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Covariance structure analysis uses x> goodness-of-fit test statistics whose adequacy is not known.
Scientific conclusions based on models may be distorted when researchers violate sample size,
variate independence, and distributional assumptions. The behavior of 6 test statistics is evaluated
with a Monte Carlo confirmatory factor analysis study. The tests performed dramatically differ-
ently under 7 distributional conditions at 6 sample sizes. Two normal-theory tests worked well
under some conditions but completely broke down under other conditions. A test that permits
homogeneous nonzero kurtoses performed variably. A test that permits heterogeneous marginal
kurtoses performed better. A distribution-free test performed spectacularly badly in all conditions
at all but the largest sample sizes. The Satorra-Bentler scaled test statistic performed best overall.

Estimation methods in covariance structure analysis are tra-
ditionally developed under an assumption of multivariate nor-
mality (e.g., Bollen, 1989; Browne, 1974; Joreskog, 1969). This
assumption is usually violated in practice. For example, Mic-
ceri (1989) reported that among 440 large-sample achievement
and psychometric measures taken from journal articles, re-
search projects, and tests, all were significantly nonnormally
distributed. Yet, normal-theory methods such as maximum
likelihood (ML) and generalized least squares (GLS) are fre-
quently applied even when normality assumptions are not ten-
able. A violation of the multivariate normality assumption can
seriously invalidate statistical hypothesis testing (Browne,
1982, 1984; Harlow, 1985). As a result, a normal-theory test
statistic may not adequately reflect the quality of a covariance
structure model under such a violation. Asymptotic (large-
sample) distribution-free methods, for which normality as-
sumptions need not be made, therefore have been developed
(Bentler & Dijkstra, 1985; Bentler, Lee, & Weng, 1987; Browne,
1982, 1984; Chamberlain, 1982) and made routinely available
(Bentler, 1989; Joreskog & Sorbom, 1988). Test statistics for the
fit of a covariance structure model that are based on this theory
are insensitive to the distribution of the observations when the
sample size is large. Despite the preferable theoretical proper-
ties of these asymptotically distribution-free (ADF) methods,
their wide application has been hampered because of the need
for computing the fourth-order moments of the measured vari-
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ables. These fourth-order moments reflect whether distribu-
tions have heavier or lighter tails as compared with normal
distributions and are computationally expensive to obtain and
unstable as estimators. In fact, empirical studies using Monte
Carlo procedures have raised some questions about the rele-
vance of ADF theory for practical data analysis because the
basic goodness-of-fit test for model adequacy under arbitrary
distributions may behave quite poorly, that is, not close to a
theoretical x? variate, as expected, when sample size is relatively
small or model degrees of freedom are large (e.g., Chou, Bentler,
& Satorra, 1991; Muthén & Kaplan, 1985, 1990; Tanaka, 1984).
The limits of adequate performance are hardly known, but
enough questions have been raised to again peak interest in
simpler estimators that involve less computation.

A recently developed theory offers hope for the appropriate
use of normal-theory methods even under violation of the nor-
mality assumption. On the basis of initial work by Amemiya
(1985) and Browne (1985), the asymptotic robustness of nor-
mal-theory methods has been extensively studied (Amemiya &
Anderson, 1990; Anderson & Amemiya, 1988; Browne, 1987,
Browne & Shapiro, 1988; Mooijaart & Bentler, 1991; Satorra &
Bentler, 1990, 1991; Shapiro, 1987). This literature has ap-
peared only in statistical journals, so that it is hardly known to
psychological researchers. The main point of this technical liter-
ature is to determine conditions under which models with non-
normally distributed variables can still be correctly described
and evaluated by use of normal-theory-based methods such as
ML or GLS. 1t is difficult to summarize verbally and succinctly
this technical literature, but it has been shown that asymptotic
optimality and correct standard errors of factor loadings can be
obtained under normal-theory methods when the common
factors are not normally distributed and the unique factors have
a multivariate normal distribution and hence the observed vari-
ables are also nonnormal. For example, Anderson and
Amemiya (1988) and Amemiya and Anderson (1990) have

Psychological Bulletin, 1992, Vol. 112, No. 2, 351-362
Copyright 1992 by the American Psychological Association, Inc. 0033-2909/92/$3.00

351



asymptotic
robustness

found that the asymptotic x* goodness-of-fit test in factor analy-
sis can be insensitive to violations of the assumption of multi-
variate normality of both common and unique factors, if all
factors are independently distributed and the elements of the
covariance matrices of common factors are all free parameters.
With an additional condition of the existence of the fourth-
order moments of both unique and common factors, Browne
and Shapiro (1988) and Mooijaart and Bentler (1991) also dem-
onstrated the robustness of normal-theory methods in the anal-
ysis of a general class of linear latent variate models. Satorra
and Bentler (1990, 1991) obtained similar results for a wider
range of discrepancy functions, estimators, and test statistics.
In these results, the standard errors that are based on normal
theory of some parameters, usually the variances of nonnormal
variables, need correction, but the relevant computation is
minor compared with that required by the distribution-free
methods. Thus, asymptotic robustness theory promises to ex-
tend the range of applicability of the computationally simpler
ML and GLS estimators to situations in which the more diffi-
cult distribution-free methods might seem to be needed.

In practice, the applied researcher may be tempted to use a
normal-theory method in data analysis with nonnormal vari-
ables, justifying such a choice on the basis of asymptotic ro-
bustness theory. However, it is not at all certain that this theory
can be invoked in practice, because nothing is known about the
robustness of the asymptotic robustness theory, that is, whether
asymptotic robustness theory can be applied when its assump-
tions such as large sample size and independence of latent vari-
ates may not hold. Adequate procedures to evaluate whether
latent factors or errors not only are uncorrelated but further-
more are independent of each other do not exist. Note that
independence is a much stronger condition than uncorrelated-
ness and that these concepts are equivalent only when variables
are normally distributed.

Estimation methods that are based on distributional as-
sumptions more general than normal, but more restricted than
arbitrary, also have been developed. Browne (1982, 1984) intro-
duced multivariate elliptical theory to covariance structure
analysis. Elliptical distributions are, like the normal, symmet-
ric, but they have tails that can be identical to those of a normal
distribution as well as heavier or lighter. Browne’s work was
followed up by Bentler (1983; Bentler & Berkane, 1986) and
Shapiro and Browne (1987), and computer implementations
(e.g., ERLS in EQS) have been available for some years (Bentler,
1989). In these distributions, only one additional parameter
beyond the usual normal-theory parameters is needed to yield
asymptotically optimal estimators and simple x? goodness-of-
fit tests. This extra parameter is a kurtosis parameter reflecting
the assumed common kurtosis of the variables, that is, the ex-
tent to which the distribution of variables is heavier tailed or
lighter tailed as compared with the normal. Normal distribu-
tions are a special case that have no excess kurtosis. Computa-
tions are particularly simple when the model meets a scale in-
variance condition in which the model continues to hold when
all variables are multiplied by a constant (Shapiro & Browne,
1987). Although elliptical theory is by now quite old, little is
known about the robustness of elliptical theory statistics to
violation of assumptions. One might expect that because nor-
mal theory is a special case of elliptical theory and elliptical
methods reduce to normal-theory methods, elliptical methods
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should perform at least as well as or substantially better than
normal-theory methods. However, this does not appear to be
the case. Harlow (1985) found that elliptical x? tests could be
more misleading than normal-theory statistics, but this work
has not been followed up.

A recent extension of elliptical distribution theory by Kano,
Berkane, and Bentler (1990) has revealed that a simple adjust-
ment of the weight matrix of normal theory, using univariate
(marginal) kurtosis estimates, results in an asymptotically effi-
cient estimator of structural parameters within the class of esti-
mators that minimize a general discrepancy function. This
method, called here HK (heterogeneous kurtosis) theory, is
hardly more difficult computationally than elliptical theory
but applies to a wider class of multivariate distributions that is
allowed to have heterogeneous kurtosis parameters. That is,
although these distributions are assumed to be symmetric, they
need not be equally heavy- (or light) tailed for all variables.
Elliptical and normal-theory statistics are special cases that
occur when the variables have homogeneous kurtoses or no
excess kurtosis, respectively. Thus, one might expect that HK
theory should perform at least as well as normal or elliptical
methods.

An attractive feature of HK theory is that fourth-order mo-
ments of the measured variables do not need to be computed as
they do in ADF theory, because these moments are just a func-
tion of the variances and covariances and the univariate kur-
toses. As a result, the HK method can be used on models that
are based on a substantially larger number of measured vari-
ables. For example, whereas ADF methods cannot be imple-
mented in practice with 30, 40, or more variables because of the
large size of a matrix that is required, this is not a limitation of
the HK method. Except for an illustration given in the initial
report, nothing is known about the performance of HK theory
under violation of its assumptions, or even when its assump-
tions are met, as when the data are normal or elliptical.

When normal-, elliptical, or heterogeneous kurtosis theory
distributional assumptions are false, statistics that are based on
these assumptions can be corrected using a method developed
by Satorra and Bentler (1988a, 1988b) and further studied by
Kano (1990). In their approach, a scaling correction is com-
puted on the basis of the model, estimation method, and sam-
ple fourth-order moments, and the given test statistic is divided
by this correction factor. The correction factor has no impact
when the distributional assumption is correct. This approach,
which is a type of Bartlett correction to the x? statistic, has not
been evaluated widely even though it has been available in the
EQS program (Bentler, 1989) for some years. Preliminary indi-
cations are that this corrected test statistic, here called the
SCALED statistic, can perform as well as, or perhaps better
than the ADF method under violation of distributional as-
sumptions (Chou et al. 1991). However, nothing definitive is
known.

The purpose of this study is to evaluate the performance of
six goodness-of-fit test statistics obtained from a variety of esti-
mators under violation of assumptions, that is, the empirical
robustness of these statistics. In all cases, under an assumed
distribution and a hypothesized model Z(@) for the population
covariance matrix Z, these statistics have an asymptotic x? dis-
tribution that describes the mean, variance, and tail perfor-
mance of the statistics. Three ways of violating theoretical con-
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ditions, chosen for their relevance to data analysis practice and
recent theoretical results, are investigated. First, distributional
assumptions are violated. Second, assumed independence con-
ditions are violated. Third, asymptotic sample size require-
ments are violated. The effects of these conditions on normal-
theory maximum likelihood (ML) and generalized least
squares (GLS), elliptical theory (ERLS), heterogeneous kurto-
sis (HK), asymptotic distribution-free (ADF), and scaling-
corrected (SCALED) test statistics (T'ye, Terss Teriss Tuks
Tape> Tscaren) are studied in an extensive Monte Carlo sam-
pling experiment. Technical definitions for these statistics are
given in the Appendix.

Method

The confirmatory factor model x = A + ¢ is used to generate mea-
sured variables x under various conditions on the common factors ¢
and unique variates (“errors”) e. In the usual approach, factors and
errors are assumed to be normally distributed, factors are allowed to
correlate with covariance matrix 6¢#) = @ errors are uncorrelated
with factors, that is §(&) = 0, and various error variates are uncorre-
lated and have a diagonal covariance matrix 66c) = ¥. Asaresult, T =
Z(0) = ABA + ¥ and the elements of  are the unknown parametersin A,
& and ¥. In one condition, factors and errors are created to be multivar-
iate normally distributed, so that the latent variates that are uncorre-
lated in the factor model are also independent of each other. Addi-
tional conditions are created in which the factors or errors (or both
factors and errors) are not normally distributed; in some of these con-
ditions, factor/error variates that are uncorrelated under the model
also are independent, but in other conditions, variables that are un-
correlated as assumed by the factor model are not also independent.
After generation of the population covariance matrix Z under the as-
sumed conditions, random samples of a given size from the population
are taken. In each sample, the parameters of the factor model ar¢ esti-
mated using the methods ML, GLS, ERLS, HK, ADE and SCALED
as described above and in the Appendix, and the associated test statis-
tics T e, Tovss Teris> Tuk> Tapr, and Tscarep are computed. Results
for each sample are saved. The performance of the test statistics across
the sampling replications at a given sample size represents the main
data of the study.

In particular, the confirmatory factor-analytic model studied is
based on 15 observed variables with three common factors. The factor-
loading pattern in A (15 X 3) is a simple one in which a variable is
influenced by one, and only one, common factqr and the three com-
mon factors are allowed to correlate. The factor-loading matrix (trans-
posed) A has the following structure:

0.700.70 0.75 0.80 0.80 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.70 0.70 0.75 0.80
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00
0.80 0.00 0.00 0.00 0.00 0.00
0.00 0.70 0.70 0.75 0.80 0.80

Variances of the factors are 1.0, and the covariances among the three
factors are taken to be 0.30, 0.40, and 0.50. The unique variances are
taken as values that would yield unit-variance measured variables
under normality. In estimation, the factor loading of the last indicator
of each factor is fixed for identification at 0.80, and the remaining
nonzero parameters are free to be estimated. The behavior of the
various test statistics 7'= (2 — 1)F (for variously defined functions F) is
observed at sample sizes of 150, 250, 500, 1,000, 2,500, and 5,000. In
each condition at each sample size, 200 replications (samples) are
drawn from the population. The various estimators and goodness-of-

fit tests are computed in each sample using a modification of the simu-
lation feature of EQS (Bentler, 1989). A statistical summary of the
mean value and standard deviation of T across the 200 replications,
and the empirical rejection rate at the o = .05 level on the basis of the
assumed x? distribution, is used to compare the various methods.!

Table 1 contains the experimental design and the expectations (or
the first-order moments) of the asymptotic distributions of the good-
ness-of-fit test statistics T in each condition. Under the modeling con-
ditions, the expectations in Table 1 would be very close to the corre-
sponding empirical mean values of the test statistics, one of the statis-
tical summaries in our experiment, if the sample size and number of
replications are large enough. In some conditions, these are the ex-
pected values of a central x? variate, that is, the degrees of freedom, but
in other cases, these are other values as based on predictions from the
current literature and the rationale given below. Seven conditions are
examined, as shown in the rows of the table. These conditions corre-
spond to various distributional specifications on the common and
unique (error) factors. In Condition 1, all factors are normally distrib-
uted, with no excess kurtosis. In Conditions 2 and 3, all factors are
nonnormally distributed. In these conditions, the true kurtoses, using
the formula ;45,2 — 3, for the nonnormal factors in the various condi-
tionsare —1.0, 2.0, and 5.0, and the true kurtoses of the unique variates
for Conditions 2-4 with nonnormal errors are —1.0, 0.5, 2.5, 4.5, 6.5,
-1.0,1.0,3.0,5.0,7.0,~0.5,1.5, 3.5, 5.5,and 7.5. In Conditions 1-4, all
the factors and unique variates are independently distributed regard-
less of whether they are normally distributed. Additionally, in Condi-
tion 2, all elements in the factor covariance matrix ® are fixed at their
true values. Thus, although Conditions 3—4 are designed to be consis-
tent with asymptotic robustness theory, the fixed covariance matrix
invalidates this theory, and asymptotic robustness of normal-theory
test statistics would not be expected in Condition 2. In Conditions 5--7,
the factors and error variates are divided by a random variable Z =

%5 ]"2/V§ that is distributed independently of the original common
and unique factors. The division by V§ is made so that §(Z~%) =1, that
is, the variances and covariances of the factors remain unchanged by
the division (Kano, 1990), but the kurtoses of the factors and errors
become modified. A consequence of the division by a random variable
is that the factors and errors are dependent, even though they remain
uncorrelated. Because of the dependency, asymptotic robustness of
normal-theory statistics is not to be expected under Conditions 5-7.

Under the model 2(@), as can be seen in the table, in many conditions
the anticipated means of the asymptotic goodness-of-fit statistics are
the degrees of freedom. The degrees of freedom for the model in all
conditions but the second is 87, whereas the degrees of freedom for the
model in Condition 2 is 93. Under other conditions, the predicted
means of the test statistics depend on the kurtoses of the variables as
well. These values were computed using the known relation of normal
to elliptical theory as well as the results of Kano (1990). In all cases, the
expectations of Table 1 are based on the assumption of the correctness
of the model 2 = 2(@) and the assumption of infinite sample size. As
noted above, in the simulation, the correctness of the model is main-
tained in all sampling situations and conditions, but sample size is
varied in a standard range.

The simplest predictions are made for Condition 1 (row 1) and the
ADF and SCALED statistics (last column) of Table 1. In row 1, all
variables are normally distributed, and hence 6(T") = 87 for all testing
conditions. The anticipated means of T, pr and Tscagp are the degrees
of freedom, regardless of the seven types of distributions and condi-
tions that are considered. The results of Ty, and T, s (in the column

! The number of replications was chosen as a compromise between
practicality and a very large number. Each condition took several
weeks of central processing unit time on DECstation 3100 and VAX-
station 3100 workstations.
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Table 1
Asymptotic Expected Goodness-of-Fit Statistics Under Seven
Conditions

Distribution Method of estimation

Unique ML & ADF &

Factor factor GLS ERLS HK SCALED
1. Normal Normal 87 87 87 87
2. Non? Non —_ — — 93
3. Non Non 87 87/k4 — 87
4. Normal Non 87 87 /x4 — 87
5. Normal/Z® Normal/Z® 873 87 87 87
6. Normal/Z® Non/Z° 87«3  87#3/xkg — 87
7. Non/Z* Non/Z? 8743  873/x, — 87

Note. ML = maximum likelihood, GLS = generalized least squares,
ERLS = elliptical theory, HK = heterogenous kurtosis, ADF = asymp-
totic distribution free, SCALED = Satorra-Bentler scaling corrected,
Non = nonnormal distribution.

2 Factor covariance matrix & is taken as known and fixed. ® Common
and unique factors are divided by the same variate Z = [x%,]"*/}3.

marked ML & GLS) depend on the independence of factors from
errors, as noted above. When they are independent, as in Conditions 1
and 3-4, asymptotic robustness conditions apply, and 6(T ) =
6(TLs) = 87, but the fixed factor covariance matrix in Condition 2
invalidates robustness theory, and no prediction is made there. Lack of
robustness for normal-theory methods in Conditions 5-7 leads to ex-
pectations of 261 = 87 X 3 as the mean value of the normal-theory test
statistics, which is obtained from a chi-squared variable multiplied by
E(ZH/6(Z?)? = 3 (Kano, 1990). The predicted mean of the statistic
Terys of elliptical theory is given by the expected value under the ML
method divided by & + 1) = &[(x — Y Z7'(x— ) 1*/p(p + 2), which is the
rescaled Mardia kurtosis parameter for multivariate distributions.
Note that x;, &4, k¢, and «, in Table 1 are the specific values of the
Mardia kurtosis defined for different distributions. They have the fol-
lowing relationships: 3 X k; = x;and 3 X «, = x4. Predictions are made for
the HK theory only under normality (Condition 1) and elliptical (Con-
dition 5) distributions. Of course, HK should yield the same result as
the normal-theory statistic in Condition 1, and because the distribu-
tion in Condition 5 is elliptical, ERLS and HK methods are expected
to work correctly.?

To summarize, the calculated sample mean of the test statistic
across the 200 replications in each condition should approximate the
degrees of freedom (87 or 93) if the given statistic were x? distributed.
Otherwise, on the basis of our analysis, these means would be close to
the alternative anticipated means shown in Table 1. We also tabulated
the sample standard deviation of the test statistic across the 200 repli-
cations. Under the model and a x? distribution, the variance of a x?
variate is twice the degrees of freedom, which is approximately the
value that should be observed empirically across the 200 samples in
each condition if x? is indeed the appropriate reference distribution for
that condition. In addition, we tabulated the frequencies of rejection of
the model within each condition. If each statistic were performing asa
x? variate, the expected number of rejections at the 5% level would
be 10.

Results

The simulation procedure produced the distributional char-
acteristics desired. In each condition, computed across all cases
in all replication samples, the means of all factors, errors, and
measured variables were essentially zero (with a maximum de-

viation of 0.002), and standard deviations of latent and mea-
sured variables were similarly close to 1.0. Skewnesses of all
latent and observed variables were close to zero as well, with a
maximum deviation of 0.09. To provide some idea about the
degree of nonnormality of the factors and errors, we present in
Table 2 the empirical univariate kurtoses of the latent generat-
ing variables computed across 5,000 X 200 = 1,000,000 obser-
vations. As intended, the kurtoses of the factors in Conditions |
and 4 were close to zero, and the kurtoses in Conditions 2 and 3
were close to —1, 2, and 5. The kurtoses of all variables were
similar in Condition 5, the elliptical condition. Kurtoses of the
factors were large and homogeneous in Condition 6 and larger
on the average and more heterogeneous in Condition 7. Kur-
toses of the error variates in Conditions 2—-4 were very close to
the magnitude intended, as given above. Kurtoses of the errors
were largest in Conditions 6 and 7. Finally, it may be instructive
to indicate how kurtoses of the factor and error variates trans-
lated into the range of kurtoses on the measured variables.
These ranges, in Conditions 1-7, were (1) —0.010 to 0.010, (2)
—0.502 to 3.098, (3) —0.502 to 3.098, @) —0.262 to 0.989, (5)
4.658 t0 6.827, (6) 4.635 10 9.659, (7) 3.930 to 20.013.

Tables 3 through 9 contain summaries of the results of the
simulation, one table per condition. All of the tables are orga-
nized the same way. The columns of each table give the sample
size used for a particular set of 200 replications from the popula-
tion. At each sample size, a sample was drawn, and each of the
six methods shown in the rows of the table (ML, GLS, ERLS,
HK, ADE SCALED) was applied to estimate the parameters
of the model and compute the resulting test statistic T2 this
process was repeated 200 times. For each estimation method,
the resulting 7 statistics were used to compute (a) the mean of
the 200 T statistics, (b) the standard deviation of the 200 T
statistics, and () the frequency of rejecting the null hypothesis
at the .05 level. These are the three entries in each cell of each
table. As noted in the columns of each table, these procedures
were repeated at sample sizes of 150, 250, 500, 1,000, 2,500, and
5,000. When converged solutions were not obtained in each of
the 200 replications of a given cell of the table, the statistics
reported in the table are based on the results for those replica-
tions that did converge. The ADF method at the smallest sam-
ple size provided the only consistent lack of convergence.

The results of Condition I are easiest to understand, because
it is the baseline condition in which the factors and errors, and
hence measured variables, are multivariate normally distrib-
uted. The results are tabulated in Table 3. Asymptotically, each
estimation method should yield a mean test statistic 7 of about
87, a standard deviation of 13.19 = \/1—7_4 (174 = 2 X 87), and
10 =.05 X 200 rejections. The last column of the table gives the
results for n = 5,000, which is as close to asymptotic sample size
as was considered in this study. For all six estimation methods,
the mean goodness-of-fit statistic 7 was quite close to 87; the

2 A technical reviewer questioned whether there is a theoretical re-
sult showing that the moments of the test statistics converge to those of
the limiting distribution. In general, this occurs under conditions that
the statistics are uniformly integrable. Usually this is easily verified,
but when the statistics are defined by an implicit function, as in this
article, it is hard to do, though we believe that uniform integrability is
met in our situation.
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Table 2
Univariate Kurtoses Across Replications of Factors and Errors Under Seven Conditions
Condition

Variate 1 2 3 4 5 6 7
Fl 0.005 -0.997 -0.997 0.004 5.087 5.087 2.521
F2 -0.002 2.038 2.038 0.001 6.031 6.031 17.992
F3 0.004 5.126 5.126 0.001 5.545 5.545 21.354
El -0.007 -1.001 —~1.001 -1.001 4.877 2.609 2.609
E2 —0.008 0.511 0.511 0.511 5.963 7.474 7.474
E3 -0.000 2.505 2.505 2.505 4.672 10.383 10.383
E4 -0.010 4.461 4.461 4.461 4,522 13.977 13.977
E5 —0.008 6.283 6.283 6.283 4914 19.343 19.343
E6 -0.002 -0.999 —-0.999 -0.999 6.052 3.163 3.163
E7 0.005 1.005 1.005 1.005 5.653 9.477 9.477
E8 —0.005 3.036 3.036 3.036 5.216 11.616 11.616
E9 —0.002 5.013 5.013 5.013 4.321 15.050 15.050
E10 0.010 6.957 6.957 6.957 4.753 19.941 19.941
Ell 0.001 -0.500 -0.500 —0.500 5.932 4.368 4.368
E12 —0.004 1.521 1.521 1.521 4,755 8.171 8.171
E13 0.001 3.467 3.467 3.467 5.114 14.154 14.154
El4 —-0.002 5.584 5.584 5.584 4.755 19.168 19.168
ElS -0.003 7.770 7.770 7.770 5.083 28.349 28.349

standard deviations were a bit smaller than 13.19, and the rejec-
tions were just slightly below 10. Clearly, however, these results
are very close to the theoretical values, indicating that the
Monte Carlo procedure as implemented in the computer pro-
gram was working correctly. In addition, note the following
features. As can be seen in the first row, the ML method worked
well when sample sizes were equal or greater than 500, but the
rejection frequency was higher than nominal at smaller sample
sizes. Similar results have been reported by Boomsma (1983).
The GLS method performed better than ML at the smaller
sample sizes, though at the smallest sample size models were
rejected too infrequently. The ERLS and HK methods seemed
to perform equally well, and a bit better than ML at the two
smallest sample sizes. The ADF method yielded unacceptably
high rejection rates and test statistics at all sample sizes up to
1,000, with performance being completely unacceptable at n =
250 or below, where almost all true models were rejected. Atn=
150, only 191 replications yielded converged solutions, all of
which rejected the null hypothesis. In contrast, the SCALED
statistic, which was based on the ML statistic, performed about
the same as the ML statistic itself.

The results for Condition 2 are presented in Table 4. The
mathematical-statistical asymptotic robustness theory does
not predict robustness when all the elements in ® are fixed at
true values rather than free to be estimated. However, the behav-
iors of all the methods in Condition 2 were similar to those in
Conditions 3 and 4, discussed next. Thus, the main surprise
here was that normal-theory methods showed asymptotic ro-
bustness under a condition in which it was not expected.

For Conditions 3 and 4, where asymptotic robustness for nor-
mal-theory statistics had been predicted, ML and GLS indeed
performed well, as is shown in Tables 5 and 6. That is, at sample
sizes of 2,500 and 5,000, the statistics yielded their expected
behavior. As with the results under normality, GLS performed
somewhat better than ML at the smaller sample sizes, with ML
tending to reject models somewhat too frequently ERLS and
HK tended to overcorrect, that is, to accept models too readily.

Although ADF performed well at n = 5,000, at smaller sample
sizes, it rejected models far too frequently. At n =150, about 5%
of the replications did not yield converged solutions. In all the
converged solutions, the true model was rejected. Conditions 3
and 4 thus represent situations in which ML and GLS methods
indeed perform better than ADF methods at all but the largest
sample size. The SCALED test statistic performed better than
ADF at all but the largest sample size, where it performed
equally well. It performed about the same as the ML statistic,
though with marginally greater rejection of true models at the
smaller sample sizes.

In summary, when the latent common and unique factors
were independently distributed, regardless of the form of their
distributions (Conditions 1-4), the anticipated asymptotic ro-
bustness properties were retained for normal-theory methods
if the sample size was relatively large. Asymptotic robustness,
however, could not be guaranteed at smaller sample sizes with
ML. ERLS slightly, and HK somewhat more, overcorrected the
test statistics when some or all the latent variates were nonnor-
mal (Conditions 2-4). The ADF method was very sensitive to
sample size; except under normality, it did not even perform
acceptably with a sample size as large as 2,500. The SCALED
statistic outperformed ADF at all but the largest sample sizes.

When the factors and errors were dependent on each other,
that is, in Conditions 5-7, as summarized in Tables 7-9,
asymptotic robustness theory was not relevant, and the results
indicate that empirical robustness completely broke down. Spe-
cifically, the normal-theory methods (ML, GLS) essentially al-
ways rejected the true model even at the largest sample sizes.
The ERLS method performed substantially better than the
normal-theory methods under all these conditions, though it
did not perform perfectly under the elliptical distribution con-
dition, Condition 5 (Table 7), where it retained a tendency to
reject models too frequently at even the largest sample size. On
the other hand, it performed quite well at the largest sample
sizes in Conditions 6 and 7, which are not elliptical. The HK
method performed considerably better than all but the
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Table 3
Summary of Simulation Results for Condition 1
n
Method 150 250 500 1,000 2,500 5,000
ML
M 92.674  90.540 87.771 86.166 87.136 86.583
SD 13.175 14.622  12.617 12450 12.232 11.728
Freq 20 21 9 5 4 8
GLS
M 85.491 86.546  85.355 85.214 86.779 86.328
SD 12,440  13.667 12.212 12.490 12.154 11.578
Freq 5 12 5 5 3 7
ERLS
M 89.887 88905 87.250 85.812 86.986 86.573
SD 12.363 14496  12.558 12.241 12.205 11.794
Freq 11 18 7 5 5 9
HK
M 87.747 88.031 86.180 85.579 86.882 86.373
SD 13.441 14.103  12.634 12.575 12.084 11.531
Freq 8 15 5 7 2 7
ADF
M 229.118 144930 109.333 96.077 91.096 88.447
SD 48.426 27487 17.613 15017 13.222 12.057
Freq 191/191 184 100 32 12 9
SCALED
M 94.469 91.540 88.251 86.398 87.251 86.654
SD 13.485 14.732 12.644 12426 12.246 11.750
Freq 23 22 8 5 6 9

Note. ML = maximum likelihood, GLS = generalized least squares,
ERLS = elliptical theory, HK = heterogenous kurtosis, ADF = asymp-
totic distribution free, SCALED = Satorra-Bentler scaling corrected,
Freq = frequency of rejection of the null hypothesis [critical value from
Xip-p at a = .05]. All numbers are based on the number of converged
replications. Usually this is 200, but when two numbers are given in an
entry in the freq row, the first gives the frequency of rejection of the
null hypothesis, and the second gives the number of converged replica-
tions.

SCALED statistic across the different sample sizes, though it
retained its tendency to accept models too frequently. As under
independence of factors and errors, when the sample sizes were
smaller than 2,500, ADF consistently yielded test statistics that
were too large and rejection rates that were too high. However,
at n = 5,000, the ADF method performed as expected. The
SCALED statistic performed better than the ADF method at
all sample sizes below 2,500, though it tended to overreject
models at the largest sample size.

These results can be summarized as follows. Under condi-
tions of dependency among latent factors and unique variates,
normal-theory methods cannot be trusted, HK works substan-
tially better, ADF works only at very large sample sizes, and
across all sample sizes, the Satorra-Bentler SCALED statistic
performs at closest to nominal levels of all the methods consid-
ered.

Discussion

This study has several important implications for practice,
especially with regard to the ADF method, normal-theory
methods, and the SCALED statistic. Regarding the ADF
method, our results provide support for and extend the cau-
tions raised, for example, by Harlow, Chou, and Bentler (1986),

Muthén and Kaplan (1990), and Chou et al. (1991). ADF theory
originally was introduced as a general-purpose solution to the
problem of nonnormal distributions of variables in structural
modeling (Browne, 1982; Chamberlain, 1982); that is, it was
expected that the ADF method would work well for any arbi-
trary distribution. The results of the present study indicate that
this expectation is correct asymptotically. T, pr does perform as
a x” variate when the sample size is about 5,000 cases under the
modeling conditions studied. However, applications in prac-
tice typically have substantially smaller sample sizes, for which
our results are even more pessimistic than those reported by
Muthén and Kaplan (1990). In more than half of the condi-
tions, a sample size of 2,500 was not large enough to yield the
number of model rejections expected on the basis of the as-
sumed x? distribution, and in none of the conditions was a
sample size of 1,000 large enough to yield a nominal rejection
rate. At sample sizes of 250 or less, the ADF statistic, when it
could be computed, yielded model rejections from 93%-99.9%
of the time: It almost never correctly diagnosed that a true
model was being evaluated. This spectacularly poor perfor-
mance occurred even with multivariate normal data that would
be expected to show the best behavior of the statistic. Thus,
clearly ADF is not a general panacea to the problem of nonnor-
mal variables in structural modeling. In fact, like the normal-

Table 4
Summary of Simulation Results for Condition 2
n
Method 150 250 500 1,000 2,500 5,000
ML
M 98.786 98.489 94852 96.065 96.416 95.317
SD 14.837 13989 14526 15.373 15.121 14.421
Freq 21 25 14 19 14 10
GLS
M 94.005 94795 93.120 95.224 96.020 95.050
SD 14.353  13.834 14446 15481 15.188 14433
Freq 12 14 17 21 14 11
ERLS
M 88.818 88.674 84.789 85.324 85.404 84.409
SD 13.602 12928 13.297 14.055 13.483 12.723
Freq 6 6 2 4 4 2
HK
M 81.646 78.678 74.843 74902 73.873 72.828
SD 14704 13.484 13.758 14.047 12.844 11.696
Freq 4 1 0 1 0 0
ADF
M 282.501 166.790 119.898 106.837 99.099 95.619
SD 69.391 30.284 20.245 18.449 15.395 14.167
Freq 195/195 196 105 55 25 13
SCALED
M 100.007 98.415 94.063 95.123 95.199 94.047
SD 15.039 13944 14754 15.569 14968 14.236
Freq 25 20 14 18 13 9

Note. ML = maximum likelihood, GLS = generalized least squares,
ERLS = elliptical theory, HK = heterogenous kurtosis, ADF = asymp-
totic distribution free, SCALED = Satorra-Bentler scaling corrected,
Freq = frequency of rejection of the null hypothesis [critical value from
Xing at @ = .05]. All numbers are based on the number of converged
replications. Usually this is 200, but when two numbers are given in an
entry in the freq row, the first gives the frequency of rejection of the
null hypothesis, and the second gives the number of converged replica-
tions.
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Table 5
Summary of Simulation Results for Condition 3
n
Method 150 250 500 1,000 2,500 5,000
ML
M 91.752 90.800 87.571 88.531 88.766 87.517
SD 14.481 13.401 14.227 14.620 14.056 13.559
Freq 20 20 14 16 10 10
GLS
M 85.072 86.138 85.450 87.366 88.320 87.228
SD 12.342 12274 13.353 14239 14.043 13.441
Freq 8 5 8 14 12 9
ERLS
M 82.491 81.682 78242 78.582 78.549 76.547
SD 13.255 12.487 13.197 13.408 12486 11.763
Freq 8 4 3 5 4 2
HK
M 73.854 71.818 69.112 69.216 68.499 67.493
SD 12.733 12.242 12,757 12978 11.899 11.077
Freq 3 0 0 1 0 0
ADF
M 216.807 143.761 108.541 97.816 91.983 88.899
SD 39.495 25.163 18.668 16.441 14311 13.467
Freq 188/188 185 89 44 18 11
SCALED
M 93.777 92.066 88.160 88.914 88.896 87.568
SD 14.403 13.427 14372 14.786 14.083 13.551
Freq 25 25 16 18 12 10

Note. ML = maximum likelihood, GLS = generalized least squares,
ERLS = elliptical theory, HK = heterogenous kurtosis, ADF = asymp-
totic distribution free, SCALED = Satorra-Bentler scaling corrected,
Freq = frequency of rejection of the null hypothesis [critical value from
Ximg at & = .05]. All numbers are based on the number of converged
replications. Usually this is 200, but when two numbers are given in an
entry in the freq row, the first gives the frequency of rejection of the
null hypothesis, and the second gives the number of converged replica-
tions.

theory methods ML and GLS, under some conditions it will
yield completely misleading results. Typically, models that are
true would be rejected far too frequently when using the ADF
method.

An important theoretical question for future research in-
volves development of a detailed mathematical explanation of
why the ADF method seems to break down so easily. Here, we
provide a possible explanation. Consider Condition 1, the nor-
mal case, for instance. According to asymptotic theory, ADF
should work as well as the GLS method. Yet this does not hap-
pen. Obviously, a reason for this is that the required sample size
for asymptotic theory to be relevant to the behavior of a test
statistic must depend on the particular method of estimation
under consideration, with ADF requiring much larger samples
than GLS. Because the only distinction between the two meth-
ods is whether the actual fourth-order moments or their expres-
sion in terms of second-order moments under normality is used
in the test statistic, differential behavior must be traced to this
difference. More specifically, GLS uses the weight matrix with
typical element

SacSi T SuSie> ()

which is based on sample covariances s; only, whereas ADF uses
the expression

Sijd — sijskb (2)

which requires estimating the fourth-order moments s, (see
Appendix for a precise definition). Although under normality,
both Equations1 and 2 are estimators of the population parame-
ters 040 ; + 0,0 5 and converge in probability to these parame-
ters as the sample size goes to infinity, their variability is differ-
ent. In fact, because Equation 1 is the ML estimator of 6,6 ; +
0,40 5 and is efficient (under no covariance structure), it follows
that elementwise,

Var (sgspy + Su8i) < Var Sy — SySu)- 3

In addition, the large covariance matrices of order p(p+1){(p+
2)(p + 3)/24 made up of these elements will have the same
inequality as in Equation 3, that is,

MatCov{sysy + sSu} < MatCov{syy — SySu}s

denoting that the difference is a nonnegative definite matrix.
The direct assessment of their variances also will show these
inequalities.

In summary, because the distinction between GLS and ADF
is based on the differences in the weight matrices, as shown
above, this difference must yield the differential performance
of these methods. Although both weight matrices meet the re-

Table 6
Summary of Simulation Results for Condition 4
n
Method 150 250 500 1,000 2,500 5,000
ML
M 91.818 90.890 87.634 88.496 88.546 87.619
SD 14203 13.464 14.158 14483 14.059 13.490
Freq 19 19 13 18 11 9
GLS
M 85.107 86.228 85.546 87.318 88.087 87.333
SD 12.178 12376 13325 14.106 14.018 13.355
Freq 8 8 9 14 10 8
ERLS
M 83.352 82.803 79.448 79.824 79.721 78.876
SD 13.048 12,613 13.141 13.370 12706 12.153
Freq 7 5 3 6 4 1
HK
M 81.055 80.381 78.060 78.622 78422 77.614
SD 12376 12.368  12.691 13.002 12.678 11.900
Freq 7 2 2 3 4 1
ADF
M 220.571 144.184 108.728 97.737 91.791 89.007
SD 41.290 25.157 18915 16.435 14.310 13.406
Freq 193/193 188 88 46 19 11
SCALED
M 93.742 92.091 88.164 88.827 88.668 87.664
SD 14.164 13.506 14.320 14.647 14.105 13.473
Freq 25 24 16 17 11 9
Note. ML = maximum likelihood, GLS = generalized least squares,

ERLS = elliptical theory, HK = heterogenous kurtosis, ADF = asymp-
totic distribution free, SCALED = Satorra-Bentler scaling corrected,
Freq = frequency of rejection of the null hypothesis [critical value from
x(ZH at o = .05]. All numbers are based on the number of converged
replications. Usually this is 200, but when two numbers are given in an
entry in the freq row, the first gives the frequency of rejection of the
null hypothesis, and the second gives the number of converged replica-
tions.
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Table 7
Summary of Simulation Results for Condition 5
n
Method 150 250 500 1,000 2,500 5,000
ML
M 170.213 179.175 195.297 202.506 219.422 228.736
SD 44950 48.089 63.894 58.175 69.067 92.457
Freq 197 197 200 200 200 200
GLS
M 129.819 146.658 168.294 184.205 207.902 219.653
SD 20.560 25472 31.581 38.030 52.392 62.771

Freq 166 187 199 200 200 200

M 114.569 108.920 104.427 98.028 94.218 90.800

SD 31.183 25.501 24478 20.129 18.189 17.692

Freq 94 83 57 48 34 19
HK

M 76.931 80.550 83.142 84.540 88.097 87.504

SD 14488 13.748 13.664 14.671 16.727 16.330

Freq 3 3 3 8 22 15
ADF

M 208.613 138.331 109.313 97.438 92.535 89.812

SD 38.930 22.694 15733 12.593 13981 13.419

Freq 170/170 181 90 28 17 12
SCALED

M 91.578 88.805 87.587 86.409 86.650 85.620

SD 12411 12,735 11.540 12,563 13.109 12.724

Freq 16 11 4 6 9 5

Note. ML = maximum likelihood, GLS = generalized least squares,
ERLS = elliptical theory, HK = heterogenous kurtosis, ADF = asymp-
totic distribution free, SCALED = Satorra-Bentler scaling corrected,
Freq = frequency of rejection of the null hypothesis [critical value from
Xing at & = .05]. All numbers are based on the number of converged
replications. Usually this is 200, but when two numbers are given in an
entry in the freq row, the first gives the frequency of rejection of the
null hypothesis, and the second gives the number of converged replica-
tions.

quirement for the associated 7 statistics to converge to an
asymptotic x? variate, the speed of convergence must depend
on the variability of the weight matrices. Thus, we would ex-
pect that variability of the ADF weight matrix would be exces-
sive when sample size is small. Further research can evaluate
this suggestion empirically.

Under conditions in which latent common factors and
unique factors were distributed independently of each other
(Conditions 1-4), which is a basic requirement of asymptotic
robustness theory, normal-theory methods (ML, GLS) outper-
formed ADF at all but the very largest sample sizes. This oc-
curred even when the data were quite nonnormally distributed
and even under a condition in which asymptotic robustness
theory had not been shown to hold (Condition 2). Thus, condi-
tions certainly exist in which nonnormal data are better ana-
lyzed for model adequacy using normal-theory methods than
those specifically developed for nonnormal data. Note, how-
ever, that the word asymptotic in asymptotic robustness theory
requires careful attention. At the smaller sample sizes, this
theory also had some limitations. For ML, sample sizes of 2,500
were needed before the rejection rate approached nominal lev-
els. GLS performed much better, performing near nominal lev-
els at even the smallest sample sizes with only a few exceptions.
As yet, there is no theory to explain the differential behaviors of

ML and GLS or to explain the robustness observed in Condi-
tion 2, in which the common factor covariance matrix was
fixed rather than free to be estimated.

On the other hand, the practitioner certainly cannot blindly
trust normal-theory test statistics to yield correct results with
nonnormal data. Our results show that normal-theory methods
performed extremely poorly when there was a dependency
among latent variates. In fact, under these conditions, even the
poorly performing ADF method always outperformed the nor-
mal-theory methods, which for all practical purposes were com-
pletely useless at evaluating model adequacy at all sample sizes,
because they almost always rejected the true model. These re-
sults must give serious pause to the covariance structure analy-
sis practitioner. It would be inappropriate for a practitioner to
use normal-theory methods in their analysis with the justifica-
tion that “asymptotic robustness theory verifies that nonnor-
mal data can be appropriately analyzed using ML or GLS”
Without some diagnostic about the relevance of this theory to
the particular model and data analysis situation, it is entirely
possible that the data being analyzed comes from a data genera-
tion mechanism that does not yield asymptotic robustness for
ML or GLS test statistics. It might be countered that in this
study, under these conditions, ML and GLS tended to reject
true models far too often and that if in practice one has a model

Table 8
Summary of Simulation Results for Condition 6
n
Method 150 250 500 1,000 2,500 5,000
ML
M 167.410 175943 191.954 199.956 215911 225.006
SD 46.089 48.044 70.363 66.343 71.016 80.043
Freq 195 194 200 200 200 200
GLS
M 128.573 145.037 166.022 182.371 205.124 216.938
SD 20.853 25.114 32925 40.883 53.613 59.441
Freq 167 186 200 199 200 200
ERLS
M 107.704 101.600 96.589 89.919 85.503 82.540
SD 30.837 24.805 24701 20.513 17.210 15.230
Freq 68 53 33 17 14 6
HK
M 73.319  74.607 76.005 76.721 79.052 79.570
SD 13.933 13985 13498 13.841 14057 13.782
Freq | 2/199 2 3 7 5
ADF
M 207.585 138.225 108.673 97.149 91.814 89.218
SD 39.100  20.203 15.546 12.422 13.439 13.213
Freq 179/180 184 97 26 11 10
SCALED
M 92.355 89.277 87.759 86.430 86.128 85.531
SD 12.600 12,581 11.534 12.656 12.757 12.557
Freq 14 13 7 7 6 5

Note. ML = maximum likelihood, GLS = generalized least squares,
ERLS = elliptical theory, HK = heterogenous kurtosis, ADF = asymp-
totic distribution free, SCALED = Satorra-Bentler scaling corrected,
Freq = frequency of rejection of the null hypothesis [critical value from
X{pg 8t & = .05]. All numbers are based on the number of converged
replications. Usually this is 200, but when two numbers are given in an
entry in the freq row, the first gives the frequency of rejection of the
null hypothesis, and the second gives the number of converged replica-
tions.
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Table 9
Summary of Simulation Results for Condition 7
n
Method 150 250 500 1,000 2,500 5,000
ML
M 166.485 175.366 191.309 199.481 215.325 225.643
SD 45.844 47955 70.507 65989 70.836 81.001

Freq 194 195 200 199 200 200
GLS

M 128.266 144718 165.662 181.992 204.578 217.556
SD 20923 25089 33.047 40.587 53.465 60.689
Freq 162 185 199 198 200 200
ERLS

M 106.482 100.633 95.455 88.795 84.535 81.369
SD 30482 25031 25.156 20.558 17.377 15.355
Freq 64 50 31 14 11 7
HK

M 67.711 70218 70.166 70.130 71.966 70.487
SD 13.147  14.124 14022 13.864 14983 14.731
Freq 0 1 3 1 3 1
ADF

M 206.609 137.762 108.634 96.721 91.343 89.150
SD 37.517  20.131 15.645 12365 13433 13.360
Freq  177/177 183/199 93 27 11 10
SCALED

M 92032 89.154 87.539 86359 86.114 85.625
SD 12474 12.653 11.628 12.681 12.859 12.805
Freq 14 11 4 7 6 5

Note. ML = maximum likelihood, GLS = generalized least squares,
ERLS = elliptical theory, HK = heterogenous kurtosis, ADF = asymp-
totic distribution free, SCALED = Satorra-Bentler scaling corrected,
Freq = frequency of rejection of the null hypothesis [critical value from
Xing at & = 05]. All numbers are based on the number of converged
replications. Usually this is 200, but when two numbers are given inan
entry in the freq row, the first gives the frequency of rejection of the
null hypothesis, and the second gives the number of converged replica-
tions.

that is statistically acceptable, then this worry should be irrele-
vant. This line of reasoning is not correct. For example, it would
no doubt have been possible to empirically modify the models
being studied in each sample of this simulation through the
Lagrange Multiplier statistics (Lee & Bentler, 1980; Satorra,
1989) to find parameters such as correlated error terms that
would reduce a test statistic 7' (Or T,s) in each sample, so
that the associated simulation results would have yielded closer
to nominal model rejection frequencies. However, it is clear
that such modifications would produce models that are incor-
rect, at least in the sense that they would contain parameters
that are in fact zero in the population.

Elliptical and HK theory promise a methodology to correct
for normality that requires only trivially heavier computations
than normal-theory methods. These methods performed vari-
ably. When the latent common and error variates were indepen-
dently distributed, both methods tended to accept models
more frequently than expected. When these variates were de-
pendent, ERLS tended to reject models more frequently than
expected, and the HK method accepted models too often,
though both performances were certainly substantially better
than those obtained by the normal-theory methods, which es-
sentially always rejected true models. The performance of the
new HK method was remarkably consistent across all condi-

tions, yielding mean test statistics 73 and associated standard
deviations that were reasonably close to the theoretically ex-
pected values under a x? distribution, though the number of
rejections was consistently smaller than nominal levels. Except
at the largest sample sizes, HK theory performed better than
ADF theory, though improvements in HK theory are clearly
still needed. It is possible that a new implementation of this
theory (Bentler, Berkane, & Kano, 1991) would yield better
performance. In any case, the HK method seems to be the most
promising of all methods when considering extremely large
models, in which normal-theory methods can be misleading
(under dependence of factors and errors) and in which alterna-
tive methods like ADF and SCALED basically cannot be im-
plemented at all because of the size of the matrices involved.

The best performance across all conditions was shown by
Satorra and Bentler’s (1988a, 1988b) SCALED test statistic,
which has been documented and available in EQS since 1989.
Although preliminary positive research on its performance has
previously been obtained (Chou et al., 1991), this is the first
comprehensive study of its behavior. It performed better than
ADF at all but the largest sample sizes. When considering the
closeness of the empirical mean of the statistic to the expected
value (87, or 93 in Condition 2), the SCALED statistic was
closer than the ADF statistic 42 times out of 42 comparisons.
In terms of closeness to the expected 10 rejections at « = .05, at
sample sizes up to and including 1,000 the SCALED statistic
performed better than the ADF statistic in 28 out of 28 compar-
isons. At n= 2,500 or n = 5,000, the SCALED and ADF statis-
tics were closer to nominal levels an equivalent number of
times.

Although the SCALED statistic performed extremely well
overall, it had a tendency to overreject models at smaller sample
sizes. The same tendency was observed for ML as compared
with GLS when these statistics performed adequately (Condi-
tions 1-4). Because the SCALED statistic, as implemented in
this study, was based on the Ty, statistic (using METHOD =
ML, ROBUST in EQS; see Appendix), it is likely that closer to
nominal rejection rates would be observed if the GLS statistic
had been scaled instead (using METHOD = GLS, ROBUST).
Of course the scaling correction can work with many other
estimators as well. It is interesting to speculate whether the
tendency of the HK method to overaccept models would be
eliminated if the scaling correction were used on the Ty statis-
tic. Clearly, more work is needed in this area.

The reason for the superior performance of the SCALED
over the ADF statistic is not known. An obvious hypothesis is
that although both statistics rely on the sample fourth-order
moments of the variables as part of their estimation, the
SCALED statistic uses a matrix computed from these moments
directly, but ADF requires the relevant matrix to be inverted
(see Appendix). This inverse may not even exist in sufficiently
small samples, and there may be accuracy problems in interme-
diate-size samples. It is interesting to speculate whether Satorra
and Bentler’s (1988a, 1988b) adjusted test statistic, which re-
quires still heavier computations than the SCALED statistic
and attempts to adjust the variance of the test statistic as well as
its mean, would perform better still. This statistic was not stud-
ied here because it is not yet routinely available in public com-
puter programs. Clearly, there remains much to learn about
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these statistics. Kano (1990) provided a further in-depth study
of various forms of the SCALED statistic.

Although this study evaluated the empirical behavior of a
larger variety of test statistics under a more varied set of condi-
tions than has previously been attempted, clearly any simula-
tion such as this has its limitations. In addition to being limited
to a particular confirmatory factor-analytic design with a given
set of parameter values, this study only evaluated the perfor-
mance of six statistics under seven conditions. More work is
clearly needed, both empirical and theoretical. As noted above,
there are other statistics that need to be evaluated, and addi-
tional models need to be studied, especially models with larger
number of variables (such as 30-50 variables), where ADF and
SCALED statistics become difficult if not impossible to imple-
ment. At a more theoretical level, corrections for improved be-
havior of all statistics at small sample sizes need to be developed
further (Tanaka, 1987). In the case of normal-theory statistics
under multivariate normality, a Bartlett correction to the x?
statistics has been available for exploratory factor analysis for
some time (Anderson, 1984; Lawley & Maxwell, 1971). Since
this study was completed, a new theory for correcting more
general covariance structure models came to our attention (Wa-
kaki, Eguchi, & Fujikoshi, 1990). It seems likely that the Wa-
kaki et al. correction could fix the overrejection problem found
for ML at small sample sizes under the independence condi-
tions of this study, but empirical evidence is needed to evaluate
this suggestion. In fact, we would expect the Wakaki et al.
corrected test statistic to outperform the GLS test statistic.

In any case, the current study was comprehensive enough to
generate a clear warning about the current practice of covari-
ance structure analysis, which relies heavily on normal theory
and asymptotically distribution-free statistics. Unambiguous
evidence was obtained on the inadequate behavior of normal-
theory test statistics under some conditions of nonnormality
and about the inadequate behavior of asymptotically distribu-
tion-free covariance structure analysis at all but the largest sam-
ple sizes. It also showed that a scaled test statistic exists that can
outperform these better-known statistics under a variety of
conditions.
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Appendix

Test Statistics

This Appendix describes the technical definitions of the six good-
ness-of-fit test statistics studied in this report. Let S represent the
vsual unbiased estimator that is based on a sample of size nofap X p
population covariance matrix =, whose elements are functions of a g X
1 parameter vector 8: T = Z(8). A discrepancy function F = F[S, 2@)]
can be considered to be a measure of the discrepancy between S and
Z(0) evaluated at an estimator 8. The normal-theory maximum-likeli-
hood (ML) discrepancy function is

Fyy = log|Z| — log|S| + t{SZ™") — p.

At the minimum, £ = Z@) and F,, takes on the value Fy, , where
T = (1 — DR, is distributed, under the null hypothesis, as an aymp-
totic goodness-of-fit x? variate with (p* — g) degrees of freedom, where
p* = p(p+1)/2. Ty can be used as a test statistic to evaluate the null
hypothesis £ = 2(9). The null hypothesis is rejected if Ty, exceeds a
critical value in the x? distribution at an « level of significance. Ty is
the ML statistic whose behavior is studied in this article, with « = .05.
A quadratic form discrepancy function is

Fop = [s — o(O)IW™'[s - o(0)],

where s and o{f) are p* X | column vectors formed from the nondupli-
cated elements of S and Z(9), respectively and W is a p* X p* positive-
definite weight matrix. The asymptotically distribution-free (ADF)
covariance structure method used in this study minimizes Fyp, under
the choice of optimal weight matrix W with typical elements

Wikd = Oyt — Oij0u s

where o5, = 606 — 1)0g — r)(Xe ~ w06 — w) is the fourth-order
multivariate moment of variables x; about their means u; and ¢;; is an

n
element of Z. In practice, sample moment estimators s, = 2 (x¢; —
1

X0 — X060 — %06 — X)/n and ;= Z0g; — %) — X;)/(n — 1) are
1

used to consistently estimate o, and o;;. The ADF estimator provides

an asymptotically efficient estimator § without the need for distribu-
tional assumptions on variables. Under the null hypothesis, the asso-
ciated test statistic Tape= (1~ 1) £, op has an asymptotic x2 distribution
that is based on (p* — q) degrees of freedom.

The fitting function Fy, for normal-theory generalized least squares
(GLS) can be simplified to

Fous = 3tr{[S — ZONV™'},

if W=2K',(V® V)K,, where V is a positive definite matrix that con-
verges to Z in probability and K, is a known transition matrix. At the
minima of the respective functions, both Ty and Tgis = (1 — 1)Es
have asymptotic x2 distributions with (p* — ¢) degrees of freedom; they
are asymptotically equivalent when the model is correct. Browne
(1974) has shown that if V converges in probability to Z (e.g., V=S as
used in this study), then GLS estimators are asymptotically equivalent
to ML estimators.

Under the assumption that all marginal distributions of a multivar-
iate distribution are symmetric and have the same relative kurtosis,
elliptical theory parameter estimators and test statistics can be ob-
tained by readjusting the statistics derived from normal-theory meth-
ods. Let k = 0,;,/30; — 1 be the common kurtosis parameter of a distri-
bution from the elliptical class. Multivariate normal distributions are
members of this class with x = 0. The fourth-order multivariate mo-
ments g, are related to « by

o = (K + 1) (040 + 040, + 0405),

where o;; is an element of Z. As a result of this simplification, the
discrepancy function for an elliptical distribution may be written as

Fg = 3(c + 1)7'tr{[S — Z@OIV™')? — 8{trlS — ZOIV'),

where as before V is any consistent estimator of Z and & = «/[4k + 1)° +
2px( + 1)] (Bentler, 1983). The selection of V as a consistent estimator
of X leads, under the model and assumptions, to an asymptotically
efficient estimator of @ with T = (1 — 1)F at @ asymptotically distrib-

Appendix continues on next page
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uted as a xz( g variate. In this study, we chose V= £ at the minimum
and

R+1)= é[(x - %)'S™(x — X)*/np(p + 2).
1

Because the models to be investigated are invariant with respect to a
constant scaling factor, at the minimum of F the second term drops
out (Browne, 1984), yielding Ty = Tgg; s as used in this study.

Heterogeneous kurtosis theory (Kano, Berkane, & Bentler, 1990)
defines a more general class of multivariate distributions that allows
marginal distributions to have heterogeneous kurtosis parameters.
The elliptical distribution is a special case of this class of distributions.
Let x? = 0,;;/30, represent a measure of excess kurtosis of the ith
variable and the fourth-order moments have the structure

Gt = (A Qo 0y + (Apa)ouoy + (@4 )00,

where a; = ; + «;)/2. If the covariance structure Z(@) is fully scale
invariant and the modeling and distributional assumptions are met,
the Fy, discrepancy function can be expressed as

Fux = 3te{[S — 2(@)IC'}?,

where € = A*3 and * denotes the elementwise (Hadamard) product of
the two matrices of the same order. In this study, we take A = @)=+
%;)/2 on the basis of the usual moment estimators & = 5;;;/3s,%, and we
take C = A*S.Kano, Berkane, and Bentler (1990) demonstrated that the
simple adjustment of the weight matrix € of the normal-theory general-
ized-least-squares procedure (see K; s above) produces asymptotically
efficient estimators. The associated test statistic Tyx = —1 )P‘;{K atthe
minimum has an asymptotic x%_,, distribution under the assumed
model.

Satorra and Bentler (1988a, 1988b) developed two modifications of

any standard goodness-of-fit statistic test 7 (= Ty, Ty, €tc), so that
its distributional behavior should more closely approximate x% One of
these, the scaled test statistic, is available in EQS (Bentler, 1989, p.
218). See also Kano (1990). Satorra and Bentler (1986) noted that the
general distribution of T is in fact not x2, but rather a mixture

c &
T— 3 a7,
1

where a; is one of the df nonnull eigenvalues of the matrix UV, V,, is
the asymptotic covariance matrix of Yn[s — ¢(0)], 7, is one of the df
independent x,? variates, and, when there are no constraints on free
parameters (as in this study),

U=W"'—-WlsgeW's) lgW!

is the residual weight matrix under the model and the weight matrix W
used in the estimation. The scaled statistic used in this article is based
on Ty, with W = 2K',(E ® $)K,, the normal-theory ML weight matrix
at the minimum of K, and & = 3F,,, /3¢ evaluated at 8. The mean of the
asymptotic distribution of Ty is given by tr(UV ). Then, defining the
scaling estimate k = tr(UV ,)/df; where U is a consistent estimator of U
on the basis of and V  is the distribution-free estimator with elements
Sykt — S5 (see above), the scaled ML statistic

T = Tu/k

defines Satorra and Bentler’s scaling-corrected test statistic as applied
in this article.
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