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Significance Tests and Goodness of Fit
in the Analysis of Covariance Structures
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Factor analysis, path analysis, structural equation modeling, and related
multivariate statistical methods are based on maximum likelihood or gen-
eralized least squares estimation developed for covariance structure models.
Large-sample theory provides a chi-square goodness-of-fit test for comparing
a model against a general alternative model based on correlated variables. This
model comparison is insufficient for model evaluation: In large samples vir-
tually any model tends to be rejected as inadequate, and in small samples
various competing models, if evaluated, might be equally acceptable. A gen-
eral null model based on modified independence among variables is proposed
to provide an additional reference point for the statistical and scientific evalu-
ation of covariance structure models. Use of the null model in the context of
a procedure that sequentially evaluates the statistical necessity of various sets
of parameters places statistical methods in covariance structure analysis into a
more complete framework. The concepts of ideal models and pseudo chi-square
tests are introduced, and their roles in hypothesis testing are developed. The
importance of supplementing statistical evaluation with incremental fit indices
associated with the comparison of hierarchical models is also emphasized.
Normed and nonnormed fit indices are developed and illustrated.

Covariance structure analysis represents a
set of techniques for theory testing with cor-
relational data. The theories that can be
tested are those that can be represented as
a system of equations that describe the uni-
directional and bidirectional influences of
several variables on each other. Typically,
a covariance structure theory or model is
specified via a simultaneous set of structural
linear regressions of particular variables on
other variables. The method is called co-
variance structure analysis because the impli-
cations of the simultaneous regressions are
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studied primarily at the level of correlations
or covariances. The main statistical problems
involved are those of estimating the parame-
ters of one or several competing models and
evaluating the relative goodness of fit of com-
peting models by significance tests.

The field of covariance structure analysis
actually covers a wide range of topics, in-
cluding confirmatory factor analysis, path
analysis, and simultaneous equation and
structural equation modeling. An overview
of the methods that are involved is beyond
the scope of this article, but introductions
can be found in Bentler (1978, 1980), Bielby
and Hauscr (1977), Joreskog (1978), and
Kenny (1979). More advanced topics are
covered by Aigner and Goldberger (1977),
Bentler (in press), Bentler and Weeks (1979,
1980, in press), Joreskog and Sb'rbom (1979),
and Joreskog and Wold (in press). It is not
the purpose of this article to survey the
voluminous literature that is involved. Rather,
we examine the logic of statistical significance
testing in covariance structure models. This

Copyright 1980 by the American Psychological Association, Inc. 0033-2909/80/8803-0588S00.75

588



SIGNIFICANCE TESTS 589

logic can be understood without a familiarity
with the technical literature of the field, and
hence the limitations of current practice can
be established without much mathematical
detail. Some relatively simple suggestions are
made to improve current practice. The points
made are clarified through the use of examples.

Statistical Basis of Covariance
Structure Analysis

The statistical theory involved in covariance
structure analysis exists only in rudimentary
form. Only large-sample theory has been de-
veloped to any extent, and the relevance of
this theory to small samples has not been
established. Although the statistical theory
associated with some covariance structure
models based on multinormally distributed
variables existed years ago (cf. Anderson &
Rubin, 1956; Lawley, 1940), Joreskog (1967,
1969, 1978; Joreskog & Sorbom, 1979) must
be given credit for establishing that maximum
likelihood estimation could be routinely ap-
plied to a variety of covariance structure
models. Although various researchers were
studying specialized statistical problems and
searching for estimators that might be easy
to implement, Joreskog showed that complex
models could be estimated by maximum likeli-
hood methods based on a standard covariance
structure approach. The most general alter-
native approach to estimation in covariance
structure models was developed by Browne
(1974). Building on the work of Joreskog and
Goldberger (1972) and Anderson (1973), who
had developed generalized least squares esti-
mators for the factor analytic model and for
linear covariance structures, Browne showed
that a class of generalized least squares esti-
mators could be developed that have many
of the same large-sample properties as the
maximum likelihood estimators, that is, con-
sistency, normality, and efficiency. He also
developed the associated goodness-of-fit tests.
Lee (1977) showed that maximum likelihood
and generalized least squares estimators are
asymptotically equal.

Little is known about the relative robust-
ness of these estimators to violation of as-
sumptions or model misspecifkation and about
their relative small-sample properties (see

Boomsa, in press; Geweke & Singleton, 1980;
Olsson, 1979). Unlike maximum likelihood
estimators, the generalized least squares esti-
mators are not based on the assumption of
multivariate normality of variables. Unfortu-
nately, the empirical meaning of loosening
the normality assumption is open to question,
since simple procedures for evaluating the less
restrictive assumption (that fourth-order cu-
mulants of the distribution of the variables are
zero) do not appear to be available. Although
certain generalized least squares estimators
are easier to compute than maximum likeli-
hood estimators, there is some evidence that
they may be more biased (Browne, 1974;
Joreskog & Goldberger, 1972). A less re-
strictive statistical theory based on minimal
assumptions about variables is currently being
developed (Browne, Note 1).

Overvieiv of Estimation

In covariance structure analysis a sample
of multivariate data based on N = n -j- 1
subjects and p variables is summarized in the
(P X p) sample covariance matrix S based
on n degrees of freedom. The elements j,-,-
of S are the variances of the variables and
their covariances. (A covariance is a correla-
tion multiplied by the two standard deviations
involved.) It is hypothesized that the cor-
responding population covariance matrix 2
with elements <r,y is generated by q true
though unknown parameters that can be as-
sembled in the q X 1 vector 0, so that each
element of the covariance matrix is a function
of the q elements of 0 under a given model.
Thus en = /(,7) (0) may be said to be the
model for the covariance structure, where the
function/(,-y) describes the particular structure
under investigation that relates the q parame-
ters in 0 to ttij. Although models will also
contain parameters that are fixed or treated
as known in a given application, these pa-
rameters are, by convention, not included in 0.
A more complete covariance structure repre-
sentation might be o-,, =/( ij>(0, w), where w
represents a vector of fixed parameters. How-
ever, even this would be incomplete because
the structural form relating parameters is not
given in the representation. (See Bentler &
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Weeks, 1979, for the range of structural
models involved, which, e.g., include factor
analytic and simultaneous equation models.)
To illustrate the meaning of an = /(o')(6), in
exploratory factor analysis the unknown fac-
tor loadings and unique variances are the
parameters that are the elements of the
vector 6, whereas the factor analytic equa-
tions that relate these parameters to the
covariance matrix represent the function /(ij>.
Specifically, this is given by the sum of cross-
products of factor loadings, plus the unique
variance if i = j. In some models one hy-
pothesizes that the elements of <r;y have a
certain relationship to each other, summarized
in /(ij), and the parameter vector 6 contains
elements such as <r5A. Thus if the model states
that an = <Tgh, the function /(,-;-) simply selects
a-gh from the remaining elements of 6. In
structural equation models, the variances and
covariances of the independent variables, the
regression coefficients relating independent to
dependent variables, the coefficients for re-
gressions relating dependent variables to each
other, and residual variances and covariances
would typically be elements of the vector 9,
and /(,j) may represent a complex matrix
equation. In general, of course, the particular
theory or model that is tested would dictate
the form and structure (i.e., 2 = A<M/ + •&,
for a confirmatory factor analytic model)
that relates the various parameters to each
other and to the data.

Assuming a theory to be correct, if the
sample size N were arbitrarily large, S would
converge to S, and it would be obvious
whether the sample data matrix S corresponded
to a particular hypothesized structure (e.g.,
A<M' + S?). In data analysis, however, where
S and 9 are not known and where N is not
very large, it is first necessary to estimate
the parameters of the model, yielding 9 and 2
via an = /(,-,•) (9). The closeness of the model-
based estimated covariance matrix S to S not
only serves as a criterion to be optimized in
estimating the parameters, as is described
later, but it represents an index of the validity
of the model itself. If 2 is virtually identical
element by element under the model to S,
that is, ffij=Sij, the model/(,-,) (9) that gen-
erates 2 via /(,-j)(9) is a possible candidate
for the structure underlying the population S.

If even the best estimate of 2 under the
model is very different from S, it is unlikely
that the hypothesized model accurately mir-
rors the process that generates the data, thus
providing a basis for using sample data to
reject a given hypothesized model. These
points are shortly made more precise.

Loss Functions and Estimators

The long tradition of least squares estima-
tion in statistics might dictate the use of
the unweighted least squares goodness-of-fit
function,

U(Q) = £ trace (S - 2)2,

in which the q parameters in 9 are estimated
so as to minimize U(B). This loss function
represents an unweighted sum of squares of
the residual elements (sij — cni) of the matrix
(S - 2). Of course, if 2 = S, £7(0) = 0. Un-
fortunately, a statistical theory associated
with £7(9) has not been developed. Thus
statistical estimation in covariance structure
models hinges on the generalized least squares
function,

G(9) = - 2)W]2,

which minimizes the sum of squares of a
weighted residual matrix (W is a weight
matrix), and the maximum likelihood method,
which minimizes

L(6) = log|Z| + trace (SS-1) - log|S| - p.

The complicated loss function L(Q) is a posi-
tive quantity that approaches zero as S and 2
become identical. Browne (1974) has shown
that L(Q) and G(6) become equivalent as the
residuals approach zero and W estimates S~l.

Let 9 be the estimator that minimizes
G(9), with W being any weight matrix (such
as S~') that converges in probability to 2~~>,
and let 5 be the estimator that minimizes L(&).
These generalized least squares and maximum
likelihood estimators have the following as-
ymptotic (large-sample) properties: (a) They
are consistent, (b) they have minimal Cramer-
Rao sampling variance, (c) they are asymp-
totically equal, and (d) they have a multi-
variate normal distribution with mean vector 0
and covariance matrix given by the inverse
of the Fisher information matrix. (For more
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details on these properties, see Browne, 1974,
and Lee, 1977.) These properties are tech-
nically important but are not especially rele-
vant to the concerns of this article.

For our purposes, a final property is more
important. This property relates the mini-
mum function values G(9) and L(Q) to a
chi-square statistic. Let ^(0) be either G(9)
or L(Q), whichever is relevant. Then

v = nP(Q)

has an asymptotic chi-square distribution,
with degrees of freedom equal to the number
of free sample variances and covariances
minus the number of parameters estimated,
that is, p(p + l)/2 - q, typically. This final
property provides a statistical basis for evalu-
ating a model.

Logic of the Goodiiess-of-Fil Test

The statistic v, which is a function of
sample size X and of the closeness of S to S,
provides a probabilistic basis for evaluating
the goodness of fit of a model. The chi-square
statistic provides a test of the proposed model
aij = J\ij)(&) against the general alternative
that the variables are simply correlated to
an arbitraiy extent. This alternative model
proposes that ovy = /»(,•»(0,), where 9S con-
tains all p(p-\- l)/2 elements of £ (except
for duplicated elements 07; for cr,-,); of course,
f,(ii) simply picks cr,-,- from Gs. If v is large
compared with the degrees of freedom, one
concludes that the model /<;.,) (9) does not
appropriately mirror the process that gen-
erates the data in the population. If the
statistic is small compared with degrees of
freedom, one concludes that the model pro-
vides a plausible representation of the system
of influences among variables in the popula-
tion. After all, in that instance the q parame-
ters in 0 are as good as the p(p + l)/2
alternative parameters in Qs, relating S to S
under random sampling of subjects from the
population, given the sample size and degrees
of freedom involved in the comparison.

While the chi-square test provides valuable
information about a statistically false model,
problems associated with sample size mitigate
the value of the information that is obtained.
The increase in ability to detect a false model

with increasing sample size represents an im-
portant aspect of statistical power, but in
the context of most applications in which the
exactly correct model is almost certainly
unknowable, this effect of sample size is a
mixed blessing. Since the chi-square variate
is a direct function of sample size, the proba-
bility of rejecting any model increases as N
increases, even when the model is minimally
false, that is, when the residual matrix (S — 2)
contains trivial discrepancies between data sfj

and estimated model <7i> As a consequence,
in very large samples virtual!}' all models that
one might consider would have to be rejected
as statistically untenable. Although the statis-
tical conclusion is reasonable, namely, that
the residual matrix may contain additional
valuable information that a better model
could in principle explain, the matrix S based
on 0 may contain virtually all of the informa-
tion that one may be concerned with in
practical circumstances.

There is another problem. In many circum-
stances one would like to establish that the
model provides a plausible representation of
the data. In effect, a wowsignificant chi-square
value is desired, and one attempts to infer
the validity of the hypothesis of no difference
between model and data. Such logic is well-
known in various statistical guises as at-
tempting to prove the null hypothesis. This
procedure cannot generally be justified, since
the chi-square variate v can be made small
by simply reducing sample size. Ignoring the
as yet unresolved problem of the applicability
of large-sample statistical theory to small
samples in covariance structure models, it is
apparent that the probability of accepting
a model increases as N decreases. Thus, one's
favorite model will stand the best chance of
being accepted when tested against the data
of small samples. Of course, accepting the
null hypothesis of no difference between S
and S, that is, accepting the hypothesis that
Sn is obtained as a random sample from
/(u>(Q)> seems inappropriate in small samples.

These difficulties can be illustrated by two
examples-. McGaw and Joreskog (1971) re-
ported an eight-factor exploratory factor anal-
ysis of 21 variables based on N = 11,743.
They obtained zi(70) = 403. The probability
of the associated solution based on the tabled



592 P. M, BENTLER AND DOUGLAS G. BONETT

values of the chi-square distribution was less
than .01, so that the hypothesis that an eight-
factor model generates the variances and co-
variances of the measured variables in the
population has to be rejected with a high
degree of confidence. However, in view of the
large sample size, it is likely that no factor
model with positive degrees of freedom could
be found that would fit the data with proba-
bility greater than .05; that is, no model
could be established that would adequately
account for all of the statistically reliable
data in this large sample. Nonetheless, the
absolute size of the residuals would verify
that virtually all the important statistical
information had been extracted from the data.
The converse problem is illustrated in a study
by Bentler and Lee (1979). They studied the
intercorrelations of four personality variables
measured by peer, teacher, and self-ratings
in a sample of 68 children. One of their models
for the covariance matrix had four trait factors
and three method factors. This solution yielded
t»(35) = 43.88. This value does not exceed
critical cutoff values in the chi-square dis-
tribution, so that the model was considered
to be a plausible representation of the process
that generated the data. However, in view
of the small sample size, numerous competing
models, if evaluated, might similarly be ac-
cepted. In fact, the simple competing model
of complete independence among variables
might also be a plausible representation of
the data in the population. To minimize
interpretive problems associated with signifi-
cance testing under varying sample size con-
ditions, the logic of significance testing in
covariance structure analysis needs more ex-
plication. Hierarchical models are a key ingre-
dient of an appropriate statistical methodology.

Hierarchical Models

Provided that models can be framed so as
to be hierarchical or nested, that is, with
one model able to be considered as a spe-
cialization of another model, both generalized
least squares and maximum likelihood estima-
tion provide for a chi-square difference test
that evaluates the statistical significance of
the parameters that differentiate between two
competing models.

Let MA be any covariance structure model
of the form Mk: a, = fk(i^ (9,0, and let M{ be
any alternative model of the form M<: a^
= /<( ' j)(9<) under the restriction that the set
of matrices/jt(,v)(6i) is a subset of the larger
set of matr icesJ ' l ( i J ) (Q ( ) . These sets of matrices
are generated as the parameter vectors Qk

and Q( vary over the whole parameter space
of admissible values under the covariance
structure functions jk(ij) and//(,-j). Henceforth,
we let the simpler notation fk and ft replace
the more accurate notation fkt,a-> and /<(,•/).
To achieve clarity and generality, we intro-
duce the concepts of covariance matrix nest-ing
and parameter nesting. In covariance matrix
nesting, the function fk and ft need not be
identical, and the parameter vector &>: does
not need to be a specialization of the vector Qt,
but the set of covariance matrices fk(Qk)
must be a subset of the set of matrices f i ( Q i ) .
In covariance matrix nesting, there is a set
of overidentifying restrictions that takes one
model into the more specialized model. Un-
fortunately, these restrictions may not be
easy to describe. To illustrate, let Mj.;
2 = AA' + ty- be the traditional factor ana-
lytic model for a A of rank k < p, and let
the alternative be M<: 2 = IT', where S is
simply restricted to being positive definite,
with I1 being rank p. Evidently, the matrices
S under M& are a subset of the matrices 2
under M/, but it is not possible to describe
the common factor loading A,;- and unique
loading ^a parameters under Mt as a simple
subset of the parameters j;j under M<. As
another illustration, let Mt: 2 = AA' + SI/2 as
before, and let M<: 2 = AA' + D, where the
rank k of A under Mfc is less than the rank (
of A under M/. With ^2 and D both taken as
diagonal matrices, it is apparent that Mt is
a specialization of M;. However, fk ^fi, since
the parameters "ffa and da are unequal. In
this case, the simple reparameterization da
= Shi2 for Mt (or M/) would produce a repre-
sentation in which fk = f t . We may also take
A under M.k to be identical to A under Mt,
with the exception that A under Mi contains
one or more null columns that are instead
considered to represent free parameters under
M,. As a consequence, the example has been
transformed to the typical case of nesting by
parameter restriction.
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In parameter nesting, the functions of /*
and ft are taken to be identical, and the
models to be compared differ only in that
the parameter vector G/.. is a special case of
the vector QI, obtained by constraining free
parameters to equalities or known constants.
The case of more general functional con-
straints is discussed by Lee and Rentier
(in press) . The comparison of covariance struc-
ture models by chi-square difference tests is
typically limited to parameter nesting, in
which nesting can be easily verified.

Clii-Square Difference Test

The rationale for chi-square difference tests
is' most clearly seen in the maximum likelihood
method, in which a likelihood ratio test
(Anderson, 1958; Neyman & Pearson, 1928;
Wilks, 1938) provides the basis for comparing
competing models. We assume that M* is a
more restricted model than Mt. It is known
that, in general, the function Z,(0) is related
to the logarithm of the likelihood function of
the observations via

£*(6) = -nL(Q)/2 + c,

where c is independent of 0 (e.g., Joreskog,
1967). Let L*(Qk) be the maximum of L*(Q)
under Mi, and let L*(Q() be the maximum
of Z,*(6) under M,. Thus

since the maximum under a space of restricted
range cannot exceed the maximum under a
space of less restricted range. Consequently,

is negative, with 0 < A < 1. Under the null
hypothesis H0 of model equivalence, (—2 log A)
is asymptotically distributed as a chi-square
variate, with degrees of freedom given by the
difference in the number of parameters esti-
mated under Mt and M*. The null hypothesis
Ho associated with parameter nesting, with 0*
and Qi containing all parameters, is

HO: GA- = Qt',
that is, it is a test of the equality of parame-
ters under the two models. Since the free
parameters in 6* are a subset of the free
parameters in 6/, the null hypothesis also has
several equivalent forms in various applica-

tions. For example, if Mfc simply specializes
M.e by setting certain parameters to a vector K
of known constants — typically taken as the
null vector — we can write

where O<_A. represents the free parameters in
Mt that are not free in M*. Alternatively,
if MA- introduces equality constraints for pa-
rameters that are free under M(, then the
null hypothesis can be framed as

where Oa, 6b, and 9C are free parameters under
M< but are constrained to be equal under M*.
In general, then, the chi-square variate pro-
vides a test on the overidentifying restrictions
that differentiate the models. If the chi-square
variate is large compared with the degrees
of freedom, when evaluated against a critical
value in the central chi-square distribution
(e.g., at a = .05), one can reject the cor-
responding null hypothesis and accept the
alternative hypothesis,

HI: Qk 7±Q,.

If the chi-square variate does not exceed the
critical value, the null hypothesis is not re-
jected (i.e., HQ is "accepted").

The null hypothesis associated with model
comparisons takes on another form under
covariance matrix nesting. The null hypothesis
is that the covariance matrices generated by
the parameter vectors under the structural
models are equivalent under M/; and M/;
that is,

The alternative hypothesis is that

R,: fk(Qk) ^ ft(Qe),

and the model comparison provides a test of
the overidentifying restrictions, evaluated sta-
tistically as described earlier.

The overall goodness-of-fit test described
previously can be obtained from the rationale
described earlier. Let the substantive model

M: <rl7 =

be compared with the alternative model

Ms: 0-,-j :=/,,(0s),
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where 0S(t) = cr!;. We can call Ms a com-
pletely "saturated" model, that is, a model
with p(p + l)/2 parameters corresponding to
the variances an and covariances en; of 2. Typi-
cally, then, the saturated model has as many
parameters as covariance data points, leaving
zero degrees of freedom. If certain elements
o-jj are taken as known, Ms has fewer pa-
rameters, of course. In most covariance struc-
ture models it can easily be shown via the
covariance matrix nesting argument given
earlier that M is a more restricted model
than MS) that is, that /(0) is a subset of
/s(9»)- It is well-known that the maximum
L*(5S) is obtained as

the sample covariance matrix. Evaluating
L*(6S) when/, (5.,) = sl} yields

i*(S.) = c,

since L(68) = 0. Thus the fit of the saturated
model to data is perfect. The maximum L*(Q)
is obtained at L(6) so that

L*(Q) = -,i

It follows that

-21ogX =

which was previously shown to equal v, the
asymptotic chi-square variate for goodness
of fit. This chi-square variate provides a test
of the null hypothesis that the covariance
matrices generated under M and Ms are
equivalent; that is,

Ho:/(6) =/,(6,),

implying no loss of statistical information in
using the more restricted model M. If the
null hypothesis is rejected in favor of the
alternative hypothesis

because the chi-square variate exceeds an
appropriate critical value of the chi-square
distribution, the model M cannot be assumed
to adequately represent the covariance matrix
in the population. Crucial statistical informa-
tion is missing in M.

In practice, the chi-square tests described
earlier are applied under conditions of model
misspecification, violation of basic assump-

tions, and data-based model modifications.
Although the theoretical properties of the
tests, such as the associated probability levels,
are likely to be compromised under extremely
unfavorable circumstances, little is known as
yet about the robustness of the tests in the
range of applications typically encountered in
practice (Boomsa, in press; Geweke & Single-
ton, 1980; Lawley & Maxwell, 1971; Olsson,
1979). Further work clearly needs to be
directed at understanding the virtues and
limitations of the chi-square procedures.

It seems that no technical development of
the rationale for a chi-square difference test
based on generalized least squares estimators
has been published. We propose two proce-
dures for establishing that the chi-square dif-
ference test is applicable to generalized least
squares estimators, based on the asymptotic
equivalence of the respective chi-square func-
tions and on additive features of the chi-
square statistic. Browne (1974) showed that
the chi-square statistics ;zG(6) and«L(6),
based on optimized generalized least squares
and maximum likelihood functions, converge
stochastically. This convergence occurs under
both Mi and M, of two nested models. Con-
sequently, the difference between these con-
verging statistics also converges. Alternatively,
it is known (Lancaster, 1969) that a chi-
square based on t degrees of freedom can be
decomposed into the sum of squares of / inde-
pendent, unit-normal variates. Thus nG(Q)
can be so decomposed. Now, partition 6 into
9r and Qs, based on r and s (r + s = /)
degrees of freedom, and identify Qr with the
more restrictive model M& of two nested
models (M*, M<) and Q* with the parameters
that differentiate the models. Thus if nG(Qr)
and nG(Bs~) are the chi-square statistics for
the restricted and difference sets of parame-
ters, based on a sum of r and s squares of
independent unit-normal variates, respectively,
then the sum nG(QT) -f «G(68) = nG(Q] is
a sum based on / such squares of variates.
A more general, technical development is
provided by Lee and Bentler (in press).

The chi-square difference test can be used
to establish a general hierarchy of tests that
is more informative than the test that com-
pares a given model with a saturated model.
The value of such nested model comparisons
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has been thoroughly discussed by Joreskog
(1967, 1969, 1978; Joreskog & Sorbom, 1979),
and this emphasis need not be reiterated here.
The comparisons that are made should ideally
be dictated by theory, as in the comparison
of two competing models of a given phe-
nomenon. In addition to such theoretical
comparisons, the comparison of a given model
to a saturated model represents an important
nested comparison, as pointed out earlier.
Equally important, in many circumstances,
is the comparison between a given model and
a suitably framed null model.

Null Model and General Hierarchical
Comparisons

Consider the hierarchically nested covari-
ance structure models M*,, M^, and Ms, where
MIC is the most restricted model and Ms is
the saturated model. Since M, can always be
fit to any set of data without error, it does
not represent a structural model than can be
evaluated or rejected. Rather, it serves as a
standard of comparison for M* and MI.
Although Mi and MI must of necessity be
explicated specifically in the context of a given
research design, it may be fruitful to inquire
whether a model MO more restrictive than M^
can be developed in the general case. If so,
it would be possible to recommend a model-
testing strategy for covariance structure anal-
ysis that minimizes the difficulties associated
with sample size discussed earlier. In such a
model-testing strategy, M0) Mt, Mti and Ms

would be evaluated relative to each other
using chi-square difference tests. These tests,
in general, evaluate the statistical necessity
of individual or groups of parameters that
differentiate the models involved. In small
samples, the parameters that differentiate be-
tween MO and the least restrictive structural
model Mt may not be statistically significant,
and the meaning of the MI — Ms comparison
may. need to be reinterpreted as a result.
The Mjt — MI comparison has been well ex-
plicated in the literature, but it too may
need reinterpretation in the rare situation in
which the MO — M( comparison does not
yield a statistically significant effect. In very
large samples, a significant statistical effect
for the parameters that differentiate M0 and
MI could indicate that valuable information

has been extracted from the data, even if the
comparison of Me with M, yields the con-
clusion that additional statistical information
remains to be extracted from the data. No
general discussion of the role of a null model
MO in model comparisons appears in the
literature. Before describing a general null
model, it may be worthwhile to fix ideas
involving a covariance structure model via
matrix representation.

Model Comparison and Matrix Representations

A complete structural representation for a
model of substantive interest in a research
problem requires specification of the fixed or
known parameters. Thus we might write MI:
aa = /(9<j w < ) > where the (q X 1) vector Qt
represents the qt unknown parameters of the
model, and ia( represents the vector of known
or fixed parameters under a given structural
representation. To help make the meaning
of Mt clear, consider the general matrix repre-
sentation of covariance structure models pro-
vided by Rentier and Weeks (1979, 1980).
These authors claim that all structural models
that are linear in variables can be obtained
as a specialization of the covariance matrix
model

s = GB-lr*r'B-1/G',
where <£ represents the covariance matrix of
all independent variables, T represents the
regression weights of dependent on independent
variables, (I — B) represents the regression
weights of dependent variables on each other,
and G is a known matrix that relates mea-
sured variables to all variables in the system.
An independent variable is never a dependent
variable in any regression equation, whether
it is based on measured, latent, or residual
variables; all the remaining variables are con-
sidered dependent. With this notation, the
qt elements of Qt are the unknown and un-
constrained elements of B, T, and $, whereas
the elements of ut represent the known or
fixed parameters in B, P, and $ and all the
elements of G. If functional relations are
allowed among the free parameters, then Q(

represents the independent free parameters
of the model after consideration of all func-
tional relations. Thus although there may be
more than qt unknown parameters in B, T,
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and $, only qt of these are allowed to freely
vary in fitting the model to data (see Lee
& Ben tier, in press).

The competing general alternative model
is Ms: o-y = fs(Qs, o>s), corresponding to a
saturated model that specifies qs arbitrary-
variances and covariances arranged in the
(qs X 1) vector 6S and the remaining fixed
values of these parameters in cos, as discussed
earlier. Alternatively, o>s represents the number
of independent restrictions placed on the
p(p -{- l)/2 elements of the covariance matrix.
In the previous matrix notation, Ms would
be represented by 3 = $, a symmetric matrix.
The free parameters of $ are given by 6S,
and the fixed parameters of G = I, B = I,
T = I, and $ would be given in cos. The
comparison of M( to Ms provides an index
of goodness of fit of the model Mt, as de-
scribed before, with dt degrees of freedom.
Since M5 may not be associated with qs

= p(P + l)/2 free parameters, it is more
accurate to say dt = qs — qt. A comparison
between Mt and Ms is made implicitly in the
chi-square statistic v associated with Mt,
which is judged relative to d/.

If Mt: <r;j = f ( 9 k , oik) is a more restricted
intermediate model obtained by parameter
nesting, then Qk must be a subset of all the
parameters in Q/, and o>t must contain all
restrictions found in 01*. If, in the previous
matrix notation, Mk is a model such that all
regressions among variables have been elimi-
nated, then all elements of matrices B and T
that corresponded to free parameters under
Mi would be fixed, and only 3> would contain
free parameters to be estimated in fitting the
model to data. The vector of fixed parameters
and constraints o>t would include all the fixed
parameters ut of M,, plus additional parame-
ters that were free under M/ but are fixed
(usually at zero) under MA, as well as con-
straints imposed on parameters that were free
under M^. The comparison of Mt with M<
will in this example provide an overall test
of the value of the free regression parameters
of MI considered simultaneously.

Null Model

We propose that a general null model is
given by

MO: ffif = /o(Qo, coo),

where 60 represents the (</0 X 1) vector of
free variances of the measured variables and
wo represents the vector of known or fixed
parameters. In general o>0 must contain all
restrictions found in o>t plus new restrictions
that are generated by moving from Mft to M0.
In most research contexts, the fixed parame-
ters co0 are covariances that are presumed to
be zero, and M0 represents the severely re-
stricted model specifying that the variables
are mutually independent. In some research
contexts, certain variances, covariances, or
regression coefficients may be treated as known
(possibly nonnull), and the model M0 specifies
that the remaining covariances are zero.

When coo consists only of fixed zero Co-
variances among manifest variables, the model
M0, as compared with Ms, has been previously
discussed as a test of complete independence
(Larzelere & Mulaik, 1977), but its role in
covariance structure analysis generally has
been ignored. In exploratory factor analysis,
MO can serve as a baseline model of no com-
mon factors, against which a factor model
can be compared (McGaw & Joreskog, 1971;
Tucker & Lewis, 1973). In this case, the
unique variances become equated with the
variances of the manifest variables, and all
common factor loadings are simultaneously
set to zero. However, the model MO is rele-
vant to confirmatory factor analysis, path
analysis, structural equation models, higher
order and three-mode factor analytic models,
and other structural models that in their
most general form implicate a nonzero co-
variance among several variables. In the con-
text of the matrix representation for 2, one
can usually obtain the null model by setting
2 = <E>, with <£ being diagonal except for
certain fixed covariances. Thus it is apparent
that Mo is a special case of models Mt or M<
that may be of substantive interest. As one
of the examples (later) shows, however, there
are cases when it is not a simple matter to
verify that Mo is a special case of Mt, MI,
or Ms. Nonetheless, this is a fundamental
requirement of M0.

Let us assume that Me corresponds to a
model of special interest. A comparison of
MO with Me provides a test of whether the
restrictions made in going from M^ to MO are
reasonable. If the chi-square difference test
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does not yield a value of the chi-square
statistic that exceeds typical cutoff points in
the chi-square distribution (e.g., at the .05
level of significance), the free parameters that
are included under M< but not under M0

provide no additional statistical gain in fitting
a model to data. In that case, even if M/
provides an adequate model for the data, as
evaluated by the goodness-of-fit comparison
with Ms, Mt is no more adequate a model
than the relatively uninformative model of
modified independence. Such a situation is
likely to arise only in small samples. Another
possible but improbable situation involves a
statistically significant difference between M*
and MI, with the comparable M« — M; dif-
ference not being significant; in this case, the
null model M0 also serves to cast doubt on
the model M/, even though it appears to
contain statistically valuable parameters when
evaluated against M*. If the chi-square sta-
tistic for the Mo — M; comparison is large
compared with the degrees of freedom, the
free parameters that differentiate the models
provide a significant increment in fit of model
to data. Such a result becomes even more
informative if each comparison M0 — MI- and
Mi — M; is also statistically significant, for
then each model comparison demonstrates
the value of the parameters that differentiate
models. Of course, it is also possible to obtain
a significant overall effect of parameters that
differentiate Mo and MI, although the specific
sources of the difference lie in M0 — M4- and
not M,t — M{ (or vice versa). Note, however,
that statistical rejection of M/ (compared
with that of Ms) does not imply that an
acceptable, more restricted model Mjt cannot
be found. In any case, if any model M< pro-
vides a significant increment in fit over MO,
valuable statistical effects have been localized,
even if Mt does not account for all the data,
as indicated by the Mt — M, comparison. It
is also important to use a nonstatistical
method for evaluating goodness of fit. Incre-
mental fit indices for this purpose are dis-
cussed in a subsequent section.

Ideal Models and Pseudo Chi-Square Tests

Existing methods of model comparison are
limited to the goodness-of-fit test that com-

pares a given model M/ with the saturated
alternative Ms and to the comparison be-
tween two existing hierarchical models Mk

and Mt, A new, additional model comparison
procedure is possible, however. This com-
parison involves a given model MI and all
conceivable alternative submodels, such as an
Mt- that has not even been defined. It is
based on a general idealized significance test
logic that is spelled out in greater detail by
Bentler, Bonett, and Browne (Note 2).

Idealized Significance Test Logic

As was done previously, assume that M, is
based on q( unknown parameters with d/
goodness-of-fit degrees of freedom. Assume
that the chi-square goodness-of-fit variate for
M, takes on the value vt. It follows that any
nested model Mk has a chi-square variate
Vk > Vi and degrees of freedom a* > dc. The
upper bound on degrees of freedom for any
model Mt is given by do — I, based on the
degrees of freedom da of the null model minus
at least one additional parameter. (M0 is the
most restricted model that is entertained.)
Now consider an "ideal" model M/t* that fits
best and has the largest degrees of freedom:
This model will have a chi-square statistic
equal to Vt and degrees of freedom d,0 — 1.
The pseudo chi-square test associated with this
ideal model M/.', based on Vt and do — 1,
provides a goodness-of-fit test for the ideal
submodel. // the data are not consistent with
the ideal s-ubmodel, all conceivable submodels can
also be rejected statistically. There is then no
point to actually testing any given submodel
Mk, since any such model will have (a) a larger
chi-square value (larger than v() and/or (b)
smaller degrees of freedom (smaller than
do — 1). Consequently, an actual chi-square
test based on any real submodel Mk will also
be statistically significant if the pseudo chi-
square test is significant. If the ideal submodel
cannot be rejected, of course, no conclusion
can be drawn about potential actual submodels.

The pseudo chi-square test can be carried
out starting with any given model Mt, using
as a base the degrees of freedom of any
rational, known submodel besides MO. One of
the most informative of such tests is to be
found with complete latent variable models



598 P. M. BENTLER AND DOUGLAS G. BONETT

(cf. Bentler, in press) in which the dimen-
sionality of the latent variables, including an
error of measurement or unique latent vari-
able for each measured variable, is greater
than the dimensionality of the measured
variables. For example, suppose there are
p = 20 measured variables, an equal number
of unique or error factors, and / = 5 common
factors. The relation of the p measured vari-
ables to the p + / (25) latent variables de-
scribes the measurement submodel of a given
model, and the interrelations of the t common
factors describes the structural submodel (or
simultaneous equation or structural equation
submodels) (see Bentler, 1978; Joreskog &
Sorbom, 1978; Wiley, 1973). (In more com-
plex types of models, this distinction is not
particularly useful; see Bentler, in press.)
Suppose the model with / factors and their
regression relations is called Mi. Now con-
sider the more general model that is identical
to Mi but replaces all regression and residual
relations in Mk with a saturated structural
submodel p.e., the common factor relations
are replaced by t(t + l)/2 factor variances
and covariancesj; call this model Mt. Finally,
consider the specialization of M& that eliminates
all structural regressions and factor covari-
ances and leaves only the t factor variances,
that is, the null structural submodel M,,. Of
course, the null structural model must main-
tain all structural submodel parameters that
are fixed at arbitrary nonzero values in Mk.
It is thus apparent that (M,,, Mi, M<) are
hierarchically nested.

Suppose that M, is based on qt unknown
parameters and di goodness-of-fit degrees of
freedom. Then M» has qn = qi — t(t — l)/2
unknown parameters and dn = dt + t(l — l)/2
degrees of freedom. If M< is associated with
a chi-square statistic vt> we can evaluate an
ideal submodel Mi* that falls between M,,
and MI. This ideal structural submodel will
have a pseudo chi-square statistic vt, based
on dn degrees of freedom. (Note that vn does
not need to be computed.) Any other model
intermediate between M» and M< will have
a larger chi-square statistic and/or have fewer
degrees of freedom. If the data are not con-
sistent with the ideal structural submodel, all
conceivable structural submodels having the
same measurement submodel can also be re-

jected statistically. In particular, the proposed
model Mi must also not fit statistically, and
there is no way the structural submodel can
be modified to yield an acceptable overall
model. Stated differently, this pseudo chi-
square test can determine when a measure-
ment submodel is fundamentally misspecified
or flawed. The flaw is fundamental, since no
model with the given measurement structure
could ever be found to be statistically con-
sistent with the data.

Minimal Model-Differentiating Parameters

The general idealized significance test logic
can also provide an ordinal index of the
minimum number of parameters that are
necessary to statistically differentiate two
nested models. Again, let MI based on dt
degrees of freedom have a chi-square statis-
tic vt, and let the more restricted model Mi
have corresponding values dk and v/c. Assume
that the chi-square difference test i>kt — vk — vt
based on dkt = dk — dt degrees of freedom is
not statistically significant but, for simplicity,
that both models Mi and M( do not differ
significantly from M,, that is, fit the data by
a goodness-of-fit test. As an example, Mi may
be the model of modified independence, and
Mt may be a substantive model of interest.
Then one may be interested in knowing the
minimal number of parameters required to be
added to M* before a statistically significant
improvement in fit is even theoretically pos-
sible. Alternatively, one may be interested in
other intermediate models from the standpoint
of wanting to know the minimum number of
parameters that can always be dropped from
Mt no matter what the model. These minimally
differentiating parameter numbers are deter-
mined by the same logic.

The ideal differentiating model MA» that is
intermediate between Mi and M< cannot dif-
fer from Mi or M( by more than 11 tt units
in the chi-square distribution. This model may
have anywhere from 1 to du degrees of
freedom. Since vt:t with d^t degrees of freedom
is not statistically significant, we can. step
down diet in unit steps until a critical cutoff
point in the chi-square distribution (e.g., at
a = .05) is reached. If dkt* represents the
degrees of freedom for which v^i exceeds the
cutoff point, then at least q^ = dkt — d^t*
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parameters must be added to MA to yield
a new model that has a significant increment
in fit over M&. Stated differently, any number
of parameters less than qkt can always be
added to M* without' yielding a significant
chi-square difference. Viewed from the point
of Mt, dkt* + 1 or more parameters dropped
from MI in any specialization toward Mt will
always guarantee a nonsignificant decrement
from M^ in statistical fit.

If a real model close to the ideal model
Mi* can be specified, it may also yield an
acceptable overall goodness-of-fit test if both
Mi and Mt do so. However, there would be
a significant decrement in fit in going to the
more restricted MA, making the acceptability
of Mi questionable. If Mt fits statistically
but Mi does not do so, in spite of the non-
significant chi-square difference in models,
then the real model that is close to the ideal
model would probably also yield an acceptable
overall goodness-of-fit chi-square.

Incremental Fit Indices

Although the process of comparing hier-
archical models via tests of significance yields
a valuable perspective on the analysis of co-
variance structures, an index of the amount
of information gained in the comparison would
provide important additional information
about the usefulness of competing models.
Such an index of information gained should
be independent of sample size and statistical
significance test information, though it must
reflect the goodness of fit of competing models.
Authors of literature on psychological statis-
tics are well aware of the distinction between
statistical significance and practical signifi-
cance; an incremental fit index can provide
information about practical significance, in
which a statistically significant effect can be
evaluated for its practical usefulness in ex-
plaining the data. Furthermore, providing
that the index is framed in a general way, it
would apply to analyses such as those based
on least squares procedures that do not as yet
have a statistical basis and to analyses in
which the probability levels associated with
a statistically based procedure may not be
appropriate.

A general index of incremental fit appro-
priate to alternative estimation methods and to

an arbitrary covariance structure model, it
seems, has not appeared in the literature.
Tucker and Lewis (1973) provided an index
for evaluating a very specialized covariance
structure with a particular estimation method,
namely, the exploratory factor analytic model
when evaluated by maximum likelihood
methods. The}' proposed the index

where Q0 = (v/df)0 and Qk = (v/df)k; that is,
the quantities (Jo and Qk represent ratios of
a chi-square variate v to df, evaluated with
a given number (0, . . . , & ) of common factors.
The index p represents an index of increment
in fit obtained by using k common factors
rather than none. Thus the index compares
a null model of independence with a model
with k common factors. Unfortunately, p is
not normed to necessarily lie between zero
and one, and its potential relevance to arbi-
trary covariance structures requires justifica-
tion. The index is extended here to the gen-
eral models M0, Mt, and Mt described earlier
for arbitrary covariance structures, where the
particular comparison of Mi and M, is sum-
marized by

P « = (&-&)/ (Co- 1).

This nonnormed fit index represents the incre-
ment in fit obtained in evaluating any hier-
archical step-up comparison of two models
(M*, Me). Note that although p!:t is relevant
to any hierarchical model comparison, we use
the common denominator (Qo — 1) in all com-
parisons, so that the null model M0 plays a
crucial role in the comparison. As applied to
(M0, Mi, MI), one obtains pat = pot + p*<, and

Poi represents an index of the overall fit of
M( in relation to M0. The ratios Qk [= (v/df)k~],
Qt, and Qa can be based on generalized least
squares estimates as well as maximum likeli-
hood estimates. Since it cannot be guaranteed
that Qk > Qt, it is possible for pkt to be
negative.

A slightly more general normed jit index
that does not require a statistical basis for
model fitting is given by

At, = (Fk - F,)/F0,

where F is any fit function such as U(Q),
G(&), or L(Q), F0 is the function evaluated
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under the null model previously proposed,
and Ft and Ft correspond to the minimum
function values F(Q) for the hierarchically
defined step-up models (Mfc, M/). It is ap-
parent that ^o > Fk > Ft > 0, so that the
index is additive and lies in the interval
0< AH < 1. As applied to (M0, M*, M,),
Ao; = AOA- + AM, and A0i: represents the overall
fit of M< (again, in relation to M0).

In some circumstances the most restrictive
model Mo that one might consider would also
contain theoretically uninteresting free pa-
rameters. For example, in the random regres-
sion model, the covariances of the predictors
are not considered known, but they are often
theoretically uninteresting. In general, the
most restrictive, theoretically defensible model
should be used in the denominator of the lit
indices presented earlier.

The normed and nonnormed fit indices can
be used in the comparison of nested or non-
nested models within any sample, including
possible cross-validation or replication samples
(Huba, Woodward, Eentler, & Wingard,
Note 3). In addition, the fit indices can be
useful in the comparison of a particular model
across samples, when the chi-square statistics
and the associated probability levels may not
be comparable due to unequal sample sizes.

Since the scale of the fit indices is not
necessarily easy to interpret (e.g., the indices
are not squared multiple correlations), ex-
perience will be required to establish values
of the indices that are associated with various
degrees of meaningfulness of results. In our
experience, models with overall fit indices of
less than .9 can usually be improved sub-
stantially. These indices, and the general hier-
archical comparisons described previously, are
best understood by examples.

Illustrative Applications

Although the material developed earlier
represents a natural extension and clarifica-
tion of previous work in the area of covariancc
structure analysis, researchers have not used
the proposed null model, fit indices, and
pseudo chi-square tests to clarify the role of
inference in particular applications. (See
Olsson & Bergman, 1977, however, for an
application of the Tucker-Lewis, 1973, coeffi-

cient.) All the examples are based on maximum
likelihood estimation.

As described previously, McGaw and
Joreskog (1971) carried out an eight-factor
exploratory factor analysis of 21 variables
based on A7 = 11,743. They obtained a value
of vi, the chi-square statistic, of 403 with 70 df.
Thus the eight-factor model MI could not be
said to account for the data when compared
with Ms, the saturated model, since the
probability of obtaining data such as the
sample covariance matrix is less than .001 if
the eight-factor model is true. However, the
null model MO yields a value of DO(210)
= 57,915, p < .001. Consequently, the im-
provement in fit obtained by the eight-factor
model over the independence model is highly
significant, based on a chi-square difference
of 57,512 with 140 df (p < .001). The incre-
mental fit indices yield poi = (275.8 — 5.8)/
274.8 = .983 and A01 = (57915 - 403)/57915
= .993, thus verifying that MI is a sub-
stantial improvement over M0. These results
also demonstrate that the remaining improve-
ment 1 — AOI = .007 that might be obtained
with a more adequate model is insignificant
from a practical viewpoint, even though MI
represents a statistically significant lack of fit
to the data.

The small-sample problem mentioned pre-
viously is also amenable to further statistical
and incremental fit analyses. Bentler and Lee
(1979) studied the Intel-correlations of four
personality variables measured by peer,
teacher, and self-ratings in a sample of 68
children. A model Mj associated with four
trait factors and three method factors yielded
tii(35) = 43.88, p > .05, thus verifying that
MI could not be distinguished statistically
from Ms. However, Bentler and Lee did not
compare their model with the null model M0.
The null model yields ^0(66) = 400.45, so
that it must be concluded that the 12 vari-
ables are not statistically independent. The
chi-square difference test comparing M0 and
MI yields a chi-square difference of 356.47.
With 31 df, this difference is highly significant
(p < .001). Consequent!}', important addi-
tional information has been obtained from
the comparison, namely, that the theory
underlying MI accounts for a statistically
significant portion of the data. In the metric
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Figure 1. A model with six manifest and three common factor latent variables. (SES = socioeconomic status;
SEI = socioeconomic index. The manifest variables are in rectangles. Unidirectional arrows represent regres-
sion weights, with X0 = the regression of manifest on latent variable, /3ff = the regression of latent on latent
variable, f0 = the regression of latent on residual variable, and ta = the regression of manifest on residual
variable.)

of incremental fit indices, one obtains p0i
= .950 and A0i = .890. Since these incre-
ments in fit are associated with a statistically
significant difference between M0 and MI, the
insignificant difference between MI and Ms

need not be a source of concern due to the
small sample size.

An example taken from Wheaton, Muthen,
Alwin, and Summers (1977) and described in
Joreskog and Sb'rbom (1978) and various other
sources more completely illustrates the process
of model comparison with three models M0,
MI, and M2. In this case six manifest vari-
ables were taken to be indicators of three
latent variables, as shown in Figure 1. The
measured variables consisted of anomia and
powerlessness measured in 1967 and 1971, as
well as education and a socioeconomic index.
The latent variables were alienation, both in
1967 and 1971, and a general socioeconomic
status factor. The \a in the figure represent
factor loadings, the e0 represent measurement
residuals, the /?„ represent regression coeffi-
cients for regressions among latent variables,
and the f0 represent regression residual
variables.

The model M2 considered in Figure 1 is
not compatible with the data, v2(fi) = 71.47,
p < .001. M2 is thus substantially different
from Ms, the saturated model, and one might
inquire whether a better model could be
developed for the data. The authors indeed

develop a model that allows correlation be-
tween the error terms (ei, 63) and (e2, e.i).
Rather than pursue their final model, we
might inquire whether the model of Figure 1
has any redeeming features. Although the
chi-square goodness-of-fit statistic is very
large, Mo may nonetheless capture a signifi-
cant aspect of the data. The relevant model
tests and comparisons are given in Table 1.
The left part of the table shows the chi-square
values for the null model M0 consisting of
the six variances associated with «,- only, for
a Model MI similar to that in Figure 1 but
with the three /3e coefficients set to zero and
the three \s coefficients set to one, and the
complete model M2, as reported previously.
MO, MI, and M2 are obviously hierarchical
models. As mentioned earlier, a goodness-of-fit
chi-square test of a given model represents
an implicit model comparison, and hence all
model tests in the left part of Table 1 repre-
sent implicit comparisons of a given model
against Ms. M, has ns(0) = 0, so that the
chi-square of each model is equivalent to the
chi-square difference between the model and
Ms, The chi-square difference tests and fit
indices associated with the three model variants
are shown in the right part of Table 1. It is
apparent that even though the final model M2

is inadequate when compared with Ms, the
improvement in fit over Mo that is due to Mi
and the improvement of M2 over MI are
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Table 1
Evaluation of Submodels of Figure 1

Model test* Model comparison*

df Comparison df /»*<

Mo
Mi
M2

2,131.43
723.40

71.47

15
12
6

Mo-Mi
Mr-Mo
Mo-Mo

1,408.03
651.93

2,059.96

3
6
9

.580

.343

.923

.661

.305

.967

* p < .001 for all chi-square statistics.

both statistically as well as practically sig-
nificant. Furthermore, if one were not able
to produce a better model than that shown
in Figure 1, one would at least have the
satisfaction of realizing that the remaining
increment in fit that might be possible would
be only .033 (= 1.0 - .967). Thus although
the model Jn Figure 1 cannot statistically
account for the data in this sample of AT = 932,
the importance of the data remaining to be
explained, considered in the context of the
entire sample data, is in practical terms quite
small. In this example, of course, the authors
were able to obtain fl3(4) = 4.73, p > .05,
with a model M3 allowing the correlated
errors mentioned earlier (not shown in
Figure 1). The corresponding incremental fit
indices are />23 = .076 and A2s = .031, so that
^03 = .999 and A03 = .998, indicating virtually
perfect fit for the final model.

The model of Figure 1 may also be used
to illustrate ideal models and pseudo chi-
square tests. It can be shown that M2 is
equivalent to a model with a saturated struc-
tural submodel; that is, the coefficients /3,- in
Figure 1 can be replaced by factor covariances.
A model M,, with a null structural submodel
would be obtained by setting the three /?,- = 0.
Although this model is not identified, it is
clear that its goodness-of-fit vn would exceed
71.47, based on 9 df. Consequently, an ideal
submodel based on the measurement struc-
ture of Figure 1 would have v*(9) = 71.47.
The corresponding pseudo chi-square test
(p < .001) indicates that the measurement
submodel contains a fundamental misspecifi-
cation. This conclusion is consistent with the
fact reported previously that a model M3 re-
quired a modification in the measurement
model to yield a statistically acceptable fit.

Finally, we turn to an unusual example to

illustrate some of the complexities that can
arise in verifying that a null model M0 is a
special case of a substantive model of interest.
The model is more properly considered econo-
metric rather than psychological in nature,
representing Tintner's model of the U. S. meat
market. However, the data, model, and anal-
ysis are widely known in psychological circles
via Joreskog and Sorbom's (1978) analysis,
and the problem involves inference difficulties
stemming from sample size. The data repre-
sent time-series observations on five variables
based on a sample size of 23. The model is
given as a statement of two regression equa-
tions dealing with consumption (}<i) and
price (y-2) as a function of disposable income
On), meat processing costs (a-o), and agri-
cultural costs (x3). It is presumed that the
six variances and covariances among .vj, :Va,
and .v3 are known, so there remain nine free
covariances (actually, deviation sums of
squares and cross-products) in the symmetric
5(6)/2 = 15 element sample matrix S. The
variables are related under a theoretical
model Ma via

where f i and fa are residuals that are allowed
to correlate. The parameters of the model are
the j8 and y coefficients, as well as the vari-
ances and covariance of (fi, fa) . There are
thus eight parameters in Mo, and the fit of
Mo compared with that of M, yields 0(1)
= 2.68, p > .05. Since the model cannot be
rejected, one ma}' conclude that the sample
data are drawn from a population having the
proposed structure. However, the sample size
is so small that it may be possible for virtual!}'
any model to be accepted.
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To strengthen inference, models MI and M0

were developed by us and compared with M2,
MI consists of that specialization of M2 in
which all regression coefficients /3 and 7 are
fixed as known, that is, a model with three
free parameters and 6 (If. M0 consists of that
further specialization of MI that yields modi-
fied independence, that is, a model having
only the variances of y\ and y2 as free pa-
rameters with 7 df. Models M0 and MI are
best understood after further study of the
equations under M2.

The second equation under Mo can be
manipulated to yield

y-2 = (1 + Ab'a - yi + 72-V2 + 73.v-3 + $••>,

which expresses y2 as a function of itself as
well as other variables. It is now obvious
that simply setting all /3 and 7 coefficients
to zero will not yield an equation in which
y-i is expressed as a function of other variables
in the system, since y-i drops out of both
equations. Thus under MI we specif)' /32 = — 1
and /3i = 71 = 72 = 73 = 0. It follows that

311 = f i and y-i = f.> — fi.

Consequently, since under MI var(fi) and
var(f2) and cov(j"i, fo) are free parameters,
the effect of these parameters is one of in-
ducing variance and covariance between y\
and y-i only. That is, MI predicts zero co-
variance between the ys and as. Although ~M.\
may or may not be substantively interesting,
it provides a useful avenue for establish-
ing M0. Under MI, var(j'i) = var(fi), var(yo)
= varfrO + varfro) - 2 cov(fi, f2), and
cov(>'i, y.J = cov(fi, fa) — var(fi). It follows
that simply setting cov(fi, f2) = 0 as a special
case of MI does not, yield M0, since cav(y\, y%)
= — var(fi) 5^ 0. The special case of MI that

Table 2
Evaluation of Meat Market Submodels

yields M0 is given by the added constraint
cov(fi, fa) = var(fi), since then cov(yi, y-i)
= 0. Finally, note that M0 is a test of modified
independence, not complete mutual independ-
ence among all variables, since the covariances
among the .rs are still fixed at known nonzero
values as the}- are under M2 and MI. (Note
again that we use variance-covariance labels
simply as a shorthand for deviation sums of
squares and sums of cross-products in this
example.)

The model tests and model comparisons
associated with this example arc presented in
Table 2, using the same format as Table 1.
The analysis verifies that although M2 pro-
vides an acceptable representation of the data
(p > .05), this goodness-of-fit test is not
unduly influenced by the small sample size.
The parameters of M2 obviously improve
goodness of fit over M0 both statistically as
well as by the incremental indices. However,
it is apparent that the statistical information
is carried by the regression weights and the
variance of the residuals f i and fo but not by
the constraint cov(fi, f2) = var(fi). Finally,
the MO — Mi comparison yields poi = —.159,
which shows how this nonnormed fit index
can be negative while the normed fit index
AOI = .021 remains positive but small.

Conclusion

Covariance structure analysis promises to
become an important technique for comparing
competing substantive theories on nonexperi-
mental data. Although the statistical basis of
the methodology provides a means for using
correlational data in a truly model-testing
way, there is a danger in current practice of
overemphasizing goodness-of-fit tests and the
associated probability levels while ignoring or

Model

Mo
Mi
Mj

Model test

X2

61.38**
60.08**
2,68*

Model comparison

df

7
6
1

Comparison

Mo-Mi
Mi-Mz
M0-M2

X2

1.30*
57.40**
58.70**

df

1
5
6

fa

-.159
.943
,784

^
.021
.935
.956

* p > .05. **p < .001.
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minimizing the practical importance associated
with various model comparisons. As Guttman
(1977) observed, ' 'A test of statistical signifi-
cance is not a test of scientific importance"
(p. 92). An overemphasis on probability values
is particularly dangerous with large-sample
data. We have seen research reports that
inappropriately were rejected by reviewers of
journal articles, as well as researchers who
were unnecessarily dejected by their inability
to account for ever}- bit of sample variation,
in instances in which the proposed models
clearly represented a superior understanding
of a phenomenon, compared with competing
or inadequately specified theories. Although
we would not agree with a recommendation
to abandon statistical significance testing
(Carver, 1978), the incremental fit indices
recommended here should provide important
adjunct information in evaluating models. At
the very least, these indices should help to
create an appropriate perspective on statistical
significance testing. Such a perspective has
been urged on psychologists for many years
in more traditional research and statistical
contexts (Bakan, 1966; Hays, 1963; Lykken,
1968; Morrison & Henkel, 1970; Rozeboom,
1960).

The incremental fit indices depend critical!}'
on the availability of a suitably framed null
model. The model of modified independence,
that is, mutual independence among variables
subject to the known, fixed covariation of
variables that is specified in or generated by
a substantive model of interest, seems to
meet this requirement. The null model also
provides a baseline for statistically evaluating
increments in goodness of fit. In most moder-
ately sized samples, substantive models can
be expected to provide a statistically signifi-
cant improvement in fit over the null model,
so that the statistical consequences of using
the null model are primarily limited to pro-
viding probabilistic assurance about informa-
tion gained in contexts in which even the
best substantive model falls short of ideal
when compared with the saturated model.
Of course, this probabilistic emphasis should
not replace the pragmatic and scientific em-
phasis provided by the incremental fit indices.

The statistical value of the null model
seems to be more important in small samples
in which a nonsignificant difference between

substantive and saturated models may simply
reflect lack of power rather than a substantive
achievement. In such situations the demon-
stration of a significant increment in fit due
to the substantive model over the null model
would provide assurance that the data are
adequate to the task of model evaluation.
Atypical results may also be observed, how-
ever. For example, it is possible that a sub-
stantive model cannot be statistically dif-
ferentiated from either the null or the saturated
model. In such cases, it would certainly be
inappropriate to conclude that the substantive
model provides an unambiguous representa-
tion of the data. Although the null model
should thus prove to have valuable applica-
tions in small samples, it must be remembered
that statistical theory in covariance structure
analysis has been developed primarily for
large samples. Further work is needed to
develop small-sample theory. Nonetheless, the
use of the null model and model-testing and
incremental fit evaluation strategies recom-
mended here will also be relevant under such
a theory.

The ideal models and pseudo chi-square
tests proposed here are likely to prove of
special value in situations in which competing
models cannot be completely specified and in
which model development is part of a re-
search program. The formulation of ideal
models and evaluation of the associated pseudo
chi-square statistics can help to locate funda-
mental specification errors in models. These
misspecifications represent important areas in
which model modification must be undertaken.
In particular, the proposed method allows a
researcher to evaluate the adeqtiacy of a mea-
surement model in which all possible latent
variable regression structures would be em-
bedded. There may be little point to evalu-
ating a given regression structure if the
measurement model is totally inadequate. Of
course, when a model is modified empirically
rather than theoretically, cross-validation or
another method for assuring that the statis-
tical theory is not grossly violated becomes
essential (Huba et al., Note 3).

Reference Notes

1. Browne, M. W. Asymptotically distribution free
methods for Ike analysis of covariance structures.
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