
ar
X

iv
:2

40
7.

09
92

6v
1 

 [
cs

.L
G

] 
 1

3 
Ju

l 2
02

4

Metric Learning for Clifford Group Equivariant Neural Networks
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Abstract

Clifford Group Equivariant Neural Net-

works (CGENNs) leverage Clifford algebras

and multivectors as an alternative approach

to incorporating group equivariance to ensure

symmetry constraints in neural representations.

In principle, this formulation generalizes to

orthogonal groups and preserves equivariance

regardless of the metric signature. However,

previous works have restricted internal network

representations to Euclidean or Minkowski

(pseudo-)metrics, handpicked depending on the

problem at hand. In this work, we propose an

alternative method that enables the metric to

be learned in a data-driven fashion, allowing

the CGENN network to learn more flexible

representations. Specifically, we populate metric

matrices fully, ensuring they are symmetric by

construction, and leverage eigenvalue decom-

position to integrate this additional learnable

component into the original CGENN formu-

lation in a principled manner. Additionally,

we motivate our method using insights from

category theory, which enables us to explain

Clifford algebras as a categorical construction

and guarantee the mathematical soundness

of our approach. We validate our method in

various tasks and showcase the advantages

of learning more flexible latent metric repre-

sentations. The code and data are available at

https://github.com/rick-ali/Metric-Learning-for-CGENNs

1. Introduction

Clifford (or geometric) algebras play a significant role in

physics (Baylis, 2004), where they have been used to rep-
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resent operators such as spinors and Dirac matrices in

quantum mechanics, Maxwell’s equations in electromag-

netism, and Lorentz transformations in relativity. They

leverage addition and the geometric product as their two

fundamental operations, providing a powerful mathemati-

cal language for expressing geometric concepts in a uni-

fied manner. In particular, they can describe rotations, re-

flections, translations, and other geometric transformations

succinctly, which frequently arise in physical phenomena.

Recently, Clifford algebras have been introduced to

deep learning: Clifford Group Equivariant Neural Net-

works (CGENNs) (Ruhe et al., 2023) harness the mathe-

matical framework of Clifford algebras to represent data

in a way that maintains geometric symmetries and equivari-

ance with respect to several groups such as O(n), SO(n),
E(n), and SE(n). However, they currently support only

diagonal and fixed metrics to model internal network repre-

sentations. These typically involve the standard metric on

Euclidean space, represented as QE = diag(1, . . . , 1), and

the Minkowski pseudo-metric, QM = diag(−1, . . . , 1),
which, in principle, have inherent physical significance but

must be chosen a priori. Ideally, we would like to enable

the model to learn as rich internal representations as pos-

sible without being constrained to diagonal metric matri-

ces. Thus, inspired by recent work on latent trainable ge-

ometries (Borde & Kratsios, 2024; Lu et al., 2023), we ad-

vocate for learning the metric in a data-driven fashion via

gradient descent.

Our contributions are as follows:

1. We extend CGENNs by integrating learnable metrics,

allowing the network to adapt its internal representa-

tions dynamically rather than relying on fixed, diago-

nal metrics.

2. We employ eigenvalue decomposition to transform the

full metric matrix representation into an intermediate

computationally tractable diagonal form that can eas-

ily be integrated into CGENNs, while ensuring that

the input and output data remain consistent across dif-

ferent geometric spaces.

3. We leverage category theory to provide a theoretical

foundation for our method. By viewing Clifford Alge-

bras as categorical constructions, we justify the trans-
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formations applied within the network, ensuring that

our approach is mathematically sound.

We validate our approach through experiments on various

tasks, including n-body simulations, signed volume com-

putations, and top-tagging in particle physics.

2. Related Work

The Role of Symmetries in Deep Learning Broadly

speaking, a symmetry of a system is a transformation

that maintains a particular property of that system, ensur-

ing it remains unchanged or invariant. Symmetries are

widespread in real-world problems and data distributions

that we aim to model in deep learning. While symmetries

could be learned solely from data, integrating invariance

and equivariance within artificial neural network architec-

tures concerning specific group actions has emerged as an

effective inductive bias, especially in scenarios with limited

data (Bronstein et al., 2021).

From Complex Numbers and Quaternions to Mul-

tivectors in Neural Representations Initially, the

motivation for complex-valued neural representations

stemmed from their superior performance within the

realm of sequence modeling and Recurrent Neural

Networks (RNNs) (Wisdom et al., 2016; Arjovsky et al.,

2016). Likewise, other works also motivated them

from the perspective of optimization (Nitta, 2002), gen-

eralization (Hirose & Yoshida, 2012), and faster learn-

ing (Danihelka et al., 2016). Following this line of research,

complex-valued neural networks proposed a number of

new building blocks that incorporated complex value rep-

resentations and generalized traditional operations in neu-

ral networks such as batch normalization, weight initializa-

tion, ReLU activations, convolutions, etc., enabling them

to discern intricate patterns that conventional real-valued

networks might struggle to capture (Trabelsi et al., 2018).

Quaternion based neural networks (Gaudet & Maida, 2018;

Parcollet et al., 2019) further expanded on this line of re-

search and introduced three imaginary components for

data representation. More recently, the focus has shifted

towards leveraging complex representations in the con-

text of geometric deep learning (Bronstein et al., 2021)

rather than in sequence modelling. Going beyond com-

plex numbers and quaternions, Clifford algebra can en-

code richer representations all the way from scalars, vec-

tors, bivectors, and trivectors, to other k-vectors. This

capability has been showcased in studies that substitute

convolution and Fourier operations in neural PDE sur-

rogates with Clifford counterparts for both 2D and 3D

tasks (Brandstetter et al., 2023). Particularly relevant to

our work are Clifford Group Equivariant Neural Networks

(CGENNs) (Ruhe et al., 2023) which leverage Clifford al-

gebra to model equivariance under orthogonal transforma-

tions of the Clifford group. However, current CGENNs are

constrained by their support solely for diagonal and fixed

metrics, thereby limiting the internal geometric representa-

tions they can effectively capture.

Metric Learning enables models to learn how to mea-

sure similarity between data points by employing an op-

timal distance metric tailored to specific learning tasks,

rather than relying on predefined, static metrics (Kulis,

2013). Generalizing metrics beyond simple Euclidean

embeddings has been extensively studied in the literature

by leveraging constant curvature Riemannian manifolds,

stereographic projections, and product manifolds (Gu et al.,

2018; Ganea et al., 2018; Skopek et al., 2020; Borde et al.,

2022; 2023; 2024; Kratsios et al., 2023). However, most

of these works, similar to CGENN, pre-define the used

metric before optimization. Other recent studies have pro-

posed embeddings with associated differentiable metrics

instead, which more closely resemble our proposed ap-

proach (Lu et al., 2023; Borde & Kratsios, 2024).

Category Theory in Deep Learning Category theory

has recently gained traction in the literature as a unify-

ing language capable of formalizing and extending existing

deep learning frameworks. For instance, (Gavranović et al.,

2024) use 2-monads to generalize geometric deep learn-

ing to non-invertible operations; (Fong et al., 2019) formal-

ize backpropagation as a functor; and (Villani & Schoots,

2023) show that any deep ReLU network has a function-

ally equivalent three-layer network. Furthermore, cate-

gory theory has also inspired novel and successful learning

schemes: (de Haan et al., 2020) use functors to construct

natural graph networks, generalizing permutation equivari-

ance; and (Hansen & Gebhart, 2020; Bodnar et al., 2023;

Barbero et al., 2022b;a) augment the message-passing pro-

cedure underlying most graph neural networks with geo-

metric information carried by sheaves, a well-known cat-

egorical construction in algebraic topology and geometry.

Similar sheaf based approaches have also been extended to

hypergraphs (Duta et al., 2023).

3. Background

Next, we review the mathematical foundations of our ap-

proach, including metric spaces, Clifford algebras, eigen-

value decomposition, and category theory. We also discuss

the key components comprising CGENNs, such as alge-

bra embedding layers, generalized linear layers, geometric

product layers, normalization layers, and grade-wise non-

linear activation functions.

Inner Product and Metric Spaces An inner product

〈·, ·〉 on a vector space V over a field K ∈ {R,C} is
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a map V × V → K such that, for all x, y ∈ V and

a, b ∈ K , satisfies: conjugate-symmetry, 〈x, y〉 = 〈y, x〉
where · denotes complex conjugation; linearity in the first

argument, 〈ax + by, z〉 = a〈x, z〉 + b〈y, z〉; and positive-

definiteness, 〈x, x〉 > 0 for all x 6= 0. The inner product

is often expressed by the matrix representation Q of a bi-

linear form satisfying the conditions above. In this case,

the inner product takes the form 〈x, y〉 = xTQy. For

example, if Q = I , then this is the usual dot product.

A positive definite bilinear form Q, i.e. a matrix whose

eigenvalues are all positive, induces a norm || · || on V by

||x|| =
√

xTQx. As for the previous example, if Q = I ,

then this is the standard Euclidean norm. Furthermore, a

norm induces a metric (or distance) d on V by setting

d(x, y) = ||x−y||, making (V, d) a metric space. However,

we are mainly concerned with metrics arising from matri-

ces Q, and therefore we will refer to such bilinear forms as

metrics. In this work, we focus on learning the metric for

CGNNs. During training, our algorithm initializes metrics

to Q = diag(1, . . . , 1), the standard metric on Euclidean

space, and Q = diag(−1, . . . , 1), the Minkowski pseudo-

metric1, and iteratively updates them via gradient-descent.

Clifford Algebras A Clifford Algebra, denoted

Cl(V,Q), extends the scope of classical algebra and

subsumes algebraic structures such as complex numbers

and quaternions. It is defined on a vector space V over a

field K , together with a quadratic form Q : V 2 → K that

maps pairs of vectors to the field. Its algebra operation, the

geometric product, expresses geometric transformations,

such as the inner 〈., .〉 and wedge product ∧ 2 in algebraic

terms. For all v, w ∈ V , the geometric product vw is:

vw = 〈v, w〉 + v ∧ w.

The Clifford Algebra Cl(V,Q) is defined as a quotient of

the tensor algebra T (V ) =
⊕∞

k=0 T
k(V ), where T k(V ) =

V ⊗ V · · · ⊗ V k times, with the convention T 0(V ) = K ,

the underlying field. The quotient defining Cl(V,Q) is

T (V ) modulo the ideal generated by v ⊗ v − Q(v, v) · 1,

which essentially imposes the equation v ⊗ v = Q(v, v) · 1
on T (V ). Clifford Algebras also have a categorical con-

struction (see Section 4.3) which will prove relevant to our

methodology.

With an orthogonal basis {e1, e2, . . . , en} for V , the alge-

bra is spanned by elements of the form ei1ei2 · · · eik where

0 ≤ k ≤ n and 1 ≤ i1 < i2 < · · · < ik ≤ n. These

span vectors, bivectors, and higher-dimensional constructs,

representing directional, area, and volumetric information

1The Minkowski metric is technically a pseudo-metric, as it
violates positive-definiteness.

2(v ∧ w)ij = (viwj − vjwi) for all v, w ∈ V . We refer the
interested reader to (Darling, 1994).

respectively. Hence, an element of the Clifford Algebra

Cl(V,Q) is called a multivector, sometimes also referred

to as Clifford numbers or multors (Snygg, 2011). The var-

ious dimensions (e.g., scalar, vector, bivector, etc.) of a

multivector are referred to as grades.

The dimension of a Clifford AlgebraCl(V,Q) scales as 2n

for a vector space V of dimension n. For instance, in a

two-dimensional space (n = 2), an element x ∈ Cl(V,Q)
is represented as:

x = x(0) · 1 + x(1) · e1 + x(2) · e2 + x(12) · e1e2,

with x(i) ∈ K , 1 is the algebra’s unit, and ei are basis

vectors of V . The geometric product for multivectors dis-

tributes over +, analogously to the product of polynomi-

als. Indeed, one could compute the geometric product be-

tween multivectors v andw by treating each ei as a variable

in a polynomial and performing polynomial multiplication

without assuming commutativity of multiplication of the

variables (eiej 6= ejei). Additionally, the result should in-

corporate the relations v2 = Q(v, v) for all vectors v ∈ V
and vw = −wv for orthogonal vectors v, w ∈ V . Hence,

unlike the polynomial’s case, the geometric product is not

commutative.

The Clifford Group, often denoted Cl×(V,Q) is the

set of elements x ∈ Cl(V,Q) that have an inverse

x−1 ∈ Cl(V,Q) with respect to the geometric product, i.e.

xx−1 = x−1x = 1. This group stands out for its capacity

to algebraically represent geometric transformations such

as rotations, reflections, translations and screws.

Norms in Clifford Algebras While it is clear how to cal-

culate a norm of v ∈ V with Q, namely ||v|| =
√

vTQv,

we still need to specify its corresponding operation for

x ∈ Cl(V,Q). Let β : Cl(V,Q) → Cl(V,Q) be the main

anti-involution of Cl(V,Q), the function that takes x and

‘inverts’ the order of its components:

β(x) = β

(

∑

i∈I

ci vi,1 · vi,ki

)

=
∑

i∈I

ci vi,ki
· vi,1.

For example, in 2 dimensions:

β(x) = β(x(0) · 1 + x(1) · e1 + x(2) · e2 + x(12) · e1e2)

= x(0) · e1e2 + x(1) · e2 + x(2) · e1 + x(12) · 1.

Now, let x1, x2 ∈ Cl(V,Q) and b : Cl(V,Q)→ Cl(V,Q)
be the function:

b(x1, x2) = (β(x1)x2)
(0)
,

where juxtaposition is the geometric product and (·)(0) de-

notes the projection on the scalar component of the result-

ing multivector. Finally, by denoting xTQx as Q(x) for

3
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x ∈ V , we can extend this map to Q(x) for x ∈ Cl(V,Q)
by setting Q(x) = b(x, x). With this notation, the norm of

x ∈ Cl(V,Q) is ||x|| = (Q(x))
1

2 . This will be important

for the normalisation operations of the CGENN.

Eigenvalue Decomposition In linear algebra, a matrix

M in Kn×n over the field K is said to be diagonalizable if

there exists an invertible matrix P also in Kn×n such that

M = P−1∆P , where ∆ is a diagonal matrix. This process

is known as the eigendecomposition of M , because the di-

agonal entries of ∆ represent the eigenvalues ofM , and the

columns of P correspond to their respective eigenvectors.

One can interpret P as a change of coordinates that rep-

resents a vector x in Kn using the coordinates defined by

the eigenvectors of M . Indeed, the ith column of an invert-

ible matrix T is precisely Tei, indicating where T maps

the canonical basis element ei; and because a linear trans-

formation is entirely characterised by its effect on the basis

elements, this information is sufficient to fully describe the

matrix’s action. Thus,Px is simply x expressed in the basis

provided by P . Within this basis, the operation of M is ex-

pressed by the diagonal matrix ∆: Mx = ∆Px = ∆(Px).

Specifically, if K = R and M is symmetric, the Spectral

Theorem ensures that M can be diagonalized with P be-

ing orthogonal, that is, P−1 = PT . Now, if M functions

as a metric, the inner product between two vectors x, y is

calculated as follows:

xTMy = xTP−1∆Py = xTPT∆Py = (Px)T∆(Py),

indicating that when the vectors are expressed in terms of

the basis provided byP , the metric calculations remain con-

sistent as if M were diagonal. This observation is crucial

for our implementation since the algorithm used for metric

calculations only supports diagonal metrics.

Basics of Category Theory Category theory is the study

of compositionality, where “objects” can be studied only in

their relationships to other objects. For example, to charac-

terise a singleton set, we will not say that it is a set S with

only one element, but rather, that there is a unique map

from any other set to S.

In the first instance, we can think of a category as a collec-

tion of objects of a certain kind, such as sets, groups, and

vector spaces, along with maps between them (also called

morphisms or arrows) that preserve their structure, such as

functions, group homomorphisms, and linear maps. Fur-

thermore, these should be able to be composed sensibly, so

that if f : A → B, g : B → C and h : C → D, where

A,B,C,D are objects in a category and f, g, h are maps,

then (h ◦ g) ◦ f = h ◦ (g ◦ f). A formal definition of a

category is given in Appendix B.

Functors, which we will use to motivate and justify our met-

ric learning algorithm, are maps between categories that

preserve their structure. Let C andD be categories. A func-

tor between them, F : C → D, is an assignment of objects

A in C to objects F (A) inD, and morphisms f : A→ B in

C to morphisms F (f) : F (A) → F (B) in D. This assign-

ment should also respect the structure of the categories, i.e.,

composition: F (g ◦ f) = F (g)◦F (f). A formal treatment

of functors is given in Appendix B.

Hence, functors map one category onto another. In partic-

ular, they allow us to translate a linear map between vector

spaces, a morphism in the category of vector spaces, to a

map between Clifford algebras, a morphism in the category

of associative algebras, thereby guaranteeing the soundness

of our proposed algorithm.

3.1. Clifford Group Equivariant Neural Networks

We now outline the main components of the CGENN, as

presented in (Ruhe et al., 2023). The overarching idea of

this neural architecture is to accept multivectors as inputs

and to process them in each of their grades separately. One

could visualise such a computation scheme by picturing k

parallel neural networks, each dedicated to one grade, inter-

acting with each other via the geometric product layer. Im-

portantly, each layer needs to be equivariant with respect to

any Clifford group transformations.

Algebra Embeddings As the CGENN accepts multivec-

tors as inputs, we need to embed inputs x into the Clifford

algebra Cl(V,Q). We do so with the function Embed,

whose form is application-specific. For example, if x is

a scalar quantity (such as the charge of a particle), it is em-

bedded as a scalar, i.e. Embed(x) = x·1+0e1+0e2+· · ·+
0e1e2 . . . en. Alternatively, if x is a point in V (such as the

position of a particle), it is embedded as a 1-dimensional

multivector, i.e. Embed(x) = 0 · 1 + x1e1 + · · ·+ xnen +
0e1e2 + · · · + 0e1 . . . en. If x is a volume, it is embedded

as Embed(x) = 0 · 1 + · · ·+ xe1 . . . en, and so on.

Linear Layers The first component of this architecture

is the linear layer. For x1, . . . xl ∈ Cl(V,Q), it is defined

as:

y(k)cout
= T lin

φcout
(x1, . . . , xl)

(k) :=

l
∑

cin=1

φcoutc
k

in
x(k)cin

,

where φcoutc
k

in
is a learnt scalar parameter depending on the

grade k, cin and cout are the input and output channels, and

(·)(k) is the projection on the kth grade. Therefore, the map

T lin
φcout

(x1, . . . , xl)
(k) is linear in each grade separately. This

is indeed an equivariant layer, as actions of the Clifford

group operate separately in each grade.
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Geometric Product Layers The Geometric Product

layer is the main tool that allows different grades to com-

municate in a geometrically principled manner. It is param-

eterised as follows:

Pφ(x1, x2)
(k) :=

n
∑

i=0

n
∑

j=0

φijk(x
(i)
1 x

(j)
2 )(k),

where φijk are learnable scalars for i, j, k ∈ {0, . . . , n}.
The equivariance of this layer is guaranteed by the fact that

the actions of the Clifford group respect grade projections,

linearity, scalar multiplication, and products.

Normalisation To ensure numerical stability, CGENNs

implement equivariant normalisation layers, defined for

x(m) ∈ Cl(m)(V,Q) as:

Norm(x(m)) :=
x(m)

σ(am)(Q(x(m))− 1) + 1
,

where σ is the sigmoid function and am ∈ R is a learnable

parameter. Again, the operation is performed grade-wise

and is also equivariant because Q(x(m)) is, as shown in

(Ruhe et al., 2023) (Theorem 3.2). Here the logistic func-

tion is used so that the denominator interpolates between 1
(no normalisation) andQ(x(m)) (geometric normalisation).

Nonlinearities are implemented grade-wise to maintain

equivariance and are defined, for x ∈ Cl(V,Q)) as:

NonLinear(k)(x) := ψ(fk(x)) · x
(k),

where ψ is any non-linear function R → R and fk is a

linear function of the components of x(k).

4. Method

The following section details the metric learning method

proposed in this work, focusing on the initialisation and

processing of the metric through its eigenvalue decomposi-

tion.

4.1. Metric Initialization

In our method, the transition from a static metric Q, typ-

ically initialized as a diagonal matrix to reflect basic geo-

metric properties of the space (e.g., Q = diag(1, 1, 1)), to

a learnable metric M involves introducing small perturba-

tions. The process begins with Q, representing the initial

geometric configuration. To facilitate learning, a perturba-

tion is added to Q through:

M̃ =
1

2
Q+ ǫR,

where R is a random matrix with the same dimensions as

Q, and ǫ controls the amount of initial perturbation. To en-

sure that M is symmetric, we add the transpose of M̃ to

itself, since the sum of two symmetric matrices is symmet-

ric. Hence, we obtain:

M = M̃ + M̃⊤ = Q+ ǫ(R+R⊤),

since Q is diagonal and Q = Q⊤. Therefore, M is equiva-

lent to adding “symmetric” noise,R+R⊤, controlled by ǫ,

to the initial metric. M is then passed to all downstream

layers. The result is a learnable metric that enables the

CGENN to dynamically refine its internal geometric rep-

resentation in a data-driven fashion.

4.2. Learnable Metric via Eigenvalue Decomposition

The original CGENN (Ruhe et al., 2023) implements lay-

ers consistent with a Clifford algebra Cl(V,Q) for a fixed

bilinear form Q. In particular, this bilinear form is taken

as a metric, and it is used in the network’s computation of

norms. This setup only supports diagonal metrics, simpli-

fying the complexity of the space by considering distances

that scale linearly along each axis independently. However,

real-world data often exhibits correlations that are not cap-

tured well by such simplistic assumptions.

The transition from a diagonal to a non-diagonal metric

introduces computational and theoretical challenges, par-

ticularly in the context of Clifford algebras. In this alge-

bra, metric computations are not as straightforward as in

Euclidean space. The norm calculation algorithm used in

CGENNs, originally described in (Dorst et al., 2009), only

supports diagonal metrics.

This requires us to map a non-diagonal metric to a diago-

nal one in a geometrically principled way. We achieve this

with the metric’s eigendecomposition. A metric M can

be decomposed into its eigencomponents M = P−1∆P ,

where P is a matrix of eigenvectors and ∆ is a diagonal

matrix of eigenvalues. Therefore, we will use ∆ as the

diagonal matrix to compute normalisations, and carefully

modify the pipeline to make it geometrically meaningful

and theoretically sound. We assume that the input is given

in any basis {ei} in V . The metric learning procedure can

be summarised as follows:

Algorithm 1 Metric Learning for Clifford Group Equivari-

ant Neural Networks – Forward Pass

1: ∆, P ← eigendecomposition(M)
2: x← Embed(x)
3: x← P (x)
4: y ← CliffordNetwork(x,∆, ∗args)
5: y ← P−1(y)

5
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Next, we proceed to motivate our approach.

Consistency of the Input Across Spaces One could sim-

ply adopt ∆ as a diagonal metric, but in this case, we

would compute norms according not to the standard basis

of V , but with respect to the basis given by P , introducing

inconsistencies. Therefore, we need to express the input

in the appropriate basis to make sense of ∆. We do so

by applying the change of coordinates P , as reflected in

the experiments in Section 5, by replacing the basis vec-

tors ei with ξi = Pei, which is still a basis as P is in-

vertible. We extend the linear map x 7→ Px to a map

P : Cl(V,M)→ Cl(V,∆) such that, for x ∈ Cl(V,M)

x = x(0) ·1+x(1) ·e1+x
(2) ·e2+ · · ·+x

(12...n)e1e2 . . . en,

P (x) = x(0)·1+x(1)·ξ1+x
(2)·ξ2+· · ·+x

(12...n)ξ1ξ2 . . . ξn.

This is motivated by the categorical construction of Clifford

algebras (Section 4.3). Importantly, we preserve the alge-

bra structure when translating multivectors from Cl(V,M)
to Cl(V,∆):

vw = −wv ⇐⇒ PvPw = −PwPv,

z2 = (Pz)2,

for any orthogonal v, w ∈ V and any z ∈ V . The proof

is given in Appendix A. Notably, we preserve consistency

with the embedding function outlined in Section 3.1. Oper-

ationally, when we deal with inputs v ∈ V , we can trans-

form them with Pv and embed the result, i.e.:

P (Embed(v)) = Embed(Pv),

as Pv = P (vie
i) = vi(Pe

i) = viξ
i using the Einstein

summation convention vie
i =

∑

i viei. Another special

case is when the input v is a volume. In this case, we have

the following relation:

P (Embed(v)) = Embed(det(P )v),

which we also prove in Appendix A.

Consistency of the Output Across Spaces The function

P−1 is implemented depending on the specific problem

and is a crucial step of our learning procedure. It is par-

ticularly important when the output of a CGENN has a

physical interpretation. Suppose that the learning task is to

predict the particle’s position in an n-body problem (Sec-

tion 5.2). Then, if no change of coordinates is applied,

the output position is expressed in the basis {ξi}, but the

input in the basis {ei}. We harmonise the two by apply-

ing P−1 : Cl(V,∆) → Cl(V,M), the extension of P−1,

which we define analogously to P . For any:

x = x(0) ·1+x(1) ·ξ1+x
(2) ·ξ2+ · · ·+x

(12...n)ξ1ξ2 . . . ξn,

P−1(x) = x(0) · 1 + x(1) · e1 + x(2) · e2 + . . .

+ x(12...n)e1e2 . . . en.

For example, if the output of the network is:

• a point y ∈ V (e.g. in 5.2), then P−1 takes the form

of y 7→ P−1y, similarly to the classical eigendecom-

position.

• a volume, i.e. the top grade of the algebra (e.g. in

5.1), then P−1 maps y 7→ det(P−1)y = 1
det(P )y.

This is because det(P ) is precisely how much an

n−dimensional volume in an n−dimensional space is

deformed (‘stretched’) by the linear transformation P .

A proof of this is the same as for P .

• a scalar inK , then P−1 is the identity function, as the

basis for scalars is the algebra’s identity 1.

• a probability (e.g. in 5.3), then the conversion is the

identity function, as in this case, the metric serves sim-

ply as a computational aid for the models’ layers and

there is no inherent physical meaning.

Equivariance Linear projections are generally not equiv-

ariant. This means that our change of basis via P is also not

equivariant, as we allow for non-diagonal metric matrices

during optimization. In practice, we initialize the CGENNs

to be equivariant, including the input and output transfor-

mations. We start with Euclidean or Minkowski pseudo-

metrics and use these as an initial prior. However, we relax

this condition and break equivariance during later stages of

optimization. It is important to note that internally, the la-

tent representations remain equivariant if we disregard the

change of basis projections.

4.3. Categorical Construction of Clifford Algebras

Clifford algebras have a categorical construction, which

justifies and motivates the construction of Algorithm 1. See

Appendix B for background on category theory. A Clifford

algebraCl(V,Q) is a pair (A, i) withA a unital associative

algebra over K and i : V → Cl(V,Q) a linear map with

i(v)2 = Q(v) · 1A for all v ∈ V satisfying the following

universal property: given any unital associative algebra A

over K and any linear map:

j : V → A such that j(v)2 = Q(v) · 1A for all v ∈ V,

there is a unique algebra homomorphism f : Cl(V,Q) →
A such that:

f ◦ i = j,

i.e. j factors through Cl(V,Q) with i.
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Hence, one can indeed see Cl as a functor VectQK →
AssocA that maps objects (V,Q) to Cl(V,Q) and mor-

phisms (linear maps that preserve quadratic forms) f :
(V,Q)→ (W,R) to maps:

f := Cl(f) : Cl(V,Q)→ Cl(W,R).

Functoriality is guaranteed by the universal property of

Clifford algebras, which ensures that maps between vec-

tor spaces preserving quadratic forms extend uniquely to

algebra homomorphisms between the respective Clifford

algebras. Therefore, the maps P and P−1 in Algorithm 1

are precisely the extensions of the linear maps P and P−1

given by the functor Cl. Furthermore, our implementation

of P−1 uses the fact that P−1 = P −1 as per Section B.1

5. Experiments

In Sections 5.1, 5.2, and 5.3, we conduct experiments with

signed volumes, n-body problems, and top tagging, respec-

tively. Additionally, in Section 5.4, we explore the effect

of activating metric learning at different stages of training

and empirically examine its impact on optimization. In all

experiments, we use the default configurations of the base-

line CGENN (Ruhe et al., 2023) without any hyperparame-

ter tuning to ensure an equitable comparison.

5.1. O(3) Experiment: Signed Volumes

The signed volumes experiment involves a synthetic

dataset of random 3D tetrahedra. The network processes

point clouds, aiming to predict covariant scalar quanti-

ties (pseudo-scalars) under O(3) transformations. The pre-

diction accuracy is measured by the mean-squared error

(MSE) between the network’s output and the actual signed

volumes of the tetrahedra.

We compare CGENNs with a learnable metric against con-

ventional CGENNs. Note that in this experiment, metric

learning is initialised from the beginning of training along-

side all other model parameters. Other baselines include

a normal MLP, an MLP-based version of E(n) Equivari-

ant Graph Neural Networks (E(n)-GNNs) (Satorras et al.,

2021) (this architecture leverages artificial neural networks

to update positions with scalar multiplication), Vector Neu-

rons (VNs) (Deng et al., 2021) and Geometric Vector Per-

ceptrons (GVPs) (Jing et al., 2020). We train our model for

130, 000 steps, the same as the original CGENN. We calcu-

late the mean and standard deviation with 4 different seeds.

The experimental results, as presented in Table 1, indicate

that the learnable metric improves the performance of the

original CGENN model. It also outperforms all other base-

lines. VNs and GVPs perform similarly with an MSE

slightly lower than 10−1, while MLPs achieve better per-

formance as the number of data samples increases, reach-

ing MSE losses of around 10−3. Hence, all other baselines

result in MSE losses that are orders of magnitude higher

than those of CGENNs.

Table 1. Test MSE loss for the synthetic O(3) signed volume ex-

periments.

MSE

Model n = 1000 n = 65536

CGENN 1.1× 10
−5 ± 1.1× 10

−7
1.8× 10

−6 ± 1.1× 10
−7

Ours 8.3× 10
−8 ± 1.0× 10

−8
5.1× 10

−8 ± 1.0× 10
−8

5.2. E(3) Experiment: n-body

The n-body experiment, as introduced by (Kipf et al.,

2018), sets a benchmark for assessing equivariant neural

networks in the domain of physical system simulation, a

topic further researched by (Han et al., 2022). This exper-

iment challenges neural architectures to predict the three-

dimensional paths of n (we use n = 5) charged particles,

thereby evaluating their ability to accurately model dynam-

ical systems.

We compare our model against the original CGENN,

lacking metric learning features, as well as steer-

able SE(3)-Transformers (Fuchs et al., 2020), Tensor

Field Networks (TFNs) (Thomas et al., 2018), Neu-

ral Message Passing for Quantum Chemistry Net-

works (NMPs) (Gilmer et al., 2017), Radial Fields

(Köhler et al., 2020), E(n)-GNNs (Satorras et al., 2021),

and Steerable E(3) Equivariant Graph Neural Net-

works (SEGNNs) (Brandstetter et al., 2022).

For this experiment, we train the network for 10, 000 steps

over 6 different seeds to obtain the mean and standard devi-

ation. We activate the metric learning at 90% of the training

duration. We further analyse the effect of activating metric

learning earlier during the training process in Section 5.4.

The findings, as detailed in Table 2, indicate an improve-

ment of our metric-augmented CGENN over the baseline

CGENN and other alternative methods. It is worth not-

ing that the CGENN presented in (Ruhe et al., 2023) was

trained for 131,072 steps, significantly longer than ours,

and nonetheless, we achieve a better performance.

5.3. O(1, 3) Experiment: Top Tagging

Jet tagging is a technique in collider physics for cate-

gorizing the high-energy jets spawned by particle colli-

sions, such as those detected by the ATLAS detector at

CERN (Aad et al., 2008; Kogler et al., 2019). In particu-

lar, the experiment presented here, in line with (Ruhe et al.,

2023), focuses on jet tagging for top quarks, the heavi-

est particles within the Standard Model (Incandela et al.,

2009). Our evaluation is based on the benchmark provided

by (Kasieczka et al., 2019).
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Table 2. Test MSE loss on the n-body experiment for different

methods.
Method MSE (×10−3)

SE(3)-Tr 24.4
TFN 24.4
NMP 10.7
Radial Field 10.4
E(n)-GNN 7.0
SEGNN 4.3
CGENN 3.9± 0.1
Ours 3.369± 0.0436

We compare CGENN with metric learning against the orig-

inal CGENN model with a fixed Minkowski pseudo-metric.

Due to limited computational resources, we train both mod-

els for 30% of the training time reported in (Ruhe et al.,

2023) (100,000 steps, which took 32 hours using 4 A100

GPUs and an effective batch size of 32, as opposed to

the CGENN in (Ruhe et al., 2023), which was trained for

331,126 steps). The metric for our model is activated 80%
into training. Both models are run with default hyperparam-

eters as indicated by (Ruhe et al., 2023). At least under a

constrained computational budget, our method outperforms

the original CGENN as shown in Table 3, which is in line

with all previous experiments as discussed in Section 5.1

and Section 5.2.

Table 3. Test accuracy on the top-tagging experiment.

Model Accuracy

CGENN 0.8994

Ours 0.9102

5.4. Metric Activation

To identify the optimal timing for metric activation in

CGENNs, we explore different activation regimes. Our re-

sults indicate that the timing of metric activation plays a

crucial role in the efficiency of learning. The challenge in

metric learning within CGENNs lies in the complexity of

optimising a single metric that affects every layer of the net-

work at once. Therefore, early activation might overcompli-

cate training. Conversely, late activation could function as

a fine-tuning stage, making the optimisation problem more

tractable.

Table 4 illustrates the outcomes of the n-body experiment,

comparing the final MSE loss across three distinct metric

activation timings. The results reveal that late activation,

occurring at 90% of the training duration, leads to the low-

est loss.

Table 4. n-body (n = 5) test MSE across different metric activa-

tion timings.

Metric Activation Timing MSE (×10−3)

Early (30% of Training) 3.554± 0.2051
Mid-Training (60% of Training) 3.489± 0.1190
Late (90% of Training) 3.369± 0.0436

5.5. Reproducibility and Hyperparameters

R is always generated from a uniform distribution with

all entries sampled from the interval [0, 1). Depending on

the experiment, the values for ǫ and Q are set as follows:

ǫ = 10−3 and Q = diag(1, 1, 1) for the E(3) n-body

and O(3) signed volume experiments, and ǫ = 10−7 and

Q = diag(1,−1,−1,−1)3 for O(1, 3) top tagging. The

choice of Q is in line with (Ruhe et al., 2023).

6. Conclusion & Future Work

Our research enhances CGENNs by integrating metric

learning into the original model in a geometrically mean-

ingful way. Although, as suggested by (Ruhe et al., 2023),

the CGENN formulation generalizes to orthogonal groups

and preserves equivariance regardless of the metric signa-

ture, previous work fixed the metric as a predefined net-

work configuration hyperparameter.

In this work, instead of fixing a metric from the start, we

allow the model to learn a non-diagonal metric matrix as

part of the optimization process in a data-driven fashion

via gradient descent. By leveraging eigenvalue decompo-

sition to perform an internal change of basis, we use the

eigenvectors to map different types of data to and from the

internal neural representation back to data space, ensuring

consistency of both input and output across spaces with-

out requiring explicit modification of the original CGENN

network layers, which in principle only support diagonal

metrics. Additionally, we employ category theory to moti-

vate the theoretical soundness of the approach by viewing

Clifford algebras as categorical constructions.

We validate our method empirically against different tasks,

including n-body, signed volume, and top-tagging experi-

ments. We find that enabling metric learning does indeed

lead to improved performance. We also analyze the effect

of making the metric learnable at different stages of the

optimization process, and we empirically find that doing so

towards the end of training better guarantees stable training

dynamics and generally leads to better final model perfor-

mance.

Future research possibilities include applying this approach

3This is equivalent to the Minkowski pseudo-metric discussed
in Section 3, but using a different sign convention.
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to more complex datasets. Similar to (Ruhe et al., 2023),

our evaluation did not encompass out-of-distribution tests.

Finally, exploring the potential of learning a different met-

ric at each layer may also be an interesting research avenue,

but care should be taken in terms of optimization dynamics

and to avoid overfitting.
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P. Geometric deep learning: Grids, groups, graphs,

geodesics, and gauges, 2021.

Danihelka, I., Wayne, G., Uria, B., Kalchbrenner, N.,

and Graves, A. Associative long short-term mem-

ory. In Balcan, M. F. and Weinberger, K. Q. (eds.),

Proceedings of The 33rd International Conference

on Machine Learning, volume 48 of Proceedings of

Machine Learning Research, pp. 1986–1994, New

York, New York, USA, 20–22 Jun 2016. PMLR. URL

https://proceedings.mlr.press/v48/danihelka16.html

Darling, R. W. R. Differential Forms and Connections.

Cambridge University Press, 1994.

de Haan, P., Cohen, T., and Welling, M. Natural graph

networks, 2020.

Deng, C., Litany, O., Duan, Y., Poulenard, A., Tagliasac-

chi, A., and Guibas, L. Vector neurons: a general frame-

work for so(3)-equivariant networks. arXiv preprint

arXiv:2104.12229, 2021.

Dorst, L., Fontijne, D., and Mann, S. Geometric Algebra

for Computer Science: An Object-Oriented Approach to

Geometry. Morgan Kaufmann Publishers Inc., San Fran-

cisco, CA, USA, 2009. ISBN 9780080553108.
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curvature representations in product spaces. In Interna-

tional conference on learning representations, 2018.

Han, J., Rong, Y., Xu, T., and Huang, W. Geometrically

equivariant graph neural networks: A survey. arXiv

preprint arXiv:2202.07230, 2022.

Hansen, J. and Gebhart, T. Sheaf neural networks, 2020.

URL https://arxiv.org/abs/2012.06333.

Hirose, A. and Yoshida, S. Generalization characteristics

of complex-valued feedforward neural networks in rela-

tion to signal coherence. IEEE Transactions on Neural

Networks and Learning Systems, 23(4):541–551, 2012.

doi: 10.1109/TNNLS.2012.2183613.

Incandela, J. R., Quadt, A., Wagner, W., and Wicke, D. Sta-

tus and prospects of top-quark physics. Progress in Par-

ticle and Nuclear Physics, 63(2):239–292, 2009.

Jing, B., Eismann, S., Suriana, P., Townshend, R. J. L., and

Dror, R. Learning from protein structure with geomet-

ric vector perceptrons. In International Conference on

Learning Representations, 2020.

Kasieczka, G., Plehn, T., Thompson, J., and Russel, M.

Top quark tagging reference dataset, March 2019. URL

https://doi.org/10.5281/zenodo.2603256.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel,

R. Neural relational inference for interacting systems. In

International conference on machine learning, pp. 2688–

2697. PMLR, 2018.

Kogler, R., Nachman, B., Schmidt, A., Asquith, L.,

Winkels, E., Campanelli, M., Delitzsch, C., Harris, P.,

Hinzmann, A., Kar, D., et al. Jet substructure at the

large hadron collider. Reviews of Modern Physics, 91

(4):045003, 2019.
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A. Proofs for Section 4.2

A.1. Proof 1

We wish to prove that, if P is an orthogonal transformation, then the algebra structure is preserved, i.e.

vw = −wv ⇐⇒ PvPw = −PwPv

z2 = (Pz)2

for any orthogonal v, w ∈ V and any z ∈ V . Because P : (V,M) → (V,∆), z2 is shorthand for M(z) = zTMz and

(Pz)2 for ∆(Pz) = (Pz)T∆Pz.

Direct Proof

[⇒] Assume vw = −wv. We show that PvPw = −PwPv by evaluating each side of the equation.

PvPw = 〈Pv, Pw〉 + Pv ∧ Pw = 〈v, w〉 + det(P ) v ∧ w = det(P ) v ∧w

−PwPv = −(〈Pw, Pv〉+ Pw ∧ Pv) = −〈v, w〉 − det(P )w ∧ v = det(P ) v ∧ w

where we use the fact that P is orthogonal, i.e. 〈Pv, Pw〉 = 〈v, w〉, v, w are orthogonal, i.e. 〈v, w〉 = 0, and that for any

linear transformationA, Av ∧ Aw = det(A)v ∧ w.

[⇐] assume PvPw = −PwPv. Then, because v, w are orthogonal, we get the identity

det(P )v ∧w = − det(P )w ∧ v ⇒ v ∧ w = −w ∧ v

Because 0 6= det(P ) ∈ {±1}, as P is orthogonal. However, with the fact that 0 = 〈Pv, Pw〉 = 〈v, w〉 the LHS of the last

equality is vw, and the RHS is −wv, proving the right-left direction of the ‘only if’ part of the proposition.

Now, z2 =M(z) = zTMz = (Pz)T∆Pz = ∆(z) = (Pz)2

Categorical Proof

Because P : (V,M) → (V,∆) is a vector space isomorphism that preserves quadratic forms, i.e. (V,M) ∼= (V,∆), and

Cl is a functor, we get Cl(V,M) ∼= Cl(V,∆) (Appendix B.1) via the unique extension P = Cl(P ).

A.2. Proof 2

We wish to prove

P (Embed(v)) = Embed(det(P )v)

By direct calculation:

P (Embed(v)) = P (v · e1e2 . . . en) = v · ξ1ξ2 . . . ξn

= v · (Pe1)(Pe2) . . . (Pen)

= det(P )v · e1e2 . . . en = Embed(det(P )v)

B. Background on Category Theory

Here, we provide some relevant background on Category Theory to support the discussion in Section 4.3.

B.1. Basics of Category Theory

Category Theory (CT) is, essentially, the study of compositionality: the study of complex systems through their simpler

parts. A key difference with set theory is that, for example, we are not allowed to inspect the internal structure of the

objects. Rather, we are interested in the relationships between them.

Definition B.1 (Category). A category C consists of:

• a collection ob(C) of objects

12
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• for each A,B ∈ ob(C) a collection C(A,B) of maps or arrows or morphisms from A to B

• for each A,B,C ∈ ob(C), a function

C(A,B)× C(B,C)→ C(A,C)

(g, f) 7→ g ◦ f

called composition

• for each A ∈ C an element 1A ∈ C(A,A), the identity on A.

Satisfying the following axioms:

• associativity: for each f ∈ C(A,B), g ∈ C(B,C), h ∈ C(C,D): (h ◦ g) ◦ f = h ◦ (g ◦ f)

• identity laws: for each f ∈ C(A,B), f ◦ 1A = f = 1B ◦ f

We are rather informal on the word “collection” when referring to the objects and morphisms, as they are not necessarily

sets. The reader interested in foundational issues in Mathematics can consult any Axiomatic Set Theory book, such as

(Takeuti & Zaring, 1973).

Examples of Categories To make our definition more concrete, we present some examples categories.

1. The category Set is the category with sets as objects and functions between sets as morphisms.

2. The category Grp is the category with groups as objects and group homomorphisms as morphisms.

3. The category Top is the category with topological spaces as objects and continuous maps as morphisms.

4. Let k be a field. The category Vectk is the category with vector spaces over k as objects and linear maps as morphisms.

5. The category 1 has a single object (denoted ∗) and at least one morphisms (the identity).

The main categories we are concerned with in this work are:

• The category VectQK whose objects are vector spaces over a field K equipped with a quadratic form and whose

morphisms are linear maps preserving the quadratic forms.

• The category AssocA whose objects are unital associative algebras and whose morphisms are algebra homomor-

phisms.

B.2. Functors

If sets have functions relating them, categories are related by functors. Intuitively, a functor maps objects to objects and

morphisms to morphisms in a compatible way.

Definition B.2 (Functor). Let A,B be categories. A functor F : A → B consists of:

• A function ob(A)→ ob(B), written as A 7→ F (A)

• For each A,A′ ∈ ob(A), a functionA(A,A′)→ B(F (A), F (A′)) written as f 7→ F (f)

satisfying the following axioms:

• F (f ′ ◦ f) = F (f ′) ◦ F (f) whenever f, f ′ are composable in A.

• F (1A) = 1F (A) wheneverA ∈ ob(A).

13



Metric Learning for Clifford Group Equivariant Neural Networks

Examples of functors To make our definition more concrete, we present some examples of functors.

1. The forgetful functors ‘disregard’ some properties of the objects they are mapping. For example, we can construct

a forgetful functor from Grp to Set by mapping a group to its underlying set, and a group homomorphism to the

corresponding map between sets.

2. The free functors are ‘adjoint’ to forgetful functors. They construct objects and maps in the target category with

elements that, a priori, do not have those properties. For example, one can construct a free functor from Set to Mon,

the category of monoids: given a set S, its image would be the monoid consisting of formal expressions of words such

as xyz3 (with x, y, z ∈ S). Given a function f : S → S′, its image will be the monoid homomorphism which maps

words in the alphabet given by S to words in the corresponding alphabet given by f(S).

3. The fundamental groupπ is a functor from Top* (pointed topological spaces) to Grp, mapping topological spaces with

a base-point to the corresponding fundamental group at that point, and a continuous map to a group homomorphism

as described in any topology textbook.

4. T , the tangent space, is a functor from the category of smooth manifolds with base-point Man* to Vect, which maps

a smooth manifold with base-point to its corresponding tangent space, and a smooth map between manifolds to the

corresponding tangent (linear) map: the differential. Therefore, the chain rule for differentiable functions is just an

instance of the functoriality of the tangent map.

Definition B.3 (Isomorphism). A map f : A→ B in a category C is an isomorphism if there exists a map g : B → A in C
such that gf = 1A and fg = 1B . g is called the inverse of f and A and B are said to be isomorphic, denotedA ∼= B.

Intuitively, two objects are isomorphic if they are essentially the same, i.e. if they share the same fundamental properties

in the context of the category they are in.

If F : A → B is a functor and A ∈ ob(A), B ∈ ob(B) with A ∼= B, then it is easy to see that F (A) ∼= F (B). Further,

F (f−1) = F (f)−1
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