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Abstract 
The complicated process of neuronal development is initiated early in life, with the genetic mechanisms governing this process 
yet to be fully elucidated. Single-cell RNA sequencing (scRNA-seq) is a potent instrument for pinpointing biomarkers that exhibit 
differential expression across various cell types and developmental stages. By employing scRNA-seq on human embryonic stem cells, 
we aim to identify differentially expressed genes (DEGs) crucial for early-stage neuronal development. Our focus extends beyond 
simply identifying DEGs. We strive to investigate the functional roles of these genes through enrichment analysis and construct gene 
regulatory networks to understand their interactions. Ultimately, this comprehensive approach aspires to illuminate the molecular 
mechanisms and transcriptional dynamics governing early human brain development. By uncovering potential links between these 
DEGs and intelligence, mental disorders, and neurodevelopmental disorders, we hope to shed light on human neurological health and 
disease. In this study, we have used scRNA-seq to identify DEGs involved in early-stage neuronal development in hESCs. The scRNA-seq 
data, collected on days 26 (D26) and 54 (D54), of the in vitro differentiation of hESCs to neurons were analyzed. Our analysis identified 
539 DEGs between D26 and D54. Functional enrichment of those DEG biomarkers indicated that the up-regulated DEGs participated 
in neurogenesis, while the down-regulated DEGs were linked to synapse regulation. The Reactome pathway analysis revealed that 
down-regulated DEGs were involved in the interactions between proteins located in synapse pathways. We also discovered interactions 
between DEGs and miRNA, transcriptional factors (TFs) and DEGs, and between TF and miRNA. Our study identified 20 significant 
transcription factors, shedding light on early brain development genetics. The identified DEGs and gene regulatory networks are 
valuable resources for future research into human brain development and neurodevelopmental disorders. 
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INTRODUCTION 
Genome-wide association studies have identified numerous sin-
gle nucleotide polymorphisms linked to complex traits, including 
diseases, in humans [1]. Single-cell genomics and transcriptomics 
are the most robust and widely used tools to investigate single-cell 
biology at a genome-wide level [2]. Single-cell RNA-seq (scRNA-
seq) allows the instantaneous and impartial estimation of gene 
expressions in cellular structures and particular cell categories 
[3, 4] and is exceptionally well-placed to explore uncommon 
cell categories [5, 6]. The brain and other organs in the central 
nervous system are composed of various cells, but many stay to 
be discovered due to the brain’s vast complexity. The complexity 
in the brain and other tissues is established during embryoge-
nesis. Human embryogenesis is related to the fascinating and 
diligent changes in cellular conditions, and the investigation of 
the molecular consequence of the genetic modifications in earlier 
human brain development has been greatly enhanced by scRNA-
seq technology [7]. 

Human embryonic stem cells (hESCs) are pluripotent stem 
cells obtained from human embryos, which can differentiate 
into various cell types, including neurons. Researchers identi-
fied transcription factors (TFs) associated with cell states and 
state alterations in cell clusters and studied the lineage trees 
using hESCs [8, 9]. Studies involving hESCs have explored their 
role in brain development. When hESCs are introduced into the 
brain ventricles of embryonic mice, they can undergo differen-
tiation to form functional neural lineages, contributing to brain 
development [10]. hESCs have been studied as a model for neu-
ral development and neurological diseases, including early-onset 
neurological disorders [11]. Although there is a limited number of 
clinical trials involving the use of embryonic or fetal stem cells for 
neurological disorder treatments, preclinical investigations using 
disease models have generated substantial evidence affirming the 
viability and effectiveness of stem cell therapies [12, 13]. Scien-
tists have discovered that induced pluripotent stem cells, which 
are generated from a patient’s own cells, can be differentiated 
into various neuron types, such as dopaminergic neurons. This 
breakthrough has allowed for the study and treatment of genetic 
diseases, particularly neurological disorders [14]. Clinical trials 
of the application of stem cells as a therapeutic approach to 
tackle various neurological disorders, encompassing conditions 
such as injuries affecting the brain, spinal cord and peripheral 
nerves, are now being performed [15]. Also, stem cell-derived 
motor neurons have aided in the discovery of amyotrophic lateral 
sclerosis drugs [16]. These investigations underscore the potential 
of human embryonic stem cells for researching and addressing 
neurological disorders. 

Studying early-stage neuron development during human 
embryonic brain expansion is vital for comprehending human 
brain development. Numerous studies have employed scRNA-
seq to examine variations in gene expression within both hESCs 
and their differentiated derivatives. A scRNA-seq study analysed 
a high-efficiency hESC-endothelial cell induction system and 
identified differentially expressed genes (DEGs) involved in 
endothelial cell differentiation [17]. A recent study used scRNA-
seq to examine the developmental path of cardiomyocytes 
derived from human pluripotent stem cells in engineered 
tissues, uncovering DEGs related to cardiac differentiation [18]. 
Another study used scRNA-seq to explore the transcriptional 
heterogeneity and expression alterations in limbal stem cells 
originating from hESCs [19]. Transcriptome analysis of hESC-
derived lineage-specific progenitors by scRNA-seq identified novel 

regulators of hESC differentiation to definitive endoderm [20]. 
Another study found that different hESC lines exhibit distinct 
gene expression patterns, with these DEGs significantly enriched 
in developmental pathways [21]. A recent scRNA-seq study 
mapped the early differentiation stages of hESCs and identified 
the dynamic expression patterns and potential regulatory roles 
of long non-coding RNAs [22]. Another new study presents 
a comprehensive scRNA-seq analysis of hESC-derived retinal 
organoids across five developmental time points, revealing nine 
distinct cell populations and novel insights into photoreceptor 
genesis and cell–cell interactions within the developing human 
retina [23]. These studies exemplify scRNA-seq’s capacity for 
discerning crucial DEGs in hESC differentiation, elucidating the 
underlying molecular mechanisms of these processes. 

ScRNA-seq offers an unprecedented window into the dynamic 
world of hESCs as they differentiate into nascent neurons. We 
can illuminate the molecular programs producing early human 
brain development by pinpointing DEGs during this critical phase. 
Delving deeper, we can decipher the functional roles of these DEGs 
by exploring their enrichment in specific biological pathways and 
uncovering the intricate gene regulatory networks in which they 
participate. This knowledge may provide clues linking these genes 
to the foundation of human intelligence, shedding light on the 
origins of mental disorders and neurodevelopmental conditions. 
Ultimately, this investigation aspires to provide a comprehensive 
understanding of the molecular mechanisms and transcriptional 
dynamics governing the genesis of the human brain. However, 
there is still a significant gap in understanding the DEGs that lead 
to the early stages of hESC differentiation during brain develop-
ment. This study addresses this gap by employing bioinformatics 
tools to pinpoint DEGs at two critical time points, day 26 (D26) and 
day 54 (D54), of neuronal differentiation from hESCs using scRNA-
seq data. This study aims to first identify DEGs during early brain 
developmental stages, with the goal of revealing their functional 
enrichment of important and relevant pathways or functions, 
such as neurogenesis and synapse regulation or synapse-related 
interactions. Notably, these DEGs are investigated to highlight 
the enrichments in terms of intelligence, mental disorders, and 
neurodevelopmental disorders, providing valuable insights into 
potential connections between early brain development and cog-
nitive outcomes. Furthermore, we explored the interplay between 
DEGs, microRNAs (miRNAs), and TFs to reveal their regulatory 
footprints on early neuronal development. Co-expression analysis 
is conducted to further illuminate the activity of TFs within the 
cerebellum region of the brain, adding a layer of specificity to 
the understanding of early neural development. This research is 
encapsulated in the data processing pipeline depicted in Figure 1. 
The findings presented here commend the prowess of scRNA-
seq and beckon toward a deeper comprehension of the enigmatic 
world of early human brain development. 

There are several advantages of this study. For example, we 
have used scRNA-seq to identify DEGs involved in early-stage 
neuronal development in hESCs, which is a powerful and unbi-
ased method to capture the transcriptional heterogeneity and 
dynamics of single cells. We also employed three different sta-
tistical methods (MAST, Limma and DESeq2) to identify DEGs, 
which can reduce technical limitations and increase the accuracy 
of the results. Moreover, we have performed various downstream 
analyses to reveal the functional enrichment, gene regulatory 
networks, protein–protein interactions and transcription factor 
enrichment of the DEGs, which can provide valuable insights into 
the molecular mechanisms and biological implications of early
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Figure 1. A schematic workflow for analyzing DEGs using scRNA-seq data in this study. The quality assessment of the data was first performed 
using FastQC. Next, the data was mapped to the human reference genome (hg38) using STAR. After mapping, the data was preprocessed using Seurat 
v3.0 to remove technical artifacts, normalize expression values, and identify highly variable genes. DEGs were performed to identify genes that were 
differentially expressed between the two-time points, D26 and D54. Finally, different downstream analyses were performed to gain a more reasonable 
interpretation of the biological functions of the genes that are expressed differently. 

brain development. However, our study has several limitations. 
For instance, we have only used two-time points (D26 and D54) to 
study early brain development, which may miss some important 
transitions and intermediate states of neuronal differentiation. 
Also, we did not perform any experimental validation or func-
tional assays to confirm the roles of the DEGs, miRNAs and 
TFs in early brain development, which may limit the reliability 
and applicability of the findings. Furthermore, this study did 
not compare the results with other datasets or models of early 
brain development, which may overlook some common or specific 
features and potential sources of variation. 

METHODS AND MATERIALS 
scRNA-seq data collection and preprocessing 
Openly accessible scRNA data of D26 (340 cells) and D54 (422 cells) 
profiled by SmatSeq2 were retrieved from the NCBI Gene Expres-
sion Omnibus (GSE86982). The SRR identities of all samples from 
the two-time points are available in Table S1, see Supplementary 
Data are available online at http://bib.oxfordjournals.org/. The 
quality of the downloaded data was assessed using FastQC and 
the read alignment to the human genome reference (hg38) was 
done by STAR 2.7.8a. Cells with fewer than 1 × 106 uniquely 
mapped reads and lower than 60% alignment rate were discarded 
from the analysis. Furthermore, cells with fewer than 3500 genes 

were removed. The expression levels of the filtered samples were 
normalized to counts per million. 

DEGs identification 
We used a single-cell toolkit to pinpoint the DEG between D26 and 
D54 time points. The expression matrix was imported and con-
verted into a Seurat object using the function ‘CreateSeuratObject’ 
from the Seurat package (Seurat v3.0). Then, quality control, 
normalization, feature selection, and clustering of marker genes 
of cells from scRNA-seq data were performed. We filtered out 
the cells with unique feature counts exceeding 10 000 or falling 
below 200 (Figure S1, see Supplementary Data are available 
online at http://bib.oxfordjournals.org/.). We also removed cells 
with mitochondrial and ribosomal counts greater than 20%. The 
‘LogNormalize’ global-scaling normalization method was used to 
standardise individual cells’ feature expression measurements. 
Then, selection.method = ‘vst’ was used to find feature variables. 
Each gene’s expression level was normalized by considering 
the total number of unique molecular identifiers (UMI) within 
each cell, followed by applying a natural logarithm to the UMI 
counts. Finally, we used three methods, MAST [24], limma [25], 
and DESeq2 [26], to remove the technical limitation of a single 
method to identify DEGs between D26 and D54. The thresholds for 
the final DEG set were FDR-corrected P-value <0.05 and absolute 
log2 fold change value >1.5.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/3/bbae230/7670713 by guest on 17 D

ecem
ber 2024

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae230#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae230#supplementary-data


4 | Alamin et al.

Gene annotation and functional enrichment 
analysis 
Gene enrichment analysis of the DEGs was conducted using 
Metascape [27] with the default setting and clusterProfiler 4.0 [28]. 
Also, the protein–protein integration (PPI) network, DisGeNET, Cell 
Type Signatures, Transcription Factor Targets and transcriptional 
regulatory interaction network analysis were conducted using 
Metascape [27]. 

PPI and gene regulatory network analysis 
We relied on the STRING [29] protein interactome database to 
facilitate the PPI network analysis. We focused on identifying 
specific protein subnetworks enriched with DEGs. Following this, 
we created a PPI network using the DEGs we identified in our 
study. 

Network Analyst [30] executed the DEG–miRNA, TF-DEGs and 
TF-miRNAs interaction network analyses. For Network Analyst, 
we utilized data from the miRTarBase [31] and  TarBase [32] for  
DEG–miRNA analysis, ENCODE [33] for TF-DEGs and RegNetwork 
[34] for TF-miRNAs analysis. This integrated approach allows 
us to construct comprehensive and biologically relevant DEG– 
miRNA, TF-DEGs and TF-miRNAs interaction networks, facilitat-
ing a deeper understanding of regulatory mechanisms in our 
study. 

Transcription factor enrichment analysis 
The ChEA3 tool [35] was utilized for deciphering the TFs responsi-
ble for observed gene expression alterations. The identified DEGs 
were supplied as the input for the transcription factor enrichment 
analysis in ChEA3. Subsequently, ChEA3 compared the discrete 
query gene sets with extensive TF target gene sets sourced 
from diverse ’omics’ datasets, utilizing Fisher’s Exact Test with a 
reference size of 20 000 to identify TFs most closely linked to the 
input gene set. The output included enrichment results in tabular 
forms for each library and integration method, along with dynam-
ically generated TF–TF co-regulatory networks based on top 
results. 

RESULTS 
Data description 
We have acquired the transcriptomes of 762 single cells, which 
were profiled using the SmartSeq2 method. These cells origi-
nated from hESCs, and detailed information regarding the data 
generation and protocol can be found in previous studies [8, 9]. 
In the course of neural differentiation at various time intervals, 
targeted progenitor and neuron cells were isolated. These cells 
obtained through in vitro differentiation of hESCs cell lines con-
taining SOX2cit/+ and DCXcit/Y genes were subjected to single-
cell transcriptomic sequencing [9]. In this study, data collected 
on D26 and D54 were used to study the complexity of brain 
development. The average unique mapping rates were 82% and 
73% for D26 and D54 cells, respectively. The average reads for D26 
and D54 were 1 690 245 and 1 273 009, respectively. The average 
unique mappings reads for D26 were 1 391 903 and 967 180 for 
D54. The average multimapped read count for D26 was 79 182 and 
for D54 was 61 822. 

Identification of DEGs between D26 and D54 
Detection of organized transcriptional changes is crucial in 
investigating scRNA-seq data [36]. To assess the transcriptional 
changes between D26 and D54, we used three methods, MAST, 

limma and DESeq2, to remove the technical limitation of a single 
method to identify DEGs and using the criteria of |log_2 FC| greater 
than 1.5 and FDR-corrected P-value less than 0.05. DEG analyses 
using MAST, limma and DESeq2 identified 824, 2753 and 1535 
DEGs, respectively. We used the common 539 DEGs identified by 
all three methods for further analysis in our study (Figure 2A 
and Table S2, see Supplementary Data are available online at 
http://bib.oxfordjournals.org/). Among the 539 DEGs, 348 were 
down-regulated and 191 were up-regulated, as depicted in the 
volcano plot (Figure 2B and Table S2, see Supplementary Data are 
available online at http://bib.oxfordjournals.org/). Hierarchical 
clustering was conducted to visualize the similarities and 
differences in gene expression patterns between the two-time 
points (Figure 3A). To further validate the expression changes of 
DEGs, we randomly selected several DEGs. For example, PDLIM4, 
DLL3, STK33, TMEM200A and GPX7 exhibiting significantly higher 
average gene expression levels at D26 than D54 (Figure 3B). Con-
versely, TIMM17A and NME1 at D54 displayed significantly higher 
average gene expression levels compared with D26 (Figure 3B). 
These findings suggest that these genes have distinct roles at 
different time points during neuron development. Additionally, 
we observed that the distribution of up- and down-regulated 
DEGs at D26 and D54 spanned across all 22 chromosomes of the 
human genome, as illustrated in the Circos plot (Figure 3C). Our 
findings imply extensive transcriptional changes across diverse 
genomic regions. These insights into the differences between D26 
and D54 shed light on key DEGs, particularly those pivotal in early 
neuron development, shaping brain development and poten-
tially influencing neuron differentiation throughout the entire 
process. 

Revealing the timely evolution of gene 
expression profiling through single-cell analysis 
at D26 and D54 
In our study, we thoroughly analyzed gene expression profiles, 
including NEUROD1, EMX2, TBR1, LHX2, POU2F2, and  OTX2, at D26 
and D54, using single-cell analysis (Figure 4). These genes play a 
crucial role in regulating processes like neurogenesis, neuronal 
differentiation, and tissue development. For example, NEUROD1 
encodes the transcription factor protein NEUROD1, which plays 
a pivotal role in controlling gene expression and contributes 
to nervous system development [37]. EMX2, a homeobox gene, 
contributes to the development of the dorsal telencephalon and 
cortical development [38]. 

TBR1, known as T-Box Brain Transcription Factor 1, is clas-
sified as a protein-coding gene. It has been linked to medical 
conditions like intellectual developmental disorder, autism, and 
speech delay (www.genecards.org). POU2F2 encodes the transcrip-
tion factor protein Octamer-Binding Protein 2, which governs gene 
expression and is instrumental in the development of B cells, 
T cells, and neurons (www.genecards.org). OTX2, a homeobox 
gene, plays a vital part in the development of the forebrain 
and midbrain [38]. The differences in DEG expression at D26 
and D54 provide key insights into the timing of gene activity, 
laying the foundation for a more profound comprehension of the 
mechanisms behind the developmental transitions we studied. 
Heatmap results showed a clear difference in gene expression 
levels between the two-time points using the different neuron 
development-related DEGs (Figure S2, see Supplementary Data 
are available online at http://bib.oxfordjournals.org/). These genes 
play a role in regulating processes like neurogenesis, cell differen-
tiation, and tissue development.
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Figure 2. (A) Venn diagram using DEGs identified by MAST, limma and DESeq2. The common 539 DEGs were finally used in this study and (B) Volcano 
plot of the DEGs. Up-regulated, down-regulated and non-significant DEGs are indicated by the legend on the right side of the figure. 

Functional enrichment analysis reveals 
transcriptional changes in neuron development 
The effective gene enrichment terms were selected based on 
an adjusted P-value <0.01, with the top 20 enrichment terms 
presented in Figure 5. Gene enrichment analysis for biological 
process (BP) revealed that the up-regulated DEGs primarily reg-
ulated Neurogenesis. In contrast, the down-regulated DEGs were 
associated with the regulation of synapses (Figure 5A). For molec-
ular function (MF), a few enrichment terms, including actin-
binding, transmembrane receptor protein tyrosine phosphatase 
activity, and transmembrane receptor protein phosphate activity, 
were significantly enriched only for the down-regulated DEGs 
(Figure 5B). Regarding cellular components (CC), the up-regulated 
DEGs were associated with processes such as membrane raft 
and membrane microdomain, cell–cell junction, cell leading edge, 
and cell-substrate junction. In contrast, the down-regulated DEGs 
were enriched in synapse-related terms such as postsynaptic 
membrane, postsynaptic density, asymmetric synapse, and glu-
tamatergic synapse (Figure 5C). Furthermore, PPI at synapses was 
identified as the most significant Reactome pathway associated 
with the down-regulated DEGs. In contrast, no pathways were 
found to be significantly associated with the up-regulated DEGs 
in this study (Figure 5D). 

The relationship between down-regulated DEGs and synapse 
regulation at D54 in human embryonic stem cell development 
is significant for understanding the molecular mechanisms 
underlying neuronal differentiation and synaptic maturation. 
Studies have shown that the down-regulation of specific genes 
can impact synapse formation and function during this critical 
developmental stage. At D54, the down-regulation of certain 
DEGs can influence synaptic development by modulating 
critical pathways involved in synapse regulation. For example, 
the decreased expression of genes associated with synaptic 
plasticity, neurotransmitter release, or dendritic development 
can affect the establishment and maturation of synapses 
in developing neurons [39]. This intricate interplay between 

gene expression changes and synaptic regulation is crucial 
for shaping the connectivity and functionality of neuronal 
networks. 

Moreover, the dysregulation of gene expression patterns at 
D54 can disrupt the intricate balance required for proper synapse 
formation and function, potentially leading to aberrant synaptic 
connectivity and neuronal communication. Understanding 
how specific DEGs influence synapse regulation at this stage 
provides valuable insights into the molecular underpinnings 
of neuronal maturation and the establishment of functional 
neural circuits in human embryonic development [39]. A recent 
study identified groups of DEGs with distinct patterns in up-
regulated and down-regulated genes, where up-regulated DEGs 
were enriched in cell cycle pathways. In contrast, down-regulated 
DEGs were associated with neuronal pathways related to synaptic 
transmission [40]. 

DEGs involved in neurodevelopmental disorders 
We investigated the enrichment analysis in DisGeNET [41], cell 
type signatures [42], transcription factor targets and TRRUST [43]. 
Results showed that intelligence, mental disorders and neurode-
velopmental disorders are the most significantly enriched terms 
in DisGeNET (Figure 6A). Cell Type Signatures analysis showed 
that the top five enrichment terms are related to NEUROTYPE 
(Figure 6B). 

In the context of HNF3 Q6, genes containing the 3 ´-UTR motif 
TGTTTGY exhibit the most notable enrichment among TF tar-
gets (Figure 6C). Research showed that the FOXA1, Forkhead Box 
A1, is a TF involved in embryonic development and protein-
coding genes related to several pathways, including embryonic 
and lineage-specific markers (www.genecards.org). DEGs are reg-
ulated by POU3F2, PAX6, HDAC5, TFAP2C, USF1, REST, ESR2 and 
CREB1 in TRRUST (Figure 6D). The study showed that enrichment 
terms in TRRUST were associated with brain development, dis-
ease, or progression of tumors (Table S3, see Supplementary Data 
are available online at http://bib.oxfordjournals.org/).
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Figure 3. Comprehensive analysis of the identified DEGs. (A) Heatmap illustrating the expression patterns of DEGs, (B) Gene expression of selected DEGs 
at two-time points, and (C) Circos plot depicting the distribution and expression (log2 FC) values of DEGs across the 23 human chromosomes. The purple 
circle indicates DEGs distribution, and the light green represents their expression levels. 

We also investigated the DEG expression in different tissues 
using the GTEx database. Results showed that most of the 
up-regulated DEGs are highly expressed in multiple brain 
tissues, including the hypothalamus, amygdala, putamen, 
hippocampus, cortex, cerebellum and cerebellar hemisphere 
( Figure S3, see Supplementary Data are available online at 
http://bib.oxfordjournals.org/). Although the down-regulated 
DEGs were also expressed in different brain tissues mentioned 
above, the expression levels were relatively low, except in the cere-
bellum and cerebellar hemisphere, compared with up-regulated 

DEGs (Figure S3, see Supplementary Data are available online at 
http://bib.oxfordjournals.org/). 

Functional network discovery through PPI 
analysis 
The PPI network was generated using STRING’s web-based visu-
alization resource [29]. A cutoff value of 900 was employed, and 
this network was constructed based on experimental evidence 
(Figure 7A). Circular nodes received color assignments based on 
their degree within the network. For example, YY1, NTRK2, RBBP7,
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Figure 4. UMAP plot of the selected DEGs. (A-B) UMAP visualization of some selected genes at D26 and D54, respectively. These crucial genes act as 
master regulators, guiding neurogenesis, neuronal differentiation, and tissue development in the complex orchestration of brain formation. 

JUN, GRIN2B and FOXG1 exhibited the highest significance in the 
PPI analysis ( Figure 7A). 

Revealing regulatory cross-talks among DEGs, 
miRNA, and TF interactions using gene 
regulatory networks 
In our gene regulatory network (GRN) analysis, we employed the 
associated DEGs of the transcriptional factors and microRNAs 
responsible for regulating these DEGs at the post-transcriptional 
level. We identified DEG–miRNA interactions using miRTarBase 

bases, and the network is presented in Figure 7B. The circles 
and squares represent the DEGs and miRNA, respectively, in 
the figure (Figure 7B). Colors were assigned to circular nodes 
based on their degree within the network. The node degree 
represents the number of edges connected to it. Nodes with 
higher degrees are regarded as central hubs in the network, 
and we have highlighted their sizes for emphasis. For instance, 
nodes with red coloration, including MYH9, MLLT1, SLC35F6, 
AMD1, REEP3 and OCIAD2, exhibit heightened significance 
(Figure 7B).
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Figure 5. Gene enrichment analyses based on (A) Biological process (BP), (B) Molecular function (MF), (C) Cellular components (CC), and (D) Reactome 
pathway enrichments. Significant enrichment terms were selected based on the adjusted P-value <0.01 and p.adjust.methods = ‘BH’. BH: Benjamini-
Hochberg. 

We also depicted the interaction network involving TF–DEGs. 
This network is visually presented in Figure 7C, where circular 
nodes represent DEGs and diamond-shaped nodes signify TFs. 
Node size within the network corresponds to the node’s degree, 
signifying its connectivity. Notably, genes like TCF3 and ZMIZ1, 
which exhibit a higher degree, are more prominently expressed 
among the DEGs (Figure 7C). Additionally, our analysis highlights 
the prominence of certain transcription factors, such as STAT3 
and AR, as evidenced in the same figure. The resulting TF-miRNA 
interaction network is visually depicted in Figure 7D, with square 
nodes representing miRNAs and diamond-shaped nodes denoting 
TFs. The size of each node in the network reflects its degree, 
indicating the extent of its connectivity. We found that only two 

TFs, ARNT and POU2F1, stand out as more highly connected nodes 
within the network, highlighting their significance in the TF-
miRNA regulatory landscape (Figure 7D). 

Transcription factor enrichment analysis 
In performing TF enrichment analysis, we have used ChEA3, 
which is used to forecast TFs linked to user-provided gene sets. 
To establish potential associations between the input gene set and 
TFs, the Fisher’s Exact Test was employed. We identified the top 20 
TFs in our study (Figure 8A). We have also investigated the TF co-
expression networks to understand better the significance of the 
top-ranked TFs in the broader human transcriptional regulatory 
network. The color choices for network nodes offer extra insights
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Figure 6. Summary of enrichment analysis using the DEGs. (A) DisGeNET, (B) Cell Type Signatures, (C) Transcription Factor Targets, and (D) TRRUST. 

into the tissues or types of tumors where the TFs might be most 
active. Results showed that most of the TFs were active in the 
cerebellum region of the brain ( Figure 8B). 

Comparison of DEG detection methods 
In our comparative analysis, we evaluated our proposed method 
alongside the recently updated DEsingle [44]. DEsingle, an R pack-
age designed for analyzing scRNA-seq data, introduces a novel 
approach using the Zero-Inflated Negative Binomial model [44]. 
This model effectively distinguishes between ‘real’ zeros and 
‘dropout’ zeros in gene expression profiles. Notably, DEsingle out-
performed existing methods in performance validation, demon-
strating its accuracy and utility [44]. Additionally, we explored 
another method called SigEMD [45]. SigEMD is a novel approach 
for analyzing differential gene expression in scRNA-seq data [45]. 
It addresses challenges related to multimodality, zero counts, 
and sparsity by combining data imputation, logistic regression, 
and the nonparametric Earth Mover’s Distance [45]. SigEMD’s 
performance surpasses existing methods in terms of precision, 
sensitivity, and specificity, making it a robust tool for scRNA-seq 
analysis [45]. 

We have identified a total of 822 DEGs, where 576 were up-
regulated and 246 were down-regulated DEGs, determined by the 
DEsingle method (Table S4, see Supplementary Data are available 
online at http://bib.oxfordjournals.org/). Enrichment analysis of 
BP results showed that up-regulated DEGs were enriched in axon 
development, axonogenesis, forebrain development, neuron pro-
jection guidance, regulation of neurogenesis and other processes 
(Figure 9A). On the other hand, down-regulated DEGs are mostly 
enriched in synapse organization, synapse assembly, regulation of 
synapse organization, regulation of synapse structure or activity 
and regulation of synapse assembly (Figure 9A). Enrichment anal-
ysis of MF results showed that only down-regulated DEGs were 
enriched in cell adhesion mediator activity, cell–cell adhesion 
mediator activity, structure constituent of the ribosome and ubiq-
uitin protein ligase binding (Figure 9B). Enrichment analysis of CC 

results showed that up-regulated DEGs were enriched in mem-
brane raft, membrane microdomain, focal adhesion and neuronal 
cell body (Figure 9C). On the other hand, down-regulated DEGs 
are mostly enriched in the synaptic membrane and postsynaptic 
membrane (Figure 9C). 

However, the SigEMD method identified 1196 DEGs in total— 
with distinct GO terms compared with our proposed method 
(Figure 9D-F and Table S5, see Supplementary Data are available 
online at http://bib.oxfordjournals.org/). Notably, SigEMD does 
not categorize DEGs into up- and down-regulated groups. We 
explored BP, MF and CC annotations using all DEGs identified 
by SigEMD for further insights into the molecular mechanisms 
underlying changes in gene expression. Functional profile results 
in the BP showed that DEGs were enriched in the reproductive 
process, regulation of the immune system and immune response 
(Figure 9D). DEGs in the MF were enriched in the transferase 
activity and transmembrane transporter activity (Figure 9E). DEGs 
in the CC were enriched in the transcription regulator activity 
and receptor complex (Figure 9F). The DEGs identified by DEsingle 
exhibited similar biological terms, reinforcing the consistency 
and reliability of our proposed approach. The DEGs identified by 
the SigEMD method with distinct GO terms compared with our 
proposed method. The analysis provides valuable information on 
the functional roles of genes and the biological pathways of their 
products. These findings contribute to our understanding of gene 
expression dynamics in single-cell RNA-seq data. 

DISCUSSION 
Studying neuron development from the early stage of human 
embryonic brain expansion is crucial to understanding human 
brain development. However, the influences of the genetic vari-
ants during the early stage of human brain development using 
the scRNA-seq data from the hESCs have not been exhaustively 
investigated. In this study, we have utilized 762 hESCs cells to 
identify the important DEGs between two time points (D26 and
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Figure 7. Different network plots. (A) PPI network plot, (B) DEGs-miRNAs network plot, (C) TF-DEGs network plot, and (D) TF-miRNA network plot. These 
GRN analyses identified interactions between important biomarkers and their association with miRNAs and TFs. 

D54) to understand the brain complexity at the single-cell level. 
We employed a multi-pronged approach to identify DEGs within 
our scRNA-seq dataset. Leveraging the power of three distinct 
statistical methods, MAST, limma, and DESeq2, we accurately 
scrutinized the gene expression changes across the dataset. To 
ensure the robustness and accuracy of the DEGs for further inves-
tigation, we focused on the common DEGs identified by all three 
methods. Finally, we have used 539 DEGs for the downstream 
analysis in our study. 

We have found that some up-regulated DEG is involved in 
all of the BP, MF and CC processes. For example, NRP1, LHX2 
and KIAA0319 are up-regulated DEGs involved in BP processes. 
Research showed that gene NRP1 (neuropilin 1), expressed in 
neurons, was also found to be expressed in arteries, immune 
cells and numerous different cell types and involved in a range 
of anatomically and functionally various extracellular ligands 
to regulate organ expansion and function [46]. A study showed 
that the function of LHX2, LIM-homeobox 2, in regulatory neu-
ronal against glial fate choice is complex and is an important 
factor for the expansion of retinal Muller glia differentiation [47]. 

A recent investigation showed that LHX2 plays a significant role 
in cell differentiation, cell signaling, tissue-type differentiation, 
and body development [48]. Another up-regulated DEG, KIAA0319, 
determines the movement of the cell, cilia length and mechan-
ical cell-surface contact [49]. Studies showed that micro-RNAs 
play crucial functions in tumor invasion, propagation, and the 
expression of ITGB1, reducing tumor cells’ ability to attack and 
metastasize [50]. 

In contrast, most of the down-regulated DEGs were associated 
with brain development, and some of them played roles in all 
of the BP and CC processes. For example, down-regulated DEG 
ADGRB3 plays a central role in controlling various mechanisms 
of the central nervous system, including synapse creation and 
function, axon regulation and myelination [51]. The structure of 
a neuron helps its functionality inside neural circuits, and the 
neuron starts to move in the direction of the cortical plate during 
embryonic development. The study showed diverse progress of 
cortical neurons and dendrites controlled by the EphA7 [52]. A 
neuron is morphologically complicated and depends deeply on 
its exceptional cytoarchitectural networks, such as axons and
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Figure 8. Transcription factor enrichment analysis results. (A) Bar chart of the top 20 TFs scores from the ENCODE ChIP-seq library, and (B) Network 
using the GTEx TF data and the colored by tissues. 

dendrites, to conduct its functions. Neurons rely on various trans-
portations and expressions of proteins at distinct subcellular 
chambers to retain their morphological arrangement [ 53]. Many 
neurophysiological procedures, such as neuroprotection, expan-
sion of neurons and glial cells, and modulation of synaptic rela-
tions, are influenced by the brain-derived neurotrophic factor 
(BDNF) [54]. Its spatiotemporal expression controls the influences 
of BDNF and its connection with neurotrophic receptor tyrosine 
kinase 2 (NTRK2) and neurodegenerative disorder caused by the 
mutations of BDNF in humans [55, 56]. NTRK3 is crucial to the 
development of the nervous systems, cancer and tumor formation 
and advancement stimulated by the modifications of NTRK3 [57]. 

ADCY1, adenylate cyclase 1, is a neuron-specific protein catalyz-
ing cAMP production and is preferably enriched at the postsynap-
tic viscosity [58]. The calcium and neuronal provocation could 
govern the activity of the ADCY1. Therefore, the regulation of 
neuronal signal transduction and synaptic moldability could be 
directed by the function of ADCY1 [59]. The accurate governance 
of the nervous system process under the dynamism of synapses is 
particularly crucial. The cell adhesion molecules could influence 

the synapse congregation in the brain. A study showed that ErbB4 
stimulates repressive synapse development by cell adhesions and 
is enhanced in interneurons [60]. Synapse creation and neuronal 
expansion could be controlled by the involvement of the LRFN 
family and their extracellular domain [61, 62]. LRFN5, leucine-rich 
repeat and fibronectin type III domain-containing 5 may affect 
both inhibitory and excitatory presynaptic distinction in proxi-
mate neuronal cells. Also, LRFN5 might have a significant role in 
brain growth and procedure [63]. Genes with uniform expression 
levels over the periods could act as targets in an overall mode, 
while some neuron development-associated DEGs expressed in a 
specific time point could serve as specific regulation of neuronal 
development pathways in particular time points in the process of 
human brain development. These results indicate that these DEGs 
are necessary for neuronal development throughout time. 

We have performed a PPI network analysis. The highest 
significant DEGs are involved in the diverse brain development 
pathways. For example, YY1 is a transcription factor that 
regulates cell proliferation, differentiation, and apoptosis [64]. 
YY1 regulates embryonic development, hematopoiesis and cancer
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Figure 9. Gene enrichment and Gene Ontology (GO) analysis results by DEsingle and SigEMD. (A-C) Biological Process (BP), Molecular Function (MF), and 
Cellular Components (CC) results of the DEGs identified by the DEsingle method, respectively. (D-F) BP, MF, and CC results of the DEGs identified by the 
SigEMD method, respectively. This figure provides insights into the functional annotations and cellular localization of the identified DEGs using both 
methods. 

development [ 64]. A recent study suggests that YY1 can be used 
to modulate stem cells as a potential treatment for severe mental 
disorders and cognitive impairments [65]. NTRK2, which encodes 

the neurotrophic tyrosine receptor kinase 2, belongs to the 
neurotrophic tyrosine receptor kinase family. The NTRK2 protein 
acts as a membrane-bound receptor, and upon binding with
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neurotrophins, it phosphorylates itself and activates members 
of the MAPK pathway. Activation of this kinase initiates cell 
differentiation. NTRK2 regulates neurogenesis, synaptogenesis, 
and neuronal plasticity (https://www.genecards.org/). 

A study suggests that genetic variability of NTRK2 is related to 
emotional arousal and the integrity of white matter in the brains 
of healthy young individuals [66]. RBBP7 is a nuclear protein with 
ubiquitous expression, forming a part of a conserved subfamily 
of WD-repeat proteins. It regulates chromatin structure and gene 
expression and is essential for DNA replication, repair and cell 
cycle progression [67]. It has been shown to regulate cell prolif-
eration and histone H3.3 placement during early mouse embryo 
development [67]. JUN is a proto-oncogene encoding a transcrip-
tion factor in the AP-1 family, regulating cell proliferation, differ-
entiation, apoptosis, immune response, inflammation, and cancer 
development (https://www.genecards.org/). GRIN2B encodes the 
GluN2B subunit of NMDA receptors, and the study identified that 
disruption of GRIN2B impairs differentiation in human neurons 
[68]. FOXG1, encoding the forkhead box G1 protein, is required to 
regulate neural stem cell proliferation, differentiation, cerebral 
cortex development and olfactory bulb development [69]. This 
transcription repression factor assumes a vital role in shaping 
the distinct regions of the developing brain and is instrumental 
in forming the telencephalon (https://www.uniprot.org/uniprot/ 
P55316#function). These findings provide valuable insights into 
the multifaceted roles of these genes, with potential implications 
for understanding and treating various health conditions. 

We also found links between different diseases by examin-
ing how they relate through protein interactions, gene-miRNA 
interactions, TF-miRNA interactions and TF-gene interactions. For 
example, the gene MYH9, which shows a strong association with 
miRNAs, encodes a protein known as myosin-9, a subunit of the 
myosin IIA protein [70]. A recent study found that MYH9 is pivotal 
for the survival and upkeep of hematopoietic stem/progenitor 
cells (HSPCs). Its deletion results in diminished HSPC repopula-
tion capacity and elevated apoptosis [71]. The hsa-mir-17-5p is 
a microRNA that regulates cell proliferation, differentiation, and 
apoptosis [72]. A recent study identified that miR-17-5p contained 
exosomal derived from hESCs, which prevents pulmonary fibro-
sis through interaction with thrombospondin-2 [73]. MicroRNA 
hsa-mir-16-5p plays a critical role in regulating gene translation 
by silencing or degrading target mRNAs (https://www.biovendor. 
com/mir-16-5p). Research showed that hsa-mir-16-5p suppresses 
myoblast proliferation, enhances myoblast apoptosis, represses 
myoblast differentiation and facilitates changes in apoptosis-
related gene expression [74]. Studies showed that miR-30b-3p 
has been shown to regulate glucose and lipid metabolism in 
adipocytes and hepatocytes, contributing to the regulation of 
insulin secretion and sensitivity [75]. Hsa-mir-149-3p controls the 
transition from fat cell development to bone cell development in 
mesenchymal stem cells by regulating FTO [76]. 

TFs are key regulators of cellular processes, each with dis-
tinct roles. In our investigation of hESCs, we focused on the 
RE1-silencing transcription factor (REST), which controls gene 
expression by binding to RE1 sites in DNA [77]. REST contributes 
to shaping neuronal development and function and it has also 
been implicated in the pathogenesis of neurological disorders 
such as epilepsy, Alzheimer’s disease and Huntington’s disease 
[77]. JUND, part of the AP-1 transcription factor family, oversees 
vital cellular functions like growth and differentiation and plays 
a role in regulating immune responses, inflammation, and cancer 
development [78]. FOXP2, a transcription factor, controls speech, 
language and nervous system development [79]. It also manages 

neurogenesis, synaptogenesis and neuronal plasticity [79]. MEF2A 
acts as a critical transcription factor and plays an integral part in 
regulating muscle differentiation, hypertrophy and the process of 
regeneration [80]. CTCF stands out for its role in regulating chro-
matin structure and gene expression, encompassing functions 
like genomic imprinting, X-chromosome inactivation and long-
distance chromatin interactions [81]. CBX2, on the other hand, 
directs chromatin architecture, wielding its influence over embry-
onic stem cell differentiation, X-chromosome inactivation and 
heterochromatin formation [82]. TCF12 governs essential cellular 
behaviors, impacting neurogenesis, craniofacial development and 
cancer development. 

Meanwhile, TFAP2A plays a crucial role in activating placental 
genes and repressing the pluripotency gene OCT4, thus orches-
trating the transition from trophoblast specification to depar-
ture from pluripotency [83]. Studies have shown that FOSL1 and 
FOSL2 are key TFs pivotal in orchestrating pluripotency and dif-
ferentiation of human T helper 17 (Th17) cells [84]. GATA2 and 
GATA3 are identified as crucial TFs in the establishment and 
sustenance of hematopoietic systems [85]. GATA2 plays a critical 
role in promoting the proliferation and viability of lineage-specific 
transcription as a dynamic partner of GATA1. In contrast, GATA3 is 
essential for the development of T lymphoid cells and contributes 
to immune regulation [85]. Research showed that TCF7L2 serves 
as a master regulator in the vertebrate brain, governing stage-
specific genetic programs and maintaining a regional transcrip-
tional network throughout embryonic development. It also plays 
a role in the postnatal phase [86]. TCF3 is a vital element within 
the regulatory network of embryonic stem cells. Essentially, it 
facilitates the transmission of development signals from the Wnt 
pathway to the central regulatory network of embryonic stem 
cells, thereby impacting the equilibrium between pluripotency 
and differentiation [87]. 

The novelty of this study is that scRNA-seq data is used to 
pinpoint DEGs at two critical time points, D26 and D54, in hESCs, 
providing a detailed understanding of genetic dynamics during 
early brain development. Another novelty of this study is that it 
performs gene enrichment analysis and reveals functional enrich-
ment in pathways such as neurogenesis and synapse regula-
tion, unraveling the intricate processes that govern early brain 
development. Also, this study explores the enrichment analy-
sis of the DEGs in terms of intelligence, mental disorders, and 
neurodevelopmental disorders, offering valuable insights into the 
intersection of early brain development and cognitive outcomes. 
Furthermore, this study explores interactions among DEGs, miR-
NAs and TFs, unveiling their roles in shaping early neuronal devel-
opment. Moreover, this study identifies the top 20 TFs and their 
co-expression networks in the cerebellum region of the brain. 

In conclusion, the DEG biomarkers unveiled by our investiga-
tion have been found to play a pivotal role in the arrangement 
of gene expression during neural differentiation. Their functional 
purview extends to the intricate governance of neural cell devel-
opment, encompassing a spectrum of regulatory functions. In 
this symphony of genetic activity, the revelations from our single-
cell gene expression analysis furnish valuable insights into the 
molecular mechanisms underpinning neural differentiation, ele-
vating our understanding of this complex cellular phenomenon. 
In the future, we will expand the scRNA-seq dataset to include 
more time points and cell types during early brain development, 
as well as more biological replicates, to increase the statistical 
power and robustness of the analysis. In addition, the DEGs 
and their regulatory networks need to be validated using exper-
imental methods such as qRT-PCR, ChIP-seq and CRISPR-Cas9 to
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confirm their expression patterns and functional roles in neural 
differentiation and brain development. Furthermore, more study 
is required in order to investigate the potential applications of 
the DEGs and their regulators for developing novel diagnostic 
biomarkers, therapeutic targets and stem cell-based interventions 
for various neurological disorders and cognitive impairments. 

Key Points 
• This study utilizes bioinformatics tools to pinpoint DEGs 

in human embryonic stem cells (hESCs) at key develop-
mental time points, D26 and D54, providing a nuanced 
understanding of genetic dynamics during early brain 
development. 

• Through subsequent analyses, the research reveals 
functional enrichment in critical pathways such as neu-
rogenesis and synapse regulation, unraveling the intri-
cate processes that govern early brain development. 

• Investigating potential links of the identified DEGs to 
intelligence, mental disorders, and neurodevelopmental 
disorders, offering valuable insights into the intersection 
of early brain development and cognitive outcomes. 

• Delving into the regulatory landscape, the research 
explores interactions among DEGs, miRNAs and TFs, 
unveiling their roles in shaping early neuronal develop-
ment. 

• The findings collectively showcase the power of scRNA-
seq in unraveling the complexities of early human brain 
development. 

SUPPLEMENTARY DATA 
Supplementary data are available online at http://bib.oxfordjournals. 
org/. 
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