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Abstract: Automatic screening of diabetic retinopathy (DR) is a well-identified area of research
in the domain of computer vision. It is challenging due to structural complexity and a marginal
contrast difference between the retinal vessels and the background of the fundus image. As bright
lesions are prominent in the green channel, we applied contrast-limited adaptive histogram equaliza-
tion (CLAHE) on the green channel for image enhancement. This work proposes a novel diabetic
retinopathy screening technique using an asymmetric deep learning feature. The asymmetric deep
learning features are extracted using U-Net for segmentation of the optic disc and blood vessels.
Then a convolutional neural network (CNN) with a support vector machine (SVM) is used for the
DR lesions classification. The lesions are classified into four classes, i.e., normal, microaneurysms,
hemorrhages, and exudates. The proposed method is tested with two publicly available retinal image
datasets, i.e., APTOS and MESSIDOR. The accuracy achieved for non-diabetic retinopathy detection
is 98.6% and 91.9% for the APTOS and MESSIDOR datasets, respectively. The accuracies of exudate
detection for these two datasets are 96.9% and 98.3%, respectively. The accuracy of the DR screening
system is improved due to the precise retinal image segmentation.

Keywords: diabetic retinopathy; blood vessel; optic disc; segmentation; U-Net; deep learning

1. Introduction

Diabetic retinopathy is emerging as an efficient and affordable method for clinical
practice [1–3]. Diabetic retinopathy (DR) detection at the primary stage is very important
because it can save the person from vision loss. Retinal damage is incurable in the ad-
vanced stage of diabetes. The early stage of retinopathy is known as non-prolific diabetic
retinopathy (NPDR) [4] and is curable if detected in time. In the case of NPDR, the retina
is affected by red lesions, i.e., microaneurysms (MAs) and hemorrhages (HMs) [5]. MAs
are the early stage of DR, and these are formed due to disruption of the internal elastic
lamina. The number of MAs usually increases as the diabetic symptoms worsen. The next
stage of DR is HMs, which are like MAs but its having an irregular margin and are larger in
size. Here, the capillary walls become fragile and broken, resulting in the leakage of blood
from the vascular tree. In the case of leakage near the macula, it is referred to as diabetic
macular edema (DME) [6]. The advanced stage of DR is referred to as prolific diabetic
retinopathy (PDR), where the retinal damage has become incurable and can lead to vision
loss [4,7]. In PDR, the retina is affected by dark lesions called exudates (EX) [7–9]. The
exudates are yellowish and irregularly shaped spots that appear in the eye retina. Exudates
are of two types, hard exudates and soft exudates. In hard exudates, lipoprotein and other
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proteins leak from abnormal retinal vessels, which appear with a sharp white and yellowish
margin. These soft exudates are known as cotton wool. They have a cloud-like structure
and white-gray color. Cotton wool is produced due to the occluded arteriole.

Fluorescein fundus angiography (FFA) [10] is the process of detecting macular degen-
eration and manual DR classification by an ophthalmologist. In this case, fundus images
are manually examined [11] to understand the health of the retina, optic disc, choroid,
blood vessels, and macular condition of the eye. Image level annotation is done in terms
of DR grade [12] by an ophthalmologist. The ocular macula helps to focus the eye; hence,
macular degeneration causes blurred vision and sometimes destroys central vision. The
FFA process is time-consuming, and the result depends on the experience of the ophthal-
mologist. In addition, there is also a risk of adverse effects from the fluorescent dye used in
FFAs. Automatic DR screening is a process of detecting and grading DR from the fundus
image with a computerized system; it is hazard-free, cheaper, and can help experts make
better decisions. This motivated researchers to employ a computer-aided diagnostic (CAD)
system [4,13,14] for the early detection of DR. It may also be useful to observe and monitor
the development of other micro-vascular impediments. The two major aspects of the CAD
system for DR detection are precise segmentation of the blood vessels (BV) and optic disc
(OD) [4,15], followed by proper classification of the lesions in the fundus images. Several
approaches have been proposed by researchers to develop an automated DR diagnostic
system. Traditional machine learning (ML) approaches show competent efficiency only if
hand-engineered features [2,6,16,17] are chosen proficiently. Here, the process of manually
selecting features is stimulating and difficult to generalize. Various deep learning (DL)
techniques [3,18–21] are also proposed to explore the state of the retina from the fundus
image. In this case, the performance depends on the architecture of the deep neural network
and its tuning parameter. The efficacy of the automated DR diagnostic system is decided
by the efficiency of all the different stages, such as the segmentation of the blood vessels,
the extraction of the optic disc region [3], and then the detection and classification of DR.

The major challenges in developing an automatic screening system are the lack of
uniformity in the fundus image data sets, as these images are captured in different envi-
ronments and with different resolutions [4]. In most cases, microaneurysms coexist with
hemorrhages [9]. The lesions exhibit varying intensity levels in the case of NPDR and PDR,
which increases the level of complications for the segmented retinal vessels and optic disc.
This work proposes an asymmetric deep learning framework where the feedback weights
are updated separately from the feedforward, applying the local learning rules to deal with
the unlikely symmetry in connections between network layers [22]. As U-Net is effectively
useful for the segmentation of medical images [23–28], two U-Nets, i.e., U-Net_BV and
U-Net_OD are respectively used for blood vessel and optical disc segmentation [28]. The
convolutional neural network (CNN) with an SVM model [21] is used for the DR clas-
sification. A comprehensive assessment of the proposed framework is performed using
parameters such as sensitivity, specificity, precision, and receiver operating characteristics
(ROC) curve analysis [2,29] on two publicly available fundus image datasets.

The major contributions of this work are mentioned below:

• An asymmetric deep learning approach is for the classification of diabetic retinopathy
into Normal, MAs, HMs, and EXs.

• Two U-Nets are trained through supervised learning for the retinal vessel segmen-
tation, i.e., the U-Net_OD for optic-disc segmentation and the U-Net_BV for blood
vessel segmentation, to enhance the individual learning performance.

• DR classification is done using CNN and SVM on the APTOS and MESSIDOR fundus
image datasets, which are public datasets and can be downloaded with prior registration.

• The APTOS dataset consists of 3662 fundus images, out of which 1805 images are
Normal, 370 images belong to MAs, 999 images are of HMs types, and 295 images
belong to the EXs category.



Big Data Cogn. Comput. 2023, 7, 25 3 of 16

• The MESSIDOR dataset consists of 1200 fundus images, out of which 548 images are
Normal, 152 images belong to MAs, 246 images are of HMs types, and 254 images
belong to the EXs category.

As per the literature survey, the state-of-the-art shows a limited number of works are
on public datasets. Since the DIABET DB1 is having a smaller number of images, we have
tested our model with APTOS and MESSIDOR datasets. The advantage of deep learning is
that it can be used for both segmentation and classification. The proposed model shows
significant improvement in the average sensitivity and average specificity.

The result shows 99.35% recognition of non-diabetic retinopathy in the case of the
APTOS dataset and 93.65% recognition in the MESSIDOR dataset. Other analyses, such as
sensitivity, specificity, precision, ROC, and area under the curve (AUC) for each type of
lesion, are shown in the results section.

The subsequent part of the paper is arranged in the following order: Section 2 presents
a review of DR detection and classification. Section 3 shows the complete framework of the
proposed model, U-Net architecture, and performance evaluation metrics. The detailed
results have been reported the results with discussions in Section 4. The conclusion of the
work is presented in Section 5.

2. Related Work

This section presents a review of various state-of-art diabetic retinopathy performed
by different researchers. The retinal image analysis is categorically classified into two
major extents i.e., retinal image segmentation and retinopathy screening. Wang, L. et al. [1]
presented a deep learning network to identify the OD regions using a classical U-Net frame-
work where the sub-network and the decoding convolutional block are used to preserve
important textures. Aslani S. et al. [30] advocated a multi-feature supervised segmentation
method for retinal blood vessels segmentation by pixel classification using a multi-scale
Gabor wavelet and B-COSFIRE filter for enhanced segmentation. As CNN became pop-
ular in image processing, Wang S. et al. [15] presented a hierarchical method for retinal
blood vessel segmentation using ensemble learning; in addition to the last layer output,
the intermediate output of CNN is also used to encourage multi-scale feature extraction.
Lim G. et al. [31] presented a convolutional neural network feature-based integrated ap-
proach for the optic disc and cup segmentation. Lahiri A. et al. [18] defined ensemble deep
neural network architecture for the segmentation of retinal vessels. Here training space
generates a diversified dictionary referred to as visual kernels used for identifying a specific
vessel orientation. In the year 2015, Ronneberger O. et al. [23] introduced convolutional
networks known as U-net having a typical training strategy based on data augmentation.
The architecture consists of a contracting path followed by an expanding path to capture
and learn the context from the localized information precisely.

Various retinopathy screening techniques are proposed by the researchers.
Mahum R. et al. [32] proposed a hybrid approach using convolutional neural network (CNN),
HOG, LBP, and SURF features for glaucoma detection. An ensemble-based framework for
MAs detection and diabetic retinopathy grading was proposed by Antal B. et al. [33], which
is claimed to provide high efficiency in case of open online challenges. Junior S.B. et al. [5]
presented an automated approach for microaneurysm and hemorrhage detection in fundus
images using mathematical morphology operations. Kedir M. Adal et al. [34] proposed
a semi-supervised method for automatic screening of early diabetic retinopathy via mi-
croaneurysm detection. S.S. Rahim et al. [2] introduced an automated approach for the
acquisition, screening, and classification of DR. They employed circular Hough transform
for microaneurysm detection. A novel convolutional neural networks model to combine
exudates localization and diabetic macular edema classification using fundus images was
introduced by Perdomo O et al. [9]. A hybrid feature vector model for red lesion detection
proposed by Orlando J. et al. [19] consists of the CNN and hand-crafted features; here, the
CNN is trained using patches around the lesion with the aim of learning patches automati-
cally. Mansour R. F. [35] discussed a Deep-learning-based CAD system using multilevel
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optimization with enhanced GMM-based background subtraction. Here the DR feature
extraction using Caffee–AlexNet, and the DR classification is done with the two-class SVM
classifier. Tzelepi M. et al. [36] used a re-training methodology with deep convolutional
features for image retrieval; here, the authors claim a fully unsupervised model where the
re-training is done using the available relevant feedback. A 2D Gaussian fitting for the
hemorrhage extraction with Gaussian fitting and a human visual characteristic is proposed
by Wu J. et al. [16], and the model is claimed to screen hemorrhages more effectively.
Zhou Q. et al. [28] explored the multi-scale deep context information for semantic segmen-
tation by combining the information of the fine and coarse layers that helps to produce
semantically accurate predictions. A multi-context ensemble CNNs architecture for small
lesion detection is proposed by Savelli B. et al. [29]; here, the authors tried to train the CNN
on image patches of different dimensions to learn at different spatial contexts and ensemble
their results. Wang X. et al. [37] presented a cascade framework fundus image classification;
the framework includes background normalization, retinal vessel segmentation, weighted
color channel fusion, feature extraction, and dimensionality reduction. Saha S.K. et al. [38]
presented a review of the state-of-the-art of longitudinal color fundus image registration,
including preprocessing for the automation of DR progression analysis. Asiri N. et al. [3]
presented an overview of the fundus image datasets, deep-learning architectures designed
and employed for the detection of the DR lesions such as exudates, microaneurysms, hemor-
rhages, referable SDRs, and the deep-learning methods used for optic disc and retinal blood
vessels segmentation. They also compared the overall performance with hand-engineered
features. Kumar S. et al. [4] also compared the performances of the different classifiers,
such as Probabilistic Neural Network (PNN), SVM, and Feed Forward Neural Network,
propose an early diabetic retinopathy detection system for proliferative diabetic retinopathy
detection considering the abnormal blood vessels and cotton wools from color fundus
images. A review of deep learning models for glaucoma detection with diabetic retinopathy
and age-related macular degeneration is presented by Sengupta S. et al. [10] that contains
chronological updates till 2019. Khojasteh P. et al. [7] compared different deep-learning
approaches for the detection of exudate using Resnet-50 and SVM based on their sensitivity
and specificity values. Kobat S. G. et al. [39] presented a DR image classification technique
using transfer learning, they used DenseNet201 architecture to extract the deep features of
the DR image, and the model was tested on APTOS 2019 dataset. Ali R. et al. [40] proposed
Incremental Modular Networks (IMNets); here, the small subNet modules are used for
exploiting the salient features of a specific problem, and integration of such subNets can be
used to build a powerful network. The authors claim this will reduce the computational
complexity and will help to optimize the network performance.

3. Proposed Model

In this work, we have proposed an asymmetric deep-learning feature-based model for
diabetic retinopathy. The extraction of the biomarkers from the retinal images is difficult
due to their varying intensity level. The intensity of the optic disc is brighter than the
background, so inappropriate segmentation of the optic disc affects the detection of bright
lesions such as MAs and HMs. On the other hand, the blood vessel intensities are darker,
which results in a substantial number of junctures with the exudates.

3.1. Segmentation Using U-Net

The U-Net is a well-established segmentation tool for biomedical image segmentation [23].
It achieves high accuracy in the 2D and 3D image segmentation with a limited number of
training images. This is flexible and faster since all the layers are not fully connected. To
overcome the effect of the retinal biomarkers in the DR detection we proposed a hybrid
model with two different U-Nets for the retinal vessel and optic disc.

The architecture of U-Net is presented in Figure 1, it consists of two phases, the first
contracting path and the second the expansive path. The contracting path performs CNN
operations, i.e., convolution operation defined by Equation (1), the Equation (2) represents
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ReLU and pooling operation used in the CNN encoder. The expansive path shows the
function of the CNN decoder, where the pooling operations are substituted by up-sampling
operators. This allows the network to propagate the precise context information of the
image to a higher resolution using the extrapolation technique [23].
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(I ∗ f )x, y = ∑l
s=1 ∑w

t=1 fs,t.Ix+s−1, y+t−1 + b (1)

The regularized training error of a particular layer is presented in Equation (3). The
sigmoid function Si shown in Equation (4) is used to map the output value between (0,1) [8].

ReLU(x) = Max(0, x) (2)

where:
x = input value of the neuron

E(w, b) =
1
n ∑n

i=1 L(yi, f (xi)) + αR(w) (3)

where:
L = loss function, i.e., model loss parameter
R = regularization factor used to penalize the model complexity
α = regularization strength control parameter

Si(x) =
1

1 + e−x (4)

Figure 2 shows the original images of APTOS and MESSIDOR datasets and their
respective optical disc segmented images applying U-Net_OD and blood vessels images
applying U-Net_BV.

Figure 3 shows the results of the (a) blood vessel, (b) optic disc segmentations (c) after
the removal of the blood vessel and optic disc, the green channel image is enhanced. Then
the enhanced green channel images are resized to 512 × 512 images and used as the input
to the convolutional network.
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Figure 2. Segmentation of optic disc and blood vessel of the APTOS and MESSIDOR fundus images.
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Figure 4. The block diagram of the proposed asymmetric deep learning model for the automatic
DR screening.

The bright lesions are more prominent in the green channel due to the lesser absorption
property of the green channel [4], so the green channel is less affected by the fovea. We
have chosen this channel for the DR screening. Many color fundus images in the database
have non-uniform brightness and suffer from low contrast due to the environment or
lighting conditions. The green channel contents are enhanced by applying Contrast Limited
Adaptive Histogram Equalization (CLAHE) [16]. The optic disc and the blood vessel are
removed from the enhanced green image. Then the Deep Convolutional Neural Network
is used to learn the DR grade from the enhanced green image with supervised learning.
Figure 5 shows the architecture of deep CNN with SVM [41]. The enhanced green channel
image after the removal of the BV and OD is used as the input to the proposed CNN
model. The model is trained and tested using the labeled fundus images of APTOS and
MESSIDOR datasets. The inimitability of the CNN architecture is subsampling in the
spatial domain with local receptive features and weight sharing. The glaucoma-affected
features are automatically learned and classified by the CNN classifier from retinal images.
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Figure 5. Deep CNN with SVM model.

In this proposed model, the CNN architecture consists of seven convolution layers,
where each layer comprises a convolution operation followed by ReLU and MAX pooling
operations. The ReLU activation function introduces the nonlinear to the output convolu-
tion layer. The pooling layer performs the down-sampling operation that reduces the size
of the image after each convolution. Then the image is flattened to a fully connected feature
vector of size 1× 1024, which is followed by two dense layers that reduce the feature vector
of size 1 × 512, then finally reduced to a size of 1 × 64. The soft-max value computed at
the pixel level is used to calculate the energy function over the feature map, which also
includes the cross-entropy loss as a penalty value. Classification is done using SVM with a
sigmoid kernel function, as the DR classes are linearly separable. The cross-entropy loss at
each position is defined by Equation (5) [3].

LogLoss = − 1
N ∑N

i=1 ∑M
j=1 yijlogPij (5)

where N represents the number of samples and M represents the number of labels, the
yij is the indicator if the label j is correctly classified as, for instance, i. The Pij is the
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probability of the model that assigns the label j to the instance i. As segmentation is a
pixel-level classification, the loss matrix defined for classification is also applicable to the
segmentation [41].

The multi-class SVM is constructed by defining multiple hyperplanes, which define
the piecewise decision boundary. The kth class hyperplane is shown in Equation (6) [42].

f (x) = wT
k x + bk (6)

rk =
f (x)
||w|| =

(
wT

k x + bk
)

||w|| (7)

where:
rk is the distance from the sample and kth hyperplane
k = 1, 2, 3, 4, i.e., the number of classes
The class label for a given input x is decided by the hyperplane having the highest

value of wT
k x + bk, i.e.,

yk = argmax
k

(wT
k x + bk) (8)

The proposed deep learning framework using CNN with SVM is developed using the
standard learning rate, and early stop parameter value of 0.99 and classification is done
with 80:20 hold-out validation. We have used a GTX 1650 graphics system with 16 GB
RAM to test the model.

According to the severity of diabetes, the retinal images are affected in different
grades [12]. The gradation of DME is done as mentioned below:

Class 1: Normal
Class 2: Microaneurysms, i.e., presence of mild diabetic retinopathy.
Class 3: Hemorrhages, i.e., moderate level DR without affecting the fovea.
Class 4: Exudates, i.e., severe DR condition that affects the fovea, i.e., the PDR state.

3.2. Performance Measures

To evaluate the performance of the proposed deep learning framework, we used the
parametric quantifiers such as recall or sensitivity, precision, accuracy, specificity, and
f1-score [16,27,31], which are defined in the equations mentioned below:

Recall =
TP

TP + FN
(9)

Precision =
TP

TP + FP
(10)

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

Speci f icity =
TN

TN + FP
(12)

f 1− Score = 2× Precision× Recall
Precision + Recall

(13)

The true positive (TP) represents the number of images correctly recognized by the
model, and the true negative (TN) shows the number of truly rejected images, whereas
the false positive (FP) represents the number of images recognized incorrectly, and the
false negative (FN) shows the number of images wrongly rejected. The recall or the
sensitivity defines the correctly classified retinal images. The precision shows the number
of correctly classified images with respect to the total number of classified images. The
specificity measures the true negative rate, i.e., high specificity implies less chance of a
false positive acceptance rate by the system. The f1-score presents the harmonic mean
of the classes [29,43,44] that illustrates the balance between the precision and the recall
values. The accuracy shows the number of correctly recognized and correctly rejected
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images with respect to the total number of input images. The ROC curve is plotted using
the true-positive rate and false-positive rate, which graphically represents the performance
of the classifier. The performance model is represented using AUC analysis, where a more
AUC value implies a better classification rate [13].

4. Results and Discussions

The results of the proposed deep learning method for DR are presented in this section.
Here two U-Nets are employed for the blood vessel and optic disc segmentation. The DR
grading is done with a CNN classifier according to the affected level of the retinal image.
The proposed model is tested using the images of two challenging datasets i.e., the APTOS
and the MESSIDOR color fundus images. Performances of models are presented in terms
of recall, precision, accuracy, and f1-score values. The f1-score shows the harmonic mean of
the average recall and precision values.

4.1. Result Analysis Using Aptos Dataset

Table 1 shows the results of the APTOS dataset where the accuracy value of the class-1
normal eye, i.e., the non-diabetic case, is 98.6% and the accuracy of MAs, HMs, and EXs are
98.0%, 95.5%, and 96.9% respectively, the overall accuracy is 97.25%.

Table 1. Class-wise performance of APTOS dataset.

Class Precision% Recall% f1-Score% Specificity% Accuracy%

1 97.66 99.35 98.50 97.95 98.60

2 92.55 87.00 89.69 99.22 98.00

3 93.00 92.08 92.54 96.99 95.50

4 88.15 88.81 88.48 98.15 96.90

Macro Avg 92.84 91.81 92.30 98.08 97.25

A graphical analysis of the APTOS dataset is presented in Figures 6 and 7. The ROC
curve of the individual class and the macro-average are shown in Figure 6. The area under
the curve for the macro-average is 98.0%. The area under the curve for the non-diabetic
case is 99.0% and 97.0% for microaneurysms, this is 98.0% for hemorrhages and exudates.

Figure 7 shows the precision vs. recall curve. Here, the macro-average value is 97%. It
illustrates that the class-1, i.e., the normal eye has the maximum 99% AUC value and the
AUC value of 93% for Microaneurysms and Exudates, whereas, for the Hemorrhages case,
it is 96.0%. This result infers that the detection of early diabetes is more challenging than
the other stages.

4.2. Result Analysis Using Messidor Dataset

Table 2 presents the result analysis of the MESSIDOR dataset. Here the accuracy of
class-1, i.e., the normal eye, is 91.9%, and the accuracy results of MAs, HMs, and EXs are
95.4%, 93.6%, and 98.3%, respectively, with an overall accuracy of 94.8%. It is observed that
the DR screening is more challenging in the MESSIDOR dataset.
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Table 2. Class -wise performance of the MESSIDOR dataset.

Class Precision% Recall% f1-Score% Specificity% Accuracy%

1 88.80 93.65 91.16 90.06 91.90

2 82.78 88.72 85.64 95.53 95.40

3 91.88 82.06 86.69 97.43 93.60

4 96.00 83.72 89.44 99.67 98.30

Macro Avg 89.86 87.04 88.23 95.67 94.80

The analysis of the MESSIDOR dataset is shown in Figures 8 and 9. In Figure 8, the
ROC curve of the individual class with the macro-average value is shown. Here the area
under the macro-average is 98.0%. The area under the curve is 98.0% for non-diabetic cases,
microaneurysms, and also for exudates. This value for hemorrhages is 97.0%.
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The precision vs. recall curve for the MESSIDOR dataset is shown in Figure 9; here,
the macro-average value is 96%. Figure 9a shows class-1, i.e., the normal eye having an
AUC value of 97% and an AUC value of 95% for Microaneurysms and Exudates shown
in Figure 9b,d, whereas, for the Hemorrhages case, it is 96.0% as in Figure 9c. This
result implies there is more inference in case-1, i.e., the normal eye and in case-2, which
is Microaneurysms.

This above result analysis shows an average accuracy of 97.25% for the APTOS dataset
and 94.80 for the MESSIDOR dataset. The normal eye, i.e., non-diabetic cases, are classified
more accurately with a sensitivity of 99.35 % and 93.65% for the APTOS and MESSIDOR
datasets. In the case of PDR classes, the classification of microaneurysms is very important
for the early detection of DR. According to the proposed model, it is detected with 98.0%
and 95.4% accuracy for the APTOS and MESSIDOR datasets. The timely detection of hem-
orrhages is crucial so that action can be taken before further spreading; it is detected with
an accuracy of 95.5% and 93.6% for the above-mentioned datasets. The exudates detection
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and proper course of action can save the person from complete blindness, according to our
proposed model, the accuracy of exudates detection is 96.9% and 98.3% for both datasets
respectively. This shows that the average accuracy of the PDR case is 96.8% for the APTOS
and 95.76% MESSIDOR dataset.
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4.3. Performance Comparison

Table 3 presents the available state-of-the-art for automatic DR classification. It shows
the performance comparison of the existing models and the proposed using the aver-
age sensitivity and average specificity values. It is worth mentioning that the results
reported for the APTOS dataset have a sensitivity of 91.81% and a specificity of 98.07%,
whereas the average sensitivity using DenseNET [34] is 80.6% for the same dataset. The
results of the MESSIDOR dataset also outperform, having a sensitivity of 87.04% and a
specificity of 95.67%. The DIABET DB0 & DB1, which are used by Kumar S. et al. [4]
and Rahim S.S. et al. [2], have fewer fundus images, hence not suitable for deep learning
training. The enhancement in average sensitivity implies that a DR case can be more
precisely recognized as per its actual class. Whereas improvement in the average specificity
represents, a non-DR case will never be inferred with any type of DR class.

Table 3. Comparison of results of existing methods and the proposed method.

References Dataset Methods Used Avg. Sensitivity% Avg. Specificity%

Kumar S. et al. [4] DIABET DB1 RBFN Network 87 93

S. S. Rahim et al. [2] DIABET DB0 & DB1 Circular Hough Transform 80 55

Kedir M. Adal et al. [34] DIABET DB1 KNN Classifier 81.08 92.3

Kobat, S. G [39] APTOS DenseNET 80.6 -

Our proposed method APTOS UNet and CNN with SVM 91.81 98.08

Our proposed method MESSIDOR UNet and CNN with SVM 87.04 95.67
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5. Conclusions

This paper proposed an asymmetric deep learning framework for retinal image seg-
mentation and DR screening. Two U-Nets networks are trained, using fundus images and
their corresponding segmented images, for the OD and BV segmentation. It is observed
that segmentation of blood vessels and optic discs using U-Net is more competent than the
other methods, i.e., the watershed transforms for precise segmentation of the DR images.
Since the pixel values in the green channel are less affected by the fovea, the green channel
images are used for our analysis. After removing the optic disc and blood vessels, these
images are enhanced with CLAHE. Then CNN architecture is designed and trained using
these enhanced images. The proposed model is tested using the fundus images of two
publicly available datasets, i.e., the APTOS and the MESSIDOR datasets. The proposed
model obtains improved DR grading in terms of sensitivity, specificity, and accuracy due
to better OD and BV segmentation. The non-diabetic retinopathy detection accuracy is
98.6% for APTOS and 91.9% for the MESSINDOR dataset. The PDR detection accuracy is
96.8% and 95.76% for APTOS and MESSINDOR datasets, respectively. The result analysis
shows that although the proposed model detects the non-DR case more precisely, there
are inferences among the DR classes. Further investigation can be done on other type of
medical image segmentation using U-Net and classification with deep learning to support
clinical practices.
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