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Partially Observable Markov Decision Process for
Monitoring Multilayer Wafer Fabrication

Marzieh Khakifirooz , Member, IEEE, Mahdi Fathi , Member, IEEE, and Chen-Fu Chien , Member, IEEE

Abstract— The properties of a learning-based system are par-
ticularly relevant to the process study of the unknown behavior of
a system or environment. In the semiconductor industry, there is
regularly a partially observable system in which the entire state
of the process is not directly or fully visible due to uncertainties or
disturbances. The model for studying such a system that permits
uncertainties regarding the stochastic (Markov) process for state
information acquisition is called a partially observable Markov
decision process (POMDP). This study aims to deal with the
optimization issue of compensation control bias of a dynamic
multilayer lithography process in wafer fabrication with prior
information, the existence of high-dimensionality, and unmea-
surable uncertainties. We show how the POMDP on a linear
state-space model with uncertainties can encode the information
from past runs and layers, and deal with accumulated overlay
error at the current run and layer. The Gibbs sampling is applied
to optimize the belief function of POMDP optimization approach.

Note to Practitioners—The multilayer overlay error of the pho-
tolithography process is one of the remarkable and challenging
issues in wafer fabrication. In a multilevel manufacturing process,
errors occur at each level, which would be accumulated in the
upstream operations. The optimization objective will be even
more critical in a high-mixed fabrication process. In this study,
the learning-based control system emerged with the state-space
model compensates the multilayer overlay error. The Gibbs sam-
pling as a Bayesian approach as a core structure of optimization
algorithm is utilized, which can be updated with information from
engineering’s domain knowledge or estimated information about
previous runs. The robustness of the proposed optimization
algorithm is shown by comparing the distribution of overlay
error with conventional methods and with a fast convergence
rate of the learning algorithm.

Index Terms— Bayesian optimization, Gibbs sampler,
multilayer overlay, partially observable Markov decision
process (POMDP), semiconductor photolithography process.
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I. INTRODUCTION AND MOTIVATION

THE misalignment in the photolithography process is a
demanding area which has received increasing atten-

tion by the semiconductor manufacturing strategists [1], [2].
Misalignment also known as overlay error has several sig-
nificant effects on other manufacturing process such as
dry-etching process [3] and yield enhancement [4]. The
major dilemmas associated with overlay error in the literature
are stochastic metrology delay [5], unmeasurable noise and
disturbance [6], [7], online monitoring [8], high-mixed man-
ufacturing structure [9], [10], control system structure (i.e.,
multi-input multioutput, single-input single-output) [11], accu-
rate and stable convex optimization algorithm (i.e., exponen-
tially weighted moving average (EWMA) and proportional
integral derivative) [12], and multilayer overlay [13].

The specific goal of this study is to propose an optimal
control system for monitoring a multilayer overlay error. In the
multilayer photolithography process, if the pattern of each
layer cannot align well with the previous layer, the whole
process will fail in a way that the variation in the previous
reference layer influences misalignment in the subsequent
layer. The consequences of multilayer overlay errors are more
noticeable for the 3-D integrated circuit (3D IC) [14]. In 3D
IC technology, the process requires building circuits with
multiple layers of active devices; therefore, every single device
(wafer/chip) enforced to coordinate well for the conventional
photolithography process. The misalignment in wafer-level 3D
IC is crucial since if any layers of a single chip are defective,
then the entire 3D IC will be defective.

Fig. 1 shows the overlay error in the multilayer production
process for two different cases of yaw misalignment (case A)
and axial misalignment (case B). The errors in adjacent layers
are similar in both cases; however, the total superposed error
is better in case B than case A.

An accurate error model for presenting the accumulation
and aggregation of misalignment is essential to control the
overlay error efficiently. To the best of our knowledge, only
limited researchers have investigated the monitoring system of
multilayer overlay errors in the literature (see Table I). How-
ever, they did not consider uncertainty and other complexity,
such as high-mixed scheduling and delay in the system.

On the other hand, the run-to-run (R2R) control is the most
general monitoring technique in semiconductor manufactur-
ing [20]. The main objective of R2R control is variability
reduction of the process through the shrinking process output
error. The EWMA controller is the most preferred design in
R2R control [21]. However, the EWMA controller is known

1545-5955 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Middlesex University. Downloaded on September 01,2020 at 02:47:42 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-1721-2646
https://orcid.org/0000-0003-3476-4722
https://orcid.org/0000-0003-3328-4946


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

TABLE I

LITERATURE REVIEW OF PROCESS CONTROL OF MULTILAYER OVERLAY ERROR

Fig. 1. Schematic of multilayer overlay error with bonding pad for “via”
design.

to have several limitations. Some of the underlying limitations
of EWMA include the following [22]:

1) dependence on maximum likelihood estimator (MLE);
2) dependence on limited control action by fixed filtering

parameters;
3) dependence on multiple filtering steps;
4) inefficiency to deal with the large-scale disturbance of

the real-world system.
Therefore, the EWMA controller is unfeasible for applying

to a wide range of applications. In this study, motivated
by the concept shown in Fig. 1, for compensating the mul-
tilayer overlay error, cumulative process information from
previous layers are used as the constraints to update the
process control law in the manufacturing layer. The pro-
posed method in this study is followed by the high-mixed
scheduling strategy in [1] considering different sources of
uncertainties such as stochastic metrology delay and process
disturbance.

For dealing with difficulties engaged in compensating mul-
tilayer overlay errors, such as stack-up error and dynamic
behavior of the production process, the environment is for-
mulated as a Markov decision process (MDP). Besides, for
the system with some degrees of uncertainty where infor-
mation is partially observable, MDP is accelerated to the
partially observable MDP (POMDP) method [23]. Optimizing
the throughput of an adaptive control system in the Markovian
process is a demanding task. Therefore, the proposed opti-
mization algorithm in this study is derived from a Markov

chain Monte Carlo (MCMC) algorithm inspired by the Gibbs
optimization technique in [4], [24], and [25].

The remainder of this study is organized as follows.
Section II introduces the fundamental assumptions and def-
initions. Section III proposes the optimization solution for
compensating the multistage (layer) overlay error. Section IV
exposes the numerical illustration of the optimization-based
POMDP approach and details the validation of the pro-
posed method with Gibbs sampling techniques for simulation.
Section V summarizes the main results and recommendations
for further research.

II. FUNDAMENTALS

The notation and terminologies used in this study are listed
as follows.

k The layer index.
j The overlay factor index.
t The process run index, t ≥ 1.
m Number of layers.
N Number of overlay factors.
l, l ′ The length of process delay, and metrology

delay, respectively.
i, i ′ The iteration indexes for Gibbs sampler.
n Number of iterations for Gibbs sampler.
ut(k) N × 1 input vector for layer k at run t .
Qt (k) N × 1 output vector for layer k at run t .
xt (k) N × 1 state vector for layer k at run t .
dt(k) The process disturbance for layer k at run

t .
et(k) The measurement noise for layer k at run

t .
st(k) N × 1 stack-up overlay vector for layer k

at run t .
γt(k) The weighting parameter for stack-up over-

lay error.
Et N × 1 deviation vector for layer k at run t .
T The target of overlay factors.
St A finite set of states at run t .
At A finite set of actions at run t .
Ot A finite set of observations at run t .
Bt The distribution over state St at run t .
R The reward function.

Authorized licensed use limited to: Middlesex University. Downloaded on September 01,2020 at 02:47:42 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2. Wafer fabrication in photolithography process.

R∗ The average reward function.
G(st (k)) The learning based reward

function for stack-up overlay
for layer k at run t .

rt The discount factor at run t .
πt The policy function of state at

run t .
P(·) The probability function.
E(·) The expectation function.
K A large number for balancing

learning rates.
θ = [a(k), b(k), c(k)] Coefficient matrices in

state-space model for layer
k.

λ, η Parameters of zero-inflated
Poisson distribution.

αt , α′t Learning parameters.
ε Maximum tolerance for

learning algorithm.
β,β∗ Parameters of EWMA con-

troller.
ω The discount factor of

EWMA controller.

A. Multilayer Overlay Model

Lithography is the most frequently used processes in wafer
fabrication. Currently, the step-and-scan (shortened scanner)
method is one of the most commercially used systems, in the
lithography process. The purpose of the scanner is to super-
impose a masking pattern on top of the existing wafer pattern.
Fig. 2 illustrates the initial steps of wafer fabrication in the
photolithography process when using the scanner. The gap
between the actual position of the mask and substrate is known
as overlay error [26], [27].

Overlay errors are measured from the misalignment between
the current and previous exposure layers, through the box-in-
box design. When the inside box is accurately patterned in the
center of the outside box, no overlay error is apparent (Fig. 3).
Consider how the direction of movement in the box-in-box
design, the error can be described in x- and y-axes separately.
The major source of misalignment in the lithography process
can classify into two categories, the interfield overlay errors,

Fig. 3. Overlay error measurement (blue arrow in the small box shows the
movement direction).

which is the result of misalignment between the mask and
the wafer, and the intrafield overlay errors as a result of the
mismatch between the light source filter lens and the mask.
The overlay error is accumulated by several overlay factors
such as translation, rotation, magnification, expansion, and
rotation, which are solicited to be as small as possible to the
target point (T ) or zero [27].

The overlay error in the multilayer photolithography process
is impressed by the following phenomena.

1) Layer to Layer Misalignment: In each layer, there is a
cumulative error from the first to the current. The control
parameters at each level are estimated to minimize the
total overlay error, and the initial parameter setting is
the cumulative error from the previous layers [16].

2) Recipe Confliction: The photolithography process with
a single scanner device is a bottleneck in semiconductor
manufacturing, which generates a high-mixed setting
of recipe adjustment for different products at different
levels of production. Each recipe has its alignment and
control laws, and therefore, the process parameters are
unique for each recipe [28].

3) Process and Metrology Delays: Delays hinder informa-
tion from reaching the controller at the right time and
thus affect the control performance. Process delay is
inherent in the photolithography process due to being
a bottle. On the other hand, metrology delay appears
because of the time and tools’ limitations in the metrol-
ogy station [29].

Considering this fact that, typically, different recipes apply
in different layers, for simplicity, this study considers only
the effect of multilayer phenomena along with the effects of
process and metrology delays.

Fig. 4 illustrates the block diagram of a control system for
compensating overlay errors in the state-space model. Accord-
ing to Fig. 4, the input (ut ) is the variation in each overlay
variable from the target (T ), which is affected by process delay
(for l runs), and process disturbance (dt ). The control plant
continually and effectively measures the value of all overlay
variables (xt ). However, this measurement is accompanied by
another source of uncertainties, namely measurement noise
(et ) and measurement delay (for l ′ runs). The variation from
the target value, which is an output of the manufacturing
system (Qt ) compared with the input (ut ), is calculated by
the control plant and the feedback command for corrective
action forward to the controller.

In controlling overlay error the assumption is that all overlay
variables are independent in each layer. Therefore, the general

Authorized licensed use limited to: Middlesex University. Downloaded on September 01,2020 at 02:47:42 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 4. Block diagram of POMPD controller for single layer overlay error.

Fig. 5. Schematic of multilayer overlay model with stack-up error.

linear state-space model for describing Fig. 4 can be modeled
as follows:

xt−l(k) = a(k)xt−l−1(k)+ b(k)ut−l(k)+ dt(k)

Qt−l′ (k) = c(k)xt−l(k)+ et(k) (1)

where the initial state of the system at time t is xt (0) = 0.
In practice, as depicted in Fig. 4, the system uncertainties

including noise et and disturbance dt are included into the
random effects of Qt and ut , respectively. In addition, there
is a metric for describing the integral of error from the first
layer to the current layer called stack-up overlay error

st−l′ (k) = st−l′ (k − 1)+Qt−l′ (k). (2)

The schematic of the stack-up overlay error is shown
in Fig. 5. Therefore, the process error is

Et (k) = Qt (k)− T (3)

where T = 0 can be combined with aggregated stack-up
error in (2) to define the control laws for minimizing the total
overlay error. Therefore, the stochastic optimization problem
which minimize the multilayer overlay model at kth layer
by finding a sequence of vectors of controllable process
parameters {a(k), b(k), c(k)} can be characterized as follows:

arg min
a(k),b(k),c(k)

m∑
k=1

γt−l′ (k)(‖st−l′ (k))‖)2

s.t. st−l′ (k) = st−l′ (k − 1)+Qt−l′ (k)

Qt−l′ (k) = c(k)xt(k)

xt (k) = a(k)xt−l(k)+ b(k)ut−l(k)

st−l′ (0) = 0

∀l ′ < t, k : 0 < γt(k) < 1
m∑

k=1

γt(k) = 1 (4)

where γ (k) can be selected by tuning algorithm and expresses
the relative importance of overlay error corresponding to
each layer. In practice, γ (k) can be selected based on expert
opinion.

B. POMDP

The POMDP [24] is a generalization of MDP when only
part of the information is unavailable about the current state
(for instance, due to delay), and this leads to the uncertainties
(i.e., noise).

Consider a class of algorithms for finding good approxima-
tions to a class of learning problems in which agents interact in
a dynamic, noisy, and stochastic environment; this interaction
is conventionally modeled as a POMDP with the following
properties.

1) St : Finite set of states.
2) At : Finite set of actions.
3) R(St , At ) : Reward function.
4) P(St+1|St , At) : State transition probability function.
5) Ot : Set of observations.
6) P(Ot+1|St+1, At ) : Observation probability.
7) rt ∈ [0, 1] : Discount factor.
8) Bt : Distribution over state St called “Belief State.”
POMDP can be identified as an optimal or near-optimal

behavior for an uncertain system [30]. The MDP problem
seeks to find a mapping from states to actions; however,
due to partially available data, the challenge in the POMDP
problem is to find a mapping from probability distributions
over states to actions. For dealing with this phenomenon,
the key step is to calculate the value of a given policy function
(π). The policy function (π) is the mapping function from
the state to the action, for maximizing the expected sum
of the discounted factors. The block diagram of POMDP
is demonstrated in Fig. 6 and the optimization procedure is
described as the following steps.

1) Set up the unobserved state St of the system at each
time/step t .

2) Select an action At .
3) Maintain the distribution over St as Bt .
4) Receive the reward function R(St , At ).
5) Transit to the unobserved state St+1 with probability

P(St+1|St , At).
6) Receive the observation Ot+1 with probability

P(Ot+1|St+1, At ).
7) Estimate the distribution of state St+1 as Bt+1(St+1) =

P(St+1|Ot+1, At , Bt(St )).
8) Update the reward function by R(St+1, At+1) =

Bt+1(St+1)× R(St , At).
9) Optimize the return function by policy π(St+1) =

maxAt+1

∑
rt+1 R(St+1, At+1)) and select the best action

At+1.
10) Update and repeat the process.

In the deterministic setting, techniques such as dynamic
programming can be used to tackle the optimal control
problem [31]. However, the Bellman equation is often the
most convenient method of solving stochastic optimal control
problems [32]. Bellman’s optimality equation [33] says that
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Fig. 6. Block diagram of a POMDP.

under principal of stochastic approximation the average reward
R∗(St , At) from t periods simulation-based solution is

R∗(St ) = min
At

[
R(St , At )− 1

t
E

{∑
t

R(St , At)

}

+
∑

st

P(St |St−1, At−1)

× E

{∑
t

(
R(St , At )− 1

t
E

{∑
t

R(St , At )

})}]
.

(5)

In practice, the average reward function [R∗(St )] in (5) is the
best (in this study minimum) reward function that is learned
from the previous results and can be led to the best action.

The optimization problem in (5) is a simulation-based
method for solving POMDP. Note that the optimization prob-
lem in (5) is expensive when the size of observation or
time-steps grows and leads to the exponential growth of the
size of the policy space [34]. In this article, the approximated
Gibbs sampling solution method based on the MCMC tech-
nique is applied to optimize the system policy and minimize
the computation cost/time. Additionally, for compensating the
overlay error of a multilayer system, we study the multistage
POMDP setting [35], where the objective is to optimize m
stage with the same state–action space, but different dynamics
and rewards.

C. Bayesian Optimization

In this study, the Bayesian optimization technique is used
to minimize the expected value of reward functions in (5).
According to Bayesian probability theory, the likelihood of
each observation is relative to the likelihood of other observa-
tions that already happened. Bayesian models can induce the
noise at each level of the explanatory variables, and represent
the dependence among variables.

To demonstrate the optimization process-based Bayesian
inferences, let P(X |x) be the probability for estimating an
unobserved population parameter X on the basis of given
structure x . Assume prior distribution P(x) for the likelihood
of each structure, then the posterior distribution on x given by
the Bayes rule is

P(x |X) = P(X |x)P(x)

P(X)
. (6)

Algorithm 1 Gibbs Sampling

Initiate γ (0)
1 , γ (0)

2 , . . . , γ (0)
m

for i ← 1 → n do
γ

(i)
1 ∼ P(γγγ 1 = γ1|γγγ 2 = γ

(i−1)
2 , . . . ,γγγ m = γ (i−1)

m )

γ (i)
2 ∼ P(γγγ 2 = γ2|γγγ 1 = γ (i)

1 , . . . ,γγγ m = γ (i−1)
m )

· · ·
γ (i)

m ∼ P(γγγ m = γm|γγγ 1 = γ
(i)
1 , . . . ,γγγ m−1 = γ

(i−1)
m−1 )

end for

The general aim of Bayes rule is to find the most probable
value (mode) of x given the observation X

x̂ = arg max
X

P(x |X). (7)

However, quantifying the idea of a Bayesian model is
difficult when the distribution of observations is stochastic or
unknown. Nevertheless, one approach to facilitating this diffi-
culty is to sample from the distribution before computing the
sample statistics. The MCMC method has facilitated Bayesian
statistics for this purpose [36]. One basis of Markov chain
theory posits that, if the probability associated with different
events is constructed correctly, and the chain has a sufficient
length, then the event distribution can be made equal to any
arbitrary distribution, including a posterior distribution.

Gibbs sampling is an MCMC technique suitable for sam-
pling from the distribution and estimating sample statis-
tics [37]. Gibbs sampling conditionally generates the posterior
sample by eliminating one variable at each iteration, while the
remaining variables fixed to their latest estimated value (see
Algorithm 1)

Gibbs sampling has been extensively adapted to analyze a
variety of predictive analytics challenges. For more details, one
can refer to comprehensive reviews of studies on application
of Gibbs sampling on state-space model [38], graphical mod-
eling [39], adaptive sampling [40], and variable selection [41].

III. PROPOSED FRAMEWORK

This section describes the structure of the proposed opti-
mization solution for controlling a multistage (multilayer)
system with partially available information. In the first step,
after defining the stack-up overlay error for multilayer wafer
fabrication, due to the high dependence of the stack-up error
to previous information and delay, POMDP is applied to
optimize the error. Since updating the belief function of
POMDP by growing the process run becomes infeasible, Gibbs
sampling is applied to estimate the belief function (see Fig. 7).
Following this section, the details of the optimization process
are explained.

A. Multistage Control System Using POMDP

The POMDP relies on defining a set of states, the expected
observations from those states, the action transition matrix, and
the reward function. Following this section, each component’s
applications for computing the optimal action given a specific
belief about the current state of the system is discussed.
The detailed descriptions of each component for modeling a
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Fig. 7. Structure of proposed Bayesian optimization algorithm for compensating multilayer overlay error.

control system of multilayer overlay error are summarized as
follows.

1) State-Space: Consider (1), the output of controller to the
plant (xt ), given the action (ut ), including disturbances
and process delay. There are m × N different states at
each run in the system. Note that, in practice, the actual
value of xt is not observable and should be predicted.

2) Observation-Space: The actual output of the plant (Qt )
for N overlay factors and m layers including metrology
delay and measurement noise. Without loss of generality,
regards to the definition of stack-up overlay in (2),
the observation Qt can be replaced by st .

3) Action Transition Matrix: The probability matrix for
each state (xt ) of a specific layer can be appeared in the
sequence of the photolithography process. The transition
matrix can be computed based on the historical data and
updated after each run. The elements of transition matrix
can be derived by

P(xt(k)|xt−1(k), ut−1(k)). (8)

4) Belief Updating: The probability distribution of xt given
the state of previous belief, and observation and action
at the current run.

5) Reward Function: The actual error Et (k) in (3) or
stack-up error st (k) in (2) which results from action
ut (k).

6) Average Reward Function: The optimal value of actual
error after t runs with regard to the transition matrix
at each run and learning from the previous runs. Con-
sider st(k) as the reward function in tth run. Then
the simulation-based method for solving the average
optimality reward function based on [22] is

R∗(xt(k), ut (k))

= (1− αt )R∗(xt−1(k), ut−1(k))+ αt

×
[

st − 1

t
E

{∑
t

G(st(k))

}

+ min
ut

∑
xt

P(xt(k)|xt−1(k), ut−1(k))

× E

{∑
t

st − 1

t
E

{∑
t

G(st (k))

}}]
(10)

where

G(st (k)) = (1− α′t )G(st−1(k))

+ α′t

[
(t − 1)G(st−1(k))+ st (k)

t

]
(11)

where at t = 1, G(s1(k)) = α′1s1(k).
The learning parameters α and α′ are both decayed by
the following rule:

αt , α
′
t =

α0, α
′
0

1+ t2

K+t

(12)

where K is a very large number.
7) Optimal Action: The objective function of a control

system in (4) can be minimized by the optimal solution
of stationary policy given by the observation space
(stack-up overlay error)

π(B(xt)) = arg min
γt

[γγγ t B(xt )× R∗(xt (k), ut (k))γγγ ′t ].
(13)

8) Controllability and Observability: For having a control-
lable and observable system, the following assumptions
should be satisfied.

a) The model applies over an infinite number of run,
implying that the control system is stationary.

b) Conditioned on the true ut (k) and control setting
at run t − 1, the P(st−1|xt) is independent of
information related to the run t − 1.

c) The measurement noise and process disturbance
are accumulated to the Qt (k) and ut (k), respec-
tively.

d) Regards to policy function in (9), as shown at
the bottom of the next page, optimizing objective
function in (4) is updated by

arg min
γ (k)

m∑
k=1

(γt−l′ (k)B(xt(k))

×R∗(xt(k), ut (k))γt−l′ (k)). (14)

9) Convergence Assumptions: The POMDP is converged
under a set of assumptions as follows.
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a) The values of αt and α′t should be chosen very
small in order to allow slow learning and corre-
sponding convergence.

b) |R∗(xt (k), ut (k))− R∗(xt−1(k), ut−1(k))| < ε.
c) limt→∞ sup(αt/α

′
t ) = 0.

d) limt→∞ var(E{∑t st − (1/t)E{∑t G(st)}}) <∞.
e) limt→∞ var((1/t)E{∑t G(st )}) <∞.

B. Gibbs Sampling Optimization

In practice, POMDP is often computationally expensive to
be solved precisely, and several studies have been developed
approximate solutions for POMDP [42]. In this study, we use
sampling techniques through the Gibbs sampler to update the
belief probability.

For generating the state vector using Gibbs sampler as
optimization tool, consider the state-space model in (1).
Let P(x1:t(k),θθθ, s1:t−1(k)) be the joint posterior density
of x1:t(k), θθθ and s1:t−1(k). Therefore, Gibbs sampler
can generate x1:t(k), and θθθ from the conditional densi-
ties P(x1:t(k)|θθθ, s1:t−1(k)), and P(θθθ |x1:t(k), s1:t−1(k)), respec-
tively, until eventually (x1:t (k),θθθ) is generated from the
joint posterior distribution P(x1:t(k),θθθ, s1:t−1(k)). Therefore,
the only essential assumption is θ1 to be known.

Assume that x1(k) has a known distribution with condition
on u(k), s(k) and parameter vector [a(k), b(k), c(k)]. For
simplicity, we name the parameter vector [a(k), b(k), c(k)]
as θθθ . Lemma 1 shows how to generate x(k) given s(k) and
θθθ [37].

Lemma 1: We have

P(x1:t (k)|θθθ, s1:t−1(k))

∝ P(xt (k)|θθθ, st−1(k))

t−1∏
i=1

P(xi(k)|θθθ, si−1(k), xi+1(k)).

Thus to generate x(k), the simplest approach would be
to simulate x1:t−1(k) from P(x1:t−1(k)|s1:t−2(k)), θθθ from
P(θθθ |st−1(k), xt−1(k)) then xt (k) from P(xt(k)|x1:t−1(k)).

IV. ILLUSTRATION AND RESULTS

For validating the performance of the proposed POMDP
controller using Gibbs sampler, a simulation study is con-
ducted, followed by sensitivity analysis and discussion on how
to implement the result in the real setting.

To run the proposed control system, we consider a
continuous-time POMDP system with a finite-state space xt

for each layer (k = 1, . . . , m). Let ut be a finite action
space (input of controller), when the system is in state
xt(k) for the layer k and action ut (k) is taken, the system
will transit to state xt+1(k) at the next run with probability
P(xt+1(k)|xt (k), ut (k)), and a reward Qt (k) is received which
is accumulated as st (k) at current layer k. In practice, xt is
unknown and the measured st (k) is used as the action ut+1

for the next run. However, st (k) could involve delay in mea-
surement for l ′ runs which is denoted by st−l′ (k). Therefore,
the observation (output) of controller is the action (input) of
controller for the next run. Consider this phenomenon, only the
first action (u1(k)) is necessary to be defined for the controller,
which ideally is close to the target value (T ). Following these
facts, to develop the simulation study, u1(k = 1) and T set to
0. Three scenarios for describing uncertainties are designed as
follows.

1) Structural Change Model: The data-generating process
is given by

ut (k) = ŝt−1 + dt(k) (15)

where dt periodically changes to 1 and −1 when k
changes. This model corresponds to the case B (axial
misalignment) in Fig. 1 and represents the sudden shifts
due to changing the recipe for each layer.

2) Crooked Change Model: The data-generation process is
the same as the structural change model in (15), where
dt = dt−1 + 1 when k changes. This model corresponds
to case A (yaw misalignment) in Fig. 1.

3) Stochastic Delay: The metrology delay (l ′) and process
delay (l) randomly generated from the zero-inflated
Poisson (ZIP) distribution [43], with λ = 2 and η = 0.6
and with maximum delay length 6 for each lot.

To evaluate the performance of the proposed POMDP
controller, we simulate a control system for the photolithog-
raphy process with ten overlay factors and each factor with
five layers. Two experiments are designed to consider the
structural change with metrology delay and crooked change
with metrology delay. The characteristics of uncontrollable
outputs Qt (k) with Gaussian distribution for each factor and
layer are described in Table II. Different standard deviations
are selected for each layer with an increasing pattern such
that the last layer has the most significant standard devia-
tion. The zero mean and small standard deviation for the
Gaussian distribution of the first layer are considered due
to a minimal but important value of nuisance factors in the
wafer production process. The purpose of this pattern for
data selection is because st(k) at layer k is influenced by all
other previous layers, in which many sources of uncertainty
(besides delay and structural/crook model of dt ) are involved
in the system, including measurement noise and optimization
uncertainty.

For performance evaluation of the proposed POMDP
process control, as mentioned earlier u1(k) = 0 for k =
1, . . . , 5, Qt(k) is considered as the value of all sources of
noise and disturbances in the system before using a control
model, and the scheduling system is set based on the uniform
random value for order of layers. Following the details of
simulation scenario is described.

B(xt(k)) = P(st−1(k)|xt(k), ut−1(k))
∑

xt
P(xt(k)|xt−1(k), ut−1(k))B(xt−1(k))∑

xt
P(st−1(k)|xt (k), ut−1(k))P(xt(k)|xt−1(k), ut−1(k))B(xt−1(k))

. (9)
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TABLE II

GAUSSIAN DISTRIBUTION OF Qt (k) FOR 10× 5 MULTILAYER OVERLAY FACTORS

1) Generating 200 runs of uncontrollable outputs Qt(k)
based on the model parameters in Table II, and different
process uncertainties.

2) Generating 200 random numbers from U(1, 5) to repre-
sent the order of layers at each run.

3) Using the distribution of Qt (k) in Table II and consid-
ering the rows (k) indicate the index of layer at t − 1th
run and the columns (k ′) to the index of layer at t th
run, the (k, k ′)th element of transition matrix is defined
using Gibss sampler as follows:

P(xt (k
′)|xt−1(k), ut−1(k)) (16)

where xt(k) is estimated using (1) based on the initial
value of u1(k). Also, ut(k) is calculated based on (15)
for structural change and crooked changed scenarios
separately, such that

5∑
k,k′=1

P(xt (k
′)|xt−1(k), ut−1(k)) = 1.

These considerations and conditions remain the depen-
dence situation of information at each layer, and each
runs to its previous layers and runs, while overlay factors
are considered independent.
A simple R-code to describe the Gibbs sampling process
for the first overlay variable, and the first layer is
presented as follows:
gibbs<-function (a,b,c)
{ Q <- rnorm(1, 0, 0.1)
s[i-1] <- Q[i-1]
s[i] <- s[i-1] + c*x[i-1]
u[i] <- s[i] + d[i]
x[i] <- a*x[i-1] + b*u[i]
}

4) Calculate belief and average reward functions using (9)
and (10), respectively, where st (k) is estimated based
on (2) and P(st−1(k)|xt (k), ut−1(k)) is determined in a
similar way as P(xt (k ′)|xt−1(k), ut−1(k)) is described in
the last step. According to the first and third convergence
rules, the value of αt and α′t are selected close to zero
and initiated as 0.001 and 0.01, respectively (due to
convergence assumptions in Section III-A, see step 9
for more details). In addition, for the fifth layer (the
layer with the highest variation) K = 1000, and for
simplification the expected value in (10) is considered
as the weighted average value.

5) Optimizing problem in (4) with objective function (14)
based on Lemma 1, using the estimated outputs, belief,

and average reward functions, by utilizing Gibbs sam-
pler. At the first step, θθθ1 is initiated then Gibbs function
in step 3 is used for simulation process while parameters
a, b, c and γ in (14) are estimated using the tuning
procedure. According to [4], the iteration time for the
burn-in process of Gibbs sampler is selected equal to
the sample size, which is 200 in this study.

6) Defining the sample mean and standard deviation of
st (k) and st (k) for each overlay factor and layer over
200 runs for performance comparison.

7) Evaluating the performance of the proposed controller
with 200 runs in comparison with EWMA controller
in (17), as the most popular control system for batch
processing, with ω = 0.3, and Et (k) as defined in (3).
For a comprehensive review on EWMA controller for
the semiconductor industry one can refer to [21], [28],
[44]

Qt (k) = β t(k)+ β∗t (k)ut (k)+ dt(k)

ut (k) = ut−1(k)− ω

β∗t (k)
Et (k). (17)

The comparison results for the cumulative stack-up layer
(st(k)), and predicted input (ut(k)) for each overlay
factor and layer are summarized in Tables III and IV.
According to Tables III and IV, it is clear that the
POMDP has smoother variations and improved compen-
sation performance (e.g., closer to the target, T = 0) in
comparison with the EWMA controller.
The result shows that the proposed POMDP controller
tightens the error variation and eventually achieves a
lower cost (overlay error) and disturbance compared
with the EWMA control system. When the variation
increases, the differences are more tangible, such that
when the unmeasurable disturbance makes a significant
shift in overlay factors, POMDP can competently deal
with process shift, while EWMA is disabled to deal
with this phenomenon. It is apparent that when distur-
bance and noise are increasing, the performance of the
proposed POMDP controller is significantly better than
EWMA.
For proofing the efficiency of the proposed POMDP
controller on structural and crooked changed, the third
layer with the medium range of noise is selected for
comparison. Fig. 8 illustrates this comparison. Although
for case B , both POMDP and EWMA controller are
performing slightly better than case A, yet POMDP can
compensate both types of disturbances supremely.
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TABLE III

MEAN AND STANDARD DEVIATION OF st (k)(Ut (k)) FOR EACH OVERLAY FACTOR AND LAYER WITH STRUCTURAL CHANGE AND METROLOGY DELAY

TABLE IV

MEAN AND STANDARD DEVIATION OF st (k)(Ut (k)) FOR EACH OVERLAY FACTOR AND LAYER WITH CROOKED CHANGE WITH METROLOGY DELAY

Fig. 8. Effect of disturbance (structural/crooked) comparison on st (k) between POMDP and EWMA controller for third layer, and ten overlay factor (colors
are specifying the overlay factors).

8) Evaluating the performance of γt : In order to test the
effect of the weighting parameter, γt , on the performance
of the POMDP controller and optimization process,

γt ∈ (0, 1) is tested separately in a simulation exper-
iment. The simulation scenario for testing the effects
of γt is demonstrated based on the fact that γt can
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Fig. 9. Effects of tuning algorithm for weighting the γt parameter for the crooked change (case A), different colors show different layers.

Fig. 10. Effects of tuning algorithm for weighting the γt parameter for the structural change (case B), different colors show different layers.

be assigned/predicted for each layer based on expert
opinions regards the importance of that layer. Therefore,
two additional conditions are considered in previous
simulation scenario.

a)
∑m

k=1 γt(k) = 1.
b) γt(k) ∝ var(Qt (k)).

The simulation is conducted when the error has either
model A or B patterns in Fig. 1, concerning both con-
ditions. Finally, the results are compared with the initial
cases in the previous simulation without any conditions
on γt . Figs. 9 and 10 illustrate the comparison results.
The simulation results reveal that the tuning algorithm
is the best solution for estimating γt . However, if there
is an interest in prioritizing layers with higher variation
in the real setting, the weighting parameter γt should be
selected in a direct relationship with the size of overlay
error for each specific layer.

9) Texting controllability and convergence: In order
to evaluate the convergence assumptions in
Section III-A, learning rates αt and α′t are used
to ensure the convergence rate of the proposed POMDP
controllers according to the POMDP convergence
checking rules in Section III-A. Consider the first and
third convergence rules, the value of αt and α′t are close
to zero and initiated as 0.001 and 0.01, respectively.

Fig. 11. Learning rate comparison for cases A and B in Fig. 1, between
200 runs and fifth layer.

The result of the learning rate comparison between
200 runs is calculated using

|R∗(xt (k), ut (k))− R∗(xt−1(k), ut−1(k))| < 0.01.

The result proves that for both cases, on average, after
25 runs (one lot) with ε = 0.01, the POMDP system reaches
the steady-state condition and can reduce the cumulative error
(see Fig. 11).
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Moreover, as the values of α and α′ are close to 0,
then the relaxed convergence condition based on (10),
|R∗(xt (k), ut(k)) − (1 − αt )R∗(xt−1(k), ut−1(k))| < ε, could
be approximated as

|αt ×
[

st − 1

t
E

{∑
t

G(st (k))

}]
| < ε. (18)

V. CONCLUSION

The summary of our contributions in this article are as
follows.

1) The problem of controlling the state-space model of
multilayer overlay error in the photolithography process
is drafted as a stochastic optimization problem to min-
imize the integrated stack-up error and the policy of
selecting the state vector.

2) The state-space model is modulated in the Bayesian
framework, where the uncertainty parameters are
assumed to be stochastic and unknown. For assessing
the best parameter setting of the control system without
relying on the tuning algorithm and compensating the
effect of uncertainties, the Gibbs sampler is used to
estimate the probability of the state vector.

3) The POMDP control system is engaged with the opti-
mization goal to handle the drawbacks of the traditional
EWMA controller, which provides only a performance
measure for response outputs rather than the desired
output. The proposed strategy is tested for the MIMO
system, and the result is outperformed better than the
EWMA controller.

4) POMDP control system is designed to deal with unob-
servable information due to process delay and measure-
ment delay.

5) The Gibbs sampler algorithm is applied to deal with
the difficulties of optimizing the belief function of the
POMDP technique.

For future research, applying the same technique for inves-
tigating the model for 3D IC is planned out. This approach
would be applied to different stacking levels, including wafer-
to-wafer, chip-to-wafer, and chip-to-chip.

As POMDPs may require a large state and/or action space,
a limitation of our study is related to “curse of dimensionality”
and “curse of ambiguity” [45] which would be a fruit future
research direction.

The learning-based systems can be applied to many smart
manufacturing and Industry 4.0 applications [46], [47] based
on partially observable processes. Our proposed POMDP the
method can be useful for coping with many practical problems
such as dynamic decision-making for both microlevel and
macrolevel problems in industry 4.0 and society 5.0 [48], [49],
often, decision-makers have incomplete information about the
state of the system, and consequently, this situation leads them
to apply POMDPs.
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