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Data association is a key step within the multi-object tracking pipeline that is notoriously challenging due to
its combinatorial nature. A popular and general way to formulate data association is as the NP-hard multi-
dimensional assignment problem. Over the past few years, data-driven approaches to assignment have be-
come increasingly prevalent as these techniques have started to mature. We focus this survey solely on learn-
ing algorithms for the assignment step of multi-object tracking, and we attempt to unify various methods by
highlighting their connections to linear assignment and to the multi-dimensional assignment problem. First,
we review probabilistic and end-to-end optimization approaches to data association, followed by methods
that learn association affinities from data. We then compare the performance of the methods presented in
this survey and conclude by discussing future research directions.
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1 INTRODUCTION

The assignment problem is a classic combinatorial optimization problem where the goal is to find a
weighted matching within a bipartite graph such that the sum of the weights is minimized. Within
the field of computer vision, it is often used as a framework for tackling data association in multi-
object tracking. In this survey, we set out to reexamine the data association problem through the
lens of assignment problems as a means to abstract away details and to create a clear concep-
tual framework for unifying the many recently proposed learning-based data association algo-
rithms. Visual multi-object tracking is a highly complex topic, so rather than attempt to provide a
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comprehensive overview, we instead take a closer look at solely the association step. Later, we will
suggest surveys that review other aspects of the complete multi-object tracking problem for the
interested reader. In this work, we argue that studying how machine learning can be used to solve
data association is important for the following reasons. First, modern machine learning methods,
particularly convolutional neural networks (CNNs), excel at learning discriminative features from
raw sensor inputs for computing similarities between objects, which is an integral step for any
data-driven matching task. For example, a recent study by Bergmann et al. [10] showed that a
simple CNN bounding box regressor can be exploited to extend object tracks over time and dras-
tically reduce the number of ID switches, putting into question the efficacy of sophisticated data
association algorithms. Second, efficient probabilistic tools for approximate inference over highly
structured models, such as those that arise in data association, have long been studied and are use-
ful for dealing with noisy sensor measurements. Finally, there are many promising recent works
on applying machine learning to directly solve a variety of combinatorial optimization problems
[8], and it is interesting to ask whether assignment problems can be solved in a similar manner.
Multi-object tracking with one or more sensors plays a significant role in many surveillance
and robotics applications. A tracking algorithm provides higher-level systems with the ability to
make real-time decisions based on the state of the surrounding environment and is a core part
of many scene understanding frameworks. Within intelligent transportation systems, it can be
used for increasing pedestrian safety at traffic intersections [76], moving object awareness for
self-driving cars [88], and for traffic surveillance [2, 52, 101, 138]. Multi-object tracking also has
myriad other applications ranging from general security systems to tracking cells in microscopy
images [70]. There are many sensor modalities that can be used for these applications; the most
common are video, radar, and LIDAR. As a motivating example, consider a vision system that tracks
vehicles and pedestrians at an urban traffic intersection. The real-time tracking data can be used
for adaptive traffic signal control to optimize the flow of traffic at that intersection. However, inter-
sections contain numerous challenges for multi-object tracking. Heavy traffic occupying multiple
lanes and unpredictable pedestrian motion makes for a cluttered scene with lots of occlusion, false
alarms, and missed detections. Variability in the appearance of targets caused by poor lighting and
weather conditions is especially problematic for visual tracking. However, new technologies such
as vehicle-to-infrastructure (V2I) communication enables vehicles to transmit information directly
to traffic intersections, augmenting the data collected by traffic cameras and other sensors [32].

1.1 Data Association in Multi-Object Tracking

At the core of multi-object tracking lies the measurement-to-track and track-to-track association
problems. The goal of measurement-to-track association is to identify a correspondence between a
collection of new sensor measurements and preexisting tracks (Figure 1). New measurements can
be generated by previously undetected targets, so care must be taken to not erroneously assign
one of these measurements to a preexisting track. Likewise, the measurements that stem from
clutter within the surveillance region must be identified to avoid false alarms. When there are
multiple sensors, there is also the additional problem of track-to-track association. This problem
seeks to find a correspondence between tracks that are generated by different sensors (Figure 2).
Once the optimal assignment of the multi-sensor tracks has been found, all of the tracks assigned
to a single track can be combined to produce the final estimate of that track’s state. The sensors
might be homogeneous or heterogeneous; in the latter case, the problem becomes even harder as
the sensors could produce vastly different types of data.

Broadly speaking, algorithms for solving these two association tasks can be classified as single-
scan, multi-scan, or batch. A single-scan algorithm only uses measurement or track information
from the most recent timestep, whereas multi-scan algorithms use information from previous
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Fig. 1. Data association in multi-object tracking. (a) In online tracking, new sensor detections are matched
to existing tracks at each timestep by solving a LAP. The assignment hypotheses are the colored, dashed
arrows. Each arrow is annotated with the cost ¢/ of associating track i with detection j. (b) The optimal
linear assignment. Notice how the assignment partitions the set of existing tracks and detections. (c) In
batch, or offline single-sensor tracking, multiple sets of detections within a sliding window are associated
all at once with a set of existing tracks. Here, the sliding window size T is 2 and the optimal assignment is
shown. The images are taken from a random video in the MOT Challenge dataset [79].
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Fig. 2. Track-to-track association. There are three different sensors (circles, triangles, and diamonds) cover-
ing the surveillance region, each maintaining two tracks. Suppose there are two ground truth objects. (a) The
dashed arrows show the possible ways of associating one of the circle tracks with the tracks from the triangle
and diamond sensors. (b) The best track-to-track association hypothesis. The shapes with solid lines show all
tracks, one per sensor, that have been assigned together as having originated from the same ground truth ob-
ject, and likewise for the shapes with dotted lines. The solution effectively partitions each sensor’s track lists.

and/or future timesteps. Batch, or offline multi-object tracking, is an extreme version of multi-
scan where the entire sequence is available. Online multi-object tracking operates on one or a
few of the most recent scans at a time. Generally, multi-scan methods are preferable in situations
where the objects of interest are closely spaced and there are a lot of false alarms and missed detec-
tions. However, delaying the association to leverage future information negatively affects the real-
time capabilities of the tracker. The accuracy and precision of the tracks produced by multi-scan
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Table 1. Taxonomy of Assignment Problems in Multi-Object Tracking

Measurement-to-Track Association Track-to-Track Association
Single Scan  LAP (1-2 sensors), MDAP (>3 sensors)  LAP (2 sensors), MDAP (>3 sensors)
Multi-Scan  MDAP (>1 sensors) MDAP (>2 sensors)

Note: The algorithms presented in this survey are mostly for solving the various MDAPs encountered in multi-object
tracking, and are generally applicable (with modification) to both measurement-to-track and track-to-track association.

methods are usually superior, and they offer fewer track ID switches, track breaks, and missed
targets [93]. Naturally, multi-scan methods are more computationally expensive and difficult to
implement than their single-scan counterparts. The majority of the algorithms we will discuss
in this survey are online algorithms, as offline algorithms typically involve sophisticated global
optimization that as of yet is not data-driven.

Table 1 presents a categorization of the various data association problems mapped onto as-
signment problems. The easiest to solve is the bipartite matching or linear assignment problem
(LAP), which seeks to match m tracks to n detections. Usually, the problem is constrained so
that each track is assigned to exactly one measurement, but measurements are allowed to not
be assigned (i.e., false alarms) or to be assigned to a “dummy track” (i.e., a missed detection). For
multi-dimensional data association, such as the multi-scan extension of the aforementioned LAP,
extra constraints ensure that each sensor measurement at each timestep is assigned to a track
exactly once. Unfortunately, the multi-dimensional assignment problem (MDAP) is NP-hard for
dimensions >3, whereas there exist many polynomial-time algorithms for the LAP such as the
Hungarian method [83]. We will formulate these problems more rigorously in Section 2.

1.2 Comparison with Related Surveys

There are several related surveys to this one, and in this section we will highlight their main
differences with ours. Both Poore [92] and Poore and Gadaleta [93] provide detailed treatments
of how assignment problems are useful for multi-object tracking. They only go so far as to frame
assignment problems in the context of multi-object tracking. There are several excellent general
surveys on multi-object tracking [72, 139]; however, their focus is on all aspects of a multi-object
tracking solution and they do not have any emphasis on machine learning methods. A survey on
appearance matching in camera-based multi-object tracking discusses machine learning methods
for improving data association, but it does not cover the recent advances in deep learning that have
become ubiquitous in the computer vision tracking community [68]. The survey by Ciaparrone
et al. [26] provides a general overview of deep learning in multi-object tracking.

1.3 Overview of MOT Benchmarks

In this section, we will briefly review the standard multi-object tracking benchmarks. Perhaps the
most popular visual-based multi-object tracking set of benchmarks are the MOT challenges. The
MOT15 challenge was first released in 2014 and consists of 22 video sequences of pedestrians [66].
Since then, the MOT16 and MOT17 challenges have been released, with each release also improv-
ing upon the annotation protocol and ground truth quality of the former [79]. These datasets are
useful when proposing general improvements to multi-object tracking algorithms since results
from many of the state-of-the-art trackers are publicly available for comparison. For an empiri-
cal comparison of state-of-the-art trackers on the MOT17 benchmark, see Leal-Taixé et al. [67].
A more recent comparison that focuses on various deep learning based trackers is available in
Ciaparrone et al. [26]. The MOT datasets are particularly challenging because scenes are filmed
from both static and moving vantage points, the density of the crowds of pedestrians is varied, and
the appearances of pedestrians drastically changes between sequences. Previously, the PETS [33],
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Fig. 3. Our categorization of machine learning methods for data association.

TUD Stadtmitte [3], and ETH Pedestrian [34] datasets were widely used as benchmarks. These
offer a wide variety of multi-view, indoor, and outdoor scenes, and are still useful for training and
testing, despite being less frequently used to assess state-of-the-art performance in recent works.

Other datasets of note include the KITTI benchmark [40], which is is focused on challenges for
autonomous driving in urban environments and contains many tasks beyond multi-object tracking
such as odometry, lane estimation, and orientation estimation. The UA-DETRAC benchmark [126]
is a large-scale traffic surveillance benchmark of 10 hours of video that was recorded at 24 different
locations in China and contains more than 8,250 vehicles that were manually annotated. For multi-
sensor traffic surveillance, the Ko-PER intersection dataset [111] offers six sequences collected with
multiple cameras and laser scanners; however, only two sequences currently have ground truth
labels.

1.4 Roadmap

Our presentation of data-driven techniques for solving data association is split into two main
sections. The first is focused on the combinatorial optimization aspect of the problem, and the
second is concerned with learning features for the assignment cost function. Prior to this, in Sec-
tion 2, we carefully present the connections between data association and assignment problems
in multi-object tracking. Section 3 will present techniques for finding optimal assignments, with
a focus on probabilistic and data-driven algorithms. Then, in Section 4, we present multiple meth-
ods for learning features for data association. This presentation is split between algorithms used
in multi-object tracking prior to and after the introduction of deep learning. Section 5 includes a
performance comparison of methods highlighted in this survey, and Section 6 presents our con-
clusion. For a visual representation of the organization of the technical contribution of the survey,
see Figure 3.

2 DATA ASSOCIATION AS ASSIGNMENT

We will first formally introduce the LAP in the context of single-sensor data association and track-
to-track association with two sensors. Following this, we will examine certain MDAP formulations
for data association problems.
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2.1 Linear Assignment

Consider a scenario where there are m existing tracks and n new sensor measurements at time
k,k=1,...,T. We assume that there is a matrix C; € R™*" with entries clij € C representing
the cost of assigning measurement j to track i at time k (Figure 1(a) and (b)). The goal is to find
the optimal assignment of measurements to tracks so that the total assignment cost is minimized.

Using binary decision variables x”/ € {0, 1} to represent an assignment of a measurement to a track,

we end up with a 0-1 integer program
min Z Z ¢yt 1
xeX k ( )
with constraints

@)

where x € X is a binary assignment matrix. There are mn constraints forcing the rows and columns
of X to sum to 1. Note that Cy is not required to be a square matrix. To capture the fact that some
sensor measurements will either be false alarms or missed detections, a dummy track is added
to the set of existing tracks so that Cy is now an (m + 1) X n matrix. The entries in the (m + 1)1
row represent the costs of classifying measurements as false alarms. Missed detections are usually
handled by forming validation gates around the m tracks (see Section 6.3 of Blackman and Popoli
[13]). These gates can be used to determine, with some degree of confidence, whether any of the
new measurements might have originated from a track. The canonical approach is to use elliptical
gates, which are typically computed from the covariance estimates provided by a Kalman filter. In
video-based tracking, a similar tactic is to suppress object detections with low confidence values.

Even though there are min(m, n)! possible assignments, many polynomial-time algorithms exist
for finding the globally optimal assignment matrix. The most famous is the O(n*) Hungarian al-
gorithm [59, 83]. Another popular method is the auction algorithm, introduced by Bertsekas [12].
These algorithms are fast and are easy to integrate into real-time multi-object tracking solutions.
However, by only considering the previous timestep when assigning measurements or tracks, we
are making a Markovian assumption about the information needed to find the optimal assignment.
In situations with lots of clutter, false alarms, missed detections, and occlusion, the performance of
these algorithms will significantly deteriorate. Indeed, it may be beneficial to instead use a sliding
window of previous and/or future track states to construct assignment costs that model the rela-
tionship between tracks and new sensor measurements more accurately. As indicated in Table 1,
the single-scan track-to-track association problem with two sensors is also a LAP, where m and n
represent the sets of tracks maintained by each sensor. Similar methods for handling false alarms
and missed detections in data association can be used for track-to-track association with uneven
sensor track lists. If the assignment costs are known, an optimal track assignment can be found in
polynomial time using one of the previously mentioned algorithms.

Instead of abandoning local data association in favor of more expensive global data association
approaches, some have proposed heuristics involving solving a cascade of LAPs [1, 130]. In partic-
ular, DeepSORT [130] has gained in popularity due to its real-time speed and effective use of deep
association features to achieve high-quality tracking.

2.2 Multi-Dimensional Assignment

Within the single-sensor and multi-sensor tracking paradigms, there are a few different ways to
formulate measurement-to-track and track-to-track association as a MDAP (see Table 1). Each
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formulation seeks to optimize slightly different criteria, but each solution technique is generally
applicable to all of them with minor modifications. We suggest further reading on the MDAP for
more details [13, 53, 92].

2.2.1 Measurement-to-Track Association. We begin by considering the MDAP for
measurement-to-track association with one sensor given multiple scans. Let the number of
scans, or the temporal sliding window size, be given by T. Since the objective is to associate new
sensor measurements with a set of existing tracks, the resulting MDAP has T + 1-dimensions
(Figure 1(c)). When T > 2, the assignment problem is NP-hard [53].

Let the set of noisy measurements at time k be referred to as scan k and be represented by Zj =
{z]i }, where i is the i measurement of scan k, i = 1, . .., M. My is the number of measurements in
each scan (i.e., |Z| = M). The main assumption we are making is that each object is responsible
for at most one measurement within each scan. We let ZT = {Z;, ..., Zr} represent the collection
of all measurements in the sliding window of size T.

Let T be the set of all possible partitions of the set Z7. We seek an optimal partitioning y* € T,
also called a hypothesis, of ZT into tracks. Note that a track is just an ordered set of measure-
ments {zi,z;, . ,ziT}; one measurement from each scan at each timestep is attributed to each
track. Hence, a partition y represents a valid collection of tracks that adhere to the MDAP con-
straints. Now, we define y/ to be the j track in y. Following this, we can define a cost for each track
yj in a partition as ¢;, j, ... iy, Where the indices iy, iz, ..., it indicate which measurements from
each scan belong to this particular track. This represents the cost of track j being assigned mea-
surement i from scan 1, measurement i from scan 2, and so on. Crucially, the multi-dimensional
constraints prevent measurements from being assigned to two different tracks and ensure that
each measurement is matched to a track. If we use binary variables p;, ;, .. i, € {0, 1} to indicate
if a track is present in a partition, then we can represent the MDAP objective as

M, My
min » ... Z Cityigy s iTPityiz, . iT (3)
y €l 4 4
i1=1 iT=1
with constraints
M, My
Z...Zpil’iz,.__’i.,.zl; i1=1,...,M1
ip=1 ir=1
M, My
Z"‘Zpil,iz,---yiT:I; i2=1,...,M2
=1 =l 4)
M, Mr—1
Z Z Pivig.....ir = 15 ir=1,...,Mr.
i1=1 iT-1=1

The solution p to this MDAP is the multi-dimensional extension of the binary assignment matrix.
Simply, one may consider p as being a multi-dimensional array with binary entries such that the
sum along each dimension is 1. Similarly to the LAP, we can augment each scan by including a 22
dummy measurement in the set of detections at time k to address false alarms. This is useful for
identifying track birth and track death as well, but care should be taken when defining the cost
for assigning measurements as false alarms or missed detections to avoid high numbers of false
positives and false negatives.

It is common to solve for an approximate solution within a fixed-sized sliding window T, then
shift the sliding window forward in time by ¢ < T so that the new sliding window overlaps with
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the old region. This allows for tracks to be linked over time, and it provides a compromise between
“offline” tracking, when T is set to the length of an entire sequence of measurements, and “online”
tracking, when T = 1.

2.2.2  Track-to-Track Association. The other form of the MDAP we are interested in is multi-
sensor association with S > 3 sensors. This scenario is common in centralized tracking systems,
where sensors that are distributed around a surveillance region report raw measurements to a cen-
tral node [14, 110]. When each sensor sends its local tracks to a central node for track association
and fusion, an MDAP must be solved. In this case, the dimensionality of the MDAP is equal to S,
and hence is NP-hard. Multi-scan track-to-track association with two sensors is also a MDAP, as
well as multi-scan multi-sensor measurement-to-track association (Table 1).

Following Deb et al. [30], in this scenario there are S > 3 sensors, each maintaining a set of
local tracks and using a sliding window of size T > 1. We define XZ = {x]i’s}, s=1,...,5, torep-
resent the set of track state estimates produced by sensor s at time k. We have i = 1,..., N,
where Nj is the number of tracks being maintained by sensor s and x]i’s interpreted as the it?
track of sensor s at scan k. Then, for each sensor, we have XT-5 = {xXg,... ,X;}, which repre-
sents the collection of track state estimates within the sliding window. We seek an optimal par-
titioning y* € T of XT = {XT:1,...,XT-5} of tracks over all scans and sensors that minimizes
the total assignment cost, and we can define a partial assignment hypothesis in a partition y as
yl = {{x{’l,x{’z, o ,x{’Ns}, R {x%l,x;z, o ,x%NS }}. In words, this states that thejth track of sen-
sor 1 from scan 1, the jth track of sensor 2 from scan 1, and so on, all correspond to the same
underlying track [ in scan 1. Likewise, this interpretation extends for all subsequent scans. As a
quick example, suppose that there are three sensors each maintaining three tracks, and that T = 1.
Then a potential hypothesis y, or assignment, is {{x!1, x*2, x1:3}, {x®1, 12, x%3}, {x13,x%3 x33}}.
This hypothesis makes the claim that track 1 from sensor 1, track 2 from sensor 2, and track 1
from sensor 3 all were generated by “true” track 1. The assignments for the other two tracks can
be identified similarly. Note that the number of true targets in the surveillance region must either
be known a priori or estimated. Considering the simplest case of T = 1, we can write the cost for a
partial hypothesis as c;, j,, ..., iy, Increasing T to include more than one scan corresponds to adding
extra dimensions to the problem. We can use binary variables as before, p;, i,,....iy, € {0, 1}, to in-
dicate whether a particular partial hypothesis is present in y. The MDAP can then be written as

N, N,
minz s Z Ciy,ig, ..., iNg Pits iz, ..., iN, (5)
YEI“ S S

=1 ing=1

with constraints

N, N,

Z Z Pirig,..ing, = 15 i1=1,...,N;
=1

Ny

ing=1
Ns
Z...Zpil’iz ’’’’’ istl; i2=1,...,N2
i=1 ing=1
(6)
Nl Ns—l
Z Z Pirig,..in, = 15 in, =1,...,Ns.
i1=1 l'N371=1
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As with the multi-scan data association problem, the solution takes the form of a multi-dimensional
binary array. As before, the number of potential assignment hypotheses in an MDAP can be re-
duced with gating. Even with gating, solving an MDAP for real-time tracking is infeasible. An
analysis on the number of local minima in MDAPs with random costs shows that it increases
exponentially in the number of dimensions [43]. Notably, the MDAP is closely related to other
NP-hard combinatorial optimization problems, such as maximum-weight independent set and set
packing [27]. In Section 3, we will show how the costs can be interpreted as probabilities; this
will help motivate the use of approximate inference techniques for finding maximum a posteriori
(MAP) solutions to MDAPs. However, we will begin our discussion of optimization approaches
in Section 3 with techniques that do not require any assumptions about the nature of the cost
function.

3 ALGORITHMS FOR FINDING OPTIMAL ASSIGNMENTS

We begin by briefly reviewing non-probabilistic optimization algorithms for solving the data as-
sociation problem. These mostly fall into the category of offline data association. Next, our focus
will shift to methods with a machine learning flavor. The techniques discussed in this section are
quite general and in most cases can be used for both the measurement-to-track and track-to-track
MDAPs with proper modification. The majority of these algorithms are developed for online MOT.
We conclude by reviewing recent progress on end-to-end data association, which attempt to re-
place the combinatorial aspects of the problem with data-driven methods.

3.1 Non-Probabilistic Algorithms

3.1.1 Search Algorithms. Heuristically searching through the space of valid solutions within
a time limit is an attractive way of ensuring both real-time performance and that a good local
optima will be discovered. A search procedure for a MDAP takes as input a problem instance in
the form of Equation (3) or Equation (5) and constructs a valid solution y by adding each legal
partial assignment incrementally. The most well-known method, the greedy randomized adaptive
search procedure (GRASP), was originally introduced for multi-sensor multi-object tracking [84].

Other greedy search algorithms have been proposed [90, 105] based on the semi-greedy track
selection (SGTS) algorithm [19]. SGTS-based algorithms first perform the usual greedy assignment
algorithm step of sorting potential tracks by track score, then they generate a list of candidate
hypotheses and return the locally optimal result.

The main strengths of search algorithms appear to be their simplicity and the extent to which
they are embarrassingly parallel.

For a survey of research on GRASP for optimization, see the work of Resende and Ribeiro [98].

3.1.2  Lagrangian Relaxation. The multi-dimensional binary constraints 4 and 6 pose a signif-
icant challenge; a standard technique is to relax the constraints so that a polynomial-time algo-
rithm can be used to find an acceptable sub-optimal solution. The existence of O(n®) algorithms
[12, 59, 83] for the LAP suggests that if the constraints can be relaxed, a reasonably good solution
to the MDAP should be obtainable within an acceptable amount of time. Indeed, Lagrangian re-
laxation algorithms for association in multi-object tracking [29, 30] involve iteratively producing
increasingly better solutions to the MDAP by successively solving relaxed LAPs and reinforcing
the constraints.

A parallel implementation of this method for the K-best case was developed [94, 95], which
enables efficient implementations of multiple hypothesis tracking (MHT) algorithms. A variation
on this approach using dual decomposition has been proposed as well [63].
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Lagrangian relaxation has also been used to convert Equation (3) into a global network flow
problem [18]. The motivation behind this approach is a desire to incorporate higher-order mo-
tion smoothness constraints beyond what is capable when only considering pairwise costs in
multi-scan problems. The minimum-cost network flow problem that results from the relax-
ation can be solved in polynomial time; updates to the Lagrange multipliers enforcing the con-
straints are handled by sub-gradient methods. In the next section, we go into more detail on net-
work optimization—one of the leading approaches to solving multi-object tracking association
problems.

3.2 Probabilistic Graphical Models

3.2.1 Network Optimization. A popular approach (Equation (3)) in the multi-object tracking
computer vision community is to transform the data association problem into finding a minimum-
cost network flow [9, 18, 22, 50, 91, 103, 119, 122, 131, 137, 140]. In the corresponding network,
detections at each discrete timestep generally become the nodes of the graph, and a complete flow
path represents a target track, or trajectory. The amount of flow sent from the source node to the
sink node corresponds to the number of targets being tracked, and the total cost of the flow on
the network corresponds to the log-likelihood of the association hypothesis. The globally optimal
solution to a minimum-cost network flow problem can be found in polynomial time, such as with
the push-relabel algorithm.

Another benefit of using minimum-cost network flow is that the graph can be constructed to
significantly reduce the potential number of association hypotheses by limiting transition edges
between nodes with a spatiotemporal nearness criteria, similar to gating. Furthermore, occlu-
sion can be explicitly modeled by adding nodes to the graph corresponding to the case where
a target is partially or fully occluded by another target for some amount of time. A sliding win-
dow approach can be used for real-time performance rather than using the complete history of
previous detections. To help illuminate the mapping from Equation (3) to a network flow prob-
lem, we adapt the following equations from Zhang et al. [140], rewritten using the notation from
Section 2.

Recall that we defined a data association hypothesis y as a partitioning of the set of all available
measurements Z7 . Then, a MAP formulation of the MDAP for data association is given by

v =argmaxP(Z" |y) [ | P(7)
yer Tm €y (7)

st. TmNT, =0,Ym # n,

where the product over tracks in the objective reflects an assumption of track motion indepen-
dence, and the potentially prohibitive constraint guarantees that no two tracks ever intersect. It
is possible to derive the measurement likelihood using Equation (22); in Zhang et al. [140], it is
factored as P(ZT | y) = [1, P({z € ZT} | y), where each term in this product is a Bernoulli distri-
bution with parameter f encoding the probability of false alarm and missed detection. The track
probabilities P(7,,) are modeled as Markov chains to capture track initialization, termination, and
state transition probabilities. A network flow graph can now be defined as a graph with source
s and sink t as follows. For every measurement 7zl € ZT, create two nodes u,, v,, create an arc
(ur, vy) with cost c¢(u,, v,) and flow f(u,, v,), an arc (s, u,) with cost c(s, u,) and flow f (s, u,), and
an arc (vy, t) with cost ¢(v,,t) and flow f(v,,t). For every transition P(z | lec) # 0, create an

k+1
arc (vy, us) with cost c(v,, us) and flow f (v, us). An example of such a graph is given in Figure 4.
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(s,u;) & (vi1)
Enter/exit edges

(Vi)
Transition edges
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Observation edges

Fig. 4. A network flow graph for multi-scan data association (three scans depicted). The black arcs represent
enter/exit edges for a potential track. The red arcs are measurement/observation edges, and the blue arcs
are transition edges between measurements. Reproduced from Zhang et al. [140] with permission.

The flows f are indicator functions defined by

F(s,up) = 1 if 37, € 7,9, starts from u,
T2 10 otherwise
(0. 1) = 1 if39,, € 7,9, ends at v,
flort) = 0 otherwise ®
I ) = 1 if3T, € 7.2, € Tm
Ur-r) =10 otherwise
. l l .
Flor ) = {(1) t)ftgzr:nWieSZ', zZ,,, comes after z in T
and the costs are defined as
c(s,ur) = _logpstart(z]ic) c(vr,t) = _logpend(z/i)
r i i ©)
c(ur,v,) = 10g 1 fﬁ c(vp, ug) = _logplink(zk+1 | Zk),

and can be derived by taking the logarithm of Equation (7); see Section 3.2 in the work of Zhang
et al. [140] for more details. The minimum cost flow through the network corresponds to the
assignment y* with the maximum log-likelihood.

Quite a few variations on this model have been proposed in the literature. In one case, a sub-
graph is created for each track in the surveillance region and occlusion is modeled by adding special
nodes to the graphs [50]. A linear programming relaxation with a sliding-window heuristic then
enables approximate global solutions to be found in real time. A limitation of this approach is the
requirement of knowing a priori the number of tracks in the surveillance region, as well as the
poor worst-case complexity of the simplex method. Another work further optimizes the approach
introduced in Zhang et al. [140] to reduce the runtime complexity [91]. In a more drastic departure
from previous works in this direction, the problem has also been formulated as a K-shortest paths
through a flow graph [9]. One argument against the previously discussed network flow models is
that they exhibit an over-reliance on appearance modeling and pairwise costs [27]. They offer a
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variation on the network flow approach that uses a more general cost function. In Section 4, we
will go over the details of works that propose a variety of machine learning techniques to obtain
the link costs (Equation (9)) in network flow graphs. Network optimization techniques offer a good
trade-off between complexity, ease of implementation, and performance.

3.2.2 Conditional Random Fields. Probabilistic graphical models provide us with a powerful set
of tools for modeling spatiotemporal relationships among sensor measurements in data association
and among tracks in track-to-track association. Indeed, conditional random fields (CRFs), a class of
Markov random fields [62], have been used extensively for solving MDAPs in visual tracking [22,
64, 82, 88, 135, 136]. A CRF is an undirected graphical model, often used for structured prediction
tasks, that can represent a conditional probability distribution between sets of random variables.
CRFs are well known for their ability to exploit grid-like structure in the underlying probabilistic
model.

We define a CRF over a graph G = (V, E) with nodes x,cy € X such that each node emits a
label y € Y. For simplicity of notation, we refer to nodes as x and omit the subscript. The labels
take on values from a discrete set (e.g., {0, 1}); in the context of multi-object tracking, a realization
of labels y usually corresponds to an assignment hypothesis. A key theorem concerning random
fields states that the probability distribution being modeled can be written in terms of the cliques
c of the graph [44]. For example, in chain-structured graphs, each pair of nodes and corresponding
edge is a clique.

CRFs, like the probabilistic network flow models discussed in the previous section, are essen-
tially a tool for modeling probabilistic relationships between a collection of random variables.
They require a separate optimization process for handling training and inference (e.g., the graph
cut algorithm [15] or message-passing algorithms). We will focus on presenting how the data as-
sociation problem is mapped onto a CRF and direct the reader to other sources [15] for details on
how exactly approximate inference is carried out for these models. One of the benefits of using
graphical models is that we have the flexibility to construct our graph using either sensor measure-
ments, tracklets (measurements that are partially associated to form a “sub”-track), or full tracks.
Tracklets are a common choice for CRFs since they give an attractive hierarchical quality to the
tracking solution; low-level measurements are first associated into tracklets via, for example, the
Hungarian algorithm, and then stitched together into full tracks via a CRF. By working at a higher
level of abstraction, the original MDAP constraints 4 and 6 are modified slightly; all that is needed
at the higher level is to ensure that each tracklet is only associated to one and only one track. This
can also help reduce processing time for running in real time.

Each clique c in the graph has a clique potential /. associated with it; usually, the clique poten-
tials are written as the product of unary terms ¥; and pairwise terms /s ;. It is common to assume
a log-linear representation for the potentials (i.e., . = exp(wl@(x,y.))). Note that the implied
normalization term in Equation (10) can be omitted when solving for the maximum-likelihood
labeling y for a particular set of observations x such that

Py 1xw) o [ [ de(ye | x,w)

(10)
& l_[‘ps(ys | x, w) 1—[ Vst (Yss Yr | X, W).

sev s,teE

Features ¢ must be provided (or can be extracted from data with supervised or unsupervised learn-
ing) and weights w are learned from data. The observations x can be either sensor measurements
(for data association) or sensor-level tracks (for track-to-track association). The Markov property
of CRFs can be interpreted in the context of multi-object tracking as assuming that the assignment
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of the observations to tracks within a particular spatiotemporal section of the surveillance region
is independent of how they are assigned to tracks elsewhere—conditional on all observations. This
adds an aspect of local optimality and, in a way, embeds similar assumptions as a gating heuristic.
A solution to Equation (10) (i.e., the maximum-likelihood set of labels y) can be used as a solution
to the corresponding MDAP.

As is common with CRFs, the problem of solving for the most likely assignment hypothesis is
cast as energy minimization. The objective to minimize is an energy function, computed by sum-
ming over the clique potentials; each potential is interpreted as contributing to the energy of the
assignment hypothesis. Each clique consists of a set of vertices and edges, where each vertex is a
pair of tracklets that could potentially be linked together. The corresponding labels for each vertex
take values from the set {0, 1} and indicate whether a pair of tracklets are to be linked or not. The
energy term for each clique is decomposed into the sum of a unary term for the vertices and a pair-
wise term for the edges. In one instance, the weights w are learned with the RankBoost algorithm
[135]. Other techniques for learning the parameters of a CRF that maximize the log-likelihood of
the training data include iterative scaling algorithms [62] and gradient-based techniques. In Sec-
tion 4, we will examine the problem of learning weights for assignment costs in more detail. The
features used to construct these terms include appearance, motion, and occlusion information,
among others. CRF and network optimization-based trackers are by nature global optimizers and
must be run with a temporal sliding-window to get near real-time performance. For example, ex-
tensions to the generic CRF formulation have been developed that enable it to run in real time
[136].

A particular CRF formulation, near-online multi-target tracking (NOMT) [22], also builds its
graph of track hypotheses using tracklets. The novelty of this work is in the use of an affinity
measure between detections called the aggregated local flow descriptor, and in the specific form of
the unary and pairwise terms in the energy function of the CRF. Inference in the CRF is sped up by
first analyzing the structure of the graphical model so that independent sub-graphs can be solved
in parallel.

Other variations on the preceding approaches have been seen as well. In one such work, the
energy term of a CRF is augmented with a continuous component to jointly solve the discrete
data association and continuous trajectory estimation problems [82]. Another study embedded
a factor graph in the CRF to add more structure and help model pairwise associations explicitly
[46]. Based on the insight that the size of the bounding box is an indicator of object localization
accuracy, asymmetric pairwise terms are added to the CRF that take this idea into account for
better uncertainty management [141].

In the sequel, we will investigate how factor graphs, the belief propagation (BP) inference algo-
rithm, and its variants can be used to solve the MDAP. To summarize, applying CRFs to a specific
multi-object tracking problem involves defining how the graphical model will be constructed from
the sensor data, specifying an objective function, selecting or learning features for the terms within
the objective function, training the model to learn the weights, and then performing approximate
inference to extract the predicted assignment hypothesis.

3.2.3 Belief Propagation. In this section, we highlight recent work that formulate the associa-
tion problems as MAP inference and use BP or one of its variants to obtain a solution. Chen et al.
[20] and Chena et al. [21] showed the effectiveness of BP at finding the MAP assignment hypoth-
esis for the single- and multi-sensor data association problems. BP is a general message-passing
algorithm that can carry out exact inference on tree-structured graphs and approximate inference
on graphs with cycles, or “loopy” graphs. The types of graphs under consideration are once again
Markov random fields, albeit more general ones than the ones discussed in the previous sections.
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Indeed, BP can be used on graphs that model joint distributions P(x) = P(xy, X3, . . ., xn) that can
be factorized into a product of clique potentials. As before, the clique potentials are assumed to be
factorizable into pairwise terms. Therefore, for cliques ¢, we have

P(x) o | ] ge(xe)

o [ Jwso) [ ] e o).

sevV s, teE

(11)

It is common to use factor graphs to explicitly encode dependencies between variables. A factor
graph decomposes a joint distribution into a product of several local functions f;(X;), where each
X is some subset of {x1,x3,...,xn}. The graph is bipartite and has nodes x (i.e., discrete random
variables) and factors (i.e., dependencies) f € 7, and edges between the nodes and factors. For
example, the graph of g(x1, x2, x3) = fa(x1) fB(x2, x3) fo(x1, x3) has factors fa, fp, and fc and nodes
X1, X2, x3. The joint distribution for a factor graph can be written similarly to Equation (11) as

P o [ [t | | v o) (12)

seV feFr

where 7y represents the set of nodes x that are connected to factor f.

Parallel message-passing algorithms, such as BP, operate by having each node of the graph it-
eratively send messages to its neighbors simultaneously. We define messages from a node x; to
its neighbors x; € N(s) as ps—:(xs). In a factor graph, the set of neighbors N (s) for a node x;
are its corresponding factors. The max-product algorithm is useful for finding the MAP configu-
ration x* = {x*; | s € V} that corresponds to the best assignment hypothesis y*. In this algorithm,
messages are computed recursively in general pairwise Markov random fields by

Hs—t(xs) = max {lﬁ(xt)gbs,t(xs,xt) 1_[ lls’at(xt)}, (13)

ZeN(t)\s

and at convergence, each x; can be calculated by

x::mgmu{%uo [ u&ﬂuo} (14)

xs€X £ e nbr(s)

for neighborhood set nbr(s). These updates are not guaranteed to converge for graphs with cycles,
and even if they do, they may not compute the exact MAP configuration [20]. Williams and Lau
[127] present a proof of convergence of loopy belief propagation (LBP) for data association. LBP
simply applies the BP updates repeatedly until the messages all converge; interestingly, LBP has
been shown to perform favorably in practice for association tasks [78, 128, 129]. An improvement
over the max-product algorithm for LBP is tree-reweighted max-product [117]. This algorithm is
used for data association to output a provably optimal MAP configuration or acknowledge fail-
ure [20]. The key idea of the tree-reweighted max-product algorithm is to represent the original
problem as a combination of tree-structured problems that share a common optimum [20].

To illustrate the use of BP for solving MDAPs, we will present the graphical model formu-
lation from Zhu et al. [142] for multi-sensor multi-object track-to-track association. The struc-
ture of the graphical model is decided on-the-fly by producing sets of independent association
clusters consisting of multi-sensor tracks that could plausibly be associated with each other.
This is accomplished by computing elliptical gates around each track and clustering together all
such tracks whose gates overlap using, for example, kinematic information. The nodes of the
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graph are the track state estimates for T =1 and S > 3 sensors (Section 2), {x*/ | x/ € X! =
(X1, X152 X"5}), where each x>/ is the i track state estimate from sensor j, i =1,... ,N;
and j =1,...,S. Edges only exist between nodes from different sensors when their elliptic gates
overlap. A random variable Y’/ corresponding to each node x"/ is defined as a vector of S — 1
dimensions and stores the indexes of the tracks from the other sensors associated with the i
track from sensor j. The node potentials are defined as ,.:.;(Y"*/) = exp(p), where p is the sum
of pairwise costs, given by Equation (23). Using the notation Y;’j to denote the k™ entry of the
S — 1-dimensional vector Y%/ (the index of the local track from sensor k), the edge potentials can
be defined to ensure that each track from each sensor is associated once and only once by

0 p=n,q#l

I//,xlv"‘—»x"vo(lel’m :P, Ylngo = CI) = 0 p # I’l,q = l (15)
1 otherwise.

If w*© is the Mahalanobis distance between two tracks u, v, then messages between nodes can be
initialized as

exp(wu:(l,m);v:(n,o))

n,o _ _ lfq = l
,le.m_)xn,o(Yl - CI) - {1

. 16
otherwise. (16)

Then, repeated applications of Equations (13) and (14) until the Y*/s converge will produce the
MAP solution.

This approach has been extended for an unknown number of targets and multiple sensors [77]
and applied to a multi-static sonar network [78]. For a general overview of graph techniques for
the data association problem, including BP, see the work of Chong [23].

3.3 Markov Chain Monte Carlo

A principled approach to sampling from a complex, potentially high-dimensional distribution is
Markov chain Monte Carlo (MCMC). MCMC methods construct a Markov chain on the state space
X whose stationary distribution 7 is the target distribution. Decorrelated samples drawn from
the chain can be used for approximate inference (i.e., integrating with respect to 7*). This is useful
in the context of assignment problems for multi-object tracking when the goal is to estimate a pos-
terior distribution over assignment hypotheses, from which a MAP hypothesis can be extracted.
The Metropolis-Hastings algorithm has been used extensively for data association in single- and
multi-sensor scenarios [7, 35, 85, 89]. Recently, a Gibbs sampler was derived for efficient imple-
mentations of the labeled multi-Bernoulli filter, which jointly addresses the data association and
state estimation problems for single- and multi-sensor scenarios [99, 116]. We omit detailed de-
scriptions of the Metropolis-Hastings and Gibbs sampling algorithms, and instead refer the reader
to relevant work [85, 116].

MCMC is applied to the MDAP for data association (referred to as MCMCDA) and track-to-
track association by designating the state space of the Markov chain to be all feasible assignment
hypotheses and the stationary distribution of the Markov chain to be the posterior P(y | ZT) or
P(y | XT). A MAP assignment hypothesis y* for the data association problem is

T
Ply 1 27 o« PZT ) [ [ 22 (1= p)*p (1 = pa)? 250 A (17)

t=1

y* = argmax P(y | ZT). (18)
y

Here, we define the survival probability as p, and the detection probability as py. The number of
targets at time ¢ — 1is e;_1, the number of targets that terminate at time ¢ is z;, and ¢; = e;_1 — z; is
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the number of targets from time ¢ — 1 that have not terminated at time ¢. We set a, as the number of
new targets at time ¢, d; as the number of actual target detections at time ¢, and g; = ¢; + a; — d;
as the number of undetected targets. Finally, let f; = n; — d; be the number of false alarms, A,
be the birth rate of new objects, and Af be the false alarm rate. Note that for the general case
of unknown numbers of targets, the multi-scan MCMCDA will find an approximate solution of
unknown quality at best. A bound on the quality of the approximation for the single-scan fixed
target MCMCDA has been derived [85].

A Metropolis-Hastings algorithm for Equation (17) is as follows [85]. The proposal distribution
q is associated with five types of moves, for a total of eight moves: a birth/death move pair, a
split/merge move pair, an extension/reduction move pair, a track update move, and a track switch
move. A move is accepted with acceptance probability A(y,y’), where

x(y)q(y’s y))_ (19)

" r()aly.y”)
Assuming a uniform proposal distribution g, the proposal distribution terms in the numerator and
denominator cancel. The stationary distribution 7 (y) is P(y | ZT) from Equation (17). Implemen-
tation details and descriptions of each type of move can be found in Section V-A in the work of Oh
et al. [85]. Extensions to this algorithm have been proposed [7] to add a sliding-window version
and to reduce the number of types of moves to three. For visual tracking [7], appearance informa-
tion is fused with kinematic information to help improve performance. Sparse representations of
detections and kinematic information have been used to define an energy objective that MCMCDA
approximately optimizes [35]. This work deviates from its predecessors by allowing moves to be
done not only forward in time but also backward to explore the solution space more efficiently.
The use of a sliding window is once again crucial, enabling the trade-off between solution quality
and a faster runtime.

A(y,y’) = min (1

3.4 End-to-End Data Association

Neural networks have a rich history of being used to solve combinatorial optimization problems.
One of the earliest and most influential works in this line of research, by Hopfield and Tank [48],
describes how to use Hopfield nets to approximately solve instances of the traveling salesperson
problem (TSP). Despite the controversy associated with their results [108], this work inspired many
others to pursue these ideas. This has led to the present day, where research on the use of deep
neural networks to solve combinatorial optimization problems has started to pick up speed [8].

Following broad trends within the deep learning research community, many have recently asked
whether the data association step in multi-object tracking can be solved in an almost entirely
“end-to-end” fashion. In other words, given noisy measurements of the environment, the tracker
should directly output filtered tracks, combining the association problem with state estimation into
a monolithic learned module. In this section, we will present various recent works that attempt to
learn the data association step from data using deep learning.

3.4.1 Data-driven Association. The deep affinity network (DAN) [112] is a deep neural network
that explicitly learns the affinity between objects over time. It is trained to predict the optimal lin-
ear assignment using ground truth assignment matrices as supervision. Visual features are first
extracted from a VGG network and then processed by DAN to output a matrix of soft assign-
ments, which finally are stitched into tracks using the Hungarian algorithm. The main insight
of this approach is that DAN is able to jointly learn good appearance features and features that
are highly “matchable.” They showed equal or better performance on MOT15 and UA-DETRAC
with state-of-the-art methods. A closely related tracker is FAMNet [25], which learns to predict
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the assignment tensor for the MDAP directly. They use a sliding window to construct a set of
hypothesis tracklets, for which an affinity network outputs the affinity tensor for the MDAP. An
iterative and differentiable row/column tensor normalization layer is used to directly output the
assignment, through which gradients from a loss computed with the ground truth assignment can
be backpropagated. Another deep tracker similar to DAN is the deep Hungarian network (DHN)
[134], which also attempts to predict the optimal linear assignment from a cost matrix between
measurements and tracks. Interestingly, they derive a differentiable version of the multi-object
tracking metrics MOTA and MOTP [11] to directly formulate the loss in terms of the MOT metrics
given ground truth assignments. The reported performance on the MOT17 benchmark are infe-
rior to DAN, however. The dual matching attention network (DMAN) [143] augments their data
association algorithm by introducing spatial and temporal attention networks that refine candi-
date assignments. The spatial attention generates dual attention maps to exploit the strengths of
discriminative CNN feature embeddings for re-ID, as is commonly done in single-object tracking.
Tracking by animation [45] is a deterministic unsupervised model that uses attention and memory
mechanisms to learn to track using only reconstruction error. It assumes rather simplistic scene
compositions to be able to render the predicted scene in a differentiable way. The memory mecha-
nism uses read/write operations to address data association and keep track of which objects have
been attended to at each timestep. Although their experimental results were mainly on small-scale
datasets, this direction is very promising as high-quality labeled data for multi-object tracking is
scarce. Finally, we note that reinforcement learning has been applied successfully to multi-object
tracking [132] where a policy is learned over a data association Markov decision process that han-
dles track initialization, maintenance, and removal.

3.4.2  Recurrent Neural Networks. An investigation by Ondruska and Posner [86] revealed that
a recurrent CNN is able to learn to track multiple targets from raw inputs in a synthetic problem
without access to labeled training data. Crucially, rather than maximizing the likelihood of the next
state of the system at each timestep, they modified the cost function to maximize the likelihood
at some time t + n in the future to force the network to learn a model of the system dynamics.
More recently, they extended this work for use with raw LiDAR data collected by an autonomous
vehicle [31]. Recurrent autoregressive networks [36] was designed as an approach to online multi-
object tracking that seeks to incorporate internal and external memory components into a deep
learning framework to help handle occlusion and appearance changes. They are able to show
that the recurrent autoregressive network indeed makes use of its external memory to maintain
tracks while the targets are occluded. Sadeghian et al. [102] present a closely related prior work
that also explores the use of recurrent neural networks (RNNs). Recently, RNNs were also used to
identify track failures (ID switches) within a set of tracklets so as to automatically correct such
cases in a post-processing step [74]. Explicit learning of the assignment problem was attemped by
Milan et al. [81], where they used deep learning to separately tackle the state estimation and data
association problems. They designed a long short-term memory (LSTM) cell specifically for solving
the MDAP in data association (Figure 5). Despite not using any visual features, their approach
achieves reasonable performance relative to other similar systems on the MOT Challenge 2015
dataset [66].

3.4.3 Deep Generative Models. Advances in our ability to train and scale deep generative mod-
els such as variational autoencoders [57], generative adversarial networks (GANs) [42], and nor-
malizing flows [100] has resulted in investigations on their use for multi-object modeling. The
benefits of generative models with respect to multi-object tracking are that they can be used for
trajectory prediction [51, 58] or as scene priors for robust handling of occlusion [38]. Sequential
Attend, Infer, Repeat (SQAIR) [58] and a recent follow-up work, SCALOR [51], maintain sets of
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Fig. 5. An LSTM cell designed for multi-scan single-sensor data association (right). The input at each
timestep is the matrix of pairwise distances C;+1, along with the previous hidden state h; and cell state
ct. The output Ai+1 of the data association cell is a vector of assignment probabilities for each target and
all available measurements, obtained by a log-softmax operation, and is subsequently fed into the state esti-
mation recurrent network (left). The LSTM’s non-linearities and memory are believed to provide the means
for learning efficient solutions to the data association problem. Best viewed in color. Reproduced from Milan

et al. [81] with permission.

latent variables corresponding to objects in the scene. The latent space of these generative models
are structured to make it straightforward to differentiate through the rendering algorithm, allow-
ing for them to be trained to maximize the evidence lower bound (ELBO) over a dataset of video
sequences. Data association is addressed by a “glimpse” attention mechanism that sequentially
attends to each object in an given frame. Notably, these models can handle objects that enter and
leave the scene in the middle of a video sequence and have been applied to multi-pedestrian track-
ing. Relational-neural expectation maximization [115] uses iterative inference to assign pixels to
object clusters in each image of sequence and captures interactions between objects using a neural
relational dynamics component. The iterative inference is necessary to break the symmetry be-
tween the latent object components. Relational-neural expectation maximization learns to group
the pixels belonging to a particular object to the same latent object component over time, form-
ing a set of object tracks. Although these methods are theoretically interesting, an open problem
is scaling them to real-world datasets. Deep generative models have been partially incorporated
into existing multi-object tracking frameworks as well. A sequential GAN is used to improve the
robustness of a pedestrian tracker in crowded scenes to occlusion and false detections [38]. They
directly generate pedestrian heatmaps with the GAN’s generator, which are used to associate new
object detections. Then, they maintain a set of tracks by training LSTMs with attention to do
short- and long-term trajectory prediction. They demonstrate slightly improved pedestrian detec-
tion performance compared to strong baselines on sequences from the PETS2009 benchmark.

To conclude, in this section, we reviewed a wide variety of machine learning approaches to
the combinatorial optimization aspect of data association. We organized our presentation by
describing how each fits into the framework of MDAPs. We first presented search algorithms and
non-probabilistic discrete optimization methods to provide context for work done before recent
data-driven approaches. Then, we discussed algorithms that fall broadly under the categories
of network flow over probabilistic graphs, CRFs, BP over factor graphs, MCMC, and end-to-end
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learning. The end-to-end learning approaches can be contrasted with the other approaches for
their abandonment of the structure provided by the combinatorial optimization framework in lieu
of an almost complete reliance on data-driven techniques. In the next section, our focus shifts to
reviewing recent works whose primary aim is to learn discriminative features for data association
that can be used in tandem with some of the algorithms presented in this section.

4 LEARNING FEATURES FOR DATA ASSOCIATION
4.1 Assignment Costs

The particular choice of the data association cost function can have a large impact on the perfor-
mance of a downstream task. We can observe from Equations (1), (3), and (5) that the cost functions
for data association measure how “expensive” it is to include a particular assignment of detections
(or tracks) to tracks in the solution. In this section, we introduce two perspectives toward formu-
lating cost functions, specifically highlighting probabilistic approaches. Following that, we review
machine learning methods for learning good features for data association, organized by non-deep
learning and deep learning approaches.

4.1.1 Kinematic Costs. In situations where sensor measurements only consist of noisy esti-
mates of kinematic data from targets (e.g., position and speed), a probabilistic framework can be
used to recover the unobservable state of the targets. The most common approach is to handle the
uncertainty in the sensor measurements and target kinematics with a stochastic Bayesian recur-
sive filter; Mahler [75] presents a comprehensive overview. The Kalman filter—probably the most
popular filter of this flavor—provides the means for updating a posterior distribution over the tar-
get state given the corresponding measurement likelihood (i.e., P(x | zx) o P(zk | xj—1)P(xp—1 |
Zk—1)). We are using the same notation as before such that x; represents the target state at time k
and zj is the measurement at time k. One of the reasons for the popularity of the Kalman filter is
that by assuming that all distributions of interest are Gaussian, the posterior update can be com-
puted in closed form. Recall that a partial association hypothesis y/ for the multi-scan single-sensor
data association problem assigns T measurements to a single track within the sliding window of
length T. The simplest cost function for data association is to minimize the following negative
log-likelihood ratio:

Pyl | 2tz ..., 2} .
Cityi,....iy = — 108 P(YO | — ,T), .y ey. (20)
(Ol 21,25 - o5 27)
The partial hypothesis y/ represents the j track of the hypothesis y, and y° represents a dummy
track where all measurements attributed to it are considered false alarms. Assuming the sensor
has a probability of 1 of detecting each target and a uniform prior over all assignment hypotheses,
the likelihood that the f track generated the assigned measurements is

P(yj | zi,zé,...,z})ocp(zi,zé,...,z; | yj). (21)

Assuming independence of the measurements and track states between timesteps, we can decom-
pose the likelihood that the measurements originated from track y’ as

T
(2,25 1Y) = [ | P | )P ). (22)
k=1

In the Kalman filter and its extensions, the right-hand side has an attractive closed-form rep-
resentation as a Mahalanobis distance between the measurement predictions and the observed
measurements, scaled in each dimension of the measurement space by the state and measurement
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covariances. This can easily be derived by taking Equation (22) and plugging it into the negative
log-likelihood ratio in Equation (20).

In track-to-track association, the conventional cost function associated with a partial hypothesis
is the likelihood that the tracks from multiple sensors were all generated by the same true target.
When S = 2, the simplest approach is to consider the random variable A, = x! — x2, which is the
difference between the track state estimates from sensor 1 and sensor 2. When the track state
estimates are Gaussian random variables, A, is also Gaussian. The cost function becomes the
likelihood that A;; has zero mean and covariance given by 3 = 3 + 3, — %15 — 2y [6]. The first
two terms of the covariance are the uncertainty around the track state estimates, and the second
two terms are the cross covariances. A straightforward way to extend to the S > 3 case is to use
star-shaped costs A1 = Zf:z Aq; [118]. For the Gaussian case, the cost can also be written in closed
form as a Mahalanobis distance between the track state estimates [30, 54]:

s

— Ty-1
Ciyig, ..., is = Z AUZU A]j. (23)
Jj=2

In the Bayesian setting, minimizing Equations (20) and (23) is analogous to finding the MAP as-
signment hypothesis.

4.1.2  Feature-Augmented Costs. It is often the case in multi-object tracking that sensors gener-
ate high-dimensional observations of the surveillance region from which target information must
be extracted. The most obvious example of this is the image data generated by a video surveillance
system. This data, when featurized, can be used to augment or replace the kinematic costs men-
tioned in the previous section. The goal of doing this is to improve the association accuracy and
ultimately the overall tracking performance.

Due to the high-dimensionality of the raw measurements, almost all such methods attempt to
learn a pairwise cost between measurements or tracks using features extracted from the data. This
pairwise cost can represent the association probability of the two objects, or simply some notion
of similarity, such as a distance. There are many ways of formulating the problem of learning as-
signment costs and using it for solving data association or track-to-track association as a machine
learning problem. For example, one technique is to use metric learning to transform the high-
dimensional sensor measurements into a lower-dimensional geometric space where a Euclidean
distance can be used as the assignment cost function. Learning pairwise costs from data is heavily
used in the multi-object tracking computer vision community, partially due to the ease at which
features can be extracted from images [68]. Of course, the main question is deciding what features
to use, or whether to try to learn the best features for data association directly from data.

There are multiple ways to incorporate learned pairwise costs into data association when viewed
as an MDAP. One common approach is as follows. The probability of association for a pair of
measurements A; and A; (or tracks) can be written as a joint pdf [87]; assuming independence
of the kinematic (K) and non-kinematic (NK) components of this probabilistic cost function, the
resulting negative log-likelihood pairwise cost is

- IOgP(Ai,Aj)
—log(Px (A, Aj) Pax (Ais Af)) (24)
= - IOgPK(Ai, Aj) - IOgPNK(Ai,Aj).

cij

Usually, Pnk (Aj, Aj) is parameterized by weights 0 and is a function of the features extracted from
the sensor data and 6. For example, this probability could be represented as a neural network
that outputs a similarity score between 0 and 1. The kinematic component of this pairwise cost,
Px(Aj, Aj), could be adapted from Equation (20).
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Table 2. Features Used for Data-Driven Learning of Assignment Costs from a Representative Set of Works

Related Work Method Summary of Features Used

[69] HybridBoost Tracklet lengths, no. of detections in the tracklets, color
histograms, frame gap between tracklets, no. of frames
occluded, no. of missed detected frames, entry and exit
proximity, motion smoothness

[60, 61, 136] AdaBoost Color histograms, covariance matrices, HOG

[135] RankBoost Tracklet lengths, no. of detections in the tracklets, color
histograms, frame gap between tracklets, no. of frames
occluded, no. of missed detected frames, entry and exit
proximity, motion smoothness

[4] ILDA Templates from HSV color channel and tracklet ID
[122, 123] Structured Off-the-shelf detector confidence (e.g., from DPM [37]),
SVM consecutive bounding box IOU, geometric relationships
between all pairs of objects
[119, 120] Metric RGB, YCbCr, and HSV color histograms; HOG; two texture
learning features extracted with Schmid and Gabor filters

Framing the problem of learning an assignment cost function for data association or track-
to-track association is deeply intertwined with the choice of sensor(s). This section will mainly
consist of recent work on this problem from the computer vision community, where machine
learning is most heavily used. One reason for this is the relatively large amount of annotated
video tracking datasets that are available. We divide the presentation of techniques into pre- and
post-deep learning to provide a comprehensive perspective and to emphasize the shift to deep
learning-based approaches in recent years.

4.2 Learning Features for Data Association, Pre-Deep Learning

The goal of learning features for data association is to use (usually labeled) training data to teach
a model to output association scores at test time. These scores are then used to compute the as-
signment costs, as in Equation (24), and these costs are utilized by the optimization frameworks
introduced in Section 3. In visual tracking, discriminative models have been commonly trained
for predicting association scores based on appearance information. These models are typically
adapted from popular classification and ranking models. Another learning paradigm (occasionally
used in conjunction with discriminative models) is metric learning. In this case, the goal is to learn
a distance metric between measurements or tracks, typically in the form of a parameterized Maha-
lanobis distance. The next two sections review these two learning techniques in the context of data
association prior to the use of deep learning for feature extraction. As a key challenge for these
methods was feature selection, we provide Table 2, which summarizes the various visual features
used for learning association costs.

4.2.1 Discriminative Models. Boosting is one of the most powerful techniques in supervised
learning and is a natural choice for learning discriminative models that approximate the true as-
sociation costs. The general idea behind boosting is to produce a series of weak learners that are
combined to form a single strong learner. The HybridBoost algorithm [69], one of the first ap-
plications of data-driven learning in multi-object tracking, is used to learn the link costs for a
network flow graph (Equation (9)). The data association problem is decomposed into a hierarchy
of association problems where the tracklet lengths successively increases [49]; furthermore, it is
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cast as a joint ranking and classification problem. The cost function is learned so that it can rank
correct associations higher than incorrect ones, as well as reject some associations entirely (i.e., a
binary classification to determine reasonable associations). Hence, HybridBoost is a combination
of RankBoost and AdaBoost [39]. Their HybridBoost model is trained offline with videos paired
with ground truth trajectories. In the work of Kuo et al. [60], a slightly different approach is taken;
a hierarchical decomposition is used, but each stage of the hierarchy is linked by applying the
Hungarian algorithm and the cost matrix for the Hungarian algorithm is learned online with Ad-
aBoost. Online learning of the discriminative model within the sliding window is an attractive
notion, since variations in appearance at test time can cause difficulty for systems that are trained
offline. However, this comes at the cost of potentially sacrificing real-time capabilities. On a task
involving tracking two to eight pedestrians at a time, this tracker runs at about 4 FPS. Other ap-
pearance models based on boosting have been proposed where the RankBoost algorithm is used
with CRFs [135, 136]. In a follow-up work to Kuo et al. [60], ideas from person re-identification
are used to improve the appearance model [61]. The features used by the boosting algorithms
mentioned here are summarized in Table 2.

In efforts to improve upon boosting for online learning of appearance models, incremental linear
discriminant analysis (ILDA) has been used by Bae and Yoon [4], who showed that ILDA out-
performs boosting in their experiments in terms of identification accuracy and computational
efficiency, partially because ILDA simply requires updating a single LDA projection matrix for
distinguishing among the appearances of multiple objects. However, this approach makes the as-
sumption that the featurized appearances of the tracked objects can be projected into a vector
space where they are linearly separable. The assignment cost they used was

cij = A(xi,xj) = AA(xi,xj)AS(xl-,xj)AA'I(x,-,xj) (25)

for appearance, shape, and motion (kinematics) affinities. This form of the cost is similar to Equa-
tion (24) and is fairly common. The appearance affinity is the score computed by ILDA, and the
shape and motion affinities are not learned from data. In this work, tracks are incrementally
stitched together from tracklets by repeated application of the Hungarian algorithm. Another al-
ternative to boosting that was explored for learning association costs within complex graphical
models was the structured SVM [22, 56, 122, 123]. In general, however, the structured SVM ap-
proaches were restricted to linear cost functions.

4.2.2  Metric Learning. A different approach to addressing the problems of variability in object
appearance is target-specific metric learning. Here, we define metric learning as the problem of
learning a distance da (x,y) = +/(x — y)TA(x — y) parameterized by a positive semi-definite (PSD)
matrix A. An intuitive way of thinking about this is that the data points x, which might be fea-
turized representations of tracked objects, are being mapped to A'/?x where a Euclidean distance
metric can be applied to the rescaled data [133]. This is then cast as a constrained optimization
problem to ensure that the solution A is valid (i.e., A > 0). An early attempt at applying metric
learning in multi-object tracking [124] combined the problem of learning a discriminative model
for appearance matching given image patches with motion estimation and jointly optimized with
gradient descent. Their formulation requires running the optimization at each timestep for all pairs
of objects in the scene with a set of training samples that gets incrementally updated. A more effi-
cient use of metric learning for multi-object tracking is learning link costs in a network flow graph
[119, 120]. A regularized version of the constrained optimization problem is applied to learn a dis-
tance between feature vectors for an appearance affinity model. The intention is to learn a metric
that returns a smaller distance for feature vectors within the same tracklet in the graph than for
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Fig. 6. The basic architecture of a Siamese network. The weights of the convolutional layers are shared

between the two arms of the network. A contrastive loss can be used to train the network to predict the
similarity of the two input images.
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feature vectors that belong to different tracklets. The negative log-likelihood assignment cost for
the network links is defined similarly to Equation (25).

4.3 Learning Features for Data Association, Post-Deep Learning

Tracking by detection is the current state-of-the-art approach for visual tracking, mainly due to
the use of CNNs. The basic idea is to first leverage powerful deep networks for object detection to
extract raw observations followed by an association step to produce object tracks. In this section,
we will discuss the use of CNNs within the data association step.

CNNs learn features directly from raw images that are translation invariant and invariant to
slight deformations, removing the need to hand pick features that may not generalize well. Another
reason deep learning is an attractive option for multi-object tracking is because it is straightfor-
ward to take a CNN that has been pretrained on a massive image classification dataset and transfer
the learned features to new tasks, including estimating association costs.

One of the first uses of deep learning in multi-object tracking was running image patches of
detected objects obtained with, for example, the DPM [37], through a CNN to extract features. The
CNNs were pretrained on the ImageNet and PASCAL visual object classification (VOC) datasets.
In one instance, the features extracted from the CNN were used to train a multi-output regularized
least-squares classifier [55]. Essentially, a 4,096-dimensional feature vector is first extracted from
a CNN for each detection box, followed by an application of PCA to reduce the dimensionality
to 256. The classifier is used to compute a log-likelihood cost for a track hypothesis given a set
of detections. This work was unique in that it showed how the classic MHT algorithm, which
performs MAP inference by updating sets of track hypothesis trees in real time, compares fa-
vorably with the modern approaches described in Section 3 when augmented with learned as-
signment costs. In fact, at the time of publishing, their method (referred to as MHT_DAM) out-
performed the second-best tracker on the 2DMOT15 by 7% in multiple object tracking accuracy
(MOTA).

4.3.1 Siamese Networks. A variation on the standard CNN architecture that has seen extensive
use in multi-object tracking is the Siamese network. A Siamese network processes two inputs
simultaneously using multiple layers with shared weights [65] (Figure 6). These networks can be
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used for a variety of tasks that involve comparing two image patches; this seems intuitively useful
for the task of learning assignment costs, where we are interested in predicting the association
likelihood for two inputs. Indeed, a technique was proposed to directly compute association scores
for pairs of image patches [65]. First, two image patches are stacked, along with their optical
flow information, and fed as input into a Siamese network. A separate network learns contextual
features that encode relative geometry and position variations between the two inputs, and the
final layers of these two networks are extracted and combined with a gradient-boosting classifier
to produce a match prediction score. Tracks are ultimately obtained by solving a network flow
problem (Section 3.2.1) using linear programming.

Siamese networks have also been used to learn embeddings for pairs of detections [121]. In this
work, all parameters between the two arms of the CNN are shared and the features produced by
the last layer are used as input to a metric learning loss. Specifically, a multi-task loss function for
incorporating temporal constraints is combined with the regularized metric learning loss to jointly
optimize the weights of the deep model. They use an online learning algorithm to address the issue
of changing object appearance throughout a trajectory, but the deep networks are pretrained with
auxiliary data. The learned affinity model is combined with the softassign algorithm [41] to find an
optimal pairing of tracklets. For the task of underwater multi-object tracking, Siamese networks
were shown to improve performance as well [96]. Instead of only considering pairs of images
with Siamese networks, the Quad-CNN [109] aims to learn more sophisticated representations for
metric learning by considering quadruplets of images. A bounding box regression loss and a multi-
task ranking loss that considers appearance and temporal similarities between four images are used
to jointly optimize a Quad-CNN end-to-end. The authors propose a sliding window minimax label
propagation algorithm for data association.

4.3.2  Online Appearance Adaptation. The confidence-based robust online tracking approach
[4] has been extended with a deep appearance model [5] resembling a Siamese network. The fea-
tures from the last CNN layer are used to compute a metric over pairs of image patches such
that the metric represents a regularized energy function where the lowest possible energy gets
assigned to the optimal assignment hypothesis. They employ online transfer learning to update
a small number of the higher layers in the network to adapt to changing object appearances.
When the average affinity scores computed by the network fall below a threshold at runtime,
training samples are collected and a pass of online transfer learning is carried out to adapt the
network. To help reduce the runtime overhead introduced by online learning, the authors sug-
gest using a parallelized implementation and performing the high-confidence and low-confidence
tracklet associations once every 10 timesteps as opposed to every timestep. Another efficient
online algorithm for updating appearance models has been proposed where a bilinear similar-
ity function is learned between two feature vectors with constrained convex optimization [137].
The feature vectors are also aggregated from the last layer of a CNN. Ideas from single object
tracking and reinforcement learning have been adapted for online multi-object tracking [24],
where a policy is learned to decide whether the target-specific tracking models should be up-
dated with the latest detections and features at predicted locations provided obtained by ROI
pooling.

4.3.3 Deep Network Flow. The network flow approach popularized by Zhang et al. [140] is
revisited again from a deep learning perspective [103, 106]. Effectively, the parameters of the unary
and pairwise link costs are learned end-to-end with a deep neural network. The original linear

ACM Computing Surveys, Vol. 53, No. 4, Article 69. Publication date: August 2020.



Machine Learning Methods for Data Association in Multi-Object Tracking 69:25

program is converted into the following bi-level optimization problem
argénin L(x9, x")
s.t. x" = argminc(f,0)Tx (26)
Ax <b,Cx ;C 0

for parameters ©, input data f, and ground truth network flow solutions x9*. The M concatenated
flow variables are x € RM, A = [I, -I]T € R*™*M and b = [0,1]T € RM are box constraints, and
C € R2KXM are the flow conservation constraints. The inner optimization problem is smoothed so
that it is easily solvable with an off-the-shelf convex solver. The high-level optimization problem
is then solved with gradient descent. The high-level optimization problem needs ground truth
network flow labels x9° during training; this is handled by manually annotating bounding boxes
in sequences of frames. At test time, inference is performed in a sliding window.

4.3.4 Other Approaches. A variant of the data association problem for multi-object tracking as
a minimum-cost graph multi-cut problem [113] has been explored in conjunction with learned
features. The key differences here with the previously discussed optimization approaches are that
multiple detections at a single timestep can be attributed to the same person; in addition, it is easier
to allow edges to connect across multiple timesteps in this graph to handle occlusion. The edge
costs are learned with logistic regression, with features obtained from the DeepMatching [125]
algorithm. DeepMatching uses a CNN that has been trained to produce dense correspondences
between image patches and was notably used in the DeepFlow [125] algorithm for learning large
displacement optical flow. It is also used in another multi-object tracking system to compute tem-
poral affinities between input features [47]. Related to this is recent work on examining the inter-
play between semantic segmentation and multi-object tracking [17, 80, 114]. In particular, a CNN is
used to segment images, and then the optical flow between segmented object pairs in consecutive
images is used to define an association cost matrix [17].

A noticeable trend is a gradual drift away from developing novel optimization algorithms that
solve a MDAP; rather, recent works are relying more on powerful discriminative techniques, such
as using features from pretrained CNNs, and combining this with linear assignment solvers. Ad-
vances in object detection such as Faster R-CNN [97] have almost single handedly improved the
performance of multi-object trackers [26]. A recent work by Bergmann et al. [10] examines this
trend in detail and introduces what they refer to as a new multi-object tracking paradigm. They
propose to leverage bounding box regression to handle data association with a powerful object
detection CNN, and to use a feature pyramid network [71] to robustly handle objects of variable
sizes. They suggest that it is worthwhile to explore the limits of object detection within multi-object
tracking. Their Tracktor model achieves equivalent or convincingly stronger or performance than
many state-of-the-art online trackers that use the sophisticated data association methods described
in Section 3.

We would like to provide further insight into the use of CNNs pretrained on image classification
datasets for generating detections and learning assignment costs. To this end, we visualized CNN
layer activations using the gradient-weighted class activation mapping technique [104] in Figure 7
when asked to classify images of vehicles at a traffic intersection.

To summarize, in this section, we first explained how probabilistic cost functions for data associ-
ation are formulated with kinematic and non-kinematic components. Then, we reviewed machine
learning algorithms for learning association features such as boosting and metric learning. Finally,
we discussed a variety of deep learning methods that mainly fine tune pretrained CNNs to predict
similarity or directly compute association scores.
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Fig. 7. Visualizations of important” regions for making predictions with the VGG 16 network, generated with
Grad-CAM [104] and pretrained VGG16 weights [107]. The first two images in the top left were correctly
labeled as containing vehicles, and it can be seen that the CNN leverages interpretable features such as the
car body, tires, and windshield to come to this conclusion. The CNN was not able to correctly classify the
vehicles in the two images on the top right. Heavy occlusion and illumination changes still confuse a CNN
if it has not been trained for these situations. The images were taken with a traffic camera by the authors.
Best viewed in color.

5 EMPIRICAL COMPARISON

We have presented a large number of machine learning techniques for data association in multi-
object tracking without yet addressing the question of when specific methods may be more prefer-
able than others. We briefly touch on that topic here, focusing on reported results on the 2DMOT15
and MOT17 benchmarks. For an in-depth empirical comparison of deep learning—based multi-
object trackers, we direct readers to a survey on this topic [26] and results from the recent 2018
UA-DETRAC competition [73, 126]. For reference, we have provided the results from the MOT15
and MOT17 leaderboards for methods discussed in this survey, organized by the data association
method, in Tables 3 and 4.

If the tracking task has lots of labeled data available, such as pedestrian or vehicle tracking, and
real-time performance is not required, currently the approach employed by Tracktor [10] of relying
heavily on supervised object detection objectively performs best. It saves on the development
cost incurred by sophisticated algorithms for stitching together tracklets while maintaining or
exceeding their performance. Methods that learn to solve a custom linear assignment and are near
real time tend to score highly (those with data association methods classified as “LA” and “E2E-LA”
in the tables), emphasizing the use of deep learning for extracting both appearance and tracklet
features.

If there is relatively little or no labeled data for a particular tracking task, there are certain
avenues one can take besides conducting an expensive data collection and labeling effort. First,
directly using features from pretrained CNNs without minimal fine tuning is still quite effective
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Table 3. MOT15 Challenge Results

Tracker DA MOTAT IDF1T MT?T ML FP | FN | ID Sw| Fragl HZ?T
Tracktor++ [10] LA 44.1 46.7 18.0 26.2 6477 26577 1318 1790 0.9
CNNTCM [121] LA 29.6 36.8 11.2 44.0 7786 34733 712 943 1.7
RAR15pub [36] LA 35.1 45.4 13.0 42.3 6771 32717 381 1523 5.4
AMIR15 [102] LA 37.6 46.0 15.8 26.8 7933 29397 1026 2024 1.0
CDA_DDALpb [5] LA 32.8 38.8 9.7 42.2 4983 35690 614 1583 2.3
RNN_LSTM [81] E2E-LA 19.0 17.1 5.5 45.6 11578 36706 1490 2081 165.2
MDP [132] E2E-LA 30.3 44.7 13.0 38.4 9717 32422 680 1500 1.1
MHT_DAM [55] MHT 32.4 453 16.0 43.8 9064 32060 435 826 0.7
NOMT [22] CRF 33.7 44.6 12.2 44.0 7762 32457 442 823 115
DCCREF [141] CRF 33.6 39.1 10.4 37.6 5917 34002 866 1566 0.1
SiameseCNN [65] NF 29.0 34.3 8.5 48.4 5160 37798 639 1316 52.8
TSMLCDEnew [119] NF 34.3 44.1 14.0 39.4 7869 31908 618 959 6.5
HybridDAT [137] NF 35.0 47.7 11.4 42.2 8455 31140 358 1267 4.6
LINF1 [35] MCMC 24.5 34.8 5.5 64.6 5864 40207 298 744 7.5

Note: The symbols T and | respectively indicate that higher and lower values are preferred. LA, linear assignment; E2E-LA,
end-to-end learned LA; E2E-MDAP, end-to-end MDAP; NF, network flow.

Table 4. MOT17 Challenge Results

Tracker DA MOTA T IDF11T MTT ML| FP| FN | ID Swl Fragl HZ?T
Tracktor [10] LA 53.5 52.3 19.5 36.6 12201 248047 2072 4611 1.5
DMAN [143] LA 48.2 55.7 19.3 38.3 26218 263608 2194 5378 0.3
DAN [112] E2E-LA 52.4 49.5 21.4 30.7 25423 234592 8431 14797 6.3
DeepMOT [134] E2E-LA 48.1 43.0 17.6 38.6 26490 262578 3696 5353 49
MHT_DAM [55] MHT 50.7 47.2 20.8 36.9 22875 252889 2314 2865 0.9
FAMNet [25] E2D-MDAP 52.0 48.7 19.1 33.4 14138 253616 3072 5318 0.0

for estimating association scores. Another option is to leverage pretrained CNNs for dense cor-
respondence or segmentation to extract flow or segmentation features as additional cues for data
association [113]. Although there has been progress on end-to-end unsupervised approaches [38]
(e.g., based on ability to reconstruct the scene), they are still only a promising research direction
as opposed to being practically useful.

6 CONCLUSION

In this survey, we argue that viewing data association as an assignment problem helps concep-
tualize the large variety of data-driven techniques. We categorized many popular methods that
address the combinatorial optimization and feature learning aspects of data association. One of
the most exciting research directions that was discussed is the development of methods that at-
tempt to learn the optimization algorithm and the features from data. The combinatorial nature
of data association and the difficulty of learning a robust similarity metric for objects pose strong
challenges, but recent work in this direction is promising. Broadly speaking, a common theme
highlighted in this survey is the replacement of more and more parts of the typically cumbersome
multi-object tracking pipeline with data-driven modules.

Broader impacts. Careful consideration is required when deploying these systems out in the real
world. We do not yet have a perfect understanding of when data-driven systems fail, although
we already know that such systems tend to reflect (potentially problematic) biases of our society
stemming from, for example, the training data [28]. This is especially important to highlight due
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to the inherent dual-use nature of multi-object tracking [16]; in other words, it has the potential to
be used by both benevolent and malicious actors. As smart surveillance systems are increasingly
deployed in cities, it is important to be transparent about the capabilities and limitations of current
and near-future multi-object tracking. However, there are many beneficial uses cases and outcomes
for multi-object tracking, such as reducing traffic fatalities, monitoring endangered species, and
improving real-time sports analysis.
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