
Volume : 4 | Issue : 5 | May 2015 ISSN - 2250-1991

378 | PARIPEX - INDIAN JOURNAL OF RESEARCH

Research Paper

Filestream : A New Object Storage Technique in
Databases

Engineering

Mr. BHAVESH LUKKA Research Scholar, Singhania University.

Dr. DEEPAK KUMAR Research Supervisor, Singhania University.

KEYWORDS FileStream, Object Storage Technique, Database Performance, Easy Query Processing

A
B

S
TR

A
C

T The present paper is dedicated to a suggestion of a new method of storing the objects into databases. This suggests a
new way so that storing large objects into database does not slow down the performance of the databases at the same
time, the database size also doesn’t grow drastically, at the same time, the query processing becomes easier and more user
friendly, that the user doesn’t need to make a system call to read the desired object from file. The object is virtually stored
within database only, whereas, physically it is stored somewhere separately into the file system, and only a pointer to that
is actually stored into the database.

INTRODUCTION
Data is the heart of every task. If we have data, we can pro-
cess it and can get the desired results. The more data one has,
the more data processing capability one has. Database is a
collection of data, typically describing the activities of one or
more related organizations. It is a computer application soft-
ware that interact with users, other applications and the da-
tabase its’ self to access and manage the data as per the re-
quirement. The ease with which information can be obtained
from a database often determines its value to a user [1]. The
size of data is increasing day-by-day. With the increase of size
comes various challenges pertaining to data warehousing, in-
cluding, storage technique, retrieval efficiency and data rele-
vance. One can see the search engine Google. It has a very
huge data warehouse, containing information on almost all
topics. The database of Google also search the string looking
to its relevance, so that, the top results may be useful for its
users. A single search there produces lacs and crores of re-
sults, but we never usually go beyond few hundreds, as we
get the desired information within the first hundred results.
This way, it is a big challenge, not only to store data systemat-
ically, but also to make its retrieval faster and relevant.

In databases, lots of data-types are available, which are com-
prehensive and support almost all possible types of storage re-
quirement. The data sizes are varying from bit to large objects,
from smallest of the numbers to large number, from fixed size
to varying size etc. All the possible data types have already
been covered.

This paper is not about to introduce a new type of data to be
stored into a database. It is only to suggest a new type, which
supports only the existing type, but handles it in a better and
efficient way. It has been purposefully given a new name, so
that, databases may maintain their backward compatibility to
deal with older style data types.

FileStream, as the name suggests, is to store files into data-
base. It can be any file, whether text or binary, whether a
word document, a PDF file, an image file, an image of CD/
DVD, a database backup file. Any type of file can be stored
here. Unlike an Operating System, the file here is not associat-
ed with any application. The association of file with its corre-
sponding application is the task of the Operating System, it is
running on. This data type is proposed to store the bit-stream
of file, in the byte-order of the parent Operating System.

BACKGROUND
All the database management systems present today have
their performance-vise ups and downs [11] and they all sup-

port a comprehensive list of data types, varying from primitive
data types to user defined data types, smallest possible data
types to largest object data types, text data types to binary
data types as listed under :

My
SQL

MS
SQL PgSQL DB2 Oracle SQLite

Integer
(int) Bigint Smallint

(int2) Smallint Char Int

SmallInt Bit Bigint
(int8)

Integer
(int) Varchar Integer

Decimal
(Dec,
Fixed)

Decimal Bigserial
(serial8) Bigint varchar2 Tinyint

Numer-
ic Int Bit Decimal

(numeric) Nchar Smallint

Float Money Varbit Decfloat Nvarchar2 Mediu-
mint

Real Numeric Boolean
(bool) Real Lob Bigint

Double Smallint Box Double Long Unsigned
big int

Bit Small-
money Bytea Character Long raw Int2

TinyInt Tinyint Varchar Varchar Raw Int8
Mediu-
mInt Float Character

(char) Clob Number Charac-
ter

BigInt Real Cidr Graphic Float Varchar

Date Date Circle Vargraph-
ic

Bina-
ry_float

Varying
character

Date-
Time

Date-
time Date Dbclob Binary_

double Nchar

TimeS-
tamp

Date-
time2

Double
precision
(float8)

Binary Date Native
character

Time
Date-
timeoff-
set

Inet Varbinary Times-
tamp Nvarchar

Year(2
/ 4)

Small-
datetime

Integer
(int, int4) Blob

Times-
tamp with
time zone

Text

Char Time Internal Date
Times-
tamp with
local time
zone

Clob

Varchar Char Line Time
Interval
year to
month

Blob

Binary Varchar Lseg Times-
tamp

Interval
day to
second

Real

Varbi-
nary Text Macaddr Xml Blob Double

Blob Nchar Money Clob Double
precision

Text Nvarchar Numeric
(decimal) Nclob Float

Volume : 4 | Issue : 5 | May 2015 ISSN - 2250-1991

379 | PARIPEX - INDIAN JOURNAL OF RESEARCH

My
SQL

MS
SQL PgSQL DB2 Oracle SQLite

ENUM Ntext Path Bfile Numeric
Set Binary Point RowID Decimal

Varbi-
nary Polygon URowId Boolean

Image Real
(float4) XMLType Date

Cursor Serial
(serial4) UriType Datetime

Times-
tamp Text Character

Hierar-
chyid Time

Numeric
(decimal,
dec)

Uniquei-
dentifier Timetz Integer

Sql_vari-
ant

Times-
tamp Int

Xml Times-
tamptz Smallint

Table Tsquery Double
tsvector Real
Txid_
snapshot OrdAudio

Uuid OrdImage
xml OrdVideo

OrdDoc
OrdDicom

Table 1: List Of Data Types Available In Major Database
Management Systems. [4][5][6][7][8][9].

The above list covers all the available and possible data types.
This paper is not about adding any new type of data, but it
suggests only the change in the way of storing large objects.
Presently the database management systems supports large
objects in the data type, shown in bold in the above list.

HYPOTHESIS
The main problem with existing object data types, as high-
lighted hereinabove, is that they grow the database size,
thereby, reducing the performance. They are not always re-
quired data types. Most of the times, other columns only
work fine with the queries. These data types are used only as
and when they are really required, whereas, other columns are
required comparatively more frequently.

An alternate approach to this is to store the object into a file
and saved into the file system of the parent operating sys-
tem and thereafter, the path of the file is to be stored into
the database. For example, if student table is to be created
with photograph of each student, these photographs may be
stored into the table itself, or may be stored in the form of a
JPG or PNG file within the file system and its path to be given
in the table.

Both the approaches have their own pros and cons. The first
approach is better in terms of security and integrity, but hits
badly in terms of performance and grows database size dras-
tically. The second one, while has almost no effect on the da-
tabase size, is not secured and sometimes, loses the data in-
tegrity, as the file may have been moved or removed, without
changing the path stored in the database.

This paper presents a new way of storing large objects. For
the brevity of supporting old databases, the existing data type
and the way it stores data should be continued. In that case,
a new data type may be added, which will store large objects
into database, in an enhanced way.

DESIGN
In the present scenario, if objects are stored within the data-
base, its size grows drastically thereby, hitting very badly its
performance. These objects are not actually required in every
query we make to the databases, but their effect is always
seen in the form of slow execution of every query. To over-
come this, people started storing the object(s) in the form of
a file within the file system of the parent operating system

and storing its reference, i.e. its full absolute path, to the da-
tabase for use. Whenever the user needs this object, he refers
database to fetch its reference and then requests the OS file
system to retrieve the file for further use. Both the approach-
es have their own pros and cons. The first provides secured
store of objects but at the same time, it slows down the per-
formance. The second one is less secured, the file being acces-
sible outside the database system, but the only overhead to
the database is its reference, which is simply a small string and
therefore, its impact on the performance is almost null.

In the present paper, it is proposed to include the better part
of both the approaches. In a nutshell, it can be depicted as
storing the reference in the form of a filename only will not
suffice. The reference should contain all the information re-
quired to fetch the file from the file system. This may be de-
pendent on the parent file system, but usually in production
environment, the database system(s) once deployed, work for
years continuously. Frequent movement of data is never pre-
ferred in production environment. Following diagram depicts
the information a database should contain for every file, to
enable it to access the file directly.

Figure 1 : Object In Databases To Enable To Access File
Directly

Operating Systems store the first column that contains vari-
ous metadata about the file, called i-node. This i-node helps
operating systems access the file, wherever it is stored. The
size of i-node is less than a block. A single read/write on the
disk can access the entire metadata of the file. Therefore, for
very smaller files (usually less than 60 bytes), some file systems
support inlining. Inlining refers to a technology where the file
contents are stored within the i-node only, instead of direct /
single-indirect / double-indirect / triple-indirect block(s) infor-
mation. In some Operating Systems this feature can be ena-
bled at the time of file system creation.

Therefore, inclusion of i-node within the database column
will help the database management system to access the
file directly, without the intervention of the parent operating
system. This will not only save the time of the user, who, af-
ter reading information from database, sends a system call
through operating system to read the file, but also, will save
our database from the loss of performance, which may have
been occurred if the object is directly stored in the database,
as in the traditional way.

CONCLUSIONS
The approach presented in this paper will help users of the
databases to store large objects and files with ease in their
databases itself, without having any bad impact on the per-
formance of the databases. Almost all the available database

Volume : 4 | Issue : 5 | May 2015 ISSN - 2250-1991

380 | PARIPEX - INDIAN JOURNAL OF RESEARCH

REFERENCES

[1]Ramakrishnan R. and J. Gehrke, “Database Management System”, McGraw-Hill International Edition Publication, 2000. | [2]Baron Schwartz, Peter Zaitsev and Vadim Tk-
achenko, “High Performance MySQL”, ISBN : 978-1-449-31428-6, O’reilly Publication, 2012. | [3]Paul Nilsen, Uttam Parui, “Microsoft SQL Server Bible”, ISBN : 978-11-180-
7987-4, John Wiley & Sons. Publications, 2011. | [4] Oracle Documentation Available On : http://docs.oracle.com/en/database/database.html [Accessed : February 2015]. |
[5]DB2 Documentation Available On : | http://www-01.ibm.com/support/knowledgecenter/ [Accessed : February 2015]. | [6]PostgreSQL Documentation Available On : http://
www.postgresql.org/docs/ [Accessed : February 2015]. | [7]MySQL Documentation Available On : http://dev.mysql.com/doc/refman/5.7/en/ [Accessed : February 2015]. | [8]
SQLite Documentation Available On : https://www.sqlite.org/docs.html [Accessed : February 2015]. | [9]MS SQL Server Documentation Available On : https://msdn.microsoft.
com/en-us/library/dd206988.aspx [Accessed : February 2015]. | [10] Joseph M. Hellerstein, Michael Stonebraker and James Hamilton, “Architecture Of Database A System”,
Foundations and Trends in Databases Vol. 1, No. 2 (2007) Pages : 141–259. | [11] Bhavesh Lukka and Dr. Deepak Kumar, “Performance Analysis Of Database Management
Systems With Different Front-ends”, Research Matrix International Multidisciplinary Journal Of Applied Research ISSN : 2321 – 7073 [Volume : 01, Issue : 09, April 2014]

management systems support way of storing large objects
and/or files into the database itself, but they store it within
data file. This approach eventually slows down the perfor-
mance of the system, affecting the performance of query ex-
ecution very badly. The object-storage technique presented in
this paper actually stores the object in the form of a file within
the file systems and keeps its pointer-block (i-node) within the
database, thereby, occupying less space, usually fixed size with
every row.

