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1 | INTRODUCTION

Abstract

Alzheimer’s disease, often known as dementia, is a severe neurodegenerative disorder that
causes irreversible memory loss by destroying brain cells. People die because there is no
specific treatment for this disease. Alzheimet’s is most common among seniors 65 years
and older. However, the progress of this disease can be reduced if it can be diagnosed
carlier. Recently, artificial intelligence has instilled hope in the diagnosis of Alzheimer’s
disease by performing sophisticated analyses on extensive patient datasets, enabling the
identification of subtle patterns that may elude human experts. Researchers have investi-
gated various deep learning and machine learning models to diagnose this disease at an
early stage using image datasets. In this paper, a new Deep learning (DL) methodology is
proposed, where MRI images are fed into the model after applying various pre-processing
techniques. The proposed Alzheimer’s disease detection approach adopts transfer learn-
ing for multi-class classification using brain MRIs. The MRI Images are classified into
four categories: mild dementia (MD), moderate dementia (MOD), very mild dementia
(VMD), and non-dementia (ND). The model is implemented and extensive performance
analysis is performed. The finding shows that the model obtains 97.31% accuracy. The
model outperforms the state-of-the-art models in terms of accuracy, precision, recall, and
F-score.

Alzheimer’s disease in 2015 was USD 818 billion, or 1.09%
of the world’s gross domestic product [5]. The annual world-

Alzheimer’s disease (AD) is a prevalent form of dementia, chat-
acterized by the accumulation of amyloid-beta peptide (A ) in
the medial temporal lobe and neocortical structures [1]. This
leads to the development of neuritic plaques and neurofibrillary
tangles [2]. AD encompasses a range of neurological condi-
tions that impact memory, cognition, behavior, and emotions.
Early symptoms include memory loss, difficulty with daily tasks,
language challenges, and personality changes [3]. Currently,
there is a lack of accurate diagnostic methods and approved
disease-modifying treatments for AD [4].

Alzheimer’s Disease International (ADI) estimates that mote
than 55 million individuals worldwide are currently afflicted
with Alzheimer’s. It is projected that the overall global cost of

wide cost is currently approximately USD 1.3 trillion and is
expected to reach USD 2.8 trillion by 2030. By 2050, 139 (71%
of the total) million people will be affected, with the greatest
increase in low- and middle-income countries. Every 3 s, a new
dementia case is reported somewhere in the world, where up
to 75% of people with dementia are undiagnosed. The most
alarming statistic is that one in four people feel there is noth-
ing we can do to prevent dementia, and nearly 62% of medical
experts wotldwide wrongly think dementia is a normal part of
becoming older.

WHO [6] estimates that 50 million people worldwide have
dementia. A person above 85 eventually has a 50% chance of
AD. In the end, AD kills the brain area that controls breathing
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and heart monitoring, resulting in death. The three stages of AD
are extremely mild, mild, and moderate. However, an individual
with AD only begins to show symptoms at a moderate stage,
affecting neuronal communication.

Alzheimer’s disease progresses at varying speeds. After a diag-
nosis of Alzheimer’, the typical lifetime is 3 to 11 years, but
some patients live 20 years or longer. People with Alzheimer’s
can lead fulfilling lives for many years following an early diagno-
sis if the disease can be detected eatly. Farly dementia diagnosis
enables the patient to comprehend his situation, and the family
better comprehend the patient’s situation, which facilitates the
establishment of acceptable expectations and mutual planning
for the upcoming days.

Deep learning (DL) models with multi-level structures are
very helpful in extracting reserved information from images
[7, 8]. Convolutional Neural Networks (CNNs) can efficiently
reduce computation time by using the advantage of the graphics
processing unit (GPU) for computation. Several fields, that is,
Medical, Agriculture, and Communication, are being developed
and managed by utilizing DL techniques [9-12]. Researchers
employ imaging techniques like MRI scans using deep learn-
ing to classify Alzheimet’s disease and aid in the hunt for better
treatments. Using magnetic resonance imaging (MRI) to classify
AD, multiple articles have recently been published. Numerous
works have been done on disease detection and other research
areas using machine learning and deep learning algorithms
[13-15]. Nagarathna et al. [16] has proposed a deep learning
model for eatly detection of Alzheimer’s disease and archives
95.52% accuracy. Sappagh, Shaker [17] has proposed a Hybrid
model, and the early detection accuracy is 92.62% . Our work
aims to develop an automated deep-learning model for early
detection of Alzheimer’s disease.

A DL model combining Inception V3 and Custom
CNN Model with necessary layers has been proposed to
classify Alzheimer’s Disease (AD) into four classes: Very
Mild Demented (V.M.D), Mild Demented (M.D), Moderate
Demented (Mod.D), and Non-Demented (N.D). In addition,
the proposed Hybrid model has been trained and tested using
a larger image dataset. Before training the model with the Input
dataset, The dataset was pre-processed using different image-
processing techniques. Even though the dataset is relatively
larger, deep learning algorithms require a diverse large amount
of balanced datasets to automate the training and testing pro-
cesses and avoid overfitting. We have applied oversampling
techniques to increase the data in the original dataset. The pre-
processed and oversampled MRI images have increased the
accuracy of the proposed model.

The paper presents the following notable contributions:

* Hybrid Deep Learning Model for AD Diagnosis: The pro-
posed model merges transfer learning and Convolutional
Neural Networks (CNN) to create a hybrid approach for
Alzheimer’s disease (AD) diagnosis. Inception V3 is uti-
lized through transfer learning for feature extraction, while
a custom CNN is developed for accurate classification.

* Effective Data Normalization: The paper introduces a robust
data normalization strategy to enhance the model’s per-

formance. By applying a Bilateral filter, image quality is
improved, and relevant features are extracted. To address the
class imbalance, the model incorporates SMOTE-ENN (Syn-
thetic Minority Oversampling Technique followed by Edited
Nearest Neighbours) to mitigate overfitting,

* Comprehensive Experimental Evaluation: In-depth experi-
ments evaluate the proposed hybrid model using various pet-
formance metrics, including accuracy, precision, recall, and
others. The results demonstrate that the hybrid model sur-
passes state-of-the-art approaches, affirming its effectiveness
in AD diagnosis.

These contributions highlight the development of a hybrid deep
learning model for AD diagnosis, implementing effective data
normalization techniques, and comprehensively evaluating the
model’s performance.

Existing research works have been described in Section 2
highlighting the Machine Learning model, CNN model, as well
as some Hybrid Models. In Section 3, the methodology of the
model is described. This section discusses the structure of the
model and the pre-processing techniques of the datasets. In
Section 4, the result of the proposed Hybrid method is ana-
lyzed and compared with other existing models. Different types
of efficiency measurements are shown graphically. Section 5
concludes this work by indicating limitations and a plan for
future work.

2 | LITERATURE REVIEW

The primary difficulty facing AD researchers now is making
a premortem diagnosis that is certain. Aside from the visible
alterations in the morphology of the cerebral cortex [18], and
the symptoms of mood swings, which are unrelated to ageing
[19], there are still many unknowns concerning this condition.
Although the disease’s processes are still unknown, most med-
ical professionals agree that a combination of hereditary and
environmental variables appeats to be the cause of AD. For
example, several investigations have linked it to the type of her-
pes simplex virus [20] or infections that cause periodontists
[21]. The disease is believed to exhibit sexual dimorphism and
is age-related but not entirely an age-dependent condition [22].
Due to its effects on society and the lack of consensus on its
cause, the disease remains the focus of in-depth research today.
Some of the research on Alzheimer’s Disease was implemented
on the binary classification, some are 4 class classifications of
AD, and some use a smaller dataset. Many of these authors have
trained their models using a larger dataset. They had performed
classification in different mannets.

2.1 | Deep learning/ machine learning
approach

Ortiz-Garcia et al. [23] used multimodal data that integrate MRI
and PET images in Alzheimer’s detection using a deep belief
network (DBN). They selected 68 NC, only 70 AD, 111 MCI,
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and 26 late MCI subjects from the dataset. The dataset con-
tains both PET Image and MRI images. Their preprocessing
includes registering and resizing images in 1.5 mm for MRI and
3 mm for PET images in each coronal, sagittal, and axial view.
They also performed MRI segmentation to segment the images
into white matter (WM) and grey matter (GM). For PET images,
they normalized the intensity of the images implementing the
mean cerebellum activation level as a normalization value. Then
they selected the significant voxels from each modality using
Welch’s t-test and split the brain into 116 brain regions and
discarded cerebellum regions. The classification was performed
using an ensemble of deep belief networks with four vot-
ing systems: majority voting, weighted voting, SVM-based data
fusion, and deep belief network-based data fusion. According
to their paper, it is about 90% accuracy rate for DBN and SVM-
based voting for the classification of NC, and AD subjects was
found.

In a study by Xu et al. [24], AD is predicted by developing
an SVM-based technique using gene-coding protein sequence
information. They briefly described sequence information as
the frequency of two consecutive amino acids. The SVM input
is the protein related to AD, and the output is the peptide with
labels. Bi et al. [25] proposed random SVM using fMRI dataset
to classify subjects by binary grouping into AD and NC groups.
The proposed technique by the authors randomly selects data
samples and features to create multiple SVMs. They used the
accuracy of the SVM as the criterion to evaluate the quality
of the features and the accuracy of the random SVM as the
criterion to select from previously evaluated qualified features,
and their proposed model produces a maximum of 94% of
overall accuracy.

Bloch and Friedrich [26] combined two datasets (ADNI and
AIBL) to evaluate the diagnosis of AD using baseline and
follow-up MRI scans. They used RF with 25-fold bootstrapping
for classification and used the synthetic minority oversampling
technique (SMOTE) to handle class imbalances in their pro-
posed model. Their results show that the classification accuracy
resulting from the combined dataset using RF provides higher
accuracy compared to the sole dataset using the same RF classi-
fier. Spasov et al. has developed [27] the flexible model which
can learn different types of 3D datasets. According to their
paper, the accuracy of 86% may give the flexibility to design
a computer-aided diagnosis system to predict several medical
neuropsychiatric disorders via imaging and tabular clinical data.
Feng et al. [28] have implemented three different models 2D
CNN+Softmax, 3D CNN+Softmax, and 3DCNN+SVM, for
binary AD classification. After comparing the result among the
implemented models, they proposed the 3D CNN and SVM
provide a wonderful accuracy of 95.74%.

From structural MRI to diffusion tensor imaging, Karim
Derghal [29] suggested a cross-modal transfer learning model.
The model was initially initialized with domain-dependent data
augmentation and pre-trained on a structural MRI dataset
before being trained on mean diffusivity data. The technique
reduces the phenomenon of overfitting, improves the learning
efficiency, and therefore increases the prediction accuracy to

83.57%.

Kang, Wenjie suggests an ensemble learning (EL) architec-
ture based on 2D CNNs, using a multimodel and multislice
ensemble [30], to overcome the lack of neuroimaging data. First,
the top 11 coronal slices for the AD versus CN classifications of
the grey matter density maps were chosen. Second, the chosen
slices were used to train the discriminator of a generative adver-
sarial network, VGG16, and ResNet50. Multi-model integration
decreased the prediction error rate, while multi-slice ensem-
ble learning was created to acquire spatial data. Finally, domain
adaptation and transfer learning were utilized to improve those
CNNs. When classifying AD versus CN, AD versus MCI,
and MCI versus CN, respectively, this approach attained accu-
racy values of 90.36%, 77.19%, and 72.36%. Zhang, Fan has
proposed their hyper-tuned model (Efficient Net-B1) [31] for
Alzheimer’s classification with 93.32%.

Table 1 provides a portion of an analytical and comparative
summary of the works under discussion.

2.2 | Hybrid deep learning/machine learning
approach

A Hybrid Al-based model was proposed [32] by testing
three different hybrid models (DenseNet201-Gaussian NB,
DenseNet201-XG Boost, DenseNet201-SVM). The models
were trained and tested using Adam Optimizer and 1000
Epochs. The best model (DenseNet201-Gaussian NB) provides
an accuracy of 91.75%. The model produces the expected result
only when both the training and testing data are similar.

Nagarathna. has proposed a Hybrid Model [16] by combining
VGG19 with CNN. The Hybrid model has been trained after
preprocessing the dataset by rescaling, augmentation, and data
resampling, They compared the result with a CNN model which
produces 82.65% accuracy after pre-processing the data. But the
proposed hybrid model produces 95.52%.

The paper [33] by Yildirim, Muhammed has defined a Hybrid
model by combining Resnet50 and CNN. The Resnet50 pro-
vides an accuracy of 78%, while the proposed hybrid model
gives an accuracy of 90%.

This paper [34] proposed by Puente-Castro, uses a DL model
to identify Alzheimer’s disease in sagittal MRI images. The
extracted data are taken from ADNI and OASIS. To address
the data imbalance, an initial parameterization was set in the
class weights. An evaluation metrics and strategy were defined
to determine the output of the proposed model. Therefore, the
proposed Hybrid method presents satisfactory results in both
sets of sagittal images.

Different types of combinations (CNN and RNN) have been
tested by Ebrahimi, Amir, and Luo in their paper [35]. The
models use 3D MRI images. Firstly, the 3D images are pre-
processed and then sliced into 2D images. The CNN model
extracts the features. The RNN models perform binary classifi-
cation. In every case, the CNN ResNet-18 model has been used.
The CNN ResNet-18 has been tested with the same dataset for
classification and found 82% accuracy. The tested hybrid mod-
els provide the accuracy as (i) ResNet-18 + LSTM, 84%, (ii)
ResNet-18 + BiLSTM, 79%, (iii) ResNet-18 + GRU, 82%, (iv)
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TABLE 1 ML/DL approach for AD detection.

Ref # Dataset Classification technique Imaging Accuracy
[23] ADNI Ensembled of deep belief networks MRI 90%
[24] ADNI SVM Protein sequence information 85%
[25] ADNI Random SVM fMRI 94%
[26] ADNI, AIBL RF MRI 75%
[27] ADNI Dual learning based on 3D CNN MRI, demogtaphic, neuropsychological, 86%
and APOe4 genetic data
[28] ADNI 2D CNN, 3D CNN, 3D-CNN-SVM MRI 82.57%, (2D CNN), 89.76% (3D CNN),
95.74% (3D-CNN-SVM)
[29] sMRI(4106) Cross-Modal Transfer Learning MRI 83.57%
[30] MRI Data(798) 2D-CNN, VGG16 MRI 90.36%
[31] ADNI Efficient Net-B1 MRI 93.20%
TABLE 2  Hybrid MLL/DL approach for AD detection.
Ref# Dataset Classification technique Imaging Accuracy
[32] ADNI DenseNet201 + Gaussian NB sagittal MRI 91.75%
[16] ADNI VGG19 + CNN MRI 95.52%
[33] ADNI ResetNet50 + CNN MRI 90%
[34] ADNI, OASIS ResetNet + SVM sagittal MRI 86.81%(OASIS) 78.64%(ADNI)
[35] MRI Data CNN + RNN MRI 91%
[17] ADNI CNN-BIiLSTM MRI 92.62%

ResNet-18 + TCN (with 2 residual blocks), 82%, (v) ResNet-18
+ TCN (with 3 residual blocks), 88%, (vi) ResNet-18 + TCN
(with 4 residual blocks), 91% (vii) ResNet-18 + TCN (with 5
residual blocks), 78%.

The paper by El-Sappagh, Shaker has proposed a hybrid
model (ResNet-18 + BiLSTM) and shown an accuracy of
92.62% [17]. The model jointly optimizes two types of tasks,
that is, classification of a multiclass dataset and four cog-
nitive scores computation, by simultaneously learning and
fusing discriminative features from time-series and BG data. A
comparative summary of the works discussed is given in Table 2.

The aforementioned studies’ findings show that for both
machine learning and deep learning models, ensemble models
perform better than single models. Similarly to this, the find-
ings imply that data augmentation improves performance and
lowers the likelihood of model overfitting, The application of
transfer learning, when a pneumonia-specific pre-trained model
is utilized, is said to have good accuracy. The ADNI dataset was
mostly used.

3 | METHODOLOGY

We have proposed and built a hybrid deep-learning model using
InceptionV3 and a CNN model for Alzheimer’s disease detec-
tion. Figure 1 represents the overall workflow diagram of the
proposal. The main steps of the proposal are given as follows:

Step-1: The proposal starts with data collection and the
images were taken from the ADNI database. This dataset
comprises a total of 6,400 images extending four dis-
tinct Alzheimer’s disease stages, each representing a unique
progression of the disease.

Step-2: Due to the fact that unprocessed real-world data
often includes noise and varies in image size, preprocessing
is required before the data can be fit into a deep learning
model. Various steps, including resizing the image, convert-
ing the image into bgr2rgb, feature scaling etc. are applied to
the collected dataset.

Step-3: There is an uneven distribution of Alzheimer’s disease
progression images across the ADNI dataset. SMOT-ENN is
used at this point to fix the problems and normalize the data
so that model training can proceed without overfitting,
Step-4: In this step, we build our proposed hybrid model
using the InceptionV3 model and a tune CNN model for
Alzheimer’s detection. Here, we take the InceptionV3 model
for Alzheimer’s detection and merge it with a basic CNN
model. The next step is to divide the image dataset into a
training set and a test set. Finally, the model has been trained
and validated with the appropriate images.

Step-5: Finally, the performance is evaluated based on the
accuracy of the proposed hybrid model. In this stage of
the proposed model, the performance metrics such as accu-
racy, precision, recall, fl score, and confusion matrix have
been used to evaluate the model of our experiment and
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TABLE 3  Number of samples in the ADNI dataset.
Class No of samples
NonDemented 3200
VeryMildDemented 2240
MildDemented 896
ModerateDemented 64

Preprocessing

Image Augmentation

Proposed Hybrid InceptionV3-CNN
Model

Performa;ce Analysis

C

S
Comparison and discussion

FIGURE 1 The workflow diagram of the proposed InceptionV3-CNN
hybrid model.

also showed the comparison analysis with other existing
models.

3.1 | Dataset collection

The Alzheimet’s Dataset used in this research has been taken
from [30], which is a slice and 2D image collected from
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
[37]. It has been used in most studies alone or in combination
with other data sets. The main objective of the ADNI study is
to collect more and more related data and test the effectiveness

of MRI and other biomarkers in measuring the progress of AD.
The data set consists of 6400 MRI images, and all of the Images
are utilized in the investigation. In the dataset used, there are
4 classes of data: Very Mild Demented, Mild Demented, Mod-
erate Demented, and Non-Demented. In the experiment, the
data set was first organized and pre-processed. The network
was first trained using part of pre-processed data, and then test-
ing the model was carried out with the remaining data. Table 3
displays the volume of data and image samples used in the inves-
tigation. Figure 2 shows sample MRI images of different stages
of Alzheimer’s.

3.2 | Data pre-processing

Data pre-processing is a series of computerized techniques for
assembling input data and making them utilizable for target
learning models. Data pre-processing is required to clean the
noise, identify and rectify missing values, and make the data for
the objective of obtaining a final image that is as clean as possi-
ble and that contains only the information relevant to the task
at hand [38].

There is no skull stripping processing performed on the
dataset used in this research. The images in the dataset were
already skull-stripped and therefore do not contain any skull.
However, for the purposes of this study, registration was not
applied as a pre-processing technique to map the images into a
standard space.

Further, this pre-processed dataset enhances the efficacy
of the training and testing of the whole proposed research
model. In this proposed hybrid model, three types of data
pre-processing are utilized, namely Image Filtering, data not-
malization, and data augmentation. Figure 3 shows the In
the same way, there are a number of image pre-processing
techniques that are common to a wide variety of diagnostic
investigations of Alzheimer’s. Figure 4 shows the preprocessed
images and the original image related.

3.2.1 | Image filtering

An image filter is a tool that can be used to change the size,
colors, shading, and other features of an image. The image is
changed using several graphical editing methods and image
filters. An image filter often modifies the image at the pixel
level, which means that each pixel is changed independently.
Both 2-D and 3-D images can use it. Typically, the image
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Class:ModerateDemented Class:ModerateDemented Class:MildDemented
Class:ModerateDemented Class:ModerateDemented Class:MildDemented

Class:MildDemented Class:ModerateDemented Class:MildDemented

FIGURE 2  Sample MRI images in ADNI dataset.
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FIGURE 3  Image pre-processing steps.

filtering process offers choices like Editing the image’s colour
scheme, theme, and contrast, Changing the texture, enhancing
the image’s effects, and adjusting image brightness.

In this paper, the bilateral filter [39] has been used. A non-
linear, edge-preserving, and noise-reduction smoothing filter
for images is known as a bilateral filter. It swaps out each pixel’s
intensity for a weighted average of intensity values from adja-
cent pixels. Importantly, the weights depend not only on the
radiometric differences but also on the Euclidean distance of
the pixels (e.g. range differences, such as color intensity, depth

distance etc.). Sharp edges of the processed image are preserved
as a result.

3.22 | Data normalization

The ANDI image dataset for the current study has different
attributes [40]. The original images in the dataset are collected
and recorded in different dimensions, especially images col-
lected from real life. Therefore, the MRI images are resized to
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FIGURE 4  Original vs. pre-processed images.

TABLE 4  Number of training, validation, and testing dataset.

Class Before SMOTE-ENN After SMOTE-ENN
Training dataset 5120 10208

Validation dataset 640 1135

Testing dataset 640 1261

a target size from a model implementation and computational
perspective. All images are converted into sizes of 176 x 176 x
3, indicating height, width, and number of channels, respectively.

3.2.3 | Data augmentation

We may uniformly increase the number of examples in our
dataset using this statistical technique. Based on minority con-
ditions that are supplied as input and ate currently present,
the module generates new instances. The number of majority
cases remains the same. The Synthetic Minority Oversampling
Technique (SMOTE), is arguably the most used technique for
creating new samples. Nitesh Chawla wrote about this method
in his 2002 work [41]. Instead of just producing duplicates of
existing minority cases, the method generates new examples by
sampling the feature space for each target class and its clos-
est neighbours, integrating the characteristics of the target case
with those of its neighbours. But occasionally, oversampling can
alter the objective of the endeavour. To manage this in this
paper, SMOTE-ENN [42] has been used. This is a hybrid tech-
nique that aims to clean ovetlapping data points for each of the
classes distributed in the sample space. After SMOTE oversam-
pling is performed, the class clusters may invade each other’s
space. As a result, the classifier model will be overfitted. Now,
to get better class clusters, Edited Nearest Neighbor (ENN)
is applied to under-sample minority class samples done by

SMOTE.

3.24 | Data splitting

The dataset was divided into a training set and a testing set
to train the models and assess their performance. The train-
ing set was used to fit the models, while the testing set was
used to generate predictions, which were evaluated against the
original labels to measure the effectiveness of the approach.
During the process, the dataset underwent oversampling and
undersampling using SMOTE-ENN.

The data splitting was performed at the subject level to define
the training, validation, and test sets. To train and test the pro-
posed model, the entire dataset was split into 80% for training
data and 20% for testing and validation data. The allocation of
samples for each set is illustrated in Table 4, showcasing the
number of samples before and after the application of SMOTE-
ENN. After preprocessing the image dataset, a data split was
conducted, where 80% of the data was assigned to training, 10%
to testing, and 10% to validation.
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FIGURE 5 Proposed model vs. original model.
3.3 | Proposed deep learning model detection, and image recognition competitions. The Inception-

In the Proposed Hybrid Model, the pre-trained networks Incep-
tion V3 [43] learned from the ImageNet data set have been used
to extract information from MRI images. Figure 5a shows the
truncated model of the original pre-trained Inception V3 model.

Inception-V3 [43] has proven to be a popular and effective
architecture for various computer vision tasks. It has demon-
strated superior performance in image classification, object

V3 architecture is renowned for its ability to capture multi-scale
features by utilizing inception modules, which consist of paral-
lel convolutional layers with different filter sizes. One of the key
reasons for selecting Inception-V3 is its exceptional accuracy
on diverse datasets and tasks. Its deep and complex architec-
ture allows it to learn intricate patterns and featutes, enabling
it to achieve state-of-the-art performance on challenging image
recognition tasks. This high accuracy is particularly crucial in
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our research focused on early detection of Alzheimer’s disease.
Another one is its computational efficiency. Despite its depth
and complexity, Inception-V3 has been optimized to reduce
computational overhead. This makes it computationally fea-
sible for real-time applications, where efficient processing is
essential. Furthermore, it offers the flexibility of learning whete
pre-trained weights on large-scale datasets, such as ImageNet,
provide a valuable starting point for our task. By leveraging
these pre-trained weights, we can benefit from the learned fea-
tures and reduce the amount of training required on our specific
dataset. Considering these factors, including Inception-V3 as
our feature extractor was a well-founded choice. Its impressive
accuracy, computational efficiency, and transfer learning capa-
bilities make it an ideal candidate for our research on the early
detection of Alzheimer’s disease.

The Keras module applications allow downloading such a
network with the weights of ImageNet, with target image size,
and by ignoring the final output layers. Finally, we have added
16 necessary CNN layers including a fully connected output
layer to the downloaded truncated Inception V3 model. The
final output layer is added for sorting with four output units
(AD/NAD/MAD/VMAD). In the first training phase, all lay-
ers of the base model are frozen and only the CNN layers added
manually are trained. This is done for 100 epochs with the Adam
optimizer and a learning rate of 0.001.

These models have been prepared by the fundamental build-
ing elements, that is, CNN layers [44]. When a filter is applied
to an input, the result is an activation. This is how convolution
works at its core. A feature map is created after applying the
same filter to the same input numerous times. This feature map
shows the locations and intensities of any patterns that were
found in the input as well as an image of the patterns. Another
part of CNN architecture is a pooling layer. The proportions of
the feature sets are reduced with the help of the pooling layer.
As a result, there are fewer parameters to learn and fewer net-
work processing requirements. The convolution layer forms the
feature map and the pooling layer adds the features in the map
in a specific area.

The proposed CNN model contains 16 layers: 3 Dropout
Layer with a dropout rate of 0.5, 1 GlobalAveragePooling2D
Layer with a 4X4 pool size, 1 Flatten Layer, 5 Batch Normaliza-
tion layers, 5 Dense Layers with a ReLU activation function, 1
final dense with softmax prediction layer.

The CNN input Dropout layer with a 0.5 dropout rate
takes the Input from the output layer of the Inception V3 and
deactivates half of the input and hidden neurons of the net-
work by setting the input to zero value. The Dropout layer
chooses the subset of the feature. This will remove the over-
fitting of the Network. In backpropagation, the weight of only
activated neurons will be updated. The GlobalAveragePool-
ing2D layer will average the full image. This down-sample
of the network. The following Flatten layer will convert the
Input image into data of a 1-dimensional array. The distribu-
tion of layers changes during taring. This may allow occurring
Gradient Vanishing problem. The BatchNormalization layer
normalizes the value between 0 and 1 and avoids/minimizes
the problem. The following dropout layer again selects the sub-

TABLE 5 Confusion mattix.

Predicted results Actual positive Actual negative

Yes P FP
No FN TN

set of the feature with a dropout rate of 0.5. The following
Dense layer with ReLLU works by matrix-vector multiplication.
The layer gets the 2048 dimension of input and produces
512 as output. The ReLLU outputs the value if it is positive;
otherwise, it returns 0. The following combination of Batch-
Normalization, Dropout, and Dense layers functions in the
same manner and reduces the dimensions to extract the feature
map. Finally, the fully connected output layer (dense with Soft-
max) classifies the output into the 4 desired classes. Figure 6
shows the proposed hybrid model’s summary view with layer
details.

The proposed model classifies Alzheimet’s disease by MRI
images very efficiently. The efficiency of the classification of
the proposed model is better than the existing models. But the
environment we have with Microsoft Windows takes 10-12 h
to train the Hybrid Model.

4 | EXPERIMENTAL RESULTS
ANALYSIS

4.1 | Experimental environment

The experiments were carried out on a machine running
Microsoft Windows 11 Pro, with an Intel(R) Core (TM) Intel(R)
Core(TM) i5-8350U CPU @ 1.70GHz 1.90 GHz CPU running
at 5 cores, 8 logical processors, and 256 GB SSD, 16GB of RAM
and 8 GB Shared GPU.

4.2 | Programming language and tools

The implementation of this thesis was done in Python program-
ming language. The SMOTE-ENN, data augmentation, and
data filtering libraries were made exclusively in Python, using the
core Python library along with some of the popular imported
libraries, including Sklearn, NumPy, Seaborn, and TensorFlow.
Data analysis and the testing of the model were done in Python
via Anaconda Navigator’s Jupyter Notebooks. The CNN was

built using Keras with a TensorFlow backend. All visualizations
were created using matplotlib of Python.

4.3 | Performance metrics

Understanding how well the system works is important. Differ-
ent evaluation metrics are used for this. The model divides the
data into four categories: true positive (I'P), true negative (TN),
false positive (FP), and false negative (FN) as shown in table 5.
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Inception_v3_input| input | [(None,176,176,3)]

InputLayer output| [(None,176,176,3)]

L |

inception_v3 | input | [(None,176,176,3)]

Functional output| [(None,4,4,2048)]

1

dropout input | [(None,4,4,2048)]
Dropout output| [(None,4,4,2048)]

1 |

Global_average_pooling2d | input | [(None,4,4,2048)]

GlobalAverage_Pooling2D |output|  [(None,2048)]

L |

flaten input

[(None,2048)]

Flaten output|  [(None,2048)]

i |

batch_normalization_94 | input

[(None,2048)]

BatchNormalization output| [(None,2048)]

'S

dense input [(None,2048)]

Dense relu ‘output [(None,512)]
batch_normalization_95 | input [(None,512)]
BatchNormalization output [(None,512)]
dropout_1 input [(None,512)]

Dropout output [(None,512)]

dense_1 input [(None,512)]

Dense ‘ relu ‘output [(None,256)]

FIGURE 6 The proposed hybrid model summary with layer details.

TP shows accurately classified positive instances, TNs correctly
detected negative instances, while FPs and FNs are incorrectly
predicted as positive and negative, respectively.

Accuracy is the number of correctly classified predictions by
a model over the entire number of classified instances and can

be defined as below:

P + IN
TP+ FP+ TN + FN'

Accuracy = 1

Precision is the number of correct positive classifications
from the total number of actual classified predictions by the
model as positive and can be statistically defined as

P

1P + FP’ @

Precision =
Recall is the score of true positive predictions to the
instances that actually belong to the positive class.

P

Recall = YP'F—HV . (3)

Fl-score is an evaluation measure to estimate the petfor-
mance of the model based on the average precision and recall

batch_normalization_96 | input [(None,256)]
BatchNormalization | output [(None,256)]
dropout_2 input [(None,256)]

Dropout output [(None,256)]

dense_2 input [(None,256)]

Dense | relu |output [(None,128)]

‘ batch_normalization_97 | input [(None,128)]
‘ BatchNormalization | output [(None,128)]
dropout_3 input [(None,128)]

Dropout output [(None,128)]

dense_3 input [(None,128)]

Dense | relu |output [(None,64)]
dropout_4 input [(None,64)]

Dropout output [(None,64)]

‘ batch_normalization_98 | input [(None,64)]
‘ BatchNormalization  |output [(None,64)]
‘ dense_4 input [(None,64)]

‘ Dense | relu |output [(None,4)]

and is represented as:

precision % recall
F1— score = 2 % ————. S
precision + recall

The network parameters’ specific values were chosen after
carefully considering their effects on the model’s training
dynamics, convergence speed, and generalization capabilities.
For example, the learning rate of 0.001 was selected as it
has been widely used in similar deep-learning tasks and has
shown good performance in balancing convergence and avoid-
ing overfitting. Regarding the optimizer’s choice, we employed
both Adam and RMSprop optimizers to compare their perfor-
mance in our experiments. These optimizers have been widely
adopted in deep learning models and have effectively opti-
mized the model’s weights and biases. Other parameters, such
as data augmentation techniques (e.g. horizontal flipping, rota-
tion, and zooming) were incorporated to enhance the model’s
ability to learn diverse image patterns and improve its robust-
ness against variations in the input data. The data splitting
ratio of 80% for training and 20% for testing and validation
follow common practices to ensure adequate data for model
training while preserving a sufficient evaluation dataset for
performance assessment.
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TABLE 6  Setting of experimental parameters.

Parameters Values

Learning rate .001

Optimizer Adam and RMSprop

Hearing —02to+.2

Horizontal flipping True

Rotating —20 to +20

Zooming 0.8to 1.5

Splitting Train-80%, Test and valid-20%

Table 6 shows the different parameters used in the experi-
ments.

4.4 | Experimental setup

We have trained and tested the model in different ways.
Firstly the dataset was not augmented, and we trained the
model using the RMSprop optimizer with a learning rate
of 0.001 and the Adam optimizer with the same learning
rate. Then the whole data set was taken by SMOTE-ENN.
The model was then trained and tested again by both the
RMSprop optimizer and Adam. The input size, preprocess-
ing by Image Filter, and Dataset Splitting ratio were the same
for all combinations. We consider 4 different experiments as
follows:

4.5 |

Result analysis
In our experiment, we have conducted four extensive expet-

iments and found the best one for our proposals. The four
experiments are as follows:

* Experiment 1: In this case, we perform pre-processing on
the data set and apply filtering to improve image quality. The
hybrid model was then trained and tested using RMSprop
Optimizer with a learning rate of 0.001 to achieve the best
results.

* Experiment 2: In this case, we perform preprocessing on
the data set and apply filtering to improve image quality.
The hybrid model was then trained and tested using Adam
Optimizer with a learning rate of 0.001 to achieve the best
results.

* Experiment 3: In this case, we use the SMOTE-ENN algo-
rithm to balance the initial dataset in an effort to reduce the
impact of the overfitting problem. The RMSprop Optimizer is
then applied with the same rate of 0.001.

* Experiment 4: In this particular experiment, we employ the
SMOTE-ENN algorithm to normalize the primary data set.
After that, the Adam Optimizer is utilized with the same rate
of 0.001 as before.
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FIGURE 7 Performance results.

The accuracy and loss graph is illustrated in Figure 7
of RMSprop, Adam, RMSprop+SMOTE-ENN and Adam+
SMOTE-ENN for AD classification.

Figure 7a reveals that the highest accuracy of 97.3% is
achieved when employing the Adam optimizer in conjunction
with SMOTE-ENN. This combination outperforms the other
configurations, including RMSprop alone (89.69%), Adam
alone (88.28%), and RMSprop with SMOTE-ENN (95.96%).
These findings suggest that integrating SMOTE-ENN into the
training process improves the model’s ability to classify AD
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TABLE 7  Testing result comparison in different experiments.

Experiment # Optimizer Augmentation Accuracy Loss F1 score
1 RMSprop  NA 89.69 0.2964 0.8753
2 Adam NA 88.28 0.3083 0.8663
3 RMSprop  SMOTE-ENN  95.96 0.1170 0.9589
4 Adam SMOTE-ENN  97.31 0.0813 0.9705

accurately. Furthermore, the superior performance of the Adam
optimizer, particularly when coupled with SMOTE-ENN,
highlights its effectiveness in this AD diagnosis task.

Figure 7b focuses on the loss values obtained from the dif-
ferent optimization techniques and data augmentation methods.
Lower loss values indicate better convergence and potential for
improved generalization of the model. The results show that
using SMOTE-ENN in combination with either RMSprop or
Adam leads to lower loss values compared to using the optimiz-
ers alone. Specifically, the lowest loss value of 0.0813 is achieved
when employing the Adam optimizer with SMOTE-ENN, fol-
lowed by 0.117 for RMSprop with SMOTE-ENN. In contrast,
using RMSprop alone results in a loss value of 0.2964, while
Adam alone yields a loss value of 0.3083.

These findings further support the effectiveness of com-
bining SMOTE-ENN with the Adam optimizer for AD
classification. The reduced loss values indicate improved con-
vergence and better generalization, underscoring the proposed
approach’s advantages. The results suggest that the combination
of Adam optimizer and SMOTE-ENN facilitates more.

Our study conducted four experiments to examine the effects
of different optimizers, both pre and post the SMOTE-ENN
augmentation technique shown in Table 7 . The optimizers
we used were RMSprop and Adam, which are widely used in
neural network training. Additionally, we applied the SMOTE-
ENN technique to augment the data and improve the model’s
performance. The mathematical equations for RMSprop and
Adam optimizers, as well as a general overview of the activation
function used, are as follows:

RMSprop: RMSprop is an optimization algorithm that
adapts the learning rate based on the magnitudes of recent
gradients. It utilizes the following equation:

6‘”;—1"’(1_6)'82’

Uy

a
\ Y +€> &

In the equation above, », represents the exponentially

weight(?) = weight(z — 1) — (

weighted moving average of the squared gradients, weight,
denotes the updated weight, g represents the gradient of the
objective function, a is the learning rate, B is a decay rate
parameter, and € is a small constant for numerical stability.
Adam: Adam is another optimization algorithm that com-
putes adaptive learning rates for each parameter. It combines
the concepts of momentum and RMSprop. The equations for

Adam are as follows:

my =Py mq + (1= By) 4
=B v +(1_52)'£2’

o 74
m= -
11—
A 4
=
t’
=5
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weight 7 = weight? — 1 — \/_ - 7.
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Here, 7; and v, represent the exponentially weighted moving
averages of the gradients and squared gradients, respectively. 7
and 7 are bias-corrected estimates of the moments, §; and 8,
are decay rate parameters, and the remaining variables have the
same meanings as in RMSprop.

As shown in Table 7, Experiments 1 and 2 were performed
using RMSprop and Adam optimizers without any augmen-
tation (NA). Experiments 3 and 4 used the same optimizers
but incorporated the SMOTE-ENN augmentation technique.
In terms of accuracy, Experiment 4 achieved the highest accu-
racy of 97.31%, followed by Experiment 3 with an accuracy
of 95.96%. This suggests that the combination of the Adam
optimizer and the SMOTE-ENN augmentation yielded the
best performance in terms of accuracy. Regarding the loss
metric, Experiment 4 also demonstrated the lowest loss value
of 0.0813, indicating better convergence and smaller predic-
tion errors. Experiment 3 exhibited a slightly higher loss value
of 0.1170, which can be attributed to the data augmentation
and the optimization process. When considering the F1 score,
Experiment 4 outperformed the other experiments with a score
of 0.9705, indicating a better balance between precision and
recall. Experiment 3 achieved an F1 score of 0.9589, demon-
strating the effectiveness of the SMOTE-ENN augmentation
in improving the model’s ability to handle imbalanced data.
The experiments highlight the impact of different optimiz-
ers and utilizing the SMOTE-ENN augmentation technique.
Experiment 4, which combined the Adam optimizer with
SMOTE-ENN, achieved the highest accuracy, lowest loss, and
highest F1 score, indicating its effectiveness in improving the
model’s performance.

It is evident from the table that the error rate was 0.2964
and 0.3083 without SMOTE-ENN in Experiments 1 and 2,
respectively. While the SMOTE-ENN was utilized, the error
rate decreased to 0.1170 and 0.0813, respectively. For both sce-
narios, the f1 score improves from 0.8753 to 0.9589 for RMSprop
and from 0.8663 to 0.9705 for .Adam Optimizer. Furthermore,
the accuracy test results for both cases improved by 6.27% and
9.03%, respectively, demonstrating the impact of data balancing;

Thus, we have chosen an Adam optimizer with a learning rate
of 0.001 for the ultimate output. SMOTE-ENN has been incor-
porated with the data augmentation to handle class imbalance
data. Table 8 shows the class-wise results of the Hybrid model
with other parameters like precision, recall, and f1 score.
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TABLE 8  Testing result of the proposed model.

Classification Precision Recall Fl-score Support
NonDemented 0.99 1.00 1.00 337
VeryMildDemented 1.00 1.00 1.00 351
MildDemented 0.95 0.93 0.94 274
ModerateDemented 0.94 0.95 0.95 301
micro avg 0.97 0.97 0.97 1263
mactro avg 0.97 0.97 0.97 1263
weighted avg 0.97 0.97 0.97 1263
samples avg 0.97 0.97 0.97 1263

TABLE 9  Results of the new dataset (AD-5).

Models Dataset Accuracy rate (%)
RMSprop AD-5 96.07
Adam AD-5 97.09
RMSprop + SMOTE-ENN AD-5 97.98
Adam + SMOTE-ENN AD-5 98.57

Furthermore, we have included another dataset to make the
model robust for AD detection. The dataset [45] consists of
five stages of Alzheimer’s Disease (AD) that are split into two
directories: training and testing, The stages are as follows:

* EMCI (Early Mild Cognitive Impairment): Early stage of
cognitive decline.

* LMCI (Late Mild Cognitive Impairment): Advanced stage of
cognitive decline.

* MCI (Mild Cognitive Impairment): Mild cognitive decline not
yet classified as AD.

* AD (Alzheimer’s Disease): Diagnosed with Alzheimer’s
disease.

* CN (Cognitively Normal): Reference group without signifi-
cant cognitive impairments.

This dataset consists of 1296 images with 5 classes that can
be used for tasks such as AD classification or prediction. Table 9
shows the new dataset (AD-5) results in tabular format.

Figure 8a shows the learning curve during the training and
validation of the model for RMSprop optimizer. The validation
and loss curve is well-fitted and shows ideal characteristics as
they pass smoothly with increasing epochs during the experi-
ments. Similarly, the loss curve shown in Figure 8b depicts ideal
results as the training and validation loss remain steady after 40
epochs and has a minimum distance.

The model training and validation learning curve for RMSprop
optimizer is depicted in Figure 8a. As the number of epochs
increases in the experiments, the training and validation curves
smoothly pass, demonstrating ideal characteristics. Also, as
shown in Figure 8b, ideal results were achieved when the dis-
tance between the training and validation loss remained small
after 40 iterations.

Training vs Validation Accuracy of the proposed model
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(a) Accuracy Curve
Training vs Validation Loss of the proposed model
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FIGURE 8  Accuracy and loss curve for RMSprop optimizer.

Figure 9a depicts Adam Optimizer’s progression along var-
ious learning curves. The training and validation learning rate
accelerates with increasing epoch count, reaching a steady state
after 40 iterations. The usefulness of the curves is demonstrated
by their output as they pass smoothly during the whole experi-
ment. The loss curve similarly represents the model’s loss rate.
After 45 epochs, they level off and remain relatively constant
with no discernible trend.

The confusion matrices for RMSprop and Adam optimizer are
shown in Figures 10 and 11. When using the RMSprop optimizer,
the model accurately identifies 328 of 330 healthy patients. Only
29 out of 231 and 18 out of 309 patients, respectively, with
mild and moderate symptoms, could not be classified 10. How-
ever, the best performance with the proposal is provided by the
adam optimizer.

Figure 11 demonstrates that it correctly identifies all 337
healthy and 313 Very mildly affected patients. It correctly classi-
fied 255 out of 274 patients with a mild case and 286 out of 301
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Figure 12 shows some test results in the proposed Hybrid
1.0 4 .
model detected. Because the proposal has the potential to
achieve an accuracy of 97.31 percent, all of the test samples were
0.8 identified appropriately.
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FIGURE 9  Accuracy and loss curve for Adam optimizer.
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FIGURE 10 Confusion matrix for RMSprop Optimizer.

some have used similar ADNI data sets, some have used the
OASIS dataset, and some have used the collected MRI dataset.
The model using OASIS data has produced only 86.81% accu-
racy, while the accuracy of the model trained by the collected
MRI dataset has an accuracy of 91%. The remaining values
have an accuracy between 90 and 95%. The proposed model
of this article gives the best output with 97.31% accuracy.
Table 10 shows the comparison of our performance with the
existing works.

4.7 | Complexity analysis

The complexity comparison is shown in Table 11, which pro-
vides insights into each experiment’s computational complexity
based on prediction time.

From Table 11, we observe that Exp4 (Adam + SMOTE-
ENN) has a prediction time of 37 s, which is less than the
prediction time of Exp3 (RMSprop + SMOTE-ENN) at 38 s.
This indicates that Exp4 petforms slightly better in terms of
prediction time.

* RMSprop and Adam: Both Exp1 and Exp2 do not involve
any additional preprocessing techniques. Their prediction
times are 35 s and 34 s, respectively.
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FIGURE 12  Prediction result of the proposed hybrid model.
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TABLE 10 Comparison of testing accuracy with existing models.

Actual: MildDemented Actual: ModerateDemented

&

Actual: ModerateDemented Actual: ModerateDemented

"

Actual: ModerateDemented Actual: MildDemented

-

Actual: MildDemented Actual: ModerateDemented

Ref# Dataset Technique Accuracy

[32] ADNI DenseNet201-GaussianNB 91.75%

[16] ADNI VGG19 with CNN 95.52%

[33] ADNI ResetNet50-CNN 90%

[34] ADNI and OASIS ResetNet and SVM 86.81%(OASIS) 78.64%(ADNI)
[34] MRI (450) CNN and RNN 91%

[17] ADNI (1536) CNN-BIiLSTM 92.62%

3] ADNI (4094) VGG-16 83.80%

Proposed Model ADNI (6400) InceptionV3-CNN 97.31%

* RMSprop + SMOTE-ENN: Exp3

incorporates

has a prediction time of 38 s, indicating a slightly higher

SMOTE-ENN technique as a preprocessing step. SMOTE
(Synthetic Minority Over-sampling Technique) and ENN
(Edited Nearest Neighbors) are commonly used for address-
ing class imbalance in machine learning datasets. The
addition of SMOTE-ENN may increase the computational
complexity of Exp3 compared to Expl and Exp2. Exp3

prediction time compated to Exp1 and Exp2.

Adam + SMOTE-ENN: Exp4 combines the Adam opti-
mization algorithm with the SMOTE-ENN preprocessing
technique. Similar to Exp3, Exp4 involves additional steps
for handling class imbalance. However, Exp4 demonstrates a
lower prediction time of 37 s compared to Exp3. This implies
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TABLE 11 Complexity comparison of the four experiments.
Prediction
Exp. No. Exp. name time (s)
Expl RMSprop 35
Exp2 Adam 34
Exp3 RMSprop + SMOTE-ENN 38
Exp4 Adam + SMOTE-ENN 37

that Exp4 provides a slightly better prediction time while
incorporating the same preprocessing techniques.

Therefore, we can conclude that Exp4 (Adam + SMOTE-
ENN) has a lower complexity compared to the other
experiments when considering the additional step of SMOTE-
ENN preprocessing,

4.8 | Limitations

In our research, we have identified several limitations that
deserve attention. First, the dataset used for training and eval-
uation was relatively limited in size, which may affect the
generalizability of our model to larger and more diverse datasets.
While efforts were made to ensure its representativeness, fur-
ther investigation is needed to assess the model’s performance
on a broader scale. Second, the availability of computational
resources posed constraints on the scale and complexity of our
experiments. Future studies with greater access to computa-
tional resources could explore the model’s performance under
more extensive scenarios, allowing for a more robust evalu-
ation. Finally, the real-world deployment of the model raises
important considerations. Addressing computational efficiency
for real-time processing and ensuting ethical considerations,
particularly regarding the privacy and security of sensitive
data, are vital aspects that require further investigation and
discussion.

5 | CONCLUSION

The primary contribution of this research is the design
and creation of an effective Hybrid Model for MRI-based
early Alzheimer’s disease identification. The pre-trained Model
Inception V3 was used for extracting the feature of the Input
Dataset and the customized CNN layer was used for final clas-
sification. The model performs better when using preprocessed
data. Additionally, performance improves when the dataset has
been oversampled by the SMOTE-ENN technique. Experi-
mental investigations are supported by the theoretical analyses
of our suggested model. Using ADNI datasets, performances
and behaviours were compared. The proposed model provided
97.31% of accuracy which is 2-10% more compared to other
related models. The trials have demonstrated that the CNN

model optimizer and input dataset are mostly responsible for
the model’s performance. The next step would be to challenge
these models with more data with less reliable parameters, such
as a live stream of data directly from an MRI machine, Data
from other sources, and to improve the data preparation pro-
cess to detect and handle data anomalies. In the future, we will
try to collect more real datasets and train the model using only
real data.
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