1. Prospect value of travel time
Equation (8) depicts the value function of travel time
according to that of CPT (Tversky and Kahneman 1992).

v(tsi ) =
{

(btsi − tsi )
α , tsi < btsi

−λ(tsi − btski )
β , tsi ≥ btsi

(8)

In Equation (8), tsi denotes the travel time of com-
muter i in travel mode s; btsi denotes the reference
point of the travel time in travel mode s; parame-
ters α,β(0 < α ≤ 1, 0 < β ≤ 1)measure the sensitivity
degree of diminishing the value function; λ is the coef-
ficient of loss aversion, which indicates that individuals
are more sensitive to losses than gains. The value func-
tion curve exhibits an S-shape with convex and concave
functions in the gain and loss parts, respectively.

Eq (9) presents the reference point value of the travel
time. The value of the reference point is related to the pas-
senger’s reserved time, which is the difference between
the length of the time window and the shortest travel
time.

btsi = Dor
i /CVl ·

(
1 + LTi − ETi − Dor

i /CVl

LTi − ETi

)
(9)

Equations (10) and (11) present the weight functions
of travel time according to the CPT (Tversky and Kahne-
man 1992):

w+(tpsi) = (tpsi)
γ

|(tpsi)γ + (1 − tpsi)
γ |1/γ

(10)

w−(tpsi) = (tpsi)
δ

|(tpsi)δ + (1 − tpsi)
δ|1/δ

(11)

where tpsi is the probability of travel time tsi in travel
mode s, and parameters γ , δ determine the curvature
of the weight function. Probability weights function is
present as an inverted S-type, which reflects the charac-
teristics of overestimating small probability events and
underestimating medium and large probability events.

Commuters’ perceived travel timemay differ from real
travel time. Travellers’ perceptions of travel time are con-
stantly updated with the increase of travel experiences.
Polak (1998) proposed a traveller learningmodel that cal-
culates perceived travel time based on historical travel
time in the traveller’s memory. We formulate the per-
ceived travel time into the learning model as shown in
Equations (12) and (13).

ts
′
i =

m∑
r=1

tpsirt
s
i(j−r) i = 1, . . .N, j = 1, . . . ,m (12)

tpsir = (m − r + 1)∑m
r=1 r

i = 1, . . . ,N r = 1, . . . ,m (13)

where ts
′
i is the perceived travel time of commuter i onday

m + 1, and tpsir is the weight of historical travel time from
days 1 tom. The parameterm is the length of commuter’s
memory time. At the same time, tpsir is also the proba-
bility value of the commuter’s travel time tsi(j−r). When
travel time changes with the route and schedule, the com-
muter will update the travel experience and form a new
cognition for travel time.

We combine the travel time (tsi(j−r), tp
s
ir) in the com-

muters memory of day m to form a possible set of driv-
ing time (tsiz, tp

s
iz), in which −a ≤ z ≤ b. The time tsiz is

sorted in an incrementalmanner and is divided into three
sets according to the value function: positive, negative,
and neutral results. Then, the decision weights of travel
time tπ+

z and tπ−
z are shown in Equations (14) and (15):

tπ+
z = w+(tpsiz + · · · + tpsib) − w+(tpsi(z+1) + · · ·

+ tpsib)0 ≤ z ≤ b (14)

tπ−
z = w−(tpsi(−a) + · · · + tpsiz) − w−(tpsi(−a) + · · ·

+ tpsi(z−1)) − a ≤ z ≤ 0 (15)

Equation (16) displays the cumulative prospect value
of travel time according to that of CPT.

V(tsi
′
) =

p∑
z=1

tπ+
z v(tsiz

′
) +

0∑
z=−q

tπ−
z v(tsiz

′
) (16)

3.3.2. Prospect value of commuting cost
Commuting cost is an essential indicator of ridesharing
decision-making. This study uses the following charging
method in Equation (17).

cij = Dor
lij/Qlj · fp i = 1, . . . ,N j = 1, . . . ,m l = 1, . . . , L

(17)
where Dor

lij is the distance from the origin to destination
by commuter i in the vehicle l on day j, Qlj is the num-
ber of commuters in the vehicle l on day j; fp denotes
the cost ratio of commuters, fpε[0, 1]. The ridesharing
commuters’ payment is related to the number of com-
muters in one vehicle, and it decreases with the number
of commuters.

Equation (18) shows the value function of commuting
cost according to the CPT value function:

v(csi) =
{

(bcsi − csi)
α , csi < bcsi

−λ(csi − bcski )
β , csi ≥ bcsi

(18)

where csi refers to the travel cost of commuter i in travel
mode s; bcsi pertains to the reference point of commuting
cost in travel mode s. The value of reference point is the
cost of ride alone in a vehicle. bcsi = Dor

i · fp.
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Equations (19) and (20) present the weight function
of commuting cost according to the CPT (Tversky and
Kahneman 1992):

w+(cpsi) = (cpsi)
γ

|(cpsi)γ + (1 − cpsi)
γ |1/γ

(19)

w−(cpsi) = (cpsi)
δ

|(cpsi)δ + (1 − cpsi)
δ|1/δ

(20)

where cpsi is the probability of the commuting cost csi in
travel mode s.

Commuters’ perceived travel cost may differ from
actual travel cost. That is, travellers’ perception of travel
cost is constantly updated with their travel experience.
We formulate the perceived travel cost in the learning
model, as shown in Equation (21).

c′i =
m∑
r=1

cpsirc
s
i(j−r) i = 1, . . . ,N j = 1, . . . ,m (21)

where c′i is the perceived travel cost of commuter i on day
m + 1, and cpsir is the weight of historical travel cost in the
commuter’s memory time. At the same time, cpsir is also
the probability value of the commuter’s travel cost csi(j−r).

We combine the travel cost (csi(j−r), cp
s
ir) in the com-

muters memory of day m to form a possible set of travel
cost (csiz, cp

s
iz), where −a ≤ z ≤ b. The travel cost csiz is

sorted in an incremental manner and divided into three
sets according to the value function: positive, negative,
and neutral results. Then the decision weights of com-
muting cost cπ+

z and cπ−
z are shown in Equations (22)

and (23).

cπ+
z = w+(cpsiz + . . . + cpsib) − w+(cpsi(z+1) + . . .

+ cpsib)0 ≤ z ≤ b (22)

cπ−
z = w−(cpsi(−a) + . . . + cpsiz) − w−(cpsi(−a) + . . .

+ cpsi(z−1)) − a ≤ z ≤ 0 (23)

Equation (24) illustrates the cumulative prospect value
of commuting cost according to the aforementioned
description:

V(csi
′
) =

p∑
z=1

cπ+
z v(csiz

′
) +

0∑
z=−q

cπ−
z v(csiz

′
) (24)

3.3.3. Comprehensive prospect value
Equation (25) illustrates the comprehensive prospect
value of each travel mode by integrating time and cost
indicators:

Vs
i = tws

iV
′(tsi

′
) + cws

iV
′(csi

′
) (25)

where V ′(tsi
′) and V ′(csi

′) are the standardised prospect
value of time and commuting cost, respectively, as shown

in Equation (26):

V ′(tsi
′
) = V(tsi

′)
|V(ti′)|max

V ′(csi
′
) = V(csi

′)
|V(ci′)|max

− 1

≤ V ′(tsi
′
) ≤ 1 − 1 ≤ V ′(csi

′
) ≤ 1 (26)

where tws
i and cw

s
i are the weights of time and commuter

cost, respectively. Considering the differences between
commuters, customers have varied weights of diverse
indexes. This study determines the index weights via a
quantitative method based on reference points, as shown
in Equation (27) (Zhang et al. 2016).

tws
i : cw

s
i = |tsi ′|min

btski
:
|csi ′|min

bcski
(27)

Comprehensive prospect value increases with the per-
ceived value of commuters, who choose the travel mode
with the highest prospect value. In other words, the deci-
sion of the commuter to opt ridesharing is determined
by the relative prospect value, as is expressed in Equation
(28).

Vi = V1
i − V2

i (28)

Equation (29) describes the decision of commuters to
take a ride as follows:

Xi =
{
1, Vi > 0
0, otherwise

(29)

4. Solution algorithm

The studied ridesharing problem is a complex bi-
objective problem which considers the scheduling of
vehicles for m days. Hence, the searching space of the
solution is large since the problem is quickly intractable.
In order to obtain a good Pareto-optimal solution set,
we consider the small-scale and large-scale instances of
the problem, respectively. In this section, we design two
novel algorithms to get better solutions for large-scale
and small-scale problems. First, we give some related def-
initions for a heuristic algorithm FNDS-Gps in Section
4.1. Then, a heuristic algorithm FNDS-Gps is developed
to solve small-scale problems in Section 4.2. Finally,
a hybrid VNS–NSGAII algorithm is proposed to solve
large-scale problems in Section 4.3.

4.1. Related definition

Commuter grouping is the key to the ridesharing prob-
lem.We solve the combinatorial optimisation problemby
converting it into graph Gcomb(V ,E), as shown in Figure
4. In contrast to group rides, nodes v ∈ V in Gcomb not
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Figure 4. Example of construction of Gps for a case of three commuters.

only pertain to single commuter, but also all stable group
rides. Each edge between nodes indicates that there is
at least one same element. We define the oriented graph
Gdom(V ,E) and the nodes v ∈ V in Gdom to illustrate
the combinations of commuters. Edges between nodes
indicate the dominating relationships between the two
combinations. Gps, the nodes v ∈ V in Gps is the combi-
nation of commuters in the Pareto optimal solution. The
following preprocessing steps are undertaken during the
solution process:

(1) Construct a graph Gcomb(V ,E).
(2) Construct an oriented dominate graph Gdom(V ,E).
(3) Find the Pareto optimal solution set in graph Gps.

The set of the Pareto optimal solution is obtained by
a non-dominated sorting of a feasible solution, which
typically uses a pairwise comparision method. The time
complexity is O(n2).

Proposition 4.1: The time complexity of Gps construction
is O(4n).

Proof: For n commuters, the time complexity of enu-
merating all stable group rides is O(2n). The time com-
plexity of dominate relationship isO(k2), and the time
complexity of Gps construction is O(4n). �

4.2. Heuristic algorithm

A FNDS-Gps algorithm is developed to reduce computa-
tional complexity.

Theorem 4.1: Dominance relationship is transitive for
any s1, s2, s3 ∈ S. If s1s2, s2s3, then s1s3 (Deb 2000).

Lemma 4.1: If a feasible solution is dominated by any
other solution, then the feasible solution is not in the non-
dominance solution set. The set {s1, s2, . . . , sp} is the non-
dominate set. If si is a feasible solution, ∀sjsi, then /∃ si ∈
{s1, s2, . . . , sp}.

Proof: If ∀sjsi, ∃si ∈ {s1, s2, . . . , sp}, then the set {s1,
s2, . . . , sp} is not the non-dominate set, which contradicts
the given conditions. �

Theorem 4.2: Let X and Y be finite graphs, then X is
a subgraph of Y if and only if graphs G0, . . . ,Gn exist.
Thus, G0 = y, Gn = x, and each Gi+1 is obtained by delet-
ing one edge from Gi (Diestel 2000).

Amethod that can reduce the number of comparisons
of the solution is used for the Pareto non-dominated solu-
tion set. The solution can be directly removed if it is dom-
inated by another solution (i.e. comparative solution)
to avoid repeatedly comparing the dominating solution
with other solutions according to Lemma 4.1. Accord-
ing to Theorem 4.1, when the current non-dominated
solution appears, which dominates the comparative solu-
tion, the dominate solutions of the comparative solution
should be removed because they should be dominated
by the current non-dominated solution. If the current
non-dominated solution is used to replace the compara-
tive solution, then the speed of removing the dominating
solution is accelerated, and the frequency of comparison
is reduced. From the above properties, the construction
method of the fast non-dominated solution (FNDS) set
is as Table 2.

Table 2. The pseudocode of construction FNDS-Gps

Algorithm 1. FNDS-Gps

1 Input: GRG Gcomb(V , E)
2 Construct empty graph Gn , Gm
3 For i ∈ N do
4 Enumerate all stable group rides Ki of Gcomb ;
5 End
7 For k ∈ Ki do
8 If ∀kikj
9 Gn = Gn + ki
10 Else If ∀kjki
11 Gm = Gm + ki
12 For kr ∈ Ki do
13 If ∀krki Then Gm = Gm + kr
14 End
15 End
16 Gcomb = Gcomb − Gm
17 End
18 Gps = Gcomb
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Figure 5. FNDS-Gps for the case of 3 commuters.

The time complexity of the fast non-dominated set of
Gps is discussed as follows:

(1) Worst-case time complexity
Assume that all feasible solutions are non-dominated
solutions, thenwe have the largest number of pairs of
comparisons. The time complexity of dominate set is
O(k2).

(2) Average time complexity
Suppose that half of the feasible solutions are non-
dominated solutions, the time complexity of domi-
nate set is O(k2/4).

(3) Best-case time complexity
When the non-dominated solution is 1, a unique
non-dominated solution can be obtained by per-
forming a dominant relationship comparison, and
the time complexity is O(k).

For the case of three commuters, the fast construction
method of the Pareto non-dominated solution is illus-
trated as Figure 5, and the steps of FNDS-Gps is as Table
3.

In the small-scale problem, we denote G as the r-
partite graph. For the graphG, we divide the nodesV into
r classes according to their dispersion. Then, we obtain
the Pareto optimal solution set Gps in each part.

Proposition 4.2: The combination of the optimal solu-
tions in each subgraph should contain the optimal solution
of the r-partite graph Gps.

Proof: Counter-evidence. The non-dominate solution
set of subgraph G1 is M1, the solutions a, b ∈ M1.
M2 is the non-dominate solution set of subgraph

Table 3. Steps of FNDS-Gps for the case of 3 commuters.

FNDS-Gpsfor the example of 3 commuters

Step 1: Identify connected components, which give all components set V .
Step 2: The highest degree node in G1 is the node(1, 2, 3), and the degree

is 5. Calculate the weights of the combination of this point
and other unconnected points. The solution si is the node
(123). Put the solution si in the non-dominate solution set Vn .
Vn = Vn + si ,G2 = G1 − si .

Step 3: The highest degree nodes in G2 are nodes (1, 3), (2, 3), and (1, 2).
Their degree is 4. Select node (1, 3) and calculate the weights of
the combination of this point and other unconnected points. The
solution sj is (13, 2). If sjsi , si ∈ Vn , put the sj instead si in the set
Vn . Let the dominate solution set Vm = Vm + si . If sisj , si ∈ Vn ,
Let the solution set Vm = Vm + sj . If si and sj have no dominate
relationship. Let Vn = Vn + sj .

Step 4: Find the dominate solution set of sj , sj ∈ Vm . The other nodes
in G3 are node (1, 2), (2, 3), and 1, 2, 3. As they are identical,
calculate the weights of the combination of this point and other
unconnected points. The solution sk , k = 1, 2, 3 are (12, 3), (23, 1).
(1, 2, 3) If ∀sjsk , let the solution set Vm = Vm + sk .V = V − Vm .
G1 = G1 − Vm ,Vm = ∅. Go to the step 2.

Step 5: If all branches have not dominated solution, return the non-dominate
set Vn .

G2. c, d ∈ M2. We have f1(a) > f1(b), f2(a) < f2(b),
f1(c) > f1(d),f2(c) < f2(d). f1(a + c) = f1(a) + f1(c), f1
(b + d) = f1(b) + f1(d). If m + c is the non-dominate
solution of the G. m ∈ G1,¬∃m ∈ M1, f1(m + c) =
f1(m) + f1(c), f2(m + c) = f2(m) + f2(c). Since a + c and
b + c are the non-dominate solutions of the G. If
f1(m + c) > f1(a + c), then f2(m + c) < f2(a + c), m
and a have no dominated relationship. If f1(m + c) >

f1(b + c), then f2(m + c) < f2(b + c), m and b have no
dominated relationship. Therefore m ∈ M1, which con-
tradicts with known conditions. �

Proposition 4.3: The problem of finding the Pareto opti-
mal solution in the r-partite graph is NP-hard.
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Figure 6. The chromosome coding of the algorithm.

Proof: We establish an r-partite graph Gps. It is well
accepted that r-dimensional matching problem is NP-
complete when r ≥ 3. Our problem is an r-dimensional
matching problem. Given a collection S ∈ S1 × S2 ×
. . . × Sr of r-tuples, where {S1 × S2 × . . . × Sr} consists
of all optimal solution set. Each part Si has found a dom-
inate subset Si′. The decision problem is: find a subset
/∃ S′ ∈ S, where S is the non-dominated optimal solution
set. The problem takes O(|S|) time, which is polynomial.
This suggests that our problem is NP-hard and completes
the proof.

Since the problem is NP-hard, the heuristic algorithm
FNDS-Gps could generate approximate solutions. How-
ever, it is still exponential in complexity but with a
small growth factor. The FNDS-Gps algorithmmay work
efficiently for small-scale instances. Nevertheless, it will
fail with the growing size. In Section 4.2, we present a
FNDS-Gps algorithm for optimally solving small-scale
instances. We develop a hybrid VNS-NSGAII algorithm,
aiming at reaching the best compromise between solu-
tion quality and computational efficiency for large-scale
instances. �

4.3. Hybrid VNS-NSGAII

According to Deb et al. (2000), NSGAII algorithm per-
forms well compared with other MOEA algorithms.
Kannan et al. (2009) reported evidence that NSGAII
algorithm can successfully maintain a better spread solu-
tion and convergence. However, In the case of large solu-
tion space, NSGAII algorithm still has the disadvantage
of being easily trapped in local optimum and poor stabil-
ity. In this study, we use a hybrid VNS-NSGAII algorithm
to solve it. The key procedures are given as follows:

4.3.1. Proposed heuristic
Proposition 4.3 shows that the ridesharing optimisa-
tion problem can be solved by the FNDS-Gps algorithm
for small-scale instances. To efficiently solve large-scale
problems, we divide this problem into the following
stages. First, all commuters for r-parts are divided accord-
ing to their dispersion. Then, the Pareto optimal solution
set for each part is generated. Finally, the global optimal
solution set is obtained.

Table 4. The pseudocode of calculate the fitness.

Pseudocode of calculate the fitness

1. For the commuter demand C = {Xij}, processing set Popap = Popap ∩ C;
Choose ridesharing commuters each day.

2. For j = 1 toM do
3. Classify commuter set N according to Popbp based on the FNDS-

Gpsalgorithm, obtain set NL ,NL = {n1, · · · , nl , · · · , nL}, where nl is
the commuters’ set of vehicle l. nl = {xl1, · · · , xli , · · · , xlq}, where xli
indicates commuter x in the vehicle l of order i.

4. For l = 1 to L do
5. Adjust the order of commuter xli in nl according to the order of

commuter in Popa0
6. Calculate the cost of each vehicle costl
7. Calculate time tilof commuter xi in set nl .
8. Calculate cost pil of each commuter xi in set nl .
9. Cost = Cost + costl
10. End
11. End
12. C′ = 1 − C
13. For i = 1 to N do
14. Calculate the prospect value of each commuter xi for ridesharing

VC(xi).
15. Calculate the prospect value of each commuter xi for not ridesharing

VC
′
(xi).

16. Calculate the prospect of each commuter xi would choice ridesharing
for travelV(xi) = VC(xi) − VC

′
(xi).

17. End

4.3.2. Chromosome representation
Chromosome design is an essential part of the algorithm.
In this study, the ridesharing scheme consists of the
order of commuters in ridesharing and the number of
commuters per vehicle. We construct a two-dimensional
chromosome coding form, as shown in Figure 6. We
optimise the ridesharing chromosome within mem-
ory time m. Chromosome coding consists of m parts,
where each part represents a scheme used in one
day.

Based on the coding design, the pseudocode of calcu-
late the fitness is shown in Table 4.

4.3.3. Crossover andmutation
Crossover and mutation are based on the initial solution
to get a better solution set. According to the character-
istics of the operator, this study designs the real matrix
coding to cross and mutate the operators.

The chromosome is transformed into a matrix by
day, and the matrix of the crossover operation is
selected. Matrix Aij indicates the service order of
commuter i on day j. The positions of the matrixes
are exchanged from two parents’ chromosomes. Con-
flict detection is then performed, and the order is
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Figure 7. Crossover operation and mutation operation.

adjusted to render a feasible solution. Two child chro-
mosomes are thus obtained. Figure 7(a) depicts the
operation.

Select the matrix of the mutation operation, which
adopts the method of reverse sequence mutation and
exchange mutation. Figure 7(b) illustrates the specific
operation.

4.3.4. The framework of the VNS-NSGAII algorithm
VNS was first proposed by Mladenović and Hansen
(1997). VNS has been long recorded to perform good
results obtained with hybrid methods. For instance, Jar-
boui, Eddaly, and Siarry (2011) developed a hybrid GA
andVNS to solve no-wait flowshop scheduling problems.
Liu et al. (2018) proposed a hybrid VNS and harmony
search (HS) algorithm to solve the supply chain schedul-
ing problem. In order to improve the algorithm efficiency,
a VNS algorithm is applied in each solution for a specific
number of iterations (Yang et al. 2018). In this man-
ner, the method can explore neighbourhood structures
by the VNS operator, and exploit the population with
NSGAII. The detail of VNS-based local search operation
is described in Table 5.

Table 5. Steps of VNS-based local search operation.

VNS-based local search operation

Step 1: Define neighbourhood structures Ue(e = 1, . . . , emax).
Step 2: Obtain offspring S, which is produced by NSGAII.
Step 3: Execute sth Local Search for each individual s ∈ S to obtain a

solution s′ .
Step 4: If the solution s′ is better than s, then set s = s′ , e = 1 and go to

step3. Otherwise, set e = e + 1, go to step 5.
Step 5: If e ≤ emax , then go to step 3, stop the iteration.

In our experiment, 2-opt, 3-opt are selected to
define neighbourhood structure Ue for VNS-based local
search operation. The main framework of the proposed
algorithm is described in Figure 8.

5. Numerical experiments

5.1. Data

We used actual datasets of commuters that travel in
Beijing to comprehensively understand the performance
of our algorithms and the benefits of ridesharing. The
data, collected from Beijing taxi in 2012, contains infor-
mation related to time and location of trip origin and
destination, trip cost, and trip length (https://research.
microsoft.com/en-us/projects/urbancomputing/). All
data were preprocessed. After cleaning, data were refor-
matted for experiment inputs.

5.2. Parameters setting

For the experiment, we created different size scenarios to
investigate the solution quality and computational effi-
ciency of the algorithms. The number of commuters is
set asN = 20, 25, 30, 35, 40, 45, 50, 80, 100, 150. The
memory length of commuter’s travel perception is set as
m = 7. The fuel cost per kilometre of vehicle is set as f =
1.4. The fixed cost of the vehicle l is set as Bl = 30. The
average speed of vehicle l is set as CVl = 60. The capacity
of the vehicle is set as MQ = 4. The passenger cost per
kilometre is set as fp = 3. The parameters values of the
cumulative prospect model are set as α = 0.68, β = 0.72,
λ = 1.94, γ = 0.82, and δ = 0.78, which are the value

https://research.microsoft.com/en-us/projects/urbancomputing/
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Figure 8. Flowchart of the solution algorithm.

estimated by Zhao and Yang (2013) for travellers mode
choice in travel.

5.3. Computational results

In this section, we conduct computational experiments
to evaluate the performance of our proposed FNDS-Gps
algorithm and VNS-NSGAII algorithm, with four clas-
sic algorithms, that is, NSGAII algorithm (Deb et al.
2002), MOCELL algorithm (Nebro et al. 2009), SPEA2
algorithm (Zitzler, Laumanns, and Thiele 2001), and
MOPSO algorithm (Coello and Lechuga 2002). Actu-
ally, NSGAII, MOCELL, SPEA2, and MOPSO algo-
rithms have already been applied inmany other complex-
ity multi-objective problems with excellent performance

(Kar et al. 2019; Majumder et al. 2019). Therefore, they
are often regarded as very representativemethods and we
use them in the comparison experiments.

Four different performance metrics: (1) hypervol-
ume (HV), (2) generational distance (GD), (3) inverted
generational distance (IGD) and (4) spread (S) (Kar et al.
2019;Majumder et al. 2019) are used to compare different
algorithms. For a better solution, the HV metric value is
higher and the other metric values are smaller. Among
these performance metrics, HV and IGD ensure both
convergence and diversity of the nondominated solutions
generated by an algorithm, S assures the diversity of the
nondominated solutions, while GD promises the conver-
gence of an algorithm. For each instance, all algorithms
have been run 30 times. Themean and standard deviation
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Table 6. Comparison of the algorithms’ performances for small-scale instances.

FNDS-Gps VNS-NSGAII NSGAII SPEA2 MOPSO MOCELL

Metric Value N Mean sd mean Sd mean Sd mean sd mean sd Mean sd

HV 20 8.58E+03 2.9E+02 5.20E+03 4.4E+02 2.41E+03 6.8E+02 8.33E+03 5.0E+02 3.19E+03 6.2E+02 1.14E+03 4.7E+02
25 9.05E+03 5.1E+02 8.26E+03 5.3E+02 2.86E+03 6.3E+02 4.99E+03 7.7E+02 6.43E+03 7.9E+02 1.17E+03 8.3E+02
30 1.13E+04 4.3E+02 9.27E+03 5.5E+02 3.48E+03 8.8E+02 2.80E+03 5.6E+02 1.11E+03 6.4E+02 2.32E+03 6.8E+02
35 1.43E+04 5.7E+02 1.28E+04 8.3E+02 3.68E+03 5.9E+02 1.18E+04 6.2E+02 5.40E+03 7.3E+02 2.99E+03 7.6E+02
40 1.57E+04 3.8E+02 1.48E+04 4.2E+02 4.09E+03 5.5E+02 5.91E+03 5.1E+02 1.07E+03 4.6E+02 1.51E+03 4.2E+02
45 2.03E+04 5.5E+02 2.26E+04 5.2E+02 8.40E+03 6.3E+02 4.17E+03 5.8E+02 4.66E+03 7.1E+02 2.35E+03 6.5E+02

GD 20 1.68E−01 3.6E−02 1.53E−01 2.0E−02 2.58E−01 4.8E−02 8.77E−01 7.4E−02 2.27E−01 5.5E−02 5.34E−01 6.2E−02
25 1.25E−01 3.8E−02 5.36E−01 4.6E−02 2.37E−01 4.6E−02 6.13E−01 5.7E−02 3.34E−01 5.1E−02 1.40E−01 4.4E−02
30 8.88E−02 3.2E−02 2.00E−01 2.3E−02 4.07E−01 6.5E−02 3.92E−01 6.3E−02 7.53E−02 2.4E−02 1.74E−01 7.1E−02
35 2.30E−01 6.5E−02 9.81E−02 3.0E−02 4.72E−01 6.2E−02 5.18E−01 3.8E−02 1.87E−01 6.5E−02 1.62E−01 4.6E−02
40 9.55E−02 4.5E−02 4.59E−01 7.2E−02 1.55E−01 5.5E−02 3.42E−01 4.9E−02 9.92E−02 5.1E−02 2.62E−01 8.2E−02
45 4.34E−01 7.5E−02 1.16E−01 4.9E−02 8.82E−02 3.6E−02 1.75E−01 5.0E−02 3.78E−01 6.3E−02 1.27E−01 5.2E−02

IGD 20 6.92E−01 2.6E−02 7.07E−01 3.8E−02 7.92E−01 7.2E−02 2.23E+00 8.8E−02 9.19E−01 7.7E−02 1.13E+00 9.2E−02
25 5.87E−01 4.1E−02 6.33E−01 4.9E−02 7.63E−01 5.8E−02 1.23E+00 7.5E−02 8.22E−01 6.2E−02 1.08E+00 8.9E−02
30 1.45E−01 2.4E−02 1.05E+00 9.2E−02 8.22E−01 4.7E−02 3.23E−01 3.5E−02 8.05E−01 5.3E−02 7.83E−01 4.4E−02
35 7.78E−01 5.7E−02 6.43E−01 4.1E−02 8.49E−01 7.7E−02 8.83E−01 6.2E−02 9.46E−01 4.3E−02 8.59E−01 5.9E−02
40 3.28E−01 3.8E−02 4.38E−01 5.3E−02 5.12E−01 5.0E−02 9.66E−01 6.5E−02 1.17E+00 7.9E−02 1.12E+00 8.6E−02
45 5.57E−01 5.0E−02 5.22E−01 4.5E−02 9.32E−01 5.8E−02 6.74E−01 4.7E−02 7.97E−01 5.4E−02 9.53E−01 5.4E−02

S 20 1.75E−01 4.6E−02 3.53E−01 6.1E−02 1.68E−01 4.4E−02 3.90E−01 6.6E−02 2.26E−01 5.0E−02 1.64E−01 3.2E−02
25 1.40E−01 3.5E−02 3.06E−01 7.2E−02 2.12E−01 3.8E−02 2.48E−01 3.5E−02 2.71E−01 6.9E−02 1.22E−01 2.8E−02
30 8.54E−02 1.8E−02 8.89E−02 6.8E−02 2.86E−01 6.9E−02 1.77E−01 5.5E−02 1.64E−01 4.4E−02 1.55E−01 5.6E−02
35 2.95E−01 4.3E−02 1.43E−01 3.7E−02 1.35E−01 2.1E−02 2.87E−01 2.8E−02 2.05E−01 3.2E−02 1.45E−01 4.8E−02
40 1.14E−01 3.8E−02 3.21E−01 5.3E−02 1.28E−01 4.3E−02 2.41E−01 4.4E−02 1.08E−01 3.3E−02 1.77E−01 6.7E−02
45 1.46E−01 4.8E−02 2.28E−01 6.3E−02 2.40E−01 5.0E−02 1.26E−01 6.6E−02 1.18E−01 4.5E−02 1.15E−01 4.8E−02

Notes: The elements in the grey colour are the best metric values.

Table 7. Comparison of the algorithms’ performances for large-scale instances.

VNS-NSGAII NSGAII SPEA2 MOPSO MOCELL

Metric value N mean sd mean sd mean sd mean sd mean sd

HV 50 1.25E+04 2.3E+02 5.04E+03 3.3E+02 1.20E+04 5.4E+02 9.85E+03 3.8E+02 4.33E+03 3.5E+02
80 1.85E+04 3.1E+02 6.19E+03 3.8E+02 6.47E+03 3.5E+02 5.47E+03 3.3E+02 9.08E+03 4.3E+02
100 1.73E+04 3.5E+02 7.87E+03 4.2E+02 5.32E+03 2.8E+02 1.50E+04 5.1E+02 6.49E+03 3.7E+02
150 4.94E+04 4.3E+02 2.98E+04 5.3E+02 3.37E+04 5.7E+02 2.65E+04 5.7E+02 1.80E+04 5.2E+02

GD 50 1.55E−01 4.6E−02 1.77E−01 7.5E−02 2.47E−01 6.3E−02 2.64E−01 5.5E−02 7.67E−02 5.3E−02
80 1.40E−02 6.5E−02 9.50E−02 8.8E−02 2.59E−01 7.9E−02 7.79E−02 7.5E−02 8.25E−02 7.2E−02
100 7.95E−02 6.5E−02 9.47E−02 6.8E−02 1.69E−01 8.3E−02 1.61E−01 7.2E−02 1.04E−01 7.5E−02
150 1.68E−01 5.1E−02 2.09E−01 5.3E−02 1.78E−01 6.2E−02 1.80E−01 4.9E−02 1.08E−01 4.5E−02

IGD 50 5.53E−01 3.5E−02 6.76E−01 5.1E−02 8.83E−01 6.3E−02 7.65E−01 6.2E−02 5.83E−01 3.5E−02
80 1.85E−01 3.7E−02 2.49E−01 4.5E−02 5.34E−01 5.2E−02 2.66E−01 4.8E−02 2.14E−01 5.5E−02
100 2.18E−01 2.8E−02 1.97E−01 2.6E−02 4.15E−01 3.7E−02 4.93E−01 3.1E−02 3.00E−01 4.3E−02
150 2.86E−01 4.1E−02 4.84E−01 7.7E−02 4.54E−01 4.8E−02 3.63E−01 5.2E−02 2.79E−01 6.3E−02

S 50 1.26E−01 5.4E−02 1.77E−01 3.6E−02 1.66E−01 3.9E−02 1.99E−01 4.5E−02 1.05E−01 6.9E−02
80 7.31E−02 2.2E−02 8.88E−02 3.5E−02 1.95E−01 4.1E−02 7.87E−02 5.5E−02 8.39E−02 2.9E−02
100 7.75E−02 6.7E−02 1.31E−01 5.3E−02 1.04E−01 9.1E−02 7.24E−02 3.3E−02 8.52E−02 4.1E−02
150 1.26E−01 3.6E−02 1.27E−01 5.8E−02 9.80E−02 3.3E−02 1.36E−01 4.7E−02 7.70E−02 8.8E−02

Notes: The elements in the grey colour are the best metric values.

(sd) are used to measure the performance of each met-
ric. It should be mentioned that encoding and decoding
processes are the same for each selected algorithm, that
is, identical coding space is searched by the algorithms
themselves.

We compare the solutions of small-scale and large-
scale problems, respectively. For the small-scale instances
with 20–45 commuters, the metric values are given in
Table 6, generated by the FNDS-Gps, VNS-NSGAII,
NSGAII, MOCELL, SPEA2, and MOPSO algorithms. In
order to increase the readability in the tables, the best
metric values have been shown in grey colour. In Table
6, it is clear that the FNDS-Gps algorithm is the most

competitive algorithm for the HV and IGD metrics, as
it has the best value in 9 instances. The VNS-NSGAII
algorithm is the second-most competitive algorithm for
the HV and IGD metrics, as it has the best value in 3
instances. FNDS-Gps and VNS-NSGAII algorithms have
similar performance for GD metric with the best value
in 2 instances. Other algorithms have displayed a much
worse performance than FNDS-Gps and VNS-NSGAII
algorithms using the GDmetric. However, the MOCELL
algorithm is the most competitive algorithm for the S
metric, as it has the best value in 3 instances.

For the large-scale instances with 50–150 commuters,
the metric values are given in Table 7, generated by the
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Figure 9. The Pareto fronts derived from five algorithms.

VNS-NSGAII, NSGAII, MOCELL, SPEA2, and MOPSO
algorithms. It is clear that the VNS-NSGAII algorithm is
themost competitive algorithm for the HV, GD, and IGD
metrics, as it has the best value in 9 instances. For S met-
ric, it can be seen that VNS-NSGAII, NSGAII, SPEA2,
and MOPSO algorithms have the similar performance
with the best value in 1 instance.

To analyse the performance of different algorithms
in different instances, we observe that for small-scale
instances, out of four performance metrices, the per-
formance of the FNDS-Gps algorithm is the best for
this problem. For large-scale instances, it can be found
that VNS-NSGAII performs much better than other four
algorithms in most instances. Besides, the VNS-NSGAII
algorithm performs the best in small-scale instances
except for FNDS-Gps algorithm.

We compared the Pareto front results of different
algorithms for large-scale instances, which are displayed
in Figure 9. The subpanels in Figure 9(a) report the
solutions of the model when N = 50. It shows that the
solutions’ quality using VNS-NSGAII is better than those
of other algorithms. Figure 9(b) reports the solutions of
the model when N = 80. The solutions of VNS-NSGAII
and NSGAII perform better than others. The solutions
of NSGAII are better than those of the VNS-NSGAII
when the cost is low. However, the solutions of the VNS-
NSGAII are better than those of NSGAII when the cost is
high. Figure 9(c) reports the solutions of model for N =
100. Hence, it is clear that the solutions of VNS-NSGAII
are better than those of other algorithms. Figure 9(d)
reports the solutions ofmodel forN = 150. The solutions
of VNS-NSGAII and NSGAII perform better than those
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Figure 10. Perceived value change of a group of Pareto solutions in people’s memory time.

of other algorithms. Moreover, for VNS-NSGAII, a small
increase in vehicles’ cost will lead to a significant increase
in the number of commuter.

Next, we study the impact of optimisation on com-
muter decision-making. Commuter’s decision on the
travel mode is analysed based on the evaluation of their
perceived value. According to the CPT, the perceived
value is relative to the psychological expectation and
gradually changes within a certain period of time. Figure
10 shows a Pareto solution set with parameters N =
40,m = 7. It can be seen that the perceived value of
ridesharing commuters increases with the number of
days. At the same time, as the number of vehicles
increases, the perceived value of commuters will gradu-
ally increase.

6. Conclusion

This paper studies the optimisation problem of the
bounded rational commuters’ travel decision-making. A
ridesharing multi-objective optimisation model is estab-
lished. The method can enhance the loyalty of cus-
tomers and is conducive to the long-term development
of the industry. The model also has some enlighten-
ment to the management of city logistics industry. The
model simulates the ridesharing commuter’s decision-
making behaviour base on CPT. A heuristic algorithm
FNDS-Gps is developed for the optimisation problem
in small-scale scenarios. Besides, a hybrid VNS-NSGAII
algorithm is designed to solve the optimisation prob-
lem in large-scale scenarios. Extensive experiments were
performed to test the performance of the proposed
algorithm based the actual data. Results show that the
FNDS-Gps algorithm is effective for small-scale scenar-
ios. Hybrid VNS-NSGAII is better than the NSGAII,

SPEA2, MOPSO, and MOCELL algorithms with respect
to the quality of solutions for large-scale scenarios.More-
over, we analyse the impact of ride-matching and route-
ing on the ridesharing decision, which has an essential
contribution to the real-world applicability of rideshar-
ing. In real life, our study on ridesharing provides a new
perspective for city logistics.

Future research may include the following direc-
tions. First, the model can be modified such that it can
reflect the heterogeneity of commuters, since people’s
attitudes toward time and costs risk are different. These
aspects will significantly improve the commuters’ per-
ceived value. Second, real-time car appointment is a new
trend in the mobile internet era, which should be deeply
considered. Third, the driver’s enthusiasm and incen-
tives, which is especially crucial for the business devel-
opment of the ridesharing industry, must be considered
as well.
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Appendix

Table A1. Comparative study of relevant literature with present work.

Objective functions

Model features Suppliers Retailers Consumers Administrators

Study
Multi-
period

Multi-
level Modelling

Maximise
the level of
service

Minimise
cost of

transporta-
tion

Maximise
the

consumers’
willingness

Minimise
the green-
house gas
emissions Solution

Euchi and Mraihi (2012) × × MIP
√ √ × √

Ant colony optimisation
Pureza, Morabito, and Reimann (2012) × × MIP

√ √ √ × Heuristic
Lin (2011) × × MIP

√ √ × × Heuristic
Muelas, LaTorre, and Peña (2013) × × MIP × √ × × VNS
Huang et al. (2012) × × MILP × √ × √

Epsilon constraint
Gianessi et al. (2016) × √

MIP × √ × × Matheuristic
Crainic, Nguyen, and Toulouse (2016) × √

MIP
√ √ × × Tabu search

Ben Mohamed et al. (2017)
√ √

MIP
√ √ × × Heuristic

Zhao, Wang, and De Souza (2017) × √
MIP

√ √ × √
Heuristic

Our study
√ × MIP

√ √ √ × Heuristic andVNS-NSGAII

Modelling:MIP = Mixed integer programming; MILP = Mixed integer linear programming.
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