
Neural Priority Queues for Graph Neural Networks (GNNs)

Rishabh Jain 1 Petar Veličković 1 2 Pietro Liò 1

Abstract
Graph Neural Networks (GNNs) have shown con-
siderable success in neural algorithmic reason-
ing. Many traditional algorithms make use of
an explicit memory in the form of a data struc-
ture. However, there has been limited exploration
on augmenting GNNs with external memory. In
this paper, we present Neural Priority Queues,
a differentiable analogue to algorithmic priority
queues, for GNNs. We propose and motivate a
desiderata for memory modules, and show that
Neural PQs exhibit the desiderata, and reason
about their use with algorithmic reasoning. This
is further demonstrated by empirical results on
the CLRS-30 dataset. Furthermore, we find the
Neural PQs useful in capturing long-range inter-
actions, as empirically shown on a dataset from
the Long-Range Graph Benchmark.

1. Introduction
Algorithms and Deep Learning methods possess very funda-
mentally different properties. Training deep learning models
to mimic algorithms would allow us to get neural models
that show generalisation ability similar to the algorithms,
while retaining the robustness to noise of deep learning
systems. This building and training of neural networks to
execute algorithmic computations is referred to as Neural
Algorithmic Reasoning (Veličković & Blundell, 2021).

Architectures that align more with the underlying algorithm
for the reasoning task, tend to generalize better (Xu et al.,
2019). Previous works have drawn inspiration from the
external memory and data structure use of programmes
and algorithms, and have found success in improving the
algorithmic reasoning capabilities of recurrent neural net-
works (RNNs) by extending them with differentiable vari-
ants for these memory and data structures (Graves et al.,

1University of Cambridge, Cambridge, UK 2Google
DeepMind, London, UK. Correspondence to: Rishabh Jain
<rj412@cam.ac.uk>.

The 2023 ICML Workshop on Knowledge and Logical Reason-
ing in the Era of Data-driven Learning, Honolulu, Hawaii, USA.
PMLR 202, 2023. Copyright 2023 by the author(s).

2014; Grefenstette et al., 2015).

Recently, graph neural networks (GNNs) have found im-
mense success with algorithmic tasks (Chen et al., 2020;
Veličković et al., 2022). There have been works attempting
to augment GNNs with memory, with majority using gates
to do so. However, gated memory leads to very limited
persistence. Furthermore, these works have solely focused
on dynamic graphs, and extending these to non-dynamic
graphs would involve significant effort.

In this paper, we propose the extension of the message pass-
ing framework of GNNs with external memory modules. We
focus on adding a differentiable analogue to priority queues,
as priority queues are a general data structure used by differ-
ent algorithms and can be reduced to other data structures
like stacks and queues. We name the thus formed frame-
work for differentiable priority queues as ‘Neural PQs’. We
describe NPQ, an implementation under this framework,
and also explore various variants for this. NPQ shows var-
ious properties that were lacking in previous works with
GNNs, which we believe enable NPQ to help GNNs with
algorithmic reasoning.

We summarize the contributions of this paper below:

• We propose the ‘Neural PQ’ framework, an extension
of the message-passing GNN framework to allow use
of memory modules, with particular inspiration from
priority queues.

• We present and motivate a set of desiderata for memory
modules – (1) Memory-Persistence, (2) Permutation-
Equivariance, (3) Reducibility to Priority Queues, and
(4) No dependence on intermediate supervision. Past
works have already expressed some subsets of these as
desirables.

• We propose NPQs, an implementation within the Neu-
ral PQ framework, that exhibit all the above mentioned
properties. This is the first differentiable analogue
to priority queues, and the first memory modules for
GNNs to exhibit all the above desiderata, to the best of
our knowledge.

• We perform extensive quantitative analysis, via a vari-
ety of experiments and find:

1

ar
X

iv
:2

30
7.

09
66

0v
1

 [
cs

.L
G

]
 1

8
Ju

l 2
02

3

Neural Priority Queues for GNNs

Figure 1: Left: A GNN processor based on the message
passing framework. At each timestep, pair-wise messages
are formed using the node features. These messages are
aggregated, and then used to update the node features for
the next timestep. Right: The memory module framework
we propose. The memory module takes the node features
and previous memory state, to output the next memory state
and messages for the GNN processor. These messages are
aggregated alongside the traditional node-to-node messages.
In this project, we focus on memory modules inspired from
priority queues.

– NPQs, when training to reason Dijkstra’s shortest
path algorithm, close the gap between the baseline
test performance and ground truth by over 40%.

– The various Neural PQs outperform the baseline
on 26 out of 30 algorithms from the CLRS-30
dataset (Veličković et al., 2022). The performance
gains are not restricted to algorithms that actually
use a priority queue.

– Neural PQs also help with long-range reasoning.
These help local message-passing networks to
capture long-range interaction. Thus, the benefits
of using the Neural PQs are not limited to algorith-
mic reasoning, and these can be used on a variety
of other tasks.

2. Background
CLRS Benchmark (Veličković et al., 2022) Various prior
works have shown the efficiency of GNNs for algorithmic
tasks. However, many of these works tend to be discon-
nected in terms of the algorithms they target, data process-
ing and evaluation, making direct comparisons difficult. To
take the first steps in solving this issue, Veličković et al.
(2022) propose the CLRS Algorithmic Reasoning Bench-
mark which consists of 30 algorithms from the ‘Introduc-
tion to Algorithms’ textbook by Cormen et al. (2022). They
name this dataset as CLRS-30.

The authors employ the encode-process-decode paradigm
(Hamrick et al., 2018) and compare different processor net-
works (which are different GNNs) choices. Below we pro-
vide some more details on this encode-process-decode setup.
Since we focus on the CLRS Benchmark for evaluation, this
forms as the baseline architectural structure.

Let us take a graph G = (V, E), with Let Ni as the one-
hop neighbourhood of node i. Let xi ∈ Rdk be the node
features for node i ∈ V , eji ∈ Rde the edge features for
edge (j, i) ∈ E and g ∈ Rdg the graph features. The en-
code step involves encoding these inputs using linear layers
fn : Rdk → Rdh , fe : Rde → Rdh and fg : Rdg → Rdh :

hi = fn(xi) hij = fe(eij) hg = fg(g) (1)

These are then used in a processor network during the pro-
cess step. The previous latent features h(t−1)

i are used along
with the current node feature hi encoding to get a recur-
rent encoded input z(t)i using a recurrent encoding function
fA. This recurrent cell update is line with the work of
Veličković et al. (2019). A message from node i to node
j, mij is computed for each pair of nodes using a mes-
sage function fm. These messages are aggregated using a
permutation-invariant aggregation function

⊕
. Finally, a

readout function fr transforms the aggregated messages and
node encodings into processed node latent features.

z(t)i = fA(hi,h(t−1)
i) (2)

mij = fm(z(t)i , z(t)j ,hij ,hg) (3)

mi =
⊕
j∈Ni

mji (4)

h(t)
i = fr(z

(t)
i ,mi) (5)

For different processors, fA, fm and fr may differ.

The last decode step consists of using relevant decoding
functions to get the required prediction. This might be the
predicted hints or predicted output.

3. Related Work
The ability of RNNs to work in a sequential manner led
to their popularity in previous works for reasoning about
algorithms, as algorithms tend to be iterative in nature. Not-
ing that most computer programmes make use of external
memory, Graves et al. (2014) proposed addition of an ex-
ternal memory module to RNNs, which makes reasoning
about algorithms easier. Subsequent methods have worked
upon this idea and have found success with memory mod-
ules inspired from different data structures. This includes
Stack-Augmented RNNs by (Joulin & Mikolov, 2015) and
Neural DeQues by Grefenstette et al. (2015). A key limita-
tion of all these proposals is that they are only defined for

2

Neural Priority Queues for GNNs

use by RNNs. Unlike GNNs, RNNs are unable to use the
structured information about the algorithms’ input spaces.

Early explorations on augmenting GNNs with memory fo-
cused on the use of internal memory in the form of gates,
such as Gated Graph Sequence Networks by Li et al. (2015),
and Temporal Graph Networks by Rossi et al. (2020). How-
ever, the use of such RNN-like gate mechanisms limits the
persistence of the graph/node histories. Persistent Mes-
sage Passing (PMP) by Strathmann et al. (2021) is a note-
worthy GNN that makes use of non-gated persistent ex-
ternal memory, by persisting some of the nodes at each
timestep. However, PMPs cannot be applied to non-dynamic
graphs without significant effort. Furthermore, they require
intermediate-supervision.

4. Neural PQ Framework
Previous works have proposed Neural Stacks, Queues and
DeQues (Grefenstette et al., 2015; Joulin & Mikolov, 2015)
that have a RNN controller. In this project, we propose
the use of memory modules, with focus on differentiable
PQs (or Neural PQs), with a GNN model acting as the
controller. Furthermore, we propose integration of such
memory modules with message-passing framework by al-
lowing the Neural PQ to send messages to each node. The
setup for this is shown in Figure 2.

Figure 2: Neural PQ controlled using a GNN processor.
At each timestep, the node features are used to pop values
from the priority queue. These values are used to form the
messages that are sent to the different nodes. The node
features and previous state are also used to determine what
values to push, and update the priority queue. This uses
Neural PQ as the memory module in Figure 1.

4.1. Desiderata

We form the framework with the following desiderata
in mind – (1) Memory-Persistence, (2) Permutation-
Equivariance, (3) Reducibility to Priority Queues, and (4)
No dependence on intermediate supervision. We motivate
the need for these below.

Memory-Persistence Memory-Persistence is necessary
to make full use of the extended capacity provided by the ex-
ternal memory modules. This is especially true for models
running over several timestep, with a long temporal inter-
action, where we would want to access memory added at
a much earlier timestep. Furthermore, memory persistence
helps avoid over-smoothing. Node embeddings of GNNs
tend to start off varied. As more messages are passed, the
embeddings tend to converge to each-other, thus making the
nodes indistinguishable, as the number of layers increases.
Memory-persistence would allow GNNs to remember older
states, when the embeddings were more distinguished, and
use these to promote more varied embeddings, despite the
depth of the model.

Permutation-Equivariance A GNN layer is said to be
equivariant to permutation of the nodes if and only if any
permutation of the node IDs, while maintaining the overall
graph structure, leads to the same permutation of the node
features. This reflects one of the most basic symmetries
of graph structures, and is necessary to ensure that isomor-
phic graphs receive the same representation, up to certain
permutations and transformation. This makes permutation-
equivariance an essential property for GNN layers. Thus, we
want our Neural PQs to also be equivariant to permutations.

Priority Queue Alignment Priority queues are a general
data structure used by various algorithms. Furthermore, dif-
ferent data structures can be modelled using priority queues,
like stacks and queues are priority queues with the time
of insertion as the priority. A memory module that aligns
well with priority queues would lead to the overall model,
that uses the memory module, to align with the related algo-
rithms better. Algorithmically aligned models lead to greater
generalisation (Xu et al., 2019). Thus, this is essential for
greater algorithmic reasoning.

No intermediate supervision requirement By not requir-
ing any intermediate supervision, memory modules become
easier to apply directly to different algorithmic tasks. This
allows us to even use the Neural PQ for reasoning over
algorithms that may not use a priority queue themselves.
General Neural PQs can be helpful with such tasks due to
additional properties, like memory-persistence.

3

Neural Priority Queues for GNNs

4.2. Framework

We present the framework for a Neural PQ controlled by
a message-passing GNN below. We use the equations for
the baseline message-passing GNN as described in Section
2. Let us suppose we have the same setup as the baseline.
The encode and decode part remain the same, but now the
processor uses an implementation of the Neural PQ Frame-
work. Let the graph in consideration be G = (V, E). Let
the previous hidden state of the GNN be h(t−1)

i , and the
previous state of the Neural PQ be h(t−1)

pq .

In the Neural PQ framework, we calculate the set of values
Vi to be popped for each node i ∈ V , using a pop function
fpop. Messages are formed from these popped values using
a message encoding function f

(pq)
M . Each node aggregates

these messages along with the traditional node-to-node pair-
wise messages. Lastly, a push function fpush updates the
state of the Neural PQ, to obtain the next state h(t)

pq . Formally,
we can define the following equations for the framework:

z(t)i = fA(hi,h(t−1)
i) (6)

mij = fm(z(t)i , z(t)j ,hij ,hg) (7)

Vi = fpop(z
(t)
i , z(t),h(t−1)

pq) (8)

Mi = f
(pq)
M (Vi, z(t)i) ∪ {mji | j ∈ Ni} (9)

mi =
⊕

m∈Mi

m (10)

h(t)
i = fr(z

(t)
i ,mi) (11)

h(t)
pq = fpush(h(t−1)

pq , z(t)) (12)

where z(t) is a multi-set of all the encoded inputs z(t)i , i.e.
z(t) = {{z(t)i | i ∈ V}}. fA, fm and fr depend on which
message-passing GNN processor we choose, while fpop,
f
(pq)
M and fpush depend on the Neural PQ implementation.

Note that, in the above proposed framework, we choose
to delay the update of the priority queue due to pop op-
eration until the fpush. This is done to keep the Neural
PQ framework general and to segregate the queue read
and update operations. This also allows us to prove the
permutation-equivariance properties of the framework, as
discussed below.

Even though the presented framework is inspired from prior-
ity queues, we can implement various other data structures,
like queues and stacks, by appropriate fpop and fpush defi-
nitions. The Neural PQ framework exhibits and promotes
various properties from the desiderata. By design, these do
not require any additional supervision. Furthermore, since
the push, pop and message encoding functions only depend
on the destination node’s features, the multi-set of all node
features and the Neural PQ state, all implementations are
also equivariant to permutations of the nodes, under certain
assumptions. For a detailed proof, refer to Appendix A.

5. NPQ
We propose NPQ, an implementation following the fore-
mentioned Neural PQ framework that exhibits all the pro-
posed desiderata. We divide the overall definition of NPQ
into 4 sub-sections – (1) State, (2) Pop Function, (3) Mes-
sage Encoding Function, and (4) Push Function. Taking
inspiration from Neural DeQues (Grefenstette et al., 2015),
NPQs consist of continuous push and pop operations.

5.1. State

Figure 3: State of the NPQ. It consists of two lists of the
same length, representing the values v in the queue and
their respective strengths s. In the above example, the NPQ
consists of three elements, v1, v2 and v3, with strengths
0.6, 0.8 and 0.3 respectively.

The state of the NPQ must hold all the memory val-
ues pushed into the queue. Alongside these values,
since we define continuous push and pop operations,
we also need to keep track of the strengths/proportions
of each queue element still present. We can represent
this state h(t)

pq as a tuple of the list of memory values
v(t) = [v(t)1 , . . . , v(t)

i , . . .] and the list of strengths of these
memory values s(t) = [s(t)1 , . . . , s(t)i , . . .]. The ith element
of v(t) is v(t)i , the value of the ith element of the prior-
ity queue, and the ith element of s(t) is s(t)i ∈ (0, 1), the
strength of the ith element of the priority queue.

h(t)
pq = ⟨v(t), s(t)⟩ (13)

where ⟨·⟩ is a tuple. Figure 3 shows a sample state for the
NPQ.

5.2. Pop function

We propose a continuos pop function, i.e. we pop a frac-
tional proportions of the values in the queue. This fraction,
s
(i)
pop ∈ (0, 1) for node i, is computed as noted in Equation

14. This equation is similar to the ones used for Neural
DeQues by Grefenstette et al. (2015).

s(i)pop = sigmoid
(
f (pop)
s (z(t)i)

)
(14)

We use a request-grant framework to maintain the constraint
that no value can be popped more than it is present, i.e. one
cannot pop 0.7 of a value vj that may be present in the PQ
with only a strength of sj = 0.4. Each node i ∈ V requests
to pop fraction p

(i)
j ∈ (0, 1) of PQ element j. NPQ takes

4

Neural Priority Queues for GNNs

Figure 4: Sample pop operation for a single node i in
NPQM. Left: Pop-request p(i)j generation. First we com-

pute the attention coefficients c(i)j using the node features

zi and the memory values v(t−1)
j . We also calculate the

pop-strength s
(i)
pop. The coefficients and the pop strength

are together used to determine the pop fractions to request.
NPQM uses Max Popping, which only pops the element with
the highest attention coefficient, in this case v2. Thus, we
request popping of only this element with strength s

(i)
pop.

Right: Using pop requests from all the nodes and the
strengths of each value currently in the queue, NPQ grants
certain fraction q

(i)
j to node i to pop element j. We use this

granted proportion to determine the value popped.

all the p
(i)
j values into consideration and grants a fraction

q
(i)
j ∈ (0, 1) of PQ element j to node i, which may or may

not be the same as the requested p
(i)
j . Equation 15 shows

the calculation of this granted fraction given the requested
fractions p(i)j and the PQ element strengths s(t−1)

j .

q
(i)
j =

 p
(i)
j , if

∑
k∈V p

(k)
j ≤ s(t−1)

j

p
(i)
j∑

k∈V p
(k)
j

· s(t−1)
j , else

(15)

The main idea behind this equation is that ideally we would
want to satisfy each request p(i)j for popping. We cannot
do that when the sum of pop requests is greater than the
strength with which the element is present in the PQ. In this
case, we completely pop the element and return to each node
fraction of this value in proportion to the strength each node
requested. It maintains the requirement that q(i)j ≤ p

(i)
j and∑

i∈V q
(i)
j ≤ s(t−1)

j . These granted proportions are used to
calculate the final value popped.

v =
∑

j∈I(t−1)
pq

q
(i)
j · v(t−1)

j (16)

fpop(z
(t)
i , z(t), ⟨v(t−1), s(t−1)⟩) = {v} (17)

where I(t−1)
pq =

[
1, . . . ,

∣∣v(t−1)
∣∣] is the set of indices for

the NPQ. Note that since we are only popping a single value
from the NPQ, we are returning a single element set. The

requested pop proportions p(i)j are calculated using the con-
tinuous pop strength value s

(i)
pop, and attention coefficients

c
(i)
j ∈ (0, 1), denoting the coefficient for the jth element

of the queue with respect to the ith node. These are cal-
culated using a multi-head additive attention mechanism
(Bahdanau et al., 2014; Vaswani et al., 2017). This is done
with inspiration from GATs by Veličković et al. (2018).

e
(i,h)
j = LeakyReLU

(
f (h)
a1

(z(t)i) + f (h)
a2

(v(t−1)
j)

)
(18)

α
(i,h)
j = softmaxj

(
e
(i,h)
j

)
(19)

c
(i)
j = softmaxj

(
fa([α

(i,1)
j , . . . , α

(i,h)
j , . . .])

)
(20)

where α
(i,h)
j ∈ (0, 1) is the attention coefficients for jth

element of the queue with respect to node i via attention-
head h, and f

(h)
a1 , f (h)

a2 and fa are linear layers.

Using these coefficients, we propose two ways of popping
elements from the queue – Max Popping and Weighted
Popping. We refer to NPQ using max popping and weighted
popping as NPQM and NPQW, respectively.

MAX POPPING

The element j of the queue with the highest attention coeffi-
cient c(i)j is requested to be popped for the node i.

k = argmax
k∈I(t−1)

pq

c
(i)
k (21)

p
(i)
j = s(i)pop · I{k} (j) (22)

where IA(·) is the indicator function for set A, i.e. IA(a) =
1 ⇐⇒ a ∈ A and IA(a) = 0 ⇐⇒ a /∈ A.

WEIGHTED POPPING

The attention coefficients are treated as soft-weights with
which each element in the PQ is requested to be popped.

p
(i)
j = s(i)pop · c

(i)
j (23)

Figure 4 shows sample pop operation for NPQ.

5.3. Priority Queue Message Function

We use a simple message encoding function, where each
output is passed through a linear layer f (pq)

m .

f
(pq)
M (Vi, z(t)i) =

{
f (pq)
m (v) | v ∈ Vi

}
(24)

5.4. Push function

As mentioned earlier, the push function is actually the state
update function. Here we first delete the popped proportions
from the NPQ. Let h(t−1)

pq = ⟨v(t−1), s(t−1)⟩ be the previous

5

Neural Priority Queues for GNNs

Figure 5: Sample push operation. The overall push oper-
ation can be divided into two main steps. Step 1: In the
first step, we update the queue strengths to reflect the re-
moval of popped fractions of each element. This is done
by summing the granted pop fractions q(i)j from all nodes.

The granted pop-fractions q(i)j can be calculated from the
previous NPQ state and the node embeddings z. These ag-
gregated pop-grants are then subtracted from the strengths
of the respective queue elements. Some elements might end
up with 0 strength, and these are then removed from the
queue, as shown here with the greyed-out value v2 here.
Step 2: The next step is to actually push a value into the
queue. The value to be pushed and its strength are deter-
mined by the node embeddings z.

NPQ state. Then, we can define the NPQ state with the
popped proportions deleted as ⟨v′, s′⟩, which are calculated
as below.

s′i = s(t−1)
i −

∑
k∈V

q
(k)
i (25)

s′ = nonzeroi (s′i) (26)
v′ = v(t)[arg-nonzeroi (s

′
i)] (27)

where q
(k)
i ∈ (0, 1) is the proportion NPQ element i

granted to be popped for node k as defined in Equation
15, nonzeroi(s′i) is sequence of s′i with all zero s′i removed,
and similarly, arg-nonzeroi is the relevant indices of the
sequence.

We push a single value v for the whole graph. To determine
this value, we pass each node embedding through a linear
layer fv and sum the formed values across all the nodes.
In line with Neural DeQues by Grefenstette et al. (2015),
this values is activated using a tanh function to get the final
value to be pushed.

The push function is continuous and so requires calculation
of the push strength spush. This is done in a similar manner
to the push values calculation, using a linear layer f (push)

s .
We use a logistic sigmoid activation here instead of tanh,

akin to Neural DeQues.

v = tanh

(∑
i∈V

fv(z
(t)
i)

)
(28)

s = sigmoid

(∑
i∈V

f (push)
s (z(t)i)

)
(29)

fpush(⟨v(t−1), s(t−1)⟩, z(t)) = ⟨v′ || [v], s′ || [spush]⟩(30)

Note that in the above equations, we use q(k)i and z(t)i , which
are not actually inputs to the fpush function. This is done
mainly to maintain readability of the functions. These equa-
tions can be easily reformulated to only use h(t−1)

pq and z(t),
in order to follow the general Neural PQ framework. Refer
to Appendix B for the reformulation.

5.5. Properties

Simply by virtue of following the Neural PQ frame-
work, NPQ exhibits two of the desiderata – Permutation-
Equivariance, and no dependence on intermediate supervi-
sion. We do not update or replace the previously stored
NPQ elements, but rather persist them as long as possible,
and only delete their proportions when we pop them. This
allows NPQ to achieve much greater memory-persistence
than done using gated memories.

Lastly, the push and pop operations of the NPQ are defined
to be aligned close to the push and pop operations of the
traditional priority queue. In fact, under some assumptions,
we can prove that NPQM can be reduced to a traditional
priority queue. This can be done by taking the push and pop
functions to be encoding the key-value pairs for the priority
queue elements. For a detailed proof, refer to Appendix C.

Thus, NPQ satisfies the four stated desiderata.

5.6. Variants

We also explore some variations on the proposed NPQ. One
such variation involves consideration of greater memory-
persistence by not deleting the popped elements. We refer
to this variation as NPQ-P.

Notably, NPQ treats popping as a node-wise activity. We
can instead treat popping as a graph operation, i.e. each
node receives the same set of popped values. This can be
done by either sending all the node-wise popped values to
all the nodes, or by popping a single value for all the nodes.
We refer to these two variants as NPQ-SA and NPQ-SV,
respectively.

Empirically, we found these latter two variants more useful
when combined with the first one. We refer to these com-
bined variations as NPQ-P-SA and NPQ-P-SV, respectively.
For the exact equations for the variants, refer to Appendix
D-F.

6

Neural Priority Queues for GNNs

6. Evaluation
The main hypothesis we test is whether the Neural PQ im-
plementations are useful for algorithmic reasoning by using
the CLRS-30 dataset (Veličković et al., 2022). To do so, we
undertake multiple experiments – (1) We first focus on a sin-
gle algorithm, Dijkstra’s Shortest Path algorithm, evaluating
the performance of the Neural PQs with a MLP MPNN as
the base GNN, comparing them with the MPNN baseline
as well as an MLP MPNN with an oracle priority queue.
(2) We also evaluate the performance of the Neural PQs
on rest of the algorithms from the CLRS benchmark. (3)
Lastly, we also test whether the Neural PQs are useful for
long-range reasoning, by evaluating their performance on a
dataset from the Long Range Graph Benchmark (Dwivedi
et al., 2022). Appendix G shows some more experiments
performed.

6.1. Dijkstra’s Algorithm – MPNN Base

We train the models on Dijkstra’s algorithm from CLRS-30,
and test for out-of-distribution (OOD) generalisation, i.e.
the models are trained on smaller input graphs, containing
16 nodes, and tested on larger graphs, containing 256 nodes.
The training data consists of 1000 samples, while the testing
and validation data consist of 32 samples each. We test the
models on larger graph sizes than done by Veličković et al.
(2022) (they use graphs with 64 nodes) to better test the
generalisation ability, and because baseline MPNN model
already gets around 91.5% test performance with 64 nodes.

To test the limit of attainable performance from Neural PQs,
we test an MPNN with access to an Oracle PQ, where apart
from the standard input features, we also take information
about the values pushed and popped from the priority queue
as input. The Oracle Neural PQ forces the push and pop
operation to be determined by the algorithmic PQ. This in-
formation about the actual PQ is used in training, validation
as well as testing.

Table 1 shows the test performance of the different models.
We see that the last model performs much better than the
early-stopped model for the baseline and Oracle PQ. No-
tably, the last and early-stopped model perform similarly
for NPQW. NPQW outperforms the baseline as well as the
Oracle PQ. In fact, we see that it closes the gap between
the test performance of baseline MPNN and true solution,
i.e. 100% test performance, by over 40%.

6.2. Different Algorithms from CLRS-30

We train and test five models for each algorithm from CLRS-
30 dataset – ‘Baseline’ (no memory module), NPQM-P-SA,
NPQW-P-SV, NPQW and NPQM. We train each model on
graphs with 16 nodes, and test them on graphs with 128
nodes, and consider only the early-stopped models.

Table 1: Test performance (Mean ± Standard Deviation)
of models with MLP MPNN base on learning Dijkstra’s
Algorithm with 256 node graphs, run with 3 different seeds.
The table shows the results for the Best validation score
model (early-stopped model) and the Last model in training.

Method Best Last
Baseline 68.58%± 9.71 76.97%± 4.38
NPQW 85.48%± 3.50 86.22%± 2.20
NPQM 74.54%± 8.37 74.68%± 3.06
NPQW-SA 79.74%± 2.99 69.36%± 12.02
NPQW-SV 77.04%± 2.99 79.89%± 6.28
NPQM-P-SA 79.19%± 5.17 78.26%± 6.19
NPQW-P-SV 71.46%± 6.75 79.44%± 5.90

Oracle PQ 75.85%± 3.65 85.37%± 3.72

Figure 6 shows the comparison for best performing Neural
PQ and the baseline MPNN for each algorithm. We see that
for 26 out of the 30 algorithms, at least one of the Neural
PQs outperforms the baseline MPNN. Interestingly, the
optimal Neural PQ version depends on the algorithm of
choice. Notably, the performance gain of using a Neural
PQ does not seem to be limited to algorithms that use a
traditional priority queue. This supports our belief that the
Neural PQ implementations are quite general, and these can
perform various roles, such as acting as a traditional data
structure, or a persistent-memory for accessing past overall
graph states. We provide the table with algorithm-wise
performance of each Neural PQ in Appendix G. Focussing
on NPQM, we found that it outperforms the baseline for 17
algorithms (more than half of the algorithms). We see that
for 12 algorithms, it improves the performance or closes the
gap to true prediction by at least 10%. For 4 algorithms, it
improves performance/reduces the gap by at least 50%.

6.3. Long-Range Reasoning

Message-passing based GNNs exchange information be-
tween 1-hop neighbours to build node representations at
each layer. Past works have shown that such information
propagation leads to over-squashing when the path of infor-
mation traversal is long, and so such models perform poorly
on tasks requiring long-range interaction (Alon & Yahav,
2021; Dwivedi et al., 2022). Dwivedi et al. (2022) have pro-
posed a collection of graph learning datasets to form ‘Long
Range Graph Benchmark’ (LRGB), each of which arguably
require long-range interaction reasoning to achieve strong
performance. In these experiments, we test the performance
of using Neural PQs on Peptides-struct dataset from the
LRGB benchmark.

Figure 7 shows the test MAE results for the different Neural
PQs and the baseline. Notably, all Neural PQs outperform
the baseline for GATv2 processor, while only NPQW-P-

7

Neural Priority Queues for GNNs

Figure 6: Evaluation results for best performing Neural PQ and the baseline MPNN model for the 30 algorithms from
CLRS-30, sorted by the relative improvement in performance.

SV and NPQW outperform the baseline on the other two
processors. The success of NPQW-P-SV and NPQW means
that these Neural PQs are empirically helping the models
with long-range reasoning. Notably, we see that Weighted
popping seems more useful for long-range reasoning.

Figure 7: Test MAE (Mean ± Standard Deviation) of differ-
ent Neural PQs with different base processors on Peptides-
struct dataset, run with 3 different seeds. Lower the test
MAE, better is the performance.

7. Conclusion and Future Works
External memory modules have helped traditional RNNs
improve their algorithmic reasoning capabilities. A natu-
ral hypothesis would be that external memory modules can
also help graph neural networks (GNNs) with algorithmic
reasoning. However, this remains a largely unexplored do-
main. In this paper, we proposed Neural PQs, a general
framework for adding memory modules to GNNs, with in-
spirations from traditional priority queues. We proposed and

motivated a desiderata for memory modules, and presented
NPQ, an implementation with the Neural PQ framework
that exhibited the desiderata.

We empirically show that NPQs indeed help with algorith-
mic reasoning, and without any extra supervision, matches
the performance of the baseline model that has access to
true priority queue operations on Dijkstra’s algorithm. The
performance gains are not limited to algorithms using pri-
ority queues. Furthermore, we show that the Neural PQs
help with capturing long-range interaction, by demonstrat-
ing their prowess on the Peptides-struct dataset from
the Long-Range Graph Benchmark.

The success of the Neural PQs has a wide effect on the
field of representational learning. It opens up a research
domain exploring the use of memory modules with GNNs,
especially their interfacing with the message-passing frame-
work. The Neural PQs take crucial steps towards advancing
the neural algorithmic reasoning field. These also hold po-
tential with various other fields and tasks, as seen by their
performance on the long-range reasoning task.

We have limited our focus on simple memory module oper-
ations. Potential future works could involve exploration of
more complicated definitions. These definitions might be
formed by analysing the reasons behind the greater success
of Neural PQs on some algorithms as opposed to others.
Neural PQs can also be used for various other graph tasks,
and it would be interesting to explore their uses for these.

8

Neural Priority Queues for GNNs

Acknowledgements
We thank Adrià Puigdomènech and Karl Tuyls for reviewing
the paper prior to the submission.

References
Alon, U. and Yahav, E. On the bottleneck of graph

neural networks and its practical implications. In In-
ternational Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=i80OPhOCVH2.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate, 2014.
URL https://arxiv.org/abs/1409.0473.

Brody, S., Alon, U., and Yahav, E. How attentive are graph
attention networks?, 2022.

Chen, Z., Chen, L., Villar, S., and Bruna, J. Can graph
neural networks count substructures? Advances in neural
information processing systems, 33:10383–10395, 2020.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
Introduction to algorithms. MIT press, 2022.

Dwivedi, V. P., Rampášek, L., Galkin, M., Parviz, A.,
Wolf, G., Luu, A. T., and Beaini, D. Long range graph
benchmark, 2022. URL https://arxiv.org/abs/
2206.08164.

Graves, A., Wayne, G., and Danihelka, I. Neural turing
machines, 2014. URL https://arxiv.org/abs/
1410.5401.

Grefenstette, E., Hermann, K. M., Suleyman, M., and Blun-
som, P. Learning to transduce with unbounded mem-
ory, 2015. URL https://arxiv.org/abs/1506.
02516.

Hamrick, J. B., Allen, K. R., Bapst, V., Zhu, T., McKee,
K. R., Tenenbaum, J. B., and Battaglia, P. W. Relational
inductive bias for physical construction in humans and
machines, 2018.

Ibarz, B., Kurin, V., Papamakarios, G., Nikiforou, K., Ben-
nani, M., Csordás, R., Dudzik, A., Bošnjak, M., Vitvit-
skyi, A., Rubanova, Y., Deac, A., Bevilacqua, B., Ganin,
Y., Blundell, C., and Veličković, P. A generalist neural
algorithmic learner, 2022.

Joulin, A. and Mikolov, T. Inferring algorithmic patterns
with stack-augmented recurrent nets, 2015. URL https:
//arxiv.org/abs/1503.01007.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. Gated
graph sequence neural networks, 2015. URL https:
//arxiv.org/abs/1511.05493.

Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti,
F., and Bronstein, M. Temporal graph networks for deep
learning on dynamic graphs, 2020. URL https://
arxiv.org/abs/2006.10637.

Strathmann, H., Barekatain, M., Blundell, C., and
Veličković, P. Persistent message passing, 2021. URL
https://arxiv.org/abs/2103.01043.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need, 2017. URL https://arxiv.org/
abs/1706.03762.

Veličković, P. and Blundell, C. Neural algorithmic reasoning.
Patterns, 2(7):100273, jul 2021. doi: 10.1016/j.patter.
2021.100273. URL https://doi.org/10.1016%
2Fj.patter.2021.100273.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph attention networks, 2018.

Veličković, P., Ying, R., Padovano, M., Hadsell, R., and
Blundell, C. Neural execution of graph algorithms, 2019.
URL https://arxiv.org/abs/1910.10593.

Veličković, P., Buesing, L., Overlan, M. C., Pascanu,
R., Vinyals, O., and Blundell, C. Pointer graph net-
works, 2020. URL https://arxiv.org/abs/
2006.06380.

Veličković, P., Badia, A. P., Budden, D., Pascanu, R., Ban-
ino, A., Dashevskiy, M., Hadsell, R., and Blundell, C.
The clrs algorithmic reasoning benchmark, 2022. URL
https://arxiv.org/abs/2205.15659.

Xu, K., Li, J., Zhang, M., Du, S. S., Kawarabayashi,
K.-i., and Jegelka, S. What can neural networks rea-
son about?, 2019. URL https://arxiv.org/abs/
1905.13211.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R., and Smola, A. Deep sets, 2018.

9

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2206.08164
https://arxiv.org/abs/2206.08164
https://arxiv.org/abs/1410.5401
https://arxiv.org/abs/1410.5401
https://arxiv.org/abs/1506.02516
https://arxiv.org/abs/1506.02516
https://arxiv.org/abs/1503.01007
https://arxiv.org/abs/1503.01007
https://arxiv.org/abs/1511.05493
https://arxiv.org/abs/1511.05493
https://arxiv.org/abs/2006.10637
https://arxiv.org/abs/2006.10637
https://arxiv.org/abs/2103.01043
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.1016%2Fj.patter.2021.100273
https://doi.org/10.1016%2Fj.patter.2021.100273
https://arxiv.org/abs/1910.10593
https://arxiv.org/abs/2006.06380
https://arxiv.org/abs/2006.06380
https://arxiv.org/abs/2205.15659
https://arxiv.org/abs/1905.13211
https://arxiv.org/abs/1905.13211

Neural Priority Queues for GNNs

A. Permutation-Equivariance
Node permutation-equivariance is an essential property shown by majority of the GNNs, as it embodies a key graph
symmetry. A GNN layer is said to be equivariant to permutation of the nodes if and only if any permutation of the node
IDs, while maintaining the overall graph structure, leads to the same permutation of the node features. Let us continue
with considering our graph to be G = (V, E). Let P : V → V be a permutation of the node IDs. For ease, let ρ : α → α
be an overloaded permutation operation, affecting the permutation P over all domains α. For example, for the domain of
vertices/nodes V , we have ρ(i) = P (i) for all i ∈ V .

A.1. MPNN Permutation-Equivariance

GNNs following the message-passing framework are permutation-equivariant. We consider the recurrent setup of CLRS
benchmark here. This is fairly easy to show. First, we recall the relevant equations from Section 2 below.

z(t)i = fA(hi,h(t−1)
i) (31)

mij = fm(z(t)i , z(t)j ,hij ,hg) (32)

mi =
⊕
j∈Ni

mji (33)

h(t)
i = fr(z

(t)
i ,mi) (34)

We can consider matrices H(t) and H indexed by the vertices i ∈ V , containing values h(t)
i and hi, respectively. We also

have a matrix of edge features E index by edges (i, j) ∈ E with value hij . Further, we can define the above operations as a
single layer Fmpnn (·), such that:

H(t) = Fmpnn

(
H(t−1),H,E

)
(35)

In order to prove that message-passing GNNs are permutation-equivariant, we need to show that:

Fmpnn

(
ρ
(
H(t−1)

)
, ρ (H) , ρ (E)

)
= ρ

(
H(t)

)
(36)

PROOF

We start by noting that by definition of ρ and permutation, ρ
(
H(t−1)

)
and ρ (H) are matrices such that they have values

h(t−1)
ρ(i) and hρ(i), respectively, for index i ∈ V . Also, ρ (E) is indexed by pairs (i, j), where (ρ(i), ρ(j)) ∈ E , containing

value hρ(i)ρ(j). Thus, we can define H′(t) as below.

H′(t) = Fmpnn

(
ρ
(
H(t−1)

)
, ρ (H) , ρ (E)

)
(37)

where H′(t) has value h′(t)
i for index i ∈ V , with h′(t)

i as defined below.

z′(t)i = fA(hρ(i),h(t−1)
ρ(i)) (38)

m′
ij = fm(z′(t)i , z′(t)j ,hρ(i)ρ(j),hg) (39)

m′
i =

⊕
j∈ρ(Nρ(i))

m′
ji (40)

h′(t)
i = fr(z

′(t)
i ,m′

i) (41)

where ρ(Nρ(i)) is the one-hop neighbourhood on the permuted graph, and can be simply defined as
ρ(Nρ(i)) = {j ∈ V | (ρ(j), ρ(i)) ∈ E}. All these equations follow simply from application of the MPNN equations,
as noted before, on the permuted matrices.

We start by noting that fA(hρ(i),h(t−1)
ρ(i)) is simply the value z(t)ρ(i). Thus, we get the below equation.

z′(t)i = z(t)ρ(i) (42)

10

Neural Priority Queues for GNNs

Using this in equation 39, we get:

m′
ij = fm(z(t)ρ(i), z(t)ρ(j),hρ(i)ρ(j),hg) (43)
= mρ(i)ρ(j) (44)

Using this in equation 40, we get:

m′
i =

⊕
j∈ρ(Nρ(i))

mρ(j)ρ(i) (45)

We also note that, by definition of ρ(Nρ(i)), we get the following.

j ∈ ρ(Nρ(i)) ⇐⇒ ρ(j) ∈ Nρ(i) (46)

Using this in Equation 45, we get:

m′
i =

⊕
ρ(j)∈Nρ(i)

mρ(j)ρ(i) (47)

= mρ(i) (48)

Substituting the above value and value from Equation 42 in Equation 41:

h′(t)
i = fr(z

(t)
ρ(i),mρ(i)) (49)

= h(t)
ρ(i) (50)

But that means that H′(t) = ρ(H(t)).

∴ Fmpnn

(
ρ
(
H(t−1)

)
, ρ (H) , ρ (E)

)
= ρ

(
H(t)

)
(51)

Hence, proved that message-passing GNNs show node-permutation equivariance.

A.2. Neural PQ Permutation-Equivariance

In a similar vein, we can show that the memory modules following the Neural PQ framework proposed by me, show
node-permutation equivariance. Below we recall the equations for the Neural PQ framework.

z(t)i = fA(hi,h(t−1)
i) (52)

mij = fm(z(t)i , z(t)j ,hij ,hg) (53)

Vi = fpop(z
(t)
i , z(t),h(t−1)

pq) (54)

Mi = f
(pq)
M (Vi, z(t)i) ∪ {mji | j ∈ Ni} (55)

mi =
⊕

m∈Mi

m (56)

h(t)
i = fr(z

(t)
i ,mi) (57)

h(t)
pq = fpush(h(t−1)

pq , z(t)) (58)

where z(t) is a multi-set of all the encoded inputs z(t)i , i.e. z(t) = {{z(t)i | i ∈ V}}.

We can take H(t), and E as defined in the previous section. Then, we can define the overall operations of the Neural PQ as a
single layer Fnpq (·), such that:

H(t),h(t)
pq = Fnpq

(
H(t−1),H,E,h(t−1)

pq

)
(59)

In order to prove that modules following the Neural PQ framework are permutation-equivariant, we need to show that:

Fnpq

(
ρ
(
H(t−1)

)
, ρ (H) , ρ (E) ,h(t−1)

pq

)
= ρ

(
H(t)

)
,h(t)

pq (60)

11

Neural Priority Queues for GNNs

PROOF

The description of ρ
(
H(t−1)

)
, ρ (H) and ρ (E) follow here same as before. We can define H′(t) and h′(t)

pq as below.

H′(t),h′(t)
pq = Fnpq

(
ρ
(
H(t−1)

)
, ρ (H) , ρ (E) ,h(t−1)

pq

)
(61)

Thus, H′(t) has value h′(t)
i for index i ∈ V , with h′(t)

i and h′(t)
pq as defined below.

z′(t)i = fA(hρ(i),h(t−1)
ρ(i)) (62)

m′
ij = fm(z′(t)i , z′(t)j ,hρ(i)ρ(j),hg) (63)

V ′
i = fpop(z

′(t)
i , z′(t),h(t−1)

pq) (64)

M ′
i = f

(pq)
M (V ′

i , z′(t)i) ∪
{

m′
ji | j ∈ ρ(Nρ(i))

}
(65)

m′
i =

⊕
m∈M ′

i

m (66)

h′(t)
i = fr(z

′(t)
i ,m′

i) (67)

h′(t)
pq = fpush(h(t−1)

pq , z′(t)) (68)

where z′(t) is a multi-set of all the node embeddings z′(t)i , i.e. z′(t) = {{z′(t)i | i ∈ V}}.

The following can be shown in a similar fashion as the previous proof:

z′(t)i = z(t)ρ(i) (69)

m′
ij = mρ(i)ρ(j) (70)

j ∈ ρ(Nρ(i)) ⇐⇒ ρ(j) ∈ Nρ(i) (71)

Using Equation 69 and the definition of z′(t), we get:

z′(t) = {{z(t)ρ(i) | i ∈ V}} (72)

= {{z(t)i | i ∈ V}} (73)

= z(t) (74)

because ρ(i) = P (i) and P is a permutation, and so the multi-sets are equal.

Using Equation 69 and Equation 74, we can update Equation 64 as below.

V ′
i = fpop(z

(t)
ρ(i), z(t),h(t−1)

pq) (75)
= Vρ(i) (76)

Substituting Equation 69, Equation 70 and Equation 76 in Equation 65, we get:

M ′
i = f

(pq)
M (Vρ(i), z(t)ρ(i)) ∪

{
mρ(i)ρ(j) | j ∈ ρ(Nρ(i))

}
(77)

Using Equation 71 in the above equation, we get:

M ′
i = f

(pq)
M (Vρ(i), z(t)ρ(i)) ∪

{
mρ(i)ρ(j) | ρ(j) ∈ Nρ(i)

}
(78)

= Mρ(i) (79)

Substituting this in Equation 66, we get:

m′
i =

⊕
m∈Mρ(i)

m (80)

= mρ(i) (81)

12

Neural Priority Queues for GNNs

Using this and Equation 69 in Equation 67, we get:

h′(t)
i = fr(z

(t)
ρ(i),mρ(i)) (82)

= h(t)
ρ(i) (83)

This means that H′(t) = ρ(H(t)).

Additionally, substituting the value from Equation 74 in Equation 68, we get:

h′(t)
pq = fpush(h(t−1)

pq , z(t)) (84)

= h(t)
pq (85)

Since, H′(t) = ρ(H(t)) and h′(t)
pq = h(t)

pq , we have:

Fnpq

(
ρ
(
H(t−1)

)
, ρ (H) , ρ (E) ,h(t−1)

pq

)
= ρ

(
H(t)

)
,h(t)

pq (86)

Hence, proved, that modules following the Neural PQ framework show node-permutation equivariance.

B. NPQ Reformulation
In Section 5, we introduced the push and pop operations for NPQ. However, the equations defined there make use of the
granted pop proportions q

(i)
j (and z(t)i as well in the push operation). These are not exactly available to the respective

functions as defined in the Neural PQ framework. However, these are used in Section 5 only to make the equations easier to
understand, and they instead can be reformulated to conform to the Neural PQ framework. We provide the reformulation
below.

B.1. Pop Function

The calculation of pop request fractions p(i)j as defined in Section 5.2 can be combined into a single function POP-REQUEST,
which takes z(t)i , h(t−1)

pq and j – the embedding of node i, previous NPQ state and the index of the queue element we want to
calculate the pop request for, and returns the pop request fraction p

(i)
j .

p
(i)
j = POP-REQUEST(z(t)i ,h(t−1)

pq , j) (87)

We can calculate the sum of the pop requests as below:

TOT-POP-REQ(z(t),h(t−1)
pq , j) =

∑
zk∈z(t)

POP-REQUEST(zk,h(t−1)
pq , j) (88)

By definition of z(t), we have: ∑
k∈V

p
(k)
j =

∑
k∈V

POP-REQUEST(z(t)k ,h(t−1)
pq , j) (89)

=
∑

zk∈z(t)
POP-REQUEST(zk,h(t−1)

pq , j) (90)

= TOT-POP-REQ(z(t),h(t−1)
pq , j) (91)

Using this, we can reformulate the pop proportions q(i)j as below:

q
(i)
j =

 p
(i)
j , if TOT-POP-REQ(z(t),h(t−1)

pq , j) ≤ s(t−1)
j

p
(i)
j

TOT-POP-REQ(z(t),h(t−1)
pq),j

· s(t−1)
j , else

(92)

It is easy to see that this reformulation conforms to the pop function as defined in the Neural PQ framework.

13

Neural Priority Queues for GNNs

B.2. Push Function

We can rewrite the push function as below:

s′i = s(t−1)
i −min

(
TOT-POP-REQ(z(t),h(t−1)

pq , i), s(t−1)
i

)
(93)

s′ = nonzeroi (s′i) (94)
v′ = v(t)[arg-nonzeroi (s

′
i)] (95)

v = tanh

 ∑
zk∈z(t)

fv(zk)

 (96)

s = sigmoid

 ∑
zk∈z(t)

f (push)
s (zk)

 (97)

fpush(⟨v(t−1), s(t−1)⟩, z(t)) = ⟨v′ || [v], s′ || [spush]⟩ (98)

Again, it is easy to see that the above reformulation conforms to the push function as defined in the Neural PQ framework.

C. Priority Queue Alignment
Following is the priority queue setup we consider. We will then show that under certain assumptions, we can reduce the
NPQM computation to the equations for the priority queue setup defined.

Let us suppose some algorithm uses a priority queue. We shall take the algorithm to push at most 1 element and pop
at most 1 element in each timestep. We take the pushing and popping to be controlled by the overall graph, but under
certain assumptions, the reduction can be extended to having these from nodes instead. Further, we take that the output
of the popping is returned to some specific node. Let P (t−1) = {(k1, ν1), . . . , (ki, νi), . . .} be the set of past un-popped
key-value-pair pushes to the priority queue. Let o(t)

i be the output to the node i ∈ V . We further assume that all priority
keys and values are unique. We can represent the operation of a traditional priority queue over a timestep as below, using
P (t−1) from the previous timestep and by calculating the next P (t−1) and the outputs o(t)

i . We take the value returned to be
0 if no value is returned to the node.

o
(t)
i =

{
ν
(t−1)
max , if we pop this timestep and return to node i
0 , else

(99)

P ′(t) =

{
P (t−1) − (k

(t−1)
max , ν

(t−1)
max) , if we pop this timestep

P (t−1) , else
(100)

P (t) =

{
P ′(t) ∪ (k(t), ν(t)) , if we push some key-value pair (k(t), ν(t))
P ′(t) , else

(101)

where (k
(t−1)
max , ν

(t−1)
max) ∈ P (t−1) such that ∀(k, ν) ∈ P (t−1) . k ≤ kmax.

We shall now show that, under certain assumptions, the NPQM operations can be reduced to the above operations. More
specifically, we shall show that the NPQ state h(t)

pq mimics the priority queue state P (t), and the NPQ messages Mi mimics

the returned value o
(t)
i . The main assumptions we make is that the linear layers are capable of expressing the required

functions and the intermediate embedding sizes are big enough to not lose any information. We go into more details about
the assumptions as we describe the reduction.

We continue with the graph G = (V, E) setup, with z
(t)
i as the node features. Since NPQ uses a GNN controller, we assume

that we can make all decisions from the node features, i.e. the node features determine whether we want to push and pop
values and if so, what value and key to push, and which node to pop to. Let h(t−1)

pq = ⟨v(t−1), s(t−1)⟩ be the previous NPQ
state, such that each element of v(t−1) is an encoding of a unique key-value-pair in P (t−1), with an element existing for
each key-value pair. Let κ be the mapping from NPQ values to the corresponding keys, and ω be the mapping from NPQ to
the values in P (t−1). Let for all s ∈ s(t−1), s = 1.

14

Neural Priority Queues for GNNs

Pop Function We shall now breakdown the pop function, to make the overall computation match the traditional priority
queue’s. We assume that we can instantiate f

(pop)
s in a manner such that s(i)pop = 1 iff we want to pop a value for node i

in timestep t, else s
(i)
pop = 0. Let us further suppose that the attentional mechanism calculating the coefficient c(i)j simply

extracts the encoded priority key in vt−1
j . More specifically, coefficient c(i)j is calculated as below in NPQ.

e
(i,h)
j = LeakyReLU

(
f (h)
a1

(z(t)i) + f (h)
a2

(v(t−1)
j)

)
(102)

α
(i,h)
j = softmaxj

(
e
(i,h)
j

)
(103)

c
(i)
j = softmaxj

(
fa([α

(i,1)
j , . . . , α

(i,h)
j , . . .])

)
(104)

For simplicity, we can take number of attention heads to be 1. Let f (h)
a1 (x) = 0 for all x. Further, suppose that

f
(h)
a2 (v(t−1)

j) = LeakyReLU−1(κ(v(t−1)
j)). Also, let us take fa to be an identity function. Thus, we get the below equation

for c(i)j .

e
(i,h)
j = κ(v(t−1)

j) (105)

α
(i,h)
j = softmaxj

(
κ(v(t−1)

j)
)

(106)

c
(i)
j = softmaxj

(
softmaxj

(
κ(v(t−1)

j)
))

(107)

Since we use Max Popping, we have the pop proportions requested as below.

k = argmax
k∈I(t−1)

pq

softmaxk
(

softmaxk
(
κ(v(t−1)

k)
))

(108)

p
(i)
j = s(i)pop · I{k} (j) (109)

We can show easily that argmaxa∈A softmaxa(ba) = argmaxa∈A ba, for some set A and values ba. Thus, we can simplify
the pop proportions.

k = argmax
k∈I(t−1)

pq

κ(v(t−1)
k) (110)

p
(i)
j = s(i)pop · I{k} (j) (111)

But argmax
k∈I(t−1)

pq
κ(v(t−1)

k) is nothing but index of the NPQ element corresponding to k
(t−1)
max . Thus, we can re-formulate

the above equation to use this.

p
(i)
j = s(i)pop · I{k

(t−1)
max

} (κ(v(t−1)
j)

)
(112)

Using the assumption about f (pop)
s and rewriting the indicator function, we get the following equation.

p
(i)
j =


1 , if we pop this timestep, return to node i

and κ(v(t−1)
j) = k

(t−1)
max

0 , else
(113)

Since ∀s ∈ s(t−1) . s = 1, NPQ will fully grant each pop request. Thus, we have q(i)j = p
(i)
j . NPQ has pop function’s output

values as defined below.

fpop(z
(t)
i , z(t), ⟨v(t−1), s(t−1)⟩) =


∑

j∈I(t−1)
pq

q
(i)
j · v(t−1)

j

 (114)

Using the previous equations, we get the following reduction for Vi.

Vi =


{v(t−1)

j } , if we pop this timestep and return to node i

where κ(v(t−1)
j) = k

(t−1)
max

{0} , else
(115)

15

Neural Priority Queues for GNNs

Message Encoding Function We assume that NPQ learns a message encoding function f
(pq)
m such that f (pq)

m (0) = 0 and
f
(pq)
m (v(t−1)

j) = ω(v(t−1)
j) for all j. Thus, the reduction for Mi is as follows.

Mi =

{
ν
(t−1)
max , if we pop this timestep and return to node i
0 , else

(116)

where we make use of the fact that κ(v(t−1)
j) = k

(t−1)
max ⇐⇒ ω(v(t−1)

j) = ν
(t−1)
max which follows by the definition of ω, κ

and the key-value-pair (k(t−1)
max , ν

(t−1)
max).

This in fact is the same value as the output value o
(t)
i , returned in the traditional priority queue. Thus, we have shown that

NPQ messages mimic the returned output. We only need to now show that the state update can be mimicked as well.

Push Function It is straightforward to see, albeit somewhat tedious to show, that the NPQ state ⟨v′, s′⟩ is such that
∀s ∈ s′.s = 1 and that the correspondence between v′ and the key-value-pairs in P ′(t) is maintained by κ and ω. Thus, we
use this directly without proof.

Similar to the push strength, we assume that we can instantiate f
(push)
s in a manner such that s = 1 iff we want to push a

value in timestep t, else s = 0. We also assume that we can instantiate fv such that when we want to push a value, we get v
as a unique recoverable encoding of the key-value-pair that we want to push. That means that we can now define another
mapping, κ′ and ω′, such that these are equal to κ and ω for the previous elements, and for the new element, these are equal
to the newly pushed key-value-pair. This means that the new state NPQ h(t)

pq mimics the priority queue state P (t).

Hence proved that we can reduce the operations of NPQM to a traditional priority queues, under the noted assumptions.

D. Greater Memory-Persistence – NPQ-P
NPQ defined earlier deletes the popped elements from the queue. In this variation, we explore a more persistent Neural
PQ implementation. We refer to this as NPQ-Persistent or NPQ-P. NPQ-P does not delete popped elements. Here the
pop operation acts more like a ‘seek’ operation, i.e. it just returns the element but does not delete it. We make a further
simplification by making the push and pop operations discrete. Thus, at each timestep, one element is pushed into the queue,
and one element (or a weighted combination of elements) per node is read and passed as a message to each node. Below we
note the changes in the components for this implementation, as compared to NPQ. The message encoding function remains
the same, but the rest change.

D.1. State

Since we do not have a continuous push and pop operation, we do not need to keep track of the strengths of the different
values in the queue. Thus, the state of the priority queue h(t)

pq is simply the list of memory values. For the sake of consistency
with NPQ, we represent the state as a single value tuple.

h(t)
pq = ⟨v(t)⟩ (117)

D.2. Pop function

As noted, pop does not delete an element from the queue. The priority of the elements of the queue is determined using
attention coefficients c(i)j ∈ (0, 1), denoting the coefficient for the jth element of the queue with respect to the ith node, as
defined in Equation 20. Since we no longer have push and pop strengths, we no longer need the request-grant framework.
We again have two popping strategies – Max Popping and Weighted Popping, and related implementations NPQM-P and
NPQW-P respectively.

MAX POPPING

j = argmax
j∈I(t−1)

pq

c
(i)
j (118)

fpop(z
(t)
i , z(t), ⟨v(t−1)⟩) =

{
v(t−1)
j

}
(119)

16

Neural Priority Queues for GNNs

WEIGHTED POPPING

fpop(z
(t)
i , z(t), ⟨v(t−1)⟩) =


∑

j∈I(t−1)
pq

c
(i)
j · v(t−1)

j

 (120)

D.3. Push Function

Since we are no longer deleting elements, the push function simply consists of appending new push value to the queue.

v = tanh

(∑
i∈V

fv(z
(t)
i)

)
(121)

fpush(⟨v(t−1)⟩, z(t)) = ⟨v(t−1) || [v]⟩ (122)

E. Graph Priority Queue – NPQ-SA
In NPQ, each node pops different elements from the queue, and thus receives different messages from the queue. This
node-wise treatment of the priority queue might not be always ideal, and we might want to treat the priority queue messaging
to be uniform for the whole graph, i.e. we might want each node to receive the same values from the Neural PQ. In NPQ
Send to All or NPQ-SA, we propose a variant that returns the same set of popped values for each node. This set is simply
the union of all the values that would have been popped from the queue in NPQ for the different nodes. Thus, in NPQ-SA,
each node receives |V| values from the queue. All the components of the Neural PQ remain the same as in Section 5 except
for the pop function, which is as follows.

E.1. Pop Function

Most of the function remains the same and uses the attention coefficients and pop fractions q(i)j as defined in Section 5.4.
The changes are as below, where we now first calculate V ′

k , the set of values popped for node k, if we were using the pop
function of NPQ. These are then union-ed to get the values returned for each node.

V ′
k =


∑

j∈I(t−1)
pq

q
(k)
j · v(t−1)

j

 (123)

fpop(z
(t)
i , z(t), ⟨v(t−1)⟩) =

⋃
k∈V

V ′
k (124)

F. Graph Priority Queue – NPQ-SV
NPQ-SA is one way to model a graph controlled priority queue. Another way would be to only pop a single value from the
priority queue, and return this single value to all nodes. We implement this strategy in NPQ Single Value or NPQ-SV. Again,
only the pop function changes here.

F.1. Pop Function

NPQ-SV makes two changes to the pop function of NPQ – (1) all pop strengths are aggregated to get a single value for all
the nodes, and (2) all the attention coefficients are aggregated to get the same values for all the nodes. We calculate this
single pop strength spop and attention coefficients cj as below.

spop = sigmoid

(∑
i∈V

f (pop)
s (z

(t)
i)

)
(125)

cj = softmaxj

(∑
i∈V

c
(i)
j

)
(126)

17

Neural Priority Queues for GNNs

where c
(i)
j is the node-wise attention coefficients, as calculated in Section 5.4. We now need to just update the pop requests

p
(i)
j to use these values, as done below. Rest of the function remains the same as in NPQ.

MAX POPPING

k = argmax
k∈I(t−1)

pq

ck (127)

p
(i)
j = spop · I{k} (j) (128)

WEIGHTED POPPING

p
(i)
j = spop · cj (129)

G. Further Evaluations
In Section 6, we present various experiments we performed. In this section, we provide further details about the experiments
and their results, along with some more experiments.

G.1. Dijkstra’s Algorithm – Different Base Processors

We run experiments to test whether the performance improvements seen with the MPNN controlling the Neural PQs are
also seen with the use of different processors controlling the Neural PQs. We continue with Dijkstra’s algorithm as the
target task, and explore the use of different base processors – Deep Sets (Zaheer et al., 2018), GAT (Veličković et al., 2018),
GATv2 (Brody et al., 2022), PGN (Veličković et al., 2020) and Triplet MPNN (Ibarz et al., 2022), apart from MPNN. We
compare the performance of baseline (no memory module), NPQM-P-SA, NPQW-P-SV, NPQW and NPQM, each with these
different base processors.

Table 2 shows the test performance of the different Neural PQs when used with the above mentioned different base
processors/controllers, on graphs with 256 nodes. We observe that for each processor, at least one of the Neural PQs
outperforms the baseline. NPQW outperforms the baseline for all processors, except Deep Sets and PGN, for both of which,
it gets a performance very close to the baseline. Thus, the use of Neural PQs does not seem to be limited to the basic MLP
MPNN, although interestingly, for some processor GNNs, like Deep Sets and PGN here, other Neural PQ variants seem to
be more useful.

Table 2: Test performance (Mean ± Standard Deviation) of different Neural PQs with different base processors on learning
Dijkstra’s Algorithm, run with 3 different seeds. Tested on graphs with 256 nodes, and with Early-stopped model.

Processor Baseline NPQM-P-SA NPQW-P-SV NPQW NPQM
Deep Sets 31.01%± 2.41 37.76%± 0.60 31.30%± 3.12 30.36%± 3.47 31.04%± 5.50
GAT 36.94%± 12.51 19.58%± 9.17 47.04%± 13.51 38.72%± 9.13 36.96%± 14.37
GATv2 55.62%± 3.18 19.07%± 12.56 52.12%± 13.29 58.99%± 12.02 57.01%± 14.89
MPNN 76.97%± 4.38 81.64%± 3.71 77.19%± 8.15 86.22%± 2.20 74.68%± 3.06
PGN 65.28%± 6.16 67.58%± 7.01 74.42%± 5.50 64.57%± 3.00 59.58%± 9.46
Triplet MPNN 57.65%± 7.43 66.58%± 19.72 74.31%± 8.68 79.92%± 11.49 73.92%± 6.18

G.2. Different Algorithms from CLRS

Section 6.2 talks about our experiment of using the different Neural PQs for all 30 algorithms from CLRS-30. Table 3 shows
the algorithm-wise performance for each model. This also shows the Win/Tie/Loss counts, which are calculated in the same
manner as Veličković et al. (2022). Table 4 shows the algorithm-wise win/tie/loss of each model.

18

Neural Priority Queues for GNNs

Algorithm Baseline NPQM-P-SA NPQW-P-SV NPQW NPQM
Activity Selector 80.38%± 2.94 81.29%± 1.35 62.27%± 19.30 78.82%± 6.13 83.36%± 4.27
Articulation Points 6.86%± 0.33 10.27%± 2.16 16.30%± 13.49 9.51%± 2.37 13.40%± 2.96
Bellman Ford 85.90%± 0.94 87.92%± 0.86 80.43%± 3.45 86.91%± 0.69 87.50%± 2.03
BFS 99.57%± 0.16 99.85%± 0.08 99.86%± 0.12 99.84%± 0.09 99.64%± 0.18
Binary Search 23.53%± 5.76 19.21%± 7.90 33.28%± 10.49 21.22%± 10.96 28.79%± 2.37
Bridges 3.61%± 2.39 3.67%± 1.45 1.68%± 0.72 2.46%± 1.32 1.83%± 0.40
Bubble Sort 18.44%± 2.52 14.31%± 8.79 16.11%± 7.30 21.37%± 3.11 17.78%± 10.43
DAG Shortest Paths 96.48%± 0.49 95.64%± 1.16 69.96%± 21.89 94.93%± 1.79 96.19%± 0.60
DFS 4.48%± 0.57 6.16%± 0.88 5.30%± 0.91 4.17%± 0.92 6.03%± 1.54
Dijkstra 82.69%± 7.50 89.72%± 0.73 89.48%± 2.24 90.93%± 2.66 83.94%± 2.52
Find Max Subarray 18.77%± 4.28 20.38%± 2.66 12.39%± 3.86 16.05%± 3.58 19.94%± 5.31
Floyd-Warshall 16.53%± 2.49 15.57%± 3.86 10.49%± 6.39 13.50%± 4.87 17.84%± 1.09
Graham Scan 85.92%± 5.10 80.33%± 10.77 67.95%± 3.09 64.05%± 15.28 61.95%± 20.81
Heapsort 3.99%± 1.76 24.58%± 26.33 10.57%± 4.91 10.45%± 6.30 16.37%± 8.33
Insertion Sort 12.99%± 8.14 11.61%± 1.45 10.02%± 2.96 9.88%± 1.31 8.16%± 1.22
Jarvis March 93.35%± 1.91 80.35%± 20.57 73.55%± 6.28 89.03%± 4.10 92.88%± 2.87
KMP Matcher 3.82%± 0.63 3.12%± 0.54 3.91%± 0.15 2.59%± 1.30 3.23%± 0.82
LCS Length 61.84%± 7.18 72.05%± 5.72 64.21%± 2.29 59.36%± 2.24 67.50%± 6.24
Matrix Chain Order 77.50%± 0.21 73.48%± 0.16 75.45%± 2.03 76.90%± 2.01 78.74%± 1.01
Minimum 81.99%± 9.79 79.61%± 19.99 76.86%± 18.03 86.08%± 2.36 75.65%± 14.35
MST-Kruskal 27.84%± 1.03 29.53%± 15.24 34.80%± 21.05 27.56%± 5.96 43.24%± 8.25
MST-Prim 46.88%± 15.85 52.59%± 8.58 46.28%± 10.93 49.04%± 8.70 60.31%± 8.79
Naı̈ve String Matcher 4.21%± 0.87 4.24%± 0.98 2.82%± 1.96 3.83%± 0.25 3.40%± 1.55
Optimal BST 34.27%± 12.39 26.83%± 9.77 22.91%± 25.26 18.66%± 15.76 59.89%± 1.84
Quickselect 0.05%± 0.07 0.02%± 0.03 0.74%± 0.81 1.48%± 1.67 0.00%± 0.00
Quicksort 14.20%± 6.53 15.42%± 7.90 10.70%± 3.06 17.07%± 8.36 17.71%± 12.42
Segments Intersect 93.27%± 0.56 93.53%± 0.88 93.44%± 0.83 93.08%± 0.31 93.19%± 0.06
SCC 29.12%± 5.56 32.19%± 9.23 21.22%± 6.05 29.86%± 3.44 22.50%± 2.18
Task Scheduling 78.66%± 1.26 79.10%± 1.23 78.52%± 0.75 78.96%± 0.58 77.79%± 0.26
Topological Sort 47.23%± 7.58 59.54%± 6.13 55.11%± 0.21 52.87%± 0.52 50.98%± 2.69
Overall Average 44.48% 45.40% 41.55% 43.68% 46.32%
Win/Tie/Loss Counts 2/16/12 0/18/12 0/12/18 2/12/16 4/15/11

Table 3: Test performance (Mean ± Standard Deviation) of the Neural PQs on out-of-distribution test data for all 30
algorithms from CLRS-30, run with 3 different seeds.

19

Neural Priority Queues for GNNs

Algorithm Baseline NPQM-P-SA NPQW-P-SV NPQW NPQM
Activity Selector T T L L T
Articulation Points T T T T T
Bellman Ford L T L L T
BFS L T T T L
Binary Search T L T L T
Bridges T T L T L
Bubble Sort T L L T L
DAG Shortest Paths T L L L T
DFS L T T L T
Dijkstra L T T T L
Find Max Subarray T T L L T
Floyd-Warshall L L L L W
Graham Scan W L L L L
Heapsort T T T T T
Insertion Sort T T T T T
Jarvis March T L L L T
KMP Matcher T L T L L
LCS Length L T L L T
Matrix Chain Order L L L L W
Minimum L L L W L
MST-Kruskal L L L L W
MST-Prim L T L L T
Naı̈ve String Matcher T T L T T
Optimal BST L L L L W
Quickselect T T T T T
Quicksort T T T T T
Segments Intersect T T T T T
SCC T T L T L
Task Scheduling T T T T L
Topological Sort L T T L L
Overall Counts 1/17/12 0/19/11 0/13/17 1/13/16 4/16/10

Table 4: Win/Tie/Loss counts of the Neural PQs and Baseline on out-of-distribution test data for all 30 algorithms from
CLRS-30, run with 3 different seeds.

20

Neural Priority Queues for GNNs

G.3. Long-Range Reasoning

Table 5 shows the evaluation results for the baseline and Neural PQs on the Peptides-Struct dataset from Long-Range Graph
Benchmark (Dwivedi et al., 2022) for different processors, as detailed in Section 6.3.

Processor Baseline NPQM-P NPQW-P-SV NPQW NPQM
GATv2 0.3530± 0.0019 0.3141± 0.0049 0.2589± 0.0031 0.2670± 0.0009 0.3037± 0.0540
GCN 0.3476± 0.0003 0.3854± 0.0825 0.2723± 0.0054 0.2678± 0.0023 0.3462± 0.1088
GINE 0.3640± 0.0010 0.3865± 0.0372 0.2922± 0.0012 0.2984± 0.0043 0.3871± 0.0578

Table 5: Test MAE (Mean ± Standard Deviation) of different Neural PQs with different base processors on Peptides-struct
dataset, run with 3 different seeds. Lower the test MAE, better is the performance.

21

