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7 Conclusions

We have introduced WIOM, a MIP that helps NAVSUP planners to set reorder
points for thousands of maritime and aviation line items under uncertain demand.
WIOM seeks to minimize weighted, expected shortfalls from fill rate targets and
deviations from legacy solutions under a limited safety stock budget. We adjust an
existing closed-form approximation of expected fill rate that better captures multiple
expected orders per lead time, and incorporate it into the optimization model. We
solve realistic instances of WIOM provided by NAVSUP via both a general-purpose
MIP solver and by Lagrangian relaxation. Preference for either method depends
on the case and metric used: objective value, computational time, or fraction of
budget used.
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Product-Mix Planning and Revenue e
Management for Semiconductor
Manufacturing

Marzieh Khakifirooz, Jei-Zheng Wu, and Mahdi Fathi

Abstract Semiconductor manufacturing is a capital-intensive industry, in which
matching the demand and capacity is the most important and challenging decision
due to the long lead time for capacity expansion and shortening product life cycles
of various demands. Most of the previous works focused on capacity investment
strategy or product-mix planning based on single evaluation criteria such as total
cost or total profit. However, a different combination of product-mix will contribute
to a different combination of key financial indicators such as revenue, profit,
gross margin. This study aims to model the multi-objective product-mix planning
and revenue management for the manufacturing systems with unrelated parallel
machines. Indeed, the present problem is a multi-objective nonlinear integer pro-
gramming problem. Thus, this study developed a multi-objective genetic algorithm
for revenue management (MORMGA) with an efficient algorithm to generate the
initial solutions and a Pareto ranking selection mechanism using elitist strategy
to find the effective Pareto frontier. A number of standard multi-objective metrics
including distance metrics, spacing metrics, maximum spread metrics, rate metrics,
and coverage metrics are employed to compare the performance of the proposed
MORMGA with mathematical models and experts’ experiences. The proposed
model can help a company to formulate a competitive strategy to achieve the first-
priority objective without sacrificing other benefits. A case study in real settings
was conducted in a leading semiconductor company in Taiwan for validation. The
results showed that MORMGA outperformed the efficient multi-objective genetic
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algorithm, i.e., NSGA-II, as well as expert knowledge of the case corporation in both
revenue and gross margin. An evaluation scheme was demonstrated by comparing
the effectiveness of manufacturing flexibility from the multi-objective perspective.

1 Introduction

Manufacturing companies are highly utilizing smart devices such as sensors and
wireless technology and getting smart which make manufacturers more sustainable,
profitable, productive, and efficient [26]. They are becoming more complex with
automation, and computerized processes and systems which lead to big data
challenges and how to interpret them and use for the innovative improvement of
processes and products [25-27].

Kusiak [27] believes that “Smart manufacturing such as semiconductor, com-
puting, aircraft, energy industries is an emerging form of production integrating
manufacturing assets of today and tomorrow with sensors, computing platforms,
communication technology, control, simulation, data-intensive modelling and pre-
dictive engineering based on cyber-physical systems with artificial intelligence,
cloud computing, the internet of things, service-oriented computing, and data
science. He considered six pillars for smart manufacturing including manufacturing
technology and processes, materials, data, predictive engineering, sustainability and
resource sharing and networking. He defined the future of smart manufacturing in
ten opinions varying from manufacturing digitization and material-product-process
phenomenon to enterprise dichotomy and standardization”.

Following Moore’s law that the number of transistors fabricated on a wafer
will be doubled every 12 or 24 months with lower average selling price [37],
the new generation product will dominate prior generations regarding the cost-
per-function. This technology migration will accelerate the price decline of prior
generation products. The increasingly fierce competition also has commodified
chip sales and led to continuous and significant price decline [8, 21]. With
continuously advanced functions with reducing average unit cost, semiconductor
applications are continuously expanding and penetrating into various segments
[28]. Smart integrated circuits (ICs) have been increasingly employed in medical
electronics, green energy, car electronics, computers, communication, and consumer
electronics. In general, IC product demands can be categorized into make-to-order
(MTO) logic ICs and make-to-stock (MTS) memory ICs [20]. Wafer foundry
companies generally fabricate logic ICs whereas memory ICs are standard products
and normally produced by integrated device manufacturers. In order to search
for growth opportunity, integrated device manufacturers have been aggressively
snatching foundry business while foundry service companies have been developing
manufacturing flexibility to support memory products families. Semiconductor
manufacturers are facing challenges to supply a high variety of product by utilizing
flexible processes and machines.
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Fig. 1 Conceptual framework of PDCCCR [8, 11]

There are some papers studying the demand and capacity planning in semicon-
ductor industry such as [14, 15, 23, 39, 40]. To respond to increasing demand,
manufacturing strategic decisions of the interrelated determinants include pricing
strategies (P), demand forecast and demand fulfillment planning (D), capacity
planning and capacity portfolio (Cy), capital expenditure (C>), and cost structure
(C3) that will affect the overall financial return (R) of semiconductor manufacturing
companies, as illustrated in the PDCCCR conceptual framework of Fig. 1 [8, 11].

Forecasts of future demands from various marketplaces provide the basis for
capacity decisions. However, the demand fluctuation due to shortening product
life cycle and increasing product diversification in the consumer electronics era
make the demand forecast problem increasingly difficult and complicated. Demand
forecast errors cause either inefficient capacity utilization or capacity shortage that
will significantly affect the capital effectiveness and profitability of semiconductor
manufacturing companies [8].

Conventional approaches for capacity management include capacity transforma-
tion and expansion investment from strategic level to operational level [61], new
product allocation, intra-company inter- and intra-fab backup [13], inter-company
backup [11], outsourcing [12, 47, 52], portfolio selection [10] and productivity
enhancement [9]. Most of the approaches have been applied by semiconductor
manufacturing companies to meet diverse and increasing demands. However, the
capacity planning in the semiconductor industry can be characterized by high capital
expenditure in capacity investment, long capacity installation lead times, high obso-
lescence rates due to rapid technology development, high demand volatility [47, 50].
Indivisibility, irreversibility, and nonconvexity in capacity cost modeling contribute
to the additional complexity of the problem [60]. While existing studies have
developed robust capacity strategies [15], facility allocation [59], manufacturing
execution system [62], and manufacturing flexibilities [42] including product-mix,
process, and machine flexibilities provide conservative and asset-lite alternative
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solutions for short-term capacity dynamics to meet surge demands in the highly
uncertain environment.

Empirical studies showed higher performances of plants with higher levels of
volume and product-mix flexibility that can be achieved through a mix of flexibility
multiple source factors [63]. Although the definition of product-mix flexibility is
not unanimous, main features comprise the ability to quickly and economically
adjustment of capacity for switches between products [4]. The externally-driven
manufacturing flexibility including volume and variety flexibilities were influenced
by the capability of internally-driven manufacturing flexibilities such as process
and machine flexibilities [18]. In particular, process flexibility is the ability of a
single manufacturing plant to make multiple products whereas machine flexibility,
a moderating factor to process flexibility, is measured in terms of the capacity lost
when multiple products must be produced [2].

Furthermore, most of existing capacity planning models consider single return
objective function such as cost, profit, utilization, or the possibility of shortage [1,
45, 49, 64]. Yet, the optimization of a single objective is solved at the expenses of
other financial and operating indexes. For example, maximizing profitability may
lead to the loss of market share due to abandoning of low-profit-margin-but-high-
volume demand.

This study aims to propose a multi-objective capacity planning model to
address the product-mix, process, and machine flexibilities, i.e., backups among
different product families and technologies to maximize the synergistic benefits of
revenue growth, profitability, and wafer outputs, which are critical to evaluating
the competitiveness of a semiconductor company. Without loss of generality, the
aforementioned model lies in the category of quantity-based revenue management
decisions comprising allocations of output or capacity to different segments,
products or channels [43]. For dealing with the nature of high combinatorial
problem complexity involved in the present problem, this study develops an efficient
multi-objective revenue management genetic algorithm (MORMGA) based on bi-
vector encoding method for chromosomes representation such as the one in [53]
where they modeled and solve the simultaneous multiple resources scheduling
problem based on a genetic algorithm with a novel bi-vector encoding method
representing the chromosomes of operation sequence and seizing rules for resource
assignment in tandem. For validation, this study will propose an evaluation scheme
for comparing the multi-objective effectiveness of manufacturing flexibility of the
proposed solution with alternative approaches, in which standard multi-objective
performance metrics such as distance metrics, spacing metrics, maximum spread
metrics, rate metrics, and coverage metrics will be employed. Decision makers can
select the beneficial alternatives of product-mix and capacity configuration decisions
from a set of nondominated solutions without the need of a priori articulation of
preferences among multiple objectives.

The remainder of this paper is organized as follows. Section 2 defines the multi-
objective product-mix planning and revenue management for the semiconductor
manufacturing systems with unrelated parallel machines and proposes a mathe-
matical model to find the exact solution of the problem. Section 3 proposes an



Smart Production by Integrating Product-Mix Planning and Revenue. . . 133

efficient multi-objective genetic algorithm model to solve the problem. Section 4
examines the proposed genetic algorithm with real case data. Section 5 concludes
with discussions of contributions and future research directions.

2 Problem Definition

Before describing the problem and solution in detail, some definitions regarding
multiobjective optimization are presented [16].

For F : Q — 9™, a multiobjective optimization program (MOP) can be
represented as follow:

{max F(x) = (Fi(x), e, fmC)T

st x e

where x, Q, m, and N are the decision variable vector, the decision space, the
number of conflicting objectives, and objective space, respectively.

In an MOP, an objective vector v is said to dominate another one « if and only if
v; > u;,i €1,...,mholds with at least one strict inequality. An objective vector is
nondominated if no other vectors dominates it, and a solution x is said to be Pareto
optimal if its objective vector is nondominated by others. The set of nondominated
objective vectors and the set of Pareto optimal solutions constitute the Pareto front
(PF) and the Pareto set (PS), respectively. Since it is generally time consuming to
obtain a complete PF, in real-life applications an approximation to the PF is required
to support decision-making.

In literature of Multiobjective Evolutionary Algorithm (MOEA) based on
decomposition, there are three decomposition methods including “the weighted
sum”, “the weighted-Tchebycheff”, and “the penalty-based boundary intersection”
approaches.

1. The ith subproblem of “the Weighted Sum(WS)” approach is as follow:

min g% (x|A;) = Z)»{fj(x)-

j=1

This method is efficient for solving convex Pareto solutions with Min
objective function.
2. The ith subproblem of “the Tchebycheff Approach” (TCH), is as follow:

min g'¢(x|Ai, 2%) = maxi<j<m {)»l”fj(x) - Z;‘-|} ,

where z* = (2], ..., z;‘n)T is the ideal reference point with zjf < min{fj(x)|x €
1,2,...,m.

Q} for j =
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3.

The ith subproblem “the Penalty-Based Boundary Intersection” (PBI) approach
is as follow:

min gPP (x|Ai, 2%) = dy + 0d,

where ,
dy = ||<F(x>—_z) A and
i ll
d = ||[F(x)— (z*—dlui—fo H The z* is the reference point as in

gP% (x|A;, z*) and 6 is a penalty parameter which should be properly tuned.
In this paper, we use “the weighted sum” Pareto-Based MOEA to find PF.

2.1 Assumptions

The following assumptions are considered as follow:

1.

Inventory and backlog are not considered. This study focused on semiconductor
wafer fabrication foundry service that is make-to-order without inventory, while
backlog will become deferred demand [13].

. All parameters are known and constant. There are two important reasons to

show why deterministic models are reasonable. Firstly, deterministic models
are easy to analyze and can serve as a good approximate for the more realistic
yet complicated stochastic models. Deterministic solutions are asymptotically
optimal for the stochastic demand problem [38]. Secondly, deterministic models
are more applicable in practice [5].

. Prices, cost structures, and demand forecasts are given. This study focused on

quantity-based revenue management models, i.e., capacity allocation and config-
uration [43]. The proposed model can be further applied for examining different
pricing strategies, cost management plans, and demand scenario analysis.

. Long-term capacity expansion decision is formed in advance, and is thus

not considered in this model. This problem focused on short-term capacity
configuration and allocation decisions.

. Yield defines at the total number of functional chips produced over number of

designed chips.

. The total capacity over horizon is assumed to be bounded by strategic estimation

representing the long-term vision under competitors’ behaviour. For example,
minimum demand for old technology based products and maximum demand
of new technology based products would be an estimate for the accumulated
capacity.

. The model is considered to be solved at-least once over the technology changes

on horizon.
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Functions

Ceiling of x is the smallest integer not less than x
Floor of x is the largest integer not greater than x
max (x, 0)

Superscripts and Subscripts

product type (i.e., digital, analog, and mixed chips for different devices and
speed of processing)

demand group

order item (chip/wafer)

machine area group (i.e., cluster tool)

machine group (an specific machine/tool from area group j is required for
fabrication the recipe r for layer n of product type b)

number of layers (number of fabrication rounds repeat from oxidation to
doping)

machine recipe (a set of instruction that at layer n, machine of type m belong
to area j is required to do for fabrication the product type b)

Sets

set of product type that can be processed on machine group m

set of demand groups

set of demand groups that belong to order i

set of orders

set of orders that belongs to product type b

set of orders that belong to demand group g

set of machine area groups

a sequence of pair machines {(k1, m1), (k2, m2), ..., (kx), m(k))} that can
be exchanged from one to another. The pair machines are sorted in the
increasing order of Fy,,/ Vi

a sequence of machine groups that is sorted in the increasing order of
F km/ Viem

a set of machine groups that belong to area group j

a set of machine groups where product type b will be processed on

set of process layers where products type b will be processed on machine
group m

set of recipe by which product type b will be processed on machine group
m through layer n
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2.5 Parameters

Dmin
i

pranse

3

e

H;

Hpmnr

P;

Qmax
m
Rpmnr

S
Sbmnr

Vin
Viem

Wi

average availability of machine group m

product type of order i

variable cost of product type b

unit cost per hour for additional direct labor hours

maximum demand of order i

minimum (committed) demand of order i, where without loss of general-
ity D" < ppex

range of demand of order i, where D;“"¢* = p/"* — pimin > ()
efficiency of machine group m

total capacity expansion budget of the planning horizon

capital expenditure of machine group m written down within the planning
horizon

unit cost of exchange from machine group m to machine group k within
the planning horizon

fixed cost

maximum output of demand group g

minimum output of demand group g

total hours within the planning horizon

net available capacity of machine group m within the planning horizon
unit loading of order item i per hour when processed machine group m
within the planning horizon

unit loading of product type b when processed on the nth layer by using
machine group m with recipe r within the planning horizon

area group attribute of machine group m

indicating whether machine group m needs to be operated by direct labors
(K, = 1) ornot (K,,, =0)

max number of a machine that can be acquired at area group j

unit price of order item i

maximum number of machine group m acquired within the planning
horizon

rework rate of product type b when processed on the nth layer by using
machine group m with recipe r

number of unit loading that the current direct labor level can support
number of unit loading of product type b when processed on the nth layer
by using machine group m with recipe r

capacity ramping-up rate of acquiring machine group m

capacity exchange rate of exchanging from machine group k to machine
group m

wafer-per-hour throughput of order item i
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Womr

Yomnr

2.6

Xi
qm
qkm

2.7

137

wafer-per-hour throughput of product type b processed on machine group

m using recipe r

yield rate of using machine group m to process product type b on the nth

layer with recipe r

Decision Variables

capacity supported the demand of order i
number of machine group m acquired within the planning horizon
capacities exchanged from machine group k to machine group m

Objective Functions and Constraints

MaxX ZREy = E Pix;
iel

minzpag =1 — —Zisllpixi {>peB Cb Xiew xit
Z(k,m)eK Fem@im + Fngm + G+
+
Cpr [Xnem Lpepn ierr Himxi — S| }

max zoyr = Z Wix;

iel

minzppy = Z Gkm
(k,m)eK

Gyim <> xi <GP Vg e G
ielg

ZbeBm,ier Himxi < Hy + Vingm+

Z(k,m)EK ViemQiem —
> (m.kyeK Gmk, Ym € M

Y gn<0j.Vjel

meM/J
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2
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> Fugm < F ®)

meM
DM < x; < D" Vi e 1 9)
gm €{0,1,2,..., 0n*} Vm e M (10)
Gkm = 0,Y(k,m) e K (11)

where

H, =Hx A, xE,,VmeM (12)
Hpmnr = WbmrHbmrflbfnébmnr)menr’ (13)

VmeM,beB" neN™ icll re RN

Hip = Znerm ZreR"’"" Hpmnr, (14)
VmeM,beB" icl

The conflicting objectives of the proposed model is to simultaneously achieve
three non-commensurable objectives including revenue maximization in Eq. (1),
profit margin maximization in Eq.(2), equivalent output in Eq.(3), and penalty
in Eq.(4). The flexible formulation in Eq.(2) entails treatment to nonlinearity
that also justifies the use of genetic algorithm. In addition, the direct labor cost
evaluation reflected the need to incorporate labor flexibility when modeling product-
mix planning [22].

The decision model is bounded by strategic constraints (Eq. 5) that revealed long-
term vision for the company and considered competitors’ actions as discussed in
[6]. One reminding example was Intel’s decision on retiring commoditized memory
products that could benefit Intel with economies of scales while the beginning of
microprocessor products had no advantage regarding marginal profit per unit of
capacity supplied. In this case, minimum demand for microprocessor products and
maximum demand of memory products shall be considered. Setting up the floor of
grouping demand for ramping-up new technology and ceiling for old technology is
another common strategic constraint.

Capacity allocation and configuration constraints are formulated in Eg. (6)
to show the relationship between machine requirement and machine supply by
considering the number of steps, throughput rate, rework rate, yield rate, machine
hours, number of machines on hand, number of incremental machines, number of
planned retrofits, number of retrofits to be done, machine availability, and efficiency
as detailed from Eqgs. (12) to (14). The effective capacity will consider the loss
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rates during ramping-up and retrofitting. In semiconductor wafer fabrication, a
product will go through complex operations of multi-layer process which comprise
a number of machine groups. The portion of convertible machine groups for
capacity requirement may differ among different operations. Capacity requirement
of different machine groups for each product type may also differ in each operation.

A machine group can be characterized by its capability of processing multiple
product types. In particular, a dedicated machine group can support only one product
type whereas different product types may share capacity on a flexible machine
group. In addition, partial flexible machine groups, namely convertible machine
groups, can be converted to support different product types with additional loss
on cost and capacity. A machine group can be further characterized by its process
technology. Old technology cannot be employed to produce advanced products.
There are three ways of increasing capacity for a machine group: acquisition
and backup (exchange). By acquisition, a new machine group can be purchased,
installed, and ramped up to support future demand. By exchange, when the working
time of common machines allocated to a technology increases, the capacity will
increase accordingly.

Constraints (7) and (8) specify the limitations of facility spaces (enclosed by
the building, land clean room floor space, machine types, categories of manpower,
etc.) [7] and annual budget for small-scale expansions, respectively. Constraint (9)
defined the boundary of demands. Finally, Eqgs. (10) and (11) show nonnegative
integer variables for machine acquisition, and retrofit, respectively.

max zZrey = ) ;cr=m PiXi

(v 15
= D icr=p Min [HLE,.%" Gy, D,mx] Pi (1)
Hiixi <Viqgi,Viel=M (16)
Y Fgi<F (17)
ielI=M
qi €{0,1,2,., 07"} vieI=M (18)

The aforementioned mathematical model is computationally intractable, espe-
cially when the problem size increases significantly. When we decompose the prob-
lem (1)—(14) by considering the special case where each order item requires distinct
and unique machine to process, we have the single-objective problem (15) sub-
ject (16)—(18) which is a bounded Knapsack problem, a NP-hard (non-deterministic
polynomial) problem [34]. Generally speaking, multi-objective optimization prob-
lems are more difficult [33].
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Approaches to tackle multi-objective optimization problems can be categorized
as priori, interactive, and posteriori ones according to the timing when decision-
makers’ preferences were introduced [36, 65]. Priori approaches can be transformed
to single-objective optimization problems by using weighting or lexicographic
methods. However, it is inefficient and hard to elicit decision-makers’ preferences
when no alternatives are provided in the dynamic planning environment. Interactive
methods are neither efficient nor cost-effective when the design spaces are wide-
spread in the planning problem. Alternatively, after a limited number of solutions
are specified through a posteriori approach, it can be transformed to transform it to
an interactive approach to elicit decision-makers preferences on alternatives when
corresponding criterion values are determined [19].

Multi-objective genetic algorithms are relatively effective to find the nondomi-
nated (Pareto) solution set. In particular, a number of tests on NSGA-II with and
without constraint dominances showed its efficiency on solving multi-objective
optimization problems with continuous variables [17]. However, the lack of empir-
ical experiments on multi-objective combinatorial problems limits its application
to product-mix and capacity configuration planning problems. Added to this, the
elitism strategy does not guarantee diversity of nondominated solutions so as to
provide decision-makers with informational choices.

3 Multiple-Objective Revenue Management Genetic
Algorithm

This study modifies the NSGA-II with constraint handling [17] to develop a multi-
objective genetic algorithm (MORMGA) to solve the product-mix and revenue
management problem with revenue maximization, profit margin maximization, and
equivalent output maximization objectives. MORMGA consider five parameters
including generation size (Ng), population size (Nj), global front size (Nj),
crossover rate (r),), and mutation rate (r,,). The generation, denoted by ¢, represents
the number of computation iterations of the GA. It contains (N,) chromosomes
and corresponding solutions that collectively represents a population, denoted as
P(?). Initial chromosomes are randomly generated. The crossover rate represents the
ratio of the number of offspring produced in each generation to the population size,
whereas only some proportion of the population is being generated by mutation.
The global Pareto solutions can be updated at each generation after the NSGA-
II process (Fig.2). The newly generated Pareto solutions are those with rank one.
However, these solutions should be compared with the existing Pareto solutions,
since there is no guarantee of non-dominance when the two sets are pooled. In other
words, one point in the new set can be dominated by another point in the old set,
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Fast-Non-Dominated- Revised Crowding  Global Front = Revised Crowding
Sorting (FNDS) Distance Sorting Update Distance Sorting

’ N

S(t+1)

«— Rejected

Constraint-handling:
R(t) zero-penalty solution has higher priority

Fig. 2 Revised NSGA-II procedure

while one point in the old set can be dominated by another point in the new set.
Therefore, it is possible to pool the two sets into a single population, and then adopt
the NSGA-II to find the updated Pareto solutions.

A bi-vector encoding method [53] is embedded in the proposed MORMGA.
An allocation vector A = [og,a2,..., )] contains genes that represent the
percentage of individual orders to be allocated. The value of each gene, namely
genotype, is encoded as a random key [3], i.e., a real number in [0, 1]. For
example, given an order item i € I with gene «;, the corresponding allocation is
x; i= D" 4 o; D]*"¢°. The other vector B = [B1, B2, ..., Ba] is a permutation
of [1,2, ..., (D] that contains genes representing the sequence of individual orders
to be allocated. The lengths of both vectors equal the number of orders, i.e. (I).

The decoding method utilizes the random key-based representation and priority-
based representation to generate feasible order allocations and capacity configu-
ration and to assess objective values of each chromosome. Both repair strategy
and penalty objective strategy are embedded. Repair strategy is applied to ensure
feasibility of strategic constraints. The constraint-handling version of NSGA-II will
deal with the additional penalty objective that represents violation of the capacity
constraint.

The worst-case time complexity of decoding method is O(IM|?) or O(|I%)
depending on the number of orders and machine groups. The level of complexity
is reasonable since it is commonly required for capacitated order assignment to
traverse all links among orders and machine groups. Consequently, given four
objectives and N, > Ny > N, the complexity of MORMGA is O (4Ny N, N;).
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Algorithm 1 Multi-objective revenue management genetic algorithm (MORMGA)
: input

: Initial parameter setting for MORMGA

: Empirical data

output
: Pareto optimal solution

I

: begin

,_
=N

. Initialize P(t)
: Evaluate P(t) based in the proposed decoding method
: Generate global Pareto solutions by inserting the rank-one solution with zero penalty value

—_ =
R

:fort=1:Ngdo

_—
A

Recombine P(t) to yield O(t) by using the two cut-point crossover (r,) and the partition
randomization mutation (r,,) for the allocation vector (random key-based representation)
and the partition mapping crossover and the insertion mutation for the sequence vector
(permutation-based representation) [52]

17:

18:  Evaluate O(t) based on the proposed decoding method and the NSGA-II

19: [17]

20:

21: R(#) < R(#) UR(#) — combine parent and offspring population

22: R = {R}, Ry, ...} < fast — non — dominated — sort (R (¢)) — sort nondominated fronts of
R(z)

23: Pit+1) <« andi <1

24:

25: while [P(t 4+ 1)| + |R;| < N, do

26: P(t + 1) < P(r + 1) U R; —include ith nondominated front in the parent population

27: i :== i+ 1 — check the next front for

28: end while

29:

30:  Apply crowding-distance-assignment, i.e. Dc(a), Ya € R; — calculate crowding distance
in R,‘

31:

32 P(t+1) < P+ 1) UR;[1: (N, — [P(t 4+ 1)])] — choose the first (N, — [P(z + 1))
elements of R;

33:

34. Sort(R; >.) — sort in descending order using revised crowded-comparison operator (>.)

35:

36:  if a is of zero penalty but b is not

37: or [it not the reverse case that b is of zero penalty but a is not

38: and ((a > b)) (week dominance with respect to objective values)

39: or [a ~ b (non-dominance) and D¢ (a) > D¢ (b) (using crowding distance)])]

40: then (a > b.)

41: end if

42:

43: U <« S(¢) — initialize the joint global Pareto front

(continued)
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Algorithm 1 (continued)
44 foru e P(r +1)do

45:

46: if the penalty objective of u is not zero then

47: next u — update with feasible solutions only

48: end if

49:

50: U <« U U {u} — initialize the joint global Pareto front

51:

52: for v € S(¢) do

53:

54: if u > v then

55: U <« U U {v} — check whether v is dominated

56: else if u < v then

57: U < U U {u} — check whether u is dominated

58: end if

59:

60: end for

61:

62: Apply crowding-distance-assignment (U) — calculate crowding distance in U
63: Sort (U, >.) —sort U in descending order of crowding distance
64: S( 4+ 1) < U[1 : Ng] - choose the first Ny elements of U
65:

66: end for

67: end for

68: end

4 Numerical Results with Real Settings

The proposed MORMGA was examined in an anonymous wafer fabrication foundry
company located in Hsinchu Science Park of Taiwan. To ensure confidentiality, data
was transformed by reserving comparative results without loss of generality for fur-
ther explanation. The data comprised 10 products and 72 machine functions. Total
product route were 2847 steps, each product had to go through an average about 300
steps. In the same data, three pairs of backups supported machine flexibility. Three
working areas spared extra space for small-scale machine acquisition. More details
are elaborated in tables 9 to 13 of Appendix. The annual investment limit was $200
million and direct-labor move limit was 198 million steps.

To evaluate and compare multi-objective optimization algorithms, this study
adopted conventional performance metrics including the relative average distance
(Dav) [46] to the reference front, the percentage of range that the solution set covers
the reference front (MS), the space metric used to measure how evenly the solutions
are distributed (Tan’s spacing, TS) [44], the rate metric (R) [48] which shows the
number of non-dominated solutions in the obtained solution set, coverage metric (C)
[66] which reflects the dominance relation between two solution sets, and running
times (RT) [32, 44].



144 M. Khakifirooz et al.

Algorithm 2 Decoding method

input (including parameters and variables mentioned in the aforementioned mathemati-

cal model)
2:

A: An allocation chromosome [o, a2, . .., o]
4: B: An allocation chromosome [B1, B2, ..., Ba]
6: output

8: A: A repaired allocation chromosome
¢, gm, Ym € M, and gxn, V(k, m) € K: Three sets of decision variables

10: zrev, ZMAR> ZoUuT, and zpgy: Three objective values and one penalty value (zpgy) that
sums overall exceeding loading.

12: begin

14: x; < D;”i" + Dimngf, Viel

16: g < Zidg xi, Vg € G: denotes output of demand group g

18: Apply procedure: prior-repair method to meet strategic demand group constraint
Apply procedure: capacity allocation and reconfiguration method

20: Apply procedure: post-repair method to meet capacity constraints and to improve machine
utilization

22: ZREV < Y ieq Pixi

24

IMAR < 1— 72[6111)”’, {ZbeB Cp Z,’E[b xi + Z(k,m)eK Femqim + Fngm + G
+
+CpL [Xnem Lpepn ier Himxi — ]}

26: zoutr < Y iep Wixi
28: ZPEN < D pem.v, >0 Vi

30: end

Four numerical tests were performed. Designs of the MORMGA were firstly
evaluated. The best MORMGA design was applied thereafter. Secondly, effective-
ness of backup and acquisition was examined and compared. After that, complexity
effects were evaluated based on four different size problems with the same problem
structures. Finally, full-scale test results were presented.

Numerical analysis was performed on a desktop computer equipped with an
Intel Core”™ Quad CPU Q8400 @ 2.66 GHz and 3.25 GB RAM. The commercial
software LINGO 11.0 (LINGO System) was used to generate a reference set of
non-dominated solutions by utilizing embedded integer programming (IP) pack-
ages. LINGO solved the weighted-sums problem with objectives (1)—(4) subject
to (5)—(14) a number of enumerative weight settings. Each problem instance was
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Algorithm 3 Prior-repair method to meet strategic demand group constraint

15:

18:

21:

24

27:

30:

33:

36:

input (including parameters and variables mentioned in the aforementioned mathemati-
cal model)

: A: An allocation chromosome [o, a2, . .., ()]

B: An allocation chromosome [B1, B2, ..., Bm]
N: A vector 1, p2, ..., iG] denoting outputs of demand groups

: Xt A vector [xy, x2, ..., xx)] denoting capacity supported demand (CASD) of orders

output

A: A repaired allocation chromosome
N: A repaired vector denoting outputs of demand groups

: X: A repaired vector denoting capacity supported demand (CASD) of orders

begin
for h = 1to (I) wherei = B, and ; < 1 do

. + ang .
A; < min{ [max,eq (G™" — pn L (1 —a;)D"8 . denotes the increment
8€Li g 8 i

Mg < g+ A;, Vg €G;

range
i

o <o +A;/D
Xi < Xi + A;
end for

for h = (I) to 1 where i = B, and ; > 0 do
+ .
A; < min{ |maXeeq, (e — G ,mingeg, (e — G™" ), 0; DI 1, denotes the
8€Li 8 g 8€L; 8 g i

reduction
Mg < g — A;, Vg € G;
o <— o — A;/Dl.m"ge
Xi < Xxi — A

end for
end

recognized as “nonlinear integer linear programming” (NILP) and terminated at
local optimal solutions. A local optimal solution was collected within various ranges
of computation time. Accordingly, a set of reference non-dominated solutions
were generated for evaluation purpose. The benchmark mathematical program-
ming solutions were denoted by multiobjective nonlinear programming problems
(MONLP) hereafter. The nondominated solutions generated by MONLP were used
as reference fronts for aforementioned multi-objective metric calculations. All test
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Algorithm 4 Capacity allocation method

input (including parameters and variables mentioned in the aforementioned mathemati-
cal model)

X: A vector [x1, x2, ..., x)] denoting capacity supported demand (CASD) of orders
output
qm,Ym € M, and ggm, V(k, m) € K: Two sets of capacity-related decision variables
8: P: An updated loading vector
V: A vector [Vy, Va2, ..., Vo] denoting exceeding loading
begin
Pm < 2 pepm jer Himxi, Ym € M
Vin < Vm — Hp,Ym e M
gm < 0,Vm e M
gikm < 0,V(k,m) e K
20:
AT < F, denotes remaining budget for machine acquisition
Aj < 0;,Vj € J, denotes remaining quota for installing machines in area j
24:
for a = 1 to (K) where (k, m) < (k;, mg), Vi <0and V,, > 0do

Gkm < min(—Vi, Vi, / Vi), denotes the maximum capacities that can be exchanged from
machine k to machine m without sacrificing those orders which machine k can originally

support
28:
Vm <~ Vm - Vkmqkm
Vi < Vi + Gim
32:
end for

for m = 1 to (M) where V,, > 0 do
36:

i <~ ‘]Wl

gm < min([V,,/V,, ], On¢, I_AF/F,,,J , A ;) denotes the maximum number of machine
to be acquired
40:
Vm <~ Vm - vkmqkm

AP — AT — Fugn
44:
Aj <—Aj—qm

(continued)
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Algorithm 4 (continued)

for a = 1 to (K) where (m, k) < (ky, mgy), V;y < 0and Vi > 0 do
48:
Gikm < min(—V,,, Vi/ Vi), (incremental machines may yield surplus capacities that
can support others)

Ak < A — VinkGmk
52:
A < A + qmk

end for
56: end for
end

Algorithm 5 Post-repair method to meet capacity constraints and to improve
machine utilization
input (including parameters and variables mentioned in the aforementioned mathemati-

cal model)
A: An allocation chromosome [a, @2, ..., op)]
B: An allocation chromosome [B1, B2, ..., Bw]
5: N: A vector [u1, 12, ..., uG)] denoting outputs of demand groups
X: A vector [x1, x2, ..., x@)] denoting capacity supported demand (CASD) of orders
P: A vector [p1, p2, ..., powy | denoting loading of each machine group
V: A vector [Vy, Va2, ..., Vawy] denoting exceeding loading
10: output

A: A repaired allocation chromosome

N: A repaired vector denoting outputs of demand groups

X: A repaired vector denoting capacity supported demand (CASD) of orders
15: P: An updated loading vector

V: An updated exceeding loading vector

begin
20: for h = (I) to 1 do

i < Bjandb < B;

. . i range
§; < min {mngG, (;,Lg — GZ””) ,a; D; §

s [max,,,eMb (V,,,/H,—m)]Jr}, §; denotes the
order quantity reduction to solve the problem of overloading
25:
Mg < g — 8, Vg € G;

range
o <— O —8,—/Dl. §

(continued)
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Algorithm 5 (continued)

30: Xi <= Xj — 6,‘
Vm <~ Vm — H,-ma,-, Vm € M};
Pm < Pm — Hindi, Vm € M,
35:
end for
for h = 1to (I) do
40: i < Bpand b < B;

. . e . +
¢« min{mingeq, (G — pg) . (1= a) D", [mingen, (~Viu/Hin)] "}, 9
denotes the order quantity increment to solve the problem of low utilization

Hg < g +¢i, Vg € Gi
45:
o <—a; + (l),'/D;[mg(f
Xi < X + @i
50: Vi < Vi + Hip6i,Vm € My,
Pm < Pm + Hindi, Vm € M,
end for

55:
end

ran set generation size N, = 2000, N, = 50 population size, r, = 0.6 crossover
rate, and r,,, = 0.3 mutation rate.

4.1 Designs of MORMGA

Each algorithm design for comparison was the combination of a candidate selection
methods and a setting of global front size (Nj). Selection methods included (A)
rNSGA-II (the NSGA-II with constrained dominance), (B) NSGA-II (NSGA-II
without constrained dominance), (C) exponential ranking roulette wheel selection
with multiplier equal to 0.5 [35], and (D) linear ranking roulette wheel selection
[41]. Options of the length of tacking list comprised (a) unlimited, (b) 200, (c) 50,
and (d) none. Each combination ran 10 replications. Note that the combination A-b
represents the proposed MORMGA with Ny = 200 whereas A-d is the conventional
constraint-handling NSGA-II.

The numerical results showed that selection methods and the global front
sizes are determinants to computational performances (significance level = 0.001)
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(Figs. 3, 4, 5, and 6). Yet, the choices between constrained dominance or not made
little differences. Although unlimited number of global fronts outperformed in most
of the indexes, it was one of the sources of computational complexity. The decision-
makers should perform careful trade-off between solution quality and computational
times on the choices of N;. The following analysis applied INSGA-II with the global
front size Ny = 200.

4.2 The Effectiveness of Backup and Acquisition

From the multi-objective perspective, this study proposed a comparison scheme for
analyzing the effectiveness of backup and acquisition. Four cases for comparisons
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were designed as shown in Table 1. Particularly, the case IV was the test problem
discussed in the previous section. The case I expressed the situation when neither
backup nor acquisition is permitted. Cases II and III represented the situations
when merely backup or acquisition is allowed, respectively. Without the option of
acquisition, the cases I and II are formulated as multi-objective fractional linear
programming models. The complexity sequence of the cases in ascending order is
I, 11, III, and IV.

The result showed that the running times of proposed MORMGA had little
differences among all cases even though theoretically cases III and IV were
harder than cases I and II (Table 2). On the other hand, the running times of
cases I, I, III, and IV on MONLP were 563, 601, 640, and 732 s, respectively.
Case IV took 30% more computational time than case I by using MONLP, i.e.,
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Table 1 Design for backup

| - ¢ Backup
and acquisition comparison Case No | Yes
Acquisition |No |I 1T
Yes [II |IV
Table 2 Running times of N
g
cases I-IV Case | N, 500 1000 | 1500 | 2000
I 50 | 25 | 50 76 99

100 | 57 [113 | 168 |225
150 | 97 | 195 |290 |387
200 | 146 |293 437 |583
II 50 | 25 | 51 77 101
100 | 57 [ 114 |173 229
150 | 98 [ 197 |296 394
200 | 148 |299 444 593
1 50 | 25 | 51 77 103
100 | 57 |114 |172 230
150 | 98 | 196 295 |393
200 | 146 |293 440 |587
v 50 | 25 | 50 82 | 106
100 | 64 | 127 [193 |261
150 | 112 [233 |334 [463
200 | 173 |363 |516 694

100%AU(732-563)/563. Regarding the solutions performance, the values of the rate
metric increased as the generation size or the population size increased (Table 3).
More explorations and more computation times could improve the solutions quality.
Almost all values of the rate metric approach one. The Pareto fronts generated
by MORMGA were close to the ideal fronts. In addition, the low Tan’s spacing
values showed that the solutions on the Pareto fronts of MORMGA were diversely
distributed (Table 4).

The evaluation of backups and acquisition together with product-mix decisions
were demonstrated in Table 5. Clearly, the Pareto fronts of Case IV dominated those
of cases I, II, and III due to the highest flexibility whereas Case I was dominated by
all other cases because of inflexibility to adjust capacity configuration. It is worthy
particularly noting the comparisons between Case II and Case III. None of the
solutions in Case II can be dominated by any points in Case III. Since the coverage
metric is asymmetrical, we need to compare cases Il and III in the converse way.
CdI, II) = 1 on MONLP showed that all solutions of Case III were dominated
by some points of Case II. On the other hand, The C(I, III) = 0.58 on INSGA-II
showed that more than 50% solutions of Case III were dominated by some points
of Case II. In other words, acquisitions were more effective than backups from the
multi-objective perspective.
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Table 3 Rate metrics of N
g

cases -V Case | N, |500 |1000 |1500 | 2000
I 50 10935 |0.965  0.945 0.970
100 |0.965 | 0.955 |0.950 | 0.960

150 | 0.970 |0.960 | 0.940 | 0.950

200 |0.960 | 0.965 | 0.945 | 0.960

1l 50 | 1.000 |0.990 | 1.000 | 0.990
100 | 0.985 | 0.980 |0.995 | 0.990

150 | 0.980 | 1.000 |0.995 | 0.990

200 0.995 |0.995 0990 |0.995

| 50 | 1.000 | 1.000 |0.990 | 0.980
100 0.995 |0.990 |0.990 |0.985

150 0990 |0.985 |0.990 | 0.985

200 |0.985 | 0.990 |0.990 | 0.985

IV | 50 0959 0978 |0.976 0.984
100 | 0.880 |0.980 |0.972 | 0.990

150 | 0.967 0985 |0.985 | 0.990

200 0.983 |0.990 |0.990 | 0.990

Table 4 Tan’s spacing of N,
cases -V Case | N, |500 |1000 |1500 2000
I 50 10.0026 | 0.0038 |0.0056 | 0.0050
100 0.0027 | 0.0054 | 0.0019 | 0.0002
150 | 0.0081 | 0.0004 |0.0002 | 0.0033
200 |0.0124 |0.0080 | 0.0005 | 0.0077
1l 50 0.0040 | 0.0102 |0.0056 | 0.0026
100 [0.0015 | 0.0035 | 0.0024 | 0.0024
150 | 0.0007 |0.0011 |0.0052 | 0.0078
200 |0.0073 |0.0013 | 0.0012 | 0.0060
M| 50 |0.0264 0.0022 0.0044 0.0016
100 0.0010 | 0.0039 | 0.0093 | 0.0049
150 | 0.0007 |0.0040 | 0.0025 | 0.0094
200 |0.0027 |0.0024 | 0.0016 | 0.0079
IV | 50 0.0074 0.0179 |0.0013 | 0.0014
100 0.0050 | 0.0033 | 0.0078 | 0.0015
150 | 0.0027 |0.0051 |0.0044 | 0.0014
200 |0.0046 |0.0052 | 0.0012 | 0.0074

4.3 Examination on Solving Increasingly Larger Problems

Four cases, i.e., Case V-VIII, were designed to examine whether the proposed
MORMGA can perform robustly and relatively efficient when the problem size
increases. Cases V-VIII were more restricted in group demand constraints than
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Table 6 Running times of N

cases V=VIII £
Case | N, |500 |1000 |1500 |2000
\Y% 50 26 53 80 112

100 62 | 126 192 261
150 | 106 |219 334 449
200 |163 |330 497 668
VI 50 35 71 108 146
100 77 | 158 237 315
150 | 128 |257 390 516
200 | 187 |376 562 749
VII 50 59 |121 182 242
100 | 125 |252 379 509
150 200 |404 602 807
200 |284 |570 853 | 1150
VIII 50 | 108 |234 344 435
100 | 224 | 482 668 907
150 346 |721 |1071 |1388
200 493 |970 |1466 | 1921

cases -1V, i.e. maximum quantities were reduced from 60,000 to 40,000. All other
settings were not altered except that the number of products increased while the
minimum and maximum quantities of each order decreased. Specifically, the order
setting of Case V was the same with Case [-IV. Case VI duplicated products of Case
V while minimum and maximum quantities of each order were reduced to half of
the original setting. The problem size of Case VII and Case VIII were generated by
repeating this process based on case VI and case VII, respectively. At the end, there
were 80 products in Case VIII that was 2 x 2 x 2 = 8 times the size of Case V. This
design enlarged the problem size while keeping the idea nondominated solutions of
each case consistent with each other.

The running times gradually increased along with the increments of problem
sizes (Table 6). It took around half an hour to complete Case VIII when the
generation size and the population size were set as N, = 2000 and N, = 200.
Since MONLP was not a specifically designed program for solving the product-mix
planning problem, the special problem structure that derived identical idea nondom-
inated solutions was not detected and thus the running times were exponentially
increasing from 744, 4,862, 31,808 to 165,269 s along with the doubled-size cases.

The results of multi-objective metrics showed that MORMGA could sustain
high performances, i.e. high values of rate metric and low values of Tan’s spacing
(Tables 7 and 8). One exception in Case VIII was C = 0.193 for N, = 500
and N, = 50 for C = 0.885 for N, = 1000 and N, = 50. The results also
supported that decision-makers could determine the quality of MORMGA solutions
via corresponding parameter settings.
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Table 7 Rate metrics of
cases V-VIII

Table 8 Tan’s spacing of
cases V-VIII

Case
1

1I

1

v

Case
\"

VI

VII

VIII

Np
50
100
150
200
50
100
150
200
50
100
150
200
50
100
150
200

Np
50
100
150
200
50
100
150
200
50
100
150
200

100
150
200

Ng
500
0.0028
0.0057
0.0066
0.0030
0.0059
0.0061
0.0005
0.0024
0.0025
0.0047
0.0056
0.0001
0.0101
0.0021
0.0031
0.0030

Ng
500
0.983
0.983
0.990
1.000
0.953
0.995
1.000
1.000
0.995
0.995
1.000
1.000
0.193
0.965
1.000
0.970

1000

0.990
0.985
0.990
0.995
0.990
0.975
0.995
0.990
0.995
0.980
1.000
1.000
0.885
0.915
0.985
0.970

1000

0.0043
0.0008
0.0027
0.0049
0.0034
0.0026
0.0009
0.0002
0.0057
0.0056
0.0010
0.0024
0.0059
0.0023
0.0003
0.0058

1500

0.962
1.000
0.985
1.000
0.990
0.995
0.990
1.000
0.960
0.990
0.990
0.980
0.960
0.955
0.990
0.985

1500

0.0040
0.0039
0.0017
0.0035
0.0022
0.0031
0.0031
0.0006
0.0034
0.0032
0.0023
0.0011
0.0063
0.0031
0.0059
0.0035
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2000

0.985
0.980
0.990
0.995
1.000
0.995
0.990
0.980
0.970
0.990
0.995
0.990
0.975
1.000
0.980
0.995

2000

0.0031
0.0042
0.0059
0.0056
0.0052
0.0055
0.0001
0.0038
0.0045
0.0047
0.0022
0.0023
0.0046
0.0052
0.0035
0.0063
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4.4 Full-Scale Test

The empirical examination compared MORMGA with the expert knowledge of
the case corporation, i.e., “Fully load demand with the highest priority first; If
demand can not be supported, then manually adjust and negotiate.” The real annual
plan data included 146 types of product family, 81 machine groups, average 49
machine groups and 7,088 steps for one product. The MORMGA parameters were
set as Ny = 10,000, N, = 500, Ny = 1000. The computation completed within
30min on a mainframe server. The closest nondominated solution generated by
MORMGA simultaneously gained 5% revenue and 9.28% margin more than the
solution generated by the expert knowledge.

5 Conclusions

This study developed the MORMGA to model and solve the product-mix and
revenue management problem for semiconductor manufacturing. The proposed
model can help a company to formulate competitive strategy to achieve the first-
priority objective without sacrificing other benefits. A GA parameter, the global
frontier size, is introduced to provide a number of nondominated solutions for
top management to make the final decision. There exists a trade-off between
computation efficiency and the number of solutions to evaluate in the light of the
quality of the solutions. The convergence and diversity of nondominated solutions
are ensured, with satisfactory efficiency for implementation in real settings. An
examination scheme is proposed to evaluate the integrated multi-objective product-
mix planning and revenue management together with manufacturing flexibilities by
using standard multi-objective metrics for validation.

Indeed, the proposed MORMGA can serve as a core computation engine of
a decision support system for both demand and capacity planners without the
need of a priori articulation of preferences among multiple objectives. Decision
makers can select the beneficial alternatives of product-mix and capacity decisions
from a set of nondominated solutions. However, a large number of solutions will
delay decision-making lead times. In some cases, decision makers may jump into
conclusions to prevent from trapping in the complex and lengthy discussions. To
enhance decision-making quality, further research can be done in the area of finding
efficient interactive models to articulate preferences from a set of nondominated
solutions.

In this study commercial version of LINGO 11.0 was used to generate a reference
set of non-dominated solutions by utilizing embedded integer programming (IP).
Running LINGO to get a group of efficient point for small-size problems is fine.
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However, the running time for large scale test problem is high and the proposed
MORMGA should be utilized which solve the problems in an efficient time and
have a good performance. The future research possibilities are as follow:

* Integrating product mix planing decision support system (DSS) based on experts’
opinion with multiple-criteria decision-making (MCDM) techniques [57] such
as technique for order preference by similarity to ideal solution (TOPSIS),
VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), elimination
et choix traduisant la realit¢ (ELECTRE), the piecewise linear prospect (PLP)
theory method, and Analytic Hierarchy Process (AHP), and group decision
making for semiconductor [30, 31, 51, 54-56, 58]. Wu and Tiao [57] compare
the MCDM methods’ ranks with the decision-maker’s ranks by utilizing assumed
preference utility functions. Testing their results about outperforming interactive
MCDM methods such as PLP and AHP in compare to other MCDM method
in terms of rank consistency. Also, the performance of the MCDM methods is
affected by the percentage of existing efficient solutions which would be a good
area of research in product mix planning in semiconductor decision making.

e For product mix planning and decision making based on [57], one could
develop:

— aclosed loop learning model to implement decisions suggested by our MOR-
MGA based on selected MCDM methods which are trained and validated as
effective methods for the context.

— measures and models for examining various quantitative Group MCDM
(GMCDM) methods and examining with various quantitative GMCDM meth-
ods.

— a closed loop model to integrate distributed and decentralized MCDM deci-
sions in the various contexts of intelligent manufacturing based on training
and automatic selections from various GMCDM methods about product mix
planning.

* Studying product mix planing and revenue management under uncertain demand
and capacity which can be modeled by fuzzy theory [29], Beysian rule [24] and
scenario analysis. Moreover, in a case of unpredictable product mix, the capacity
planning over horizons is complex problem and we need forecast product mix
scenarios which would be a more realistic as a future research.
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Appendixes: Raw Data for Analysis
Table 9 Backup relations From | To
T19 | T22
T42 | T39
T58 | T61
Table 10 Area information Area | Max. Add
A 2
B 3
C 0
D 3
E 0
Table 11 Product information
Product Technology Unit price Var. cost Min. Qty Max. Qty
PO1 I 17,400 4,350 0 7,000
P02 I 0 4,350 300 300
P03 I 14,500 4,060 0 7,000
P04 I 0 4,060 300 300
P05 I 8,700 3,480 0 3,000
P06 I 0 3,480 300 300
P07 I 11,600 2,871 0 3,000
P08 I 15,950 2,900 0 9,000
P09 I 17,400 3,770 0 9,000
P10 I 0 3,770 300 300

Note: P02, P04,

P06, and P10 are R&D engineering orders

Table 12 Demand groups

Group technology set Min. output Max. output Max. output (Cases V VIII)
{L, 11, III} 15,000 60,000 40,000
{1} 7,000 30,000 10,000
{11} 3,000 30,000 10,000
{111} 5,000 30,000 10,000
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