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Abstract

Large-scale sequencing of cancer genomes has uncovered
thousands of DNA alterations, but the functional relevance of
the majority of these mutations to tumorigenesis is unknown.
We have developed a computational method, called Cancer-
specific High-throughput Annotation of Somatic Mutations
(CHASM), to identify and prioritize those missense mutations
most likely to generate functional changes that enhance tumor
cell proliferation. The method has high sensitivity and
specificity when discriminating between known driver mis-
sense mutations and randomly generated missense mutations
(area under receiver operating characteristic curve, >0.91;
area under Precision-Recall curve, >0.79). CHASM substantially
outperformed previously described missense mutation func-
tion prediction methods at discriminating known oncogenic
mutations in P53 and the tyrosine kinase epidermal growth
factor receptor. We applied the method to 607 missense
mutations found in a recent glioblastoma multiforme sequenc-
ing study. Based on a model that assumed the glioblastoma
multiforme mutations are a mixture of drivers and passengers,
we estimate that 8% of these mutations are drivers, causally
contributing to tumorigenesis. [Cancer Res 2009;69(16):6660–7]

Introduction

Today we face a bottleneck between large-scale acquisition of
genomic information discovered through medical resequencing
projects and the application of this information to improved
understanding of human disease. Projects to systematically
resequence tumor genomes have discovered thousands of genes
that were not previously linked to tumorigenesis but are
somatically mutated in a relatively small fraction of tumors and
may be important for tumor initiation or progression (1–6). Many
of these somatic changes are likely to be ‘‘passengers’’ (1) that have
no functional effects but were already present in the cell that gave
rise to the tumor or were acquired during subsequent tumor
growth. Only a small fraction of the genetic alterations in a tumor
are expected to drive tumor evolution by giving cells a selective
advantage over their neighbors.

Determining which mutations are drivers and which are
passengers is one of the most pressing challenges in cancer

genetics. Although genes that are mutated very frequently
(‘‘mountains’’) can be confidently classified as driver genes, most
genes discovered thus far are mutated in a relatively small fraction
of tumors (‘‘hills’’). The examination of large numbers of tumors
can provide helpful information for classification of drivers versus
passengers, but the ability of sequencing alone to provide definitive
results is limited by the marked variation in mutation frequency
among individual tumors and individual genes. Moreover, it has
been clearly shown that genes that are mutated in only a small
fraction (<1%) of tumors can still act as drivers (6). Thus, methods
that can classify mutations as either drivers or passengers on the
basis of data that is independent of mutation frequency are clearly
needed. Such methods include functional studies in model
organisms or in cultured cells, using gene knockout, siRNA, or
overexpression approaches. These methods are extraordinarily
useful for elucidating the function of individual mutated genes but
are not well suited to the analysis of the hundreds of gene
candidates that arise from every large scale cancer genome project.

Here, we describe a novel high-throughput computational
prediction method to identify the mutations most likely to be
drivers. We chose to focus on missense mutations as they account
for the majority of somatic mutations found in the exons of tumor-
derived DNA (6), and because their functional significance is more
difficult to infer than that of nonsense or frameshift mutations.

Previous work in this area has resulted in several innovative ways
to characterize the differences between driver and passenger
missense mutations. Driver mutations may have characteristics
similar to those causing Mendelian disease when inherited in the
germ line (7) and may be identifiable by constraints on tolerated
amino acid residues at the mutated positions (3, 7–9). In contrast,
passenger mutations may have characteristics more similar to
those of nonsynonymous single nucleotide polymorphisms (nsSNP)
with high minor allele frequencies (MAF; refs. 3, 7). Based on these
similarities, supervised machine learning methods have been used
to predict which missense mutations are drivers (3, 7). The CAN-
Predict method trains a Random Forest (10) to discriminate
between mutations from the COSMIC cancer somatic mutation
database (11) and nsSNPs with high MAFs (3). A method specific to
protein kinases (7) trains a support vector machine (SVM; ref. 12)
to discriminate between known disease kinase nsSNPs and
common kinase nsSNPs. Although not specifically designed for
this problem, bioinformatics methods, such as PolyPhen and SIFT
(9, 13) have also been applied to identify pathogenic, tumor-derived
mutations in genes of interest (6). These methods attempt to
discriminate driver from passenger mutations by considering
properties such as evolutionary conservation, compatibility of the
mutant amino acid residue with the wild-type or with equivalently
positioned residues in homologous proteins, the predicted protein
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local environment (7), and enrichment of the protein structural
domain in which mutations occur with respect to biological
processes thought to be critical for cancer (3).

We hypothesized that although existing computational methods
could detect differences between somatic missense mutations
observed in cancers and high MAF nsSNPs in the germline,
these differences might be less relevant to the discrimination
between driver and passenger mutations that occur somatically
in tumors. Although high MAF nsSNPs and passenger mutations
have properties in common, they also have differences. Passenger
mutations may or may not have a functional impact on proteins;
by definition, they are neutral with respect to cancer cell
fitness. In contrast, high MAF nsSNPs have become fixed in the
human genome and must be functionally neutral or have a mild
functional impact with respect to normal cell fitness. We reasoned
that we could train a classifier with improved specificity by
representing passenger missense mutations not by high MAF
nsSNPs, as done previously, but rather by in silico simulations
using mutation profiles that reflected tumor type as well as
mutation context.

Materials and Methods

Feature selection. We used a Random Forest classifier (10, 14) that was
trained on 49 predictive features (Supplementary Table S1). Feature

selection was done with a protocol based on mutual information

(Supplementary Materials and Methods: Feature Selection and Information

Theory; Supplementary Fig. S1). Mutual information is a generalized version
of correlation that does not make assumptions about linear relationships

between two variables of interest (15). Features with missing values were

estimated with a k-nearest neighbors algorithm (Supplementary Materials
and Methods: Missing Values).

Driver mutation data set. We selected 2,488 missense mutations

previously identified as playing a functional role in oncogenic transforma-

tion from breast, colorectal, and pancreatic tumor resequencing studies (2,
4–6) and the COSMIC database (11).

Synthetically generated passenger mutation data set. The synthetic

passenger mutations were generated by sampling from eight multinomial

distributions that depend on dinucleotide context and tumor type
(Supplementary Materials and Methods: Synthetically Generated Mutations;

Supplementary Table S2; Supplementary Fig. S2).

Classifier training. The Cancer-specific High-throughput Annotation of

Somatic Mutations (CHASM) method is based on a Random Forest classifier
(10, 14) trained to discriminate between driver missense mutations and

synthetically generated passenger missense mutations. The classifier is

implemented using PARF,5 a Fortran 95 adaptation of Leo Breiman’s original
Random Forest software.6 Before training, all features were standardized

with the Z score method using the scale command in R statistical software

(16). To avoid overfitting, we divided our known driver mutations and

synthetic passenger mutations into two partitions, one for feature selection
and one for classifier training.

This Random Forest is an ensemble of ‘‘decision trees,’’ specifically

classification and regression trees (17), each of which uses a hierarchical set

of rules to decide whether a mutation is a driver or a passenger. The rules
are based on our input features and the final score yielded for each

mutation is the fraction of trees that voted for the passenger class. We used

a forest with 500 trees, and default parameters (mtry = 7). The Random
Forest algorithm is robust to class label contamination and performs well

with high dimensional data sets (10, 14).

Classifier assessment. We assessed Random Forest classifier perfor-

mance by two threshold-independent measures— receiver operating

characteristic (ROC) and Precision-recall (PR) curves (Supplementary
Materials and Methods: ROC and Precision-recall Curves and Minimum

Error Point). We considered both the training set out-of-bag error (10) and

the error on two held-out validation sets of known oncogenic mutations in

P53 and epidermal growth factor receptor (EGFR). The out-of-bag error
estimate is produced while the Random Forest is being trained and is a

viable replacement for error estimates by cross-validation (18). We

compared the Random Forest with a SVM classifier (assessed with 5-fold

cross-validation; Supplementary Materials and Methods: Support Vector
Machine; ref. 12) and with the performance of several state-of-the-art

missense mutation function prediction methods.

Probabilistic interpretation of random forest classification scores in
tumor-derived glioblastoma multiforme mutations. We used the
trained Random Forest to compute a classification score for each of 607

glioblastoma multiforme (GBM) missense mutations reported by Parsons

and colleagues (4). However, these scores are not probabilities and the
statistical behavior of the algorithm has not been well-characterized (10).

Therefore, it is not evident where to set a trusted score cutoff for purposes of

identifying driver mutations. To do this, we first interpret the scores in the

framework of statistical hypothesis testing. For each of the 607 GBM mutants,
we test the null hypothesis: the mutant is not functionally related to the

growth of the tumor (passenger), versus the alternative hypothesis that it is

(driver). We obtain a P value for a mutation by comparing its score to the null

distribution, which consists of the scores of a filtered set of synthetic
passengers that were held out from Random Forest training (Supplementary

Materials and Methods: Filtering of Synthetically Generated Passenger

Mutations), using the Benjamini-Hochberg algorithm to correct for multiple
testing (Supplementary Materials and Methods: Controlling the False

Discovery Rate; ref. 19).

GBM mutations. We assessed 607 GBM mutations from 21 patient

samples (4). Five of the mutations described by Parsons and colleagues (4)
were dropped because they occurred in gene transcripts that are no longer

supported by the RefSeq database (20). Three mutations were dropped

because they were found in gene transcripts that were larger than 14,000

codons. For gene transcripts of this size, we were unable to generate protein
multiple sequence alignments because of their high computational expense.

Finally, one of the GBM tumor samples was from a patient with a

hypermutator phenotype who had been treated with radiation and
temozolomide. Because this sample had 17 times as many alterations

as the other GBM samples and a radically different mutation spectrum (4),

these mutations were excluded from our analysis.

Estimation of fraction of drivers in GBM. We assumed that the GBM
mutations are a mixture of drivers and passengers and wanted to estimate

the proportion of drivers in the mixture. The probability distribution of the

GBM CHASM scores should then be similar to the CHASM score

distribution of a mixture of known driver and synthetic passenger
mutations (21). We numerically find the mixing proportion, which

minimizes the distance between these two score distributions (Supplemen-

tary Materials and Methods: Estimating the Fraction of Drivers).

Comparison with other methods. For comparison purposes, we
assessed the performance of several published methods that were possibly

useful for driver mutation prediction both on our training set and the two

held-out validation sets of P53 and EGFR mutations. The tested methods
were as follows: PolyPhen (22), SIFT (9), CanPredict (3), and KinaseSVM (7).

We also assessed a consensus prediction, based on agreement between SIFT

and PolyPhen (Supplementary Materials and Methods: Comparison with

Other Missense Mutation Function Prediction Methods).
Wherever possible, we assessed the performance of these methods using

a numerical score, rather than a categorical prediction, so that we could

construct threshold-independent ROC and PR curves. We computed

precision and recall statistics (Eq 4) when only categorical predictions
were available (CanPredict and the PolyPhen/SIFT consensus).

Precision ¼ TP=ðTP þ FPÞ Recall ¼ TP=ðTP þ FNÞ

where TP is the number of drivers correctly classified, FP is the number of

synthetic passengers misclassified, and FN is the number of drivers

5 http://www.irb.hr/en/cir/projects/info/parf/
6 http://www.math.usu.edu/~adele/forests/cc_home.htm
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misclassified. We compared the performance of these methods to CHASM’s
performance on its own training set, based on out-of-bag scores, and also to

CHASM’s performance when all P53 and EGFR mutations were held out of

its training and feature selection sets. We also compared Random Forest

performance with performance of a SVM (12), another state-of-the-art
machine learning classifier, using the same training sets and predictive

features. The SVM was trained using the e1071 package in R statistical

software and assessed using 5-fold cross-validation and constructing ROC

and PR curves.

Results

Feature selection. To develop a new classifier, we first
evaluated a large number of candidate predictive features
and found that >50 features contained at least some information
that seemed to be useful for discriminating between driver
and passenger mutations. In particular, using a method that
estimates mutual information between a predictive feature and
class labels, we found that the majority of the candidate
predictive features were weakly informative (Supplementary
Table 3; ref. 23). In our training set (described in Materials
and Methods), we calculated that a feature capable of correctly
classifying a mutation as a passenger or driver would require
2.05 bits of information (Supplementary Materials and Methods:
Information Theory). As our top-ranked feature had only 0.06
bits of information, we compensated by using 49 features
(Supplementary Table S3; Supplementary Fig. S3). This is a much
larger number of features than used in previous studies (3, 7).
The sum of the information in each individual feature was
0.37 bits. However, the Random Forest works with all features
jointly, which may yield much higher information content than
the simple sum.

Some of our top-ranked features have not, to our knowledge,
been used previously for missense mutant function prediction.
These features include the average nucleotide-level conservation
of the exon in which a mutation occurs in 17-way vertebrate
Multiz alignments (24), estimated by PhastCons (25); SNP
density (the number of SNPs in the exon where the mutation
occurs, normalized by exon length); and frequency of missense
change type in the COSMIC database of somatic variation in
cancer (11).
Datasets used for training. As noted in the Introduction,

the choice of training sets is critically important to the
performance of any classifier. As drivers, we selected 2,488
missense mutations previously identified as playing a functional
role in cancer, culled from the COSMIC database and recent
large-scale resequencing studies (see Materials and Methods).
The passenger data set was derived by a two-step process.
First, we selected genes that were mutated at least once in four
large-scale sequencing studies of colorectal, breast, brain, or
pancreatic tumors (2, 4–6). Second, we generated synthetic
passenger missense mutations in these genes in silico , using an
algorithm that recapitulated the type of base substitutions found in
brain tumors (mutation context). Note that we purposefully
chose genes that were mutated as the substrate for the in silico
generation of synthetic mutations. This increased the likelihood
that the new classifier would detect mutations that were
extraordinary rather than detect genes that were extraordinary
(e.g., had very different codon compositions than the average).
Our classifier would thus be able to detect differences between
driver and passenger mutations even if the mutations were in the
same gene.

Past classifiers have often used high MAF nsSNPs as the
passenger data set rather than the synthetic passenger data
set described above. To determine whether there were major
differences between our new data set and high MAF nsSNPs,
we compared them using principal component analysis applied
to the top-ranked 21 predictive features (Supplementary Table S1).
As shown in Fig. 1, a randomly selected set of 4,395 high MAF ns
SNPs from the HapMap project were distributed differently
than a set of 4,500 synthetic passengers. Interestingly, the synthetic
passengers formed two distinct clusters in this analysis, along
the dimension of principal component four, which is dominated
by feature 72. The feature is a binary descriptor of regions in
proteins that are functionally interesting, as annotated in the
UniProtKB database (26). It seems that although a subset of the
synthetically generated passenger mutations were located in
annotated regions of functional interest, the MAF nsSNPs tended
not to be located in these regions. This result is consistent with
evolutionary selective pressure on MAF nsSNPs for functional
neutrality. Other features with large magnitude coefficients in these
principal components analysis components included predicted
amino acid residue propensities for secondary structure, solvent
accessibility, backbone flexibility, and additional protein-based
functional annotations from UniProtKB.
Classifier construction. We then attempted to use these

features and data sets to design a new classifier using two state-
of-the-art machine learning methods, SVMs, and Random Forests.
Although both methods were able to define good classifiers, the
Random Forest proved superior (Supplementary Fig. S4) and was
used for the remainder of the analyses. Details of the construction
of the Random Forest–based classifier, henceforth termed CHASM,
are described in Materials and Methods.

To test the performance of CHASM, we first assessed it with
respect to its out-of-bag classification error on the training sets
(equivalent to a cross-validation test (10)). For this purpose, ROC
and PR curves were used, as these metrics consider classification
errors at all possible score thresholds. Using area under the curve
(AUC) as a performance summary statistic, where 1.0 indicates
perfect classification, CHASM yielded AUCs of 0.91 and 0.79 for
ROC and PR, respectively (Fig. 2).

Figure 1. Principal components analysis of nsSNPs versus synthetic passenger
mutations. Synthetic passenger mutations (red) and high MAF nsSNPs from the
HapMap project (blue) have substantial overlap in the space defined by principal
components one, three, and four, but there are regions in the space occupied only
by high MAF nsSNPs and regions occupied only by synthetic passengers.
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This performance was then compared with that of other
methods, including PolyPhen’s PSIC score, SIFT, CanPredict,
KinaseSVM (Supplementary Fig. S5), and a SIFT-PolyPhen
consensus. The fraction of mutations that could be evaluated by
these alternative methods (coverage) was considerably lower
than that of CHASM (Supplementary Materials and Methods;
Supplementary Table S4). Moreover, even the best performing
of the alternative methods was inferior to CHASM in specificity,
sensitivity, and precision (Supplementary Table S4). These
differences translated to much lower AUCs for ROC and PR
(Fig. 2).

As another test of the performance of CHASM, P53 or EGFR
mutations were held out of the mutation data set used for training,
and then these known driver mutations were assigned scores
by CHASM and the other algorithms. To evaluate both the sensitivity
and specificity of each method, we also held out 590 synthetic
passenger mutations. If we consider the fraction of misclassified
mutations at the minimum error point, the CHASM classifier
had high sensitivity and specificity for both the P53 and EGFR
test sets (Supplementary Table S4). The performance of CHASM
was considerably better, both in terms of sensitivity and specificity,
than previously described classifiers (Supplementary Table S4).
These differences are graphically illustrated in the AUCs presented

in Figs. 3 and 4 (Further detail is provided in Supplementary
Table S5.).

For a practical estimate of the CHASM performance, we
calculated P values for each of the held out P53 and EGFR
mutations, then controlled the false discovery rate (FDR) to 0.2
using the Benjamini-Hochberg procedure. We found that 195 of the
196 experimentally observed P53 mutations and 131 of the 133
experimentally observed EGFR mutations were predicted to be
drivers by CHASM. In comparison, a maximum of 188 of the 196
experimentally observed P53 mutations and 101 of the 133
experimentally observed EGFR mutations were predicted to be
drivers by PolyPhen or SIFT.
Analyses of GBM. The CHASM Random Forest classifier was

then used to score 607 missense mutations in glioblastoma
multiforme (GBM) described by Parsons and colleagues (4). The
driver data set used to train the Random Forest was the same as
that described above except that all of the missense mutations
actually observed in GBMs were excluded. The raw CHASM
scores of the mutations, representing the fraction of trees in the
forest that voted for classifying the mutation as passenger, ranged
from 0 to 1 (Fig. 5). For each of these missense mutants, we
tested the null hypothesis that the mutant was a passenger. A
P value was calculated for each mutant by comparing its CHASM

Figure 2. ROC and PR curves calculated for (A ) CHASM, (B) PolyPhen PSIC,
and (C ) SIFT on the training set mutations. CHASM training out-of-bag scores
were used to generate the ROC and PR curves in A . A color version is available
as Supplementary Fig. S6.

Figure 3. ROC and PR curves calculated for (A) CHASM, (B) PolyPhen PSIC,
and (C ) SIFT on P53 and synthetic passenger mutations held out of the CHASM
training set. A color version is available as Supplementary Fig. S7.
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score to the score distribution of a filtered set of synthetic
passengers (see Materials and Methods for details). The
Benjamini-Hochberg procedure was used to control the FDR at
the desired level of 0.2 (19).

At this FDR level, CHASM classified 24 of the 607 GBM
mutations as drivers (Table 1). Importantly, CHASM successfully
identified 11 mutations that were likely to be drivers based on
previous experimental data. These 11 mutations included nine
in P53 or PTEN , well-known tumor suppressor genes, one in
PIK3CA , a well-known oncogene and one in IDH1 , a gene recently
discovered to be altered in many brain tumors (27). In addition to
these, 11 CHASM identified 13 others that otherwise would not
have been suspected of playing a major role in GBM tumorigenesis
(Table 1). Intriguingly, these mutations included those in genes that
are likely to be involved in critical signaling pathways, such as the
protein kinases STK39 and RIPK4 , the protein phosphatase PTPRM ,
and the insulin-signaling mediator PHIP .

Finally, to estimate the proportion of driver missense mutations
in the GBM mutation set, we minimized the difference between the
distributions of the CHASM scores of the GBM mutations and the
CHASM scores of a mixture of known driver and synthetic
passenger mutations (see Materials and Methods for details). We
thereby estimated that 49 of the 607 missense mutations identified
in GBM, or 8%, were drivers.

Discussion

Computational methods to predict the impact of mutations
discovered in tumor resequencing are still under development.
Although initial work focused on identification of driver genes
rather than driver mutations (1, 5), it has recently been suggested
that the occurrence of some missense mutations in oncogenes or
tumor suppressor genes are actually passengers (7), motivating the
need for a higher resolution approach that identifies individual
mutations as drivers. In light of the large number of mutations that
are being discovered in current large-scale cancer gene sequencing
efforts, and the impossibility of assessing this large number
through experimental functional studies, bioinformatic approaches
to classify and prioritize mutations for further analysis are essential
for progress.

Confronted with this problem, some researchers have tried to
apply methods that were developed to predict the impact of
germline missense variants. We found that these methods have
good sensitivity in recognizing recurrent driver missense muta-
tions in P53 and EGFR , but poor specificity (Supplementary Table
S4; Figs. 3 and 4). This result implies that there may be
differences between the distinguishing characteristics of neutral
mutations in the cancer genome versus the germline genome.
Application of methods developed for the latter problem to the
former problem yielded less than optimal results. In contrast, the
CHASM classifier, specifically developed to detect somatic rather
than germline driver mutations, had substantially improved
sensitivity, specificity, and precision over previously described
methods.

Overall, our results highlight the importance of ‘‘null model’’
selection in designing a predictive algorithm to identify driver
mutations in cancer resequencing data. Within the context of a
prediction method, the null model incorporates assumptions about
what driver missense mutations do not look like. It is used
explicitly in supervised learning methods such as CAN-predict,
Kinase SVM, and our previous version of CHASM (2, 4). It is also

Figure 4. ROC and PR curves calculated for (A ) CHASM, (B) PolyPhen PSIC,
and (C ) SIFT on EGFR and synthetic passenger mutations held out of the
CHASM training set. A color version is available as Supplementary Fig. S8.

Figure 5. Histograms of CHASM scores for driver mutations and passenger
mutations held out from the training set, and 607 mutations experimentally
identified in GBM. Estimated kernel density for each set of scores (solid line ) and
fitted mixture of the driver and passenger score densities (dashed line ) are
shown superimposed on the histograms.
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Table 1. Driver mutations predicted by CHASM at FDR of 0.2, shown with their associated Random Forest scores and
P values

Hugo Gene
Symbol

Mutation CHASM score P Protein function Cancer association

P53 C176F 0.054 0.0004 Regulates various cellular processes
including cell cycle, proliferation and,

apoptosis (32)

P53 is a tumor suppressor and is
compromised in almost

all human cancers (32)

R273H 0.128 0.0004
G245S 0.098 0.0004

G245D 0.112 0.0004

R273C 0.156 0.0004

R248W 0.242 0.0008
V197E 0.264 0.0008

R282W 0.266 0.0008

STK39/SPAK I208T 0.268 0.0008 A serine/threonine kinase that regulates

the p38 MAP kinase pathway (33)

STK39/SPAK has been implicated in the

regulation of prostate cell proliferation
through androgen response (33)

ST8SIA4 R168S 0.286 0.0011 ST8SI4 is an enzyme necessary for

the synthesis of polysialic acid,
which is present on the embryonic

neural cell adhesion molecule

(N-CAM). N-CAM plays an important

role in neuronal plasticity (34)

E-cadherin–mediated cell-cell adhesion

is repressed by polysialylated N-CAM
in pancreatic tumor cells (34)

F2RL1/PAR2 C226S 0.302 0.0011 Acts as a receptor for trypsin and

trypsin-like enzymes. F2RL1 is

coupled to G proteins that stimulate

phosphoinositide hydrolysis.
This protein has also been

suggested to play a role in the

regulation of vascular tone (35)

F2RL1/PAR2 signaling may contribute to

angiogensis and tumor growth (35)

IDH1 R132S 0.324 0.0019 IDH1 catalyzes the oxidative

carboxylation of isocitrate to

a-ketoglutarate, resulting in the

production of NADPH (4)

IDH1 mutations occur frequently in brain

tumors and have been causally

implicated in glioma progression (27)

ABL2 P487L 0.336 0.0019 Regulates cytoskeleton in cellular

division, differentiation, and

adhesion through phosphorylation

of proteins controlling cytoskeleton
dynamics (36)

ABL2 may inhibit glioma cell migration

and cause cytoskeletal collapse through

inactivation of RhoA (36)

PHIP D246G 0.36 0.0030 Interacts with IRS-1 and may

mediate downstream insulin

signaling (37)

IRS-1 interacts with many oncogenes

and is important for their ability to

transform the cell (38)
PHF2 A199T 0.366 0.0030 Contains a PHD finger domain and

may play a role in chromatin

structure modification (39)

PHF2 is frequently altered in

breast cancer (40)

PIK3CA G1049S 0.386 0.0042 Phosphorylates the second

messengers PtdIns, PtdIns4P and

PtdIns(4, 5)P2 with a preference

for PtdIns(4, 5)P2 (41)

PIK3CA regulates cell cycle progression

and cell survival through AKT and is

frequently altered in glioblastomas (41)

PTEN G132S 0.376 0.0042 Antagonizes the PI3K-AKT/PKB

signaling pathway by

dephosphorylating

phosphoinositides and thereby
modulating cell cycle progression

and cell survival (42)

PTEN is a tumor suppressor in the

PIK3CA/AKT pathway and is altered

in 60% of glioblastomas (42)

ABCC3 D1505Y 0.376 0.0042 ABC proteins transport various
molecules across cellular membranes.

ABCC3 is a member of the MRP

subfamily of ABC transporters

implicated in multidrug
resistance (43)

Small-cell lung cancer patients with
aberrations in ABCC3 show

significantly decreased progression-free

survival (43)

(Continued on the following page)
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used implicitly in methods such as SIFT and PolyPhen because
their utility has been assessed with a validation or benchmark set
as a false-positive control. SIFT has used experimental results of
functional assays in bacterial and viral proteins as a control;
PolyPhen has used species divergence data from amino acid
substitutions found in equivalent positions in alignments of protein
orthologs. We suggest that these null models of functional
neutrality do not optimally represent the passenger missense
mutations found in tumors.

Although existing methods for missense mutant function
prediction in cancer have provided tools to prioritize candidate
driver mutations, we have developed a quantitative approach to
identify candidate drivers by controlling the FDR. To our
knowledge, this is the first application of FDR to the classification
of missense mutations, providing a statistically meaningful
threshold for discovery.

We estimate that the proportion of drivers among all GBM
missense mutations in our data set is f8%, with 5.4% occurring
outside of known gene mountains. Note that the actual number of
drivers in the mutation data set of Parsons and colleagues (4) is
likely to be higher, as CHASM only considers missense mutations.
Many of the tumor suppressor gene alterations that drive
tumorigenesis are nonsense mutations, frameshifts, or large
deletions.

Our method is high-throughput and can be easily adapted to any
tumor type of interest, given a sufficient sample size to compute
context-based DNA mutation rates. It also represents an advance
over previous classifiers in that most mutations can be scored
(coverage; Supplementary Table S4). Because the method focuses
on properties of individual mutations, rather than the frequency at
which mutations appear in a gene, it can potentially detect driver
mutations that are present at low frequencies. These mutations
may disregulate pathways that are potential new drug targets.
A recent example is the isocitrate dehydrogenase (IDH1) R132
mutation, discovered in GBM resequencing (4). In the initial screen
by Parsons and colleagues (4), this mutation was originally found in
only a small proportion of GBMs, so its role as a driver was
questionable. CHASM, however, shows that the mutation has a
high likelihood of being a driver when present in a tumor.
Subsequent studies revealed that the mutation was present in a
high fraction of an uncommon GBM subtype as well as other brain
tumor types (4, 27–30). Functional studies suggest that mutant
IDH1 dominantly inhibits production of a-ketogluterate, which is
required by enzymes that degrade HIF-1a, thus hyperactivating the
HIF-1 pathway and promoting tumor angiogenesis. Drugs designed
to be a-ketogluterate mimics might thus be useful for GBM
patients with the IDH1 mutation (31). We hope CHASM will
provide a useful tool to guide follow-up experiments based on the

Hugo Gene

Symbol

Mutation CHASM score P Protein function Cancer association

RIPK4 P222Q 0.374 0.0042 A serine/threonine protein kinase that
interacts with protein kinase C-y and

can increase nuclear factor-nB (NF-nB)

activity. This protein is necessary for

keratinocyte differentiation (44)

Regulates NF-nB, a transcription factor
implicated in the initiation and

progression of cancer (45)

FLJ10276/BSDC1 K172E 0.4 0.0053 Uncharacterized protein containing a

BSD domain. May act as a

transcription factor (46)

Unknown

SLC30A9/HUEL G321D 0.424 0.0060 SLC30A9 may be a housekeeping gene
involved in cellular replication,

DNA synthesis, and/or

transcriptional regulation (47)

SLC30A9 is located in a region of
chromosome 4 that is frequently

deleted in carcinomas (47)

CYP2C19 P382L 0.428 0.0064 CYP2C19 is a cytochrome P450 enzyme

that metabolizes a number of therapeutic

agents including the anticonvulsant

drug S-mephenytoin, omeprazole,
proguanil, certain barbiturates,

diazepam, propranolol, citalopram, and

imipramine (48)

Altered CYP2C19 mediated drug

metabolism could effect the tumor’s

response to therapy (48)

LBP E363K 0.428 0.0064 LBP binds bacterial lipopolysaccharides,
and transfers them to the CD14

receptor (49)

CD14 is upstream of both the NF-nB and
MAP kinase signaling pathways, both of

which are often deregulated in cancer (49)

PTPRM M1220V 0.434 0.0072 PTPRM is implicated in cell-cell

contact formation through homophillic
interaction and seems to play a role

in signal transduction in response

to cell density (50)

PTPRM my play a role in cell-cell contact

signaling to regulate cell growth (50)

NOTE: This list includes 11 mutations likely to be drivers based on previous experimental data and 13 others that otherwise would not have been

suspected of playing a major role in GBM tumorigenesis, but which are found in genes that are likely to be involved in critical signaling pathways.

Table 1. Driver mutations predicted by CHASM at FDR of 0.2, shown with their associated Random Forest scores and
P values (Cont’d)

Hugo Gene
Symbol

Mutation CHASM score P Protein function Cancer association

Cancer Research

Cancer Res 2009; 69: (16). August 15, 2009 6666 www.aacrjournals.org

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/69/16/6660/2613450/6660.pdf by guest on 29 January 2025



results of the many cancer genome projects now being performed
or planned.
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