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Abstract

Cybersecurity has emerged as a critical global concern. Intrusion Detec-
tion Systems (IDS) play a critical role in protecting interconnected
networks by detecting malicious actors and activities. Machine Learning
(ML)-based behavior analysis within the IDS has considerable poten-
tial for detecting dynamic cyber threats, identifying abnormalities, and
identifying malicious conduct within the network. However, as the
number of data grows, dimension reduction becomes an increasingly
difficult task when training ML models. Addressing this, our paper intro-
duces a novel ML-based network intrusion detection model that uses
Random Oversampling (RO) to address data imbalance and Stacking
Feature Embedding based on clustering results, as well as Principal
Component Analysis (PCA) for dimension reduction and is specifically
designed for large and imbalanced datasets. This model’s performance
is carefully evaluated using three cutting-edge benchmark datasets:
UNSW-NB15, CIC-IDS-2017, and CIC-IDS-2018. On the UNSW-NB15
dataset, our trials show that the RF and ET models achieve accu-
racy rates of 99.59% and 99.95%, respectively. Furthermore, using the
CIC-IDS2017 dataset, DT, RF, and ET models reach 99.99% accuracy,
while DT and RF models obtain 99.94% accuracy on CIC-IDS2018.
These performance results continuously outperform the state-of-art,
indicating significant progress in the field of network intrusion detec-
tion. This achievement demonstrates the efficacy of the suggested
methodology, which can be used practically to accurately monitor and
identify network traffic intrusions, thereby blocking possible threats.

Keywords: Intrusion detection system; Feature extraction; Random
oversampling; Principal component analysis; Machine learning

1 Introduction

Cybersecurity, in the current era, has emerged as an international imperative,
driven by the critical need to protect systems from unwanted, unauthorized,
and unforeseen interference (Mueller, 2021). These interferences can range from
data breaches and information theft to threats that undermine the integrity
and functionality of systems. Safeguarding against such threats is paramount
in ensuring the smooth operation of systems, protecting sensitive data, and
preserving user trust (Marwala, 2023). Intrusion Detection Systems (IDS) have
traditionally served as a cornerstone of perimeter security (George et al, 2023;
Nguyen et al, 2023).

These systems are crafted with the purpose of uncovering and responding
to suspicious or malicious activities within a network or system. Neverthe-
less, the conventional signature-based intrusion detection methods, reliant on
established attack patterns and signatures, have been found lacking in the
face of ever-evolving and sophisticated cyber threats. These solutions are engi-
neered to identify and react to questionable or potentially harmful actions
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occurring within a network or system. Nevertheless, conventional intrusion
detection methods, which hinge on established attack patterns and signatures,
have demonstrated their inadequacy when confronted with ever-changing and
increasingly complex cyber threats (Khan et al, 2022; Talukder et al, 2023a).

To address the shortcomings of traditional IDS, the cybersecurity com-
munity has turned its attention to Machine Learning (ML) as a promising
solution. ML-enabled IDS leverages behavior analysis to detect anomalies and
threats, offering the potential for significantly higher accuracy and faster detec-
tion times (Schmitt, 2023; Preuveneers and Joosen, 2021). This paradigm shift
in intrusion detection holds the promise of not only bolstering security but
also reshaping the privacy landscape. This shift towards ML-enabled intrusion
detection has sparked concerns regarding both privacy and the field of data sci-
ence (Singh and Singh, 2023; Mohammadi et al, 2019). ML algorithms, while
effective at identifying threats, often require access to sensitive data. Balanc-
ing the need for security with privacy concerns is a challenge that demands
innovative and ethical solutions (Allahrakha, 2023).

ML in cybersecurity serves as a powerful tool to augment the ability of sys-
tems to understand diverse patterns and forecast potential data threats (Sarker
et al, 2020). It optimizes processing and training procedures to construct
models that can effectively safeguard systems against dubious and spyware
activities (Hussain et al, 2020; Talukder et al, 2023a). It is a transforma-
tive technology that empowers systems to learn and adapt from data, making
intelligent decisions without being explicitly programmed (Mishra and Tyagi,
2022). In the context of IDS, ML algorithms utilize historical and real-time
data to identify patterns of normal behavior and anomalies that may indi-
cate security threats. By training on diverse datasets, these algorithms become
proficient at recognizing new and emerging attack vectors. ML enhances IDS
systems by providing faster and more accurate threat detection, reducing
false positives, and adapting to evolving threats (Jayalaxmi et al, 2022). It
empowers security systems to efficiently safeguard networks and data against
unauthorized access and malicious activity (Kafi and Akter, 2023).

In today’s landscape, the optimization of processing and training pro-
cedures is imperative for constructing models that can effectively safeguard
systems against dubious and spyware activities (Sarker et al, 2020). However,
it’s worth noting that many contemporary ML-IDS solutions tend to be lim-
ited by their reliance on small, outdated and balanced datasets for model
development (Istiaque et al, 2021; Cholakoska et al, 2021; Narayanasami et al,
2021). The focus on these smaller, often outdated datasets, coupled with imbal-
ances in the data distribution, while facilitating preprocessing and training
with diverse ML algorithms, raises questions regarding the practical applica-
bility of these models in real-world scenarios, specifically when dealing with
big data. The achievable accuracy of such models often hinges on the intrica-
cies of dataset preprocessing and the selection of suitable algorithms, adding
an additional layer of complexity to their effectiveness (Norwahidayah et al,
2021; Bhati and Rai, 2021).



4 Accepted in Journal of Big Data (Q1, IF:8.1, SCIE) on Jan 19, 2024

Therefore, we need to develop and validate ML-based intrusion detec-
tion for large, imbalanced datasets where all potential attack scenarios are
encompassed. To address this gap, Our research places a significant emphasis
on constructing a robust and well-structured framework that accommodates
the detection of network intrusion in a more efficient manner on substantial
datasets. We employ data preprocessing techniques, including data normaliza-
tion, feature resampling, Stacking Feature Embedded and dimension reduction
techniques, to address the unique challenges posed by big datasets. The Key
techniques of our approach are as follows:

• Stacking Feature Embedded (SFE): This technique enhances detection accu-
racy by introducing meta-features, providing a deeper insight into data
patterns and anomalies.

• Random Oversampling (RO): By mitigating class imbalance issues, RO
ensures equitable consideration of minority classes, resulting in a more
balanced and reliable intrusion detection system.

• Principal Component Analysis (PCA): PCA optimizes the feature space,
reducing dimensionality while preserving vital information, thus enhancing
the efficiency and effectiveness of our ML models.

This comprehensive approach seeks to bridge the gap in intrusion detection,
accommodating the intricacies of large, imbalanced datasets, and improving
the robustness of security measures in the face of evolving threats.

Our proposed model’s performance is rigorously evaluated across a spec-
trum of ML classifiers, including Decision Tree (DT), Random Forest (RF),
Extra Tree (ET), and Extreme Gradient Boosting (XGB). These classifiers are
trained using a reduced feature set. We assess our model using a comprehensive
set of performance indicators, encompassing precision, recall, f1-score, confu-
sion matrix, accuracy and the roc curve. The ML algorithms integrated into
our framework demonstrate an exceptional ability to detect attacks, consis-
tently achieving accuracy rates exceeding 99.9%. This thorough performance
evaluation ensures the robustness and reliability of our intrusion detection
system, highlighting its effectiveness in identifying and countering potential
threats. In summary, this paper’s contribution can be encapsulated as follows:

• We proposed a novel intrusion detection approach using efficient pre-
processing, oversampling management, stacking feature embedding, and
dimensionality reduction to enhance intrusion detection performance.

• We addressed the issue of imbalanced data by implementing a random over-
sampling strategy to ensure balanced consideration of minority and majority
classes, leading to more robust intrusion detection.

• The introduction of Stacking Feature Embedded (SFE) enhances detec-
tion accuracy by introducing meta-features, providing a comprehensive
understanding of data patterns and anomalies.

• Our utilization of Principal Component Analysis (PCA) for feature extrac-
tion optimizes intrusion detection performance while minimizing the dimen-
sionality of the original dataset.
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• Evaluation of our approach with various ML algorithms on popular large and
imbalanced datasets demonstrates its effectiveness in significantly improving
intrusion detection accuracy and robustness.

The subsequent sections of this paper offer a concise overview of our pro-
posed work. In Section 2, we delve into the literature review, providing insights
into the existing body of knowledge. Section 3 is dedicated to the detailed
description of our proposed methodology. Section 4 outlines the experimental
setup and evaluation procedures. Finally, in Section 7, we draw the conclusions
from our findings and explore avenues for future research.

2 Literature Review

ML strategies have been widely utilized in cybersecurity over the last several
decades due to their capacity to retrieve hidden patterns on the variations
between malevolent and legitimate patterns (Zhang et al, 2020; Das et al,
2023). ML is an effective research tool for detecting any anomalies in the
network stream of traffic (Bhavani et al, 2020). As a result, previous researchers
explored a variety of algorithms based on ML as well as hybrid and DL models
in IDS.

2.1 ML Approaches

Moualla et al (2021) proposed a revolutionary network IDS model that plays
a crucial role in network security and combats existing cyberattacks on net-
works utilizing the UNSW-NB15 data as a baseline. It was a dynamically
scalable multiclass ML-based network with several phases. The imbalance was
handled by SMOTE technique, after that based on the Gini Impurity crite-
rion, it employed the ET Classifier and finally, a pre-trained Extreme Learning
Machine (ELM) was utilized to classify each of the attacks using binary. Using
the outputs of the ELM classifier as inputs to a fully connected layer, a logis-
tic regression layer was employed to produce soft judgments for all classes and
attained 98.43% accuracy.

Kasongo and Sun (2020b) presented a filter-based feature-dropping tech-
nique on the UNSW-NB15 IDS dataset, employing the XGB algorithm,
and assessed its performance using various predictive algorithms, including
Decision Tree (DT), Artificial Neural Network (ANN), Logistic Regression
(LR), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM). They
demonstrated that their approach led to a significant enhancement in binary
accuracy, increasing it from 88.13% to 90.85%. The overall accuracy rates for
binary were 90.85% for DT, 84.4% for ANN, 77.64% for LR, 84.46% for KNN,
and 60.89% for SVM. For multiclass, the accuracy rates were 67.57% for DT,
77.51% for ANN, 65.29% for LR, 72.30% for KNN, and 53.95% for SVM, all
of which were evaluated using the 19 optimal selected features.

Nimbalkar and Kshirsagar (2021) offered a feature selection method for
IDS using Information Grain (IG) and Grain Ratio (GR) where they selected
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50% of the top most features to build their model detecting Denial of Service
(DoS) and Distributed Denial of Service (DDoS) attacks. The studies were
carried out using well-known datasets, such as KDDCUP’99 and BOT-IOT.
They selected 16 and 19 features for BOT-IOT and KDDCUP’99 datasets,
respectively and then trained the model using the JRip classifier to reach the
desired performance. They achieved 99.99% and 99.57% accuracy for BOT-
IOT and KDDCUP’99 datasets, respectively.

Kumar et al (2020) presented IDS model that detects intrusions based
on misuse to protect networks from modern threats, such as DoS attacks or
exploits, probes, generics and so on. Intrusion detection rate (IDR) and false
alarm rate (FAR) were determined using the UNSW-NB15 dataset. The IG
and C5 classifier were utilized where, IG was used to pick 13 out of 47 features
for feature selection and C5 gave 99.37% accuracy rate.

Ahmad et al (2021) proposed a feature clustering-based ML model
where clusters were applied for Flow, Message Queuing Telemetry Transport
(MQTT) and Transmission Control Protocol (TCP). The clustering process
eliminated the overfitting that was the curse of dimensionality and data-set
inequity. Various supervised ML methods were utilized on the clusters, includ-
ing RF and SVM. They employed the UNSW-NB15 dataset to train and test
the model and found that RF produced 98.67% accuracy in binary and 97.37%
accuracy in multiclass.

Ahmad et al (2021) introduced an innovative ML model based on feature
clustering, with distinct clusters created for Flow, Message Queuing Telemetry
Transport (MQTT), and Transmission Control Protocol (TCP). This cluster-
ing approach effectively addressed the challenges of overfitting arising from
high dimensionality and dataset imbalances. They applied a range of super-
vised machine learning methods, including RF and SVM, to these clusters.
Using the UNSW-NB15 dataset for model training and evaluation, their results
showed that RF achieved impressive accuracy, reaching 98.67% in binary
classification and 97.37% in multi-class classification.

Kshirsagar and Kumar (2021) presented a filter-based feature selection
technique that leveraged IG Ratio (IGR), Correlation Ratio (CR), and ReliefF
(ReF). This method generated a feature subset by considering the average
weight of each classifier, complemented by a Subset Combination Strategy
(SCS). For CICIDS 2017 dataset, the number of features was lowered from
77 to 24 and for KDDCUP’99, it was cut from 41 to 12. For CIC-IDS2017,
it achieved a 99.95% accuracy rate in 133.66 sec using PART and for the
KDDCUP’99 dataset, it achieved a 99.32% accuracy rate and took 11.22 sec.

In order to minimize the volume of the dataset, (Mugabo et al, 2021)
employed evolutionary approach-based feature selection (EFS) and a concur-
rent MapReduce technique was applied to partition the input data into the
most crucial characteristics. After that, their model was classified for either
normal or attack using the RF classifier. They used the popular KDDCUPP’99
dataset to evaluate performance and classify normal and deviant behavior.
They selected 15 features to assess their model’s performance and its accuracy
was found almost 93.9%.
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Talita et al (2021) developed an innovative approach that integrates Par-
ticle Swarm Optimization (PSO) for feature selection with the Naive Bayes
(NB) classification algorithm, which was applied to the KDDCUP’99 dataset.
This dataset comprised of over 400 thousand records and featured more than
40 characteristics. To optimize computational resources and memory usage,
PSO was employed to select the most relevant 38 features from the original
set of over 40. The outcome of this method yielded an impressive accuracy
rate of 99.12%, demonstrating superior efficiency in terms of both computa-
tion time and classification accuracy when compared to other feature selection
techniques.

Seth et al (2021) developed an IDS model that reduces prediction delay by
minimizing the model’s sophistication using a hybrid feature selection (HFS)
strategy. A quick gradient boosting technique called Light Gradient Boosting
Machine (LightGBM) was used to build the model. This approach cut predic-
tion latency by 44.52% to 2.25% and model development time by 52.68% to
17.94% using the CIC-IDS2018 dataset. It can achieve excellent accuracy by
combining attribute choosing and LightGBM. The developed model achieved
97.73%, 96%, 99.3%, accuracy, sensitivity, precision rate respectively and a
relatively low prediction latency.

Hammad et al (2021) presented a model using t-SNERF to identify the
cyber-attacks where t-SNERF was used for feature correlations, data reduction
and trained the model using RF. To evaluate the model UNSW-NB15, CIC-
IDS2017 and Phishing were employed. The offered innovative methodology
outperformed current methods. The accuracy rate was 100% for UNSW-NB15,
99.70% for Phishing and 99.78% for CIC-IDS2017.

Guezzaz et al (2021) focused on enhancing the reliability of Network
Intrusion Detection (NID) through the utilization of the DT (Decision Tree)
algorithm. Their approach entailed two key steps: data quality improvement
and feature selection based on entropy decision, followed by the construction of
a dependable NID system using the DT classifier. This proposed model under-
went evaluation using two well-known datasets, NSL-KDD and CIC-IDS2017,
and yielded impressive results. Specifically, the model achieved a remarkable
accuracy of 99.42% on the NSL-KDD dataset and 98.80% on the CIC-IDS2017
dataset.

Stiawan et al (2020) offered a strategy for analyzing integral and essential
aspects of massive network data, increasing traffic anomaly detection accuracy
and speed. They used the CIC-IDS2017 dataset and picked important and
significant features using IG, as well as sorting and grouping features according
to their minimal weight values and then train the dataset using various ML
classifiers. The number of relevant and meaningful attributes generated by IG
has a considerable impact on accuracy and execution time. A number of ML
algorithms, such as Random Tree (RT), RF, NB, Bayes Net (BN) and J48
were used to train the model but RF provided the best accuracy. In the RF
classifier, they used 22 relevant selected features, had the best accuracy of
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99.86%, whereas the J48 classifier algorithm, which used 52 relevant selected
features but took longer to execute, had the highest accuracy of 99.87%.

2.2 Deep Learning Approaches

Aleesa et al (2021) explored the application of DL models for binary and mul-
ticlass classification in the context of IDS. They conducted their evaluations
using the UNSW-NB15 dataset. Specifically, the study assessed the effective-
ness of three distinct types of neural network models: Deep Neural Network
(DNN), Recurrent Neural Network (RNN), and ANN. They used data clean-
ing techniques, such as handling missing values and categorical values, followed
by min-max normalization in order to make it more accurate. The efficiency
was evaluated on accuracy; where, the ANN, RNN and DNN provided 99.26%,
85.42%, 99.22% for binary classification and 97.89%, 85.4% and 95.9% for
multilabel classification respectively.

Choudhary and Kesswani (2020) introduced an IDS based on DNN for
identifying IoT-related attacks. They evaluated the effectiveness of the DNN-
based approach by testing it on three widely employed datasets: UNSW-NB15,
KDDCUP’99 and NSL-KDD. The outcomes indicated that the DNN-based
method achieved an accuracy rate of 91.50% when applied to each of these
datasets.

In the study by Al and Dener (2021), a more effective IDS model was
introduced, utilizing a combination of Long Short-Term Memory (LSTM) and
Convolutional Neural Network (CNN) architectures. To address the issue of
imbalanced datasets, they applied the Synthetic Minority Oversampling Tech-
nique (SMOTE) in conjunction with Tomek-Link, referred to as the STL
method. The research implementation was carried out using PySpark, and
two distinct datasets, namely CICIDS-001 for multiclass and UNSW-NB15
for binary classification, were used to evaluate the model’s performance. The
proposed method was benchmarked against various popular ML and DL
algorithms. In multilabel classification, the proposed approach performed an
outstanding accuracy of 99.83%, while in binary classification, it demonstrated
a high accuracy of 99.17%.

Adeyemo et al (2019) explored the effectiveness of network IDS using
DL and ensemble techniques. They applied an LSTM model, a homogeneous
approach with an optimized bagged RF and a heterogeneous approach with
four standard classifiers. The evaluation was conducted on the UNSW-NB15
dataset, split into two configurations: two and multi-attack datasets. The
results showed that the LSTM achieved an 80% detection accuracy for the
binary dataset and 72% for the multi-attack dataset. The homogeneous ensem-
ble method reached impressive accuracy rates of 98% for the binary dataset
and 87.4% for the multi-attack dataset. Similarly, the heterogeneous ensemble
method also performed well, with a detection accuracy of 97% for the binary
and 85.23% for the multi-attack dataset. This research highlights the promis-
ing performance of ensemble methods in the context of Intrusion Detection
Systems.
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Kim et al (2020) developed a DL model primarily focusing on detect-
ing denial of service (DoS) attacks. The KDDCUP’99 and CSE-CIC-IDS2018
were employed to assess the model’s performance. Notably, the latter dataset
contained more sophisticated DoS attacks than the former. The study concen-
trated on the DoS category within both datasets and harnessed a CNN for
model development. A comparative analysis was conducted between the CNN
and RNN. In the case of KDDCUP’99, the CNN demonstrated impressive
accuracy rates, surpassing 99% accuracy in binary and multiclass, while the
RNN achieved 99% accuracy in binary and 93% accuracy in multiclass. For
the CSE-CIC-IDS2018 dataset, the CNN model exhibited an average accuracy
of 91.5%, whereas the RNN model averaged 65% accuracy. The CNN model
consistently outperformed the RNN model in identifying specific DoS attacks
characterized by similar attributes.

2.3 Hybrid Approaches

Bhardwaj et al (2021) presented a hybrid strategy that combines a DNN model
with Ant Colony Optimization (ACO) for learning premium hyperparameters
for successful DNN classification in a cloud setting. DNN detects attacks more
accurately by the usage of ideal settings. They used the CIC-IDS2017 dataset
and got well performance. The detection and accuracy performance are both
superior to state-of-the-art approaches, at 95.74% and 98.25%, respectively.

Khan (2021) introduced a novel approach known as the Hybrid Convo-
lutional Recurrent Neural Network for IDS (HCRNNIDS). This approach
represents a hybrid IDS paradigm that leverages DL techniques to predict
and classify malicious intrusions on the internet. In this model, the CNN
was responsible for gathering local information through convolution, while the
RNN was employed to capture temporal features, thereby enhancing the effec-
tiveness and predictive capabilities of the ID system. To assess the model’s
performance, the researchers conducted simulations using publicly available ID
data, focusing on the contemporary and reputable CSE-CIC-DS2018 dataset.
Through the application of a 10-fold cross-validation methodology, the pro-
posed hybrid model exhibited significant improvements over traditional ID
approaches. It achieved a remarkable level of accuracy in fraudulent detection
and prevention, reaching up to 97.75% for the CIC-IDS2018 dataset.

Kasongo and Sun (2020a) presented a Wrapper-based Feature Extraction
Unit (WFEU) that leverages the Extra Trees technique to create a reduced
optimum feature vector for a Feed-Forward Deep Neural Network (FFDNN)
wireless IDS system. The proficiency was studied using the UNSW-NB15 and
AWID ID datasets. Several ML algorithms, such as RF and SVM are compared
to WFEU-FFDNN as well as NB and DT. Using the UNSW-NB15, the WFEU
produced an ideal feature vector consisting of 22 features and achieved an
overall accuracy of 87.10% for binary and 77.16% for multiclass. On the other
hand, for AWID, 26 features were selected and revealed an accuracy of 99.66%
for binary and 99.77% for multiclass.
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Kasongo and Sun (2020a) introduced a Wrapper-based Feature Extraction
Unit (WFEU), which harnessed the power of the Extra Trees technique to
construct an optimized and reduced feature vector tailored for a Feed-Forward
Deep Neural Network (FFDNN) wireless IDS. To evaluate its efficiency, they
conducted experiments on the UNSW-NB15 and AWID intrusion detection
datasets. Comparative analyses were performed against various ML algo-
rithms, including RF and SVM, along with conventional approaches such as
NB and DT. On the UNSW-NB15 dataset, the WFEU method yielded an
optimal feature vector consisting of 22 features, achieving an impressive over-
all accuracy of 87.10% for binary and 77.16% for multiclass. For the AWID
dataset, a feature set of 26 features was selected, resulting in remarkable
accuracy rates of 99.66% for binary and 99.77% for multiclass.

Zhang et al (2020) proposed a novel strategy for addressing imbalanced
intrusion detection, surpassing existing intrusion detection algorithms. They
introduced the SGM-CNN model, which combined Synthetic Minority Over-
sampling Technique (SMOTE) with a Gaussian Mixture Model (GMM).
The model was validated using the UNSW-NB15 and CIC-IDS2017 datasets.
On the UNSW-NB15 dataset, the model exhibited remarkable accuracy
rates of 99.74% for binary and 96.54% for multiclass. Furthermore, for the
CIC-IDS2017 dataset, achieved an impressive detection rate of 99.85%.

Hassan et al (2020) introduced a hybrid DL model for efficient network
intrusion detection, combining CNN and Weight-Dropped Long Short-Term
Memory (WDLSTM). The CNN was employed to extract crucial features from
IDS, while the WDLSTM was utilized to capture long-term dependencies and
mitigate gradient vanishing issues. Their experiments focused on the UNSW-
NB15 dataset. The CNN-WDLSTM model exhibited an overall accuracy rate
of 97.17% for binary and 98.43% for multiclass.

The summary of related papers can be found in Table 1

2.4 Limitations of the Existing Works

One notable limitation in the existing works is their reliance on older datasets
such as KDDCUP’99 and NSLKDD, which lack recent attack scenarios fea-
tured in datasets like CIC-IDS2018. Consequently, these works may not
effectively address contemporary and evolving cyber threats. Furthermore,
many of these works overlook the importance of data balancing techniques.
This omission leads to variations in their model’s performance, particularly in
terms of false positive and negative as well as true positive and negative rates.
Moreover, the performance scores of existing works are inadequate for effi-
cient network attack detection. As a result, their models may not be suitable
for real-world scenarios where data imbalance is a common issue. Addition-
ally, most of these papers employ the use of the complete feature set for
conducting their experiments. This approach can be time-consuming and com-
putationally intensive, making it less practical for real-time anomaly detection
in large-scale network environments. Another notable limitation is the absence
of time complexity analysis in the majority of these papers. Understanding
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SL. NO ML Technique Algorithm Author Dataset
Accuracy (In %)

Binary Multi-class
1

ML

RF Ahmad et al (2021)

UNSW-NB15

98.67 97.37

2 ELM Moualla et al (2021) 98.43

3

DT

Kasongo and Sun (2020b)

90.85 67.57

ANN 84.4 77.51

LR 77.64 65.29

KNN 84.46 72.30

SVM 60.89 53.95

4 C5 Kumar et al (2020) 99.3

5 PART Kshirsagar and Kumar (2021)
CIC-IDS2017 99.95

KDDCUP’99
99.32

6 MapReduce+RF Mugabo et al (2021) 93.9

7 PSO+NB Talita et al (2021) 99.12

8 HFS+LightGBM Seth et al (2021) CIC-IDS2018 97.73

9 IG+GR+JRip Nimbalkar and Kshirsagar (2021)
KDDCUP’99 99.57

BOT-IOT 99.99

10 t-SNERF Hammad et al (2021)
UNSW-NB15 100

CIC-IDS2017 99.78

Phishing 99.70

11 DT Guezzaz et al (2021)
NSL-KDD 99.42

CIC-IDS2017
98.80

12
IG+RF

Stiawan et al (2020)
99.86

IG+J48 99.87

13

Deep Learning

DNN
Aleesa et al (2021) UNSW-NB15

99.92 95.9

RNN 85.42 85.4

ANN 99.26 97.89

14 DNN Choudhary and Kesswani (2020)
KDDCUP’99

91.50
NSL-KDD

UNSW-NB15

15 LSTM+CNN Al and Dener (2021)
CICIDS-001 99.83

UNSW-NB15 99.17

16 CNN Hassan et al (2020)
KDDCUP’99 99

CIC-IDS2018 91.50
17

Hybrid Learning

DNN+ACO Bhardwaj et al (2021) CIC-IDS2017 98.25

18 CNN+RNN Khan (2021) CIC-IDS2018 97.75

19 WFEU+FFDN Kasongo and Sun (2020a)
AWID 99.66 99.77

UNSW-NB15
87.10 77.16

20 SGM+CNN Zhang et al (2020)
99.74 96.54

CIC-IDS2017 99.85

21 WDLSTM+CNN Hassan et al (2020) UNSW-NB15 97.17 98.43

Table 1 Related work summary of various ML Techniques

the computational demands of their algorithms is crucial for assessing their
feasibility in real-world applications. Lastly, No existing works explore the
Stacking Feature Embedded approach, a method that can potentially enhance
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intrusion detection accuracy by incorporating meta-features. The omission of
this approach limits the comprehensiveness and effectiveness of their intrusion
detection models.

3 Methodology

This section describes our proposed framework and data preprocessing tech-
niques, including feature resampling and scaling, stacking feature embedded
and feature extraction. We also provide a brief recap of the ML algorithms
employed for intrusion detection. The proposed framework for stacking feature
embedded and dimension reduction for intrusion detection on big and imbal-
anced datasets can ensure a reliable secure network by detecting the receiving
packets as normal or attack packets. The schematic block diagram of our pro-
posed paradigm is illustrated in Figure 1. The approach is structured into the
following phases:

• Step-1: Initially, preprocessing is accomplished by handling the missing
value, removing space from column names, dropping the duplicate rows,
merging the similar classes with low instances and reducing the size of the
dataset by converting data types int64 to int32 and float64 to float 32. This
step is crucial for data quality improvement. It addresses missing values,
data type conversions, and other data cleaning tasks to prepare the dataset
for analysis.

• Step-2: In the feature scaling step, we use standardization for input features
and label encoding for output features. Standardization of input features
and label encoding of output features ensure that the data is on the same
scale, which is essential for ML algorithms.

• Step-3: In the feature resemble step, we use Random Oversampling (RO)
by adding random samples to the minority class to solve the problem of the
imbalanced dataset and make it a balanced dataset. To address the class
imbalance using RO in the dataset, making it more suitable for training ML
models.

• Step-4: In the stacking feature embedded step, we utilize the clustering
results as meta-features, enhancing the original features within the IDS
dataset. Using clustering results as meta-features enriches the dataset with
additional information derived from underlying patterns and structures,
which can enhance model performance.

• Step-5: In the feature extraction step, we reduce the dimensionality of
the dataset by extracting the feature using Principal Component Analy-
sis (PCA). Dimensionality reduction using PCA can help improve model
efficiency by reducing the number of features while retaining essential
information.

• Step-6: In this phase, we perform data splitting to create separate training
and testing subsets from the pre-processed dataset. We employ a k-fold
cross-validation technique with k set to 10. This step is crucial to enhance
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accuracy and evaluate the model’s performance effectively. It ensures that
the model is rigorously tested on different subsets of the data.

• Step-7: In this step, we evaluate the model’s performance using four estab-
lished ML algorithms: DT, RF, ET, and XGB Classification. We employ
k-fold cross-validation for these models, aiming to identify the most suitable
ML models for IDS.

• Step-8: In the final phase, we assess the model’s performance using various
performance metrics, including Precision, Recall, Confusion Matrix, Accu-
racy, F1-score, and ROC Curve. These metrics serve as benchmarks for
comparing our model’s performance with existing models, enabling us to
select the best-performing model for the IDS task.

3.1 Data Collection

We have utilized two benchmark big datasets for our research schemes, namely
UNSW-NB15 (Moustafa and Slay, 2015) and CIC-IDS2017 (Sharafaldin et al,
2018b). Both datasets are realistic to the IDS environments and have up-to-
date attack categories to detect attacks. The following sections give a closer
look at each of the datasets.

3.1.1 UNSW-NB15

UNSW-NB 15 is a fairly recent dataset that comprises a vast quantity of
internet traffic patterns with 9 types of malicious activities, as opposed to
KDD’98, NSL-KDD, KDDCUP’ 99, CAIDA, Kyoto 2006 + and ISCX dataset
(Protić et al, 2023). It includes current minimal imprint assaults as well as
contemporary Netflow for both regular and unusual situations. The IXIA per-
forectStrom apparatus was utilized within the Cyber Run Lab of the ACCS
(Australian Center for Cyber Security) to make synthetic modern assault and
genuine advanced ordinary behaviors for creating the crude network packets
of the UNSW-NB15 dataset (Moustafa and Slay, 2015). By catching100 GB
of the crude activity utilizing the Tcpdump instrument. To create completely
49 features with the class, 12 algorithms are created by employing Argus and
Bro-IDS devices. Within the four CSV records, two million and 540,044 records
are put away. A setup is conducted on the dataset by dividing it into a train-
ing set and a testing set. It has a total of 257673 entries were 175341 entries
in the training set and 82332 entries in the testing set. With their respective
class labels, the dataset includes both real-world modern typical behavior and
staged attack actions from the present day. It incorporates 9 distinct contem-
porary new attacks as well as a large range of real-world activities (Moustafa
and Slay, 2016). Among the sorts of attacks are fuzzier, backdoor, analysis,
reconnaissance, exploit, generic, DoS, shellcode and worm attacks. The data
are very unbalanced in this dataset. Figures 2 and 3 demonstrate the distribu-
tion of benign and attack data for binary and multi labels before preprocessing,
after preprocessing and after oversampling, respectively, while Table 2 briefly
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Input DatasetData Collection

Data preprocessing

Handling missing values

Remove space from columns
names

Drop the duplicate rows 

Feature Resampling using Random Oversampling

Merge the similar classes with low
instance

Reduce the dataset size by converting datatypes

Dimension Reduction using PCA

Standardization Label Encoding

Feature Scaling

K-Fold Cross Validation (K=10)

Decision Tree
Random Forst
Extra Tree
XGBoost

ML Models

Performance Analysis

Train data Test
data

Train
models

Test models

Stacking Feature Embedded using Clustering

Fig. 1 Proposed framework for stacking feature embedded with PCA for intrusion detec-
tion.

describes all of the attack classes in this dataset. In Table 3 shows the frequency
distribution of attack categories.

3.1.2 CIC-IDS2017

Intrusion Detection Systems (IDSs) and Intrusion Prevention Systems (IPSs)
serve as vital defenses against the relentless and increasingly sophisticated
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Attack Categories Brief description
Fuzzers By supplying a vast volume of random data, the insider tries to crash a

software, operating system, or network.
Backdoor Cyber attackers can get illegal access to websites using this form of software.

By focusing on vulnerable entry points, the intruders were able to disseminate
malware throughout the system.

Analysis Pay special attention to malware attacks and computer intrusions in which
attackers gain permissions by utilizing their technological capabilities.

Reconnaissance Gathers data on system flaws that can be used to gain control of the system.
Exploit A piece of software that exploits security flaws and vulnerabilities. An attacker

can gain unrestricted access with this attack.
Generic Has the ability to decrypt all block ciphers without having to know the

cipher’s structure.
DoS User access to machines and network resources can be suspended by an

attacker. By delivering too much confusing traffic, the attacker overwhelms
the network.

Shellcode It is a sequence of instructions that executes software commands to harm a
machine.

Worm It includes security flaws that attack the host machine and spread throughout
the network. It is capable of exploiting many applications’ security flaws.

Table 2 Briefly describe all of the attack classes in the UNSW-NB15 dataset

Attack Categories Count % (percentage)
Normal 93000 36.09
Generic 58871 22.85
Exploits 44525 17.28
Fuzzers 24246 9.41
DoS 16353 6.35
Reconnaissance 13987 5.43
Analysis 2677 1.04
Backdoor 2329 0.90
Shellcode 1511 0.59
Worms 174 0.07
Total 257673 100

Table 3 The frequency distribution of attack categories of the UNSW-NB15 dataset

landscape of network attacks. An ongoing challenge in the field is the scarcity
of dependable test and validation datasets, which hinders the consistent and
accurate evaluation of anomaly-based intrusion detection methods, as noted
by Sharafaldin et al. in 2018 (Sharafaldin et al, 2018b). One promising solution
to this issue lies in the CIC-IDS2017 dataset, which features a comprehen-
sive collection of benign network traffic and a diverse range of contemporary,
frequently encountered cyber attacks. This dataset closely mirrors real-world
scenarios by utilizing PCAPs. Moreover, it provides a detailed summary of
traffic monitoring through the utilization of CICFlowMeter, offering labeled
network flows with key information, including timestamps, source and desti-
nation IP addresses, source and destination ports, protocols, and delineated
attack vectors, all meticulously documented in CSV files, as described by
Sharafaldin et al. in their 2018 work on intrusion detection (Sharafaldin et al,
2018a). To create various kinds of assaults such as Brute Force FTP, Brute
Force SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet and DDoS
presented the B-Profile technology, which profiles the conceptual activity of
individual contacts and produces lifelike benign baseline flow. According to
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(a) before pre-process (b) after pre-process

(c) after oversampling

Fig. 2 Binary frequency distribution of UNSW-NB15 dataset

the dataset’s appraisal methodology which was proposed (Gharib et al, 2016),
there are 11 requirements that must be met in order to create a trustworthy
benchmark dataset. only this dataset meets all of the requirements and hardly
any of the prior IDS datasets were capable of covering those 11 requirements.
The distribution of binary and multi categories of attack labels before prepro-
cessing, after preprocessing and after oversampling is depicted in Figure4 and
Figure5 and attack categories are shown in Table 4.

3.1.3 CIC-IDS2018

The CSE-CIC-IDS2018 dataset (Sharafaldin et al, 2018b), a collaborative
initiative by the Communications Security Establishment (CSE) and the Cana-
dian Institute for Cybersecurity (CIC), endeavors to meet the pressing need
for comprehensive datasets suitable for rigorously testing intrusion detection
systems, with a specific focus on network-based anomaly detection. Anomaly
detection holds significant promise for identifying emerging threats, but its
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(a) before pre-process (b) after pre-process

(c) after oversampling

Fig. 3 multilabel frequency distribution of UNSW-NB15 dataset

Attack Categories Count % (percentage)
BENIGN 2273097 80.3
DoS Hulk 231073 8.16
PortScan 158930 5.61
DDoS 128027 4.52
DoS GoldenEye 10293 0.36
FTP-Patator 7938 0.28
SSH-Patator 5897 0.21
DoS slowloris 5796 0.2
DoS Slowhttptest 5499 0.19
Web Attack 2180 0.08
Bot 1966 0.07
Infiltration 36 0.01
Heartbleed 11 0.01
Total 2830743 100

Table 4 The frequency distribution of attack categories of the CIC-IDS2017 dataset
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(a) before pre-process (b) after pre-process

(c) after oversampling

Fig. 4 Binary frequency distribution of CIC-IDS2017 dataset

practical implementation has been hindered by inherent complexities, demand-
ing extensive testing and evaluation. Conventional datasets used for these
purposes have shown limitations, stemming from privacy constraints, excessive
anonymization, and a lack of representation of contemporary threat trends.
This project seeks to overcome these limitations by introducing a structured
approach for crafting benchmark datasets. This approach revolves around
the creation of user profiles that offer abstract representations of network
events and behaviors. These profiles are thoughtfully aggregated to construct
datasets that exhibit distinctive features, encompassing a wide range of evalu-
ation scenarios. The final dataset encompasses seven distinct attack scenarios,
namely Brute-force, Heartbleed, Botnet, Denial of Service (DoS), Distributed
Denial of Service (DDoS), Web attacks, and network infiltration. The attack
infrastructure comprises 50 machines, while the target organization consists
of 5 departments, incorporating 420 machines and 30 servers. The dataset
includes meticulously collected network traffic and system logs from each
machine, along with the extraction of 80 features through the application of
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(a) before pre-process (b) after pre-process

(c) after oversampling

Fig. 5 multilabel frequency distribution of the CIC-IDS2017 dataset

CICFlowMeter-V3. This dataset constitutes an invaluable resource for the sys-
tematic evaluation of intrusion detection systems and offers a response to the
growing demand for dynamic, adaptable, and comprehensive datasets within
the domain of cybersecurity. It holds substantial promise for contributing to
the advancement of intrusion detection research and its practical implemen-
tation in real-world security scenarios.In our research, we have sampled 10%
of the dataset from each class to accommodate computational resource con-
straints. Our experimental dataset comprises 933,277 data points with 80
distinct features and encompasses 15 attack classes. The frequency distribu-
tion of attack categories for the CIC-IDS2018 dataset is detailed in Table 5.
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Attack Categories Count (%) Percentage
Benign 658454 70.553
DDOS attack-HOIC 68601 7.351
DDoS attacks-LOIC-HTTP 57619 6.174
DoS attacks-Hulk 46191 4.949
Bot 28619 3.067
FTP-BruteForce 19336 2.072
SSH-Bruteforce 18759 2.01
Infilteration 16193 1.735
DoS attacks-SlowHTTPTest 13989 1.499
DoS attacks-GoldenEye 4151 0.445
DoS attacks-Slowloris 1099 0.118
DDOS attack-LOIC-UDP 173 0.019
Brute Force -Web 61 0.007
Brute Force -XSS 23 0.002
SQL Injection 9 0.001
Total 933277 100

Table 5 The frequency distribution of attack categories of the CIC-IDS2018 Dataset

The distribution of attack categories in the bar chart, both before preprocess-
ing and after preprocessing, as well as after applying oversampling techniques,
is illustrated in Figure 6.

3.2 Data preprocessing

Data preprocessing is a crucial part of any ML model. Models without prepro-
cessing can create problems with invalid, overfitting, generating error models,
providing low accuracy and much more. So, preprocessing is a very significant
part of an ML model. To analyze our model, we have used some preprocessing
techniques such as: handling the missing value by eradicating rows contain-
ing null, -inf and inf values, removing space from columns names to work
with columns smoothly and dropping the duplicate rows by keeping the first
one and delete the rest from the dataset, merge the similar classes with low
instance from output columns and finally, reduce the dataset size by convert-
ing data types from int64 to int32 and float64 to float32 to train models with
less dataset size but same dataset entries.

3.3 Feature Scaling to normalize the features

Feature scaling is a crucial preprocessing step aimed at normalizing the values
of features within a consistent range. In our approach, we have employed both
standardization and label encoding techniques to achieve this objective.

3.3.1 Standardization

Standardization, also known as z-score normalization, is a pivotal method for
feature scaling. It involves subtracting the mean from each feature’s value and
dividing it by the standard deviation. This technique is especially effective
when there is a substantial disparity in feature values within the input data.
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Fig. 6 The frequency distribution of CIC-IDS2018 Dataset
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Post-standardization, all features share a common scale, boasting a mean (µ)
of zero and a standard deviation (σ) of one. This process significantly enhances
the accuracy of our predictive models. Equation 1 presents the mathematical
representation of the Z-score normalization.

xnew =
x− µ

σ
(1)

In this equation, x represents the original feature value, xnew signifies the
standardized value, µ corresponds to the mean of the original feature, and σ
denotes the standard deviation of the original feature.

3.3.2 Label Encoding

Label encoding is the practice of converting categorical data into numerical
values, facilitating their utilization in machine learning algorithms. To train a
machine learning model, we must transform categorical values into numerical
representations to facilitate the model-building process during the training
phase. This is achieved by replacing categorical values with integers ranging
from 0 to (n-1), where ’n’ represents the total number of unique classes. For
instance, if there are 11 different categorical classes, we assign integers from 0
to 10 in place of these classes. Table 6 exemplifies the label encoding process.

Attack types Label Encoding
Normal 0
Generic 1
Exploits 2
Fuzzers 3
DoS 4
Reconnaissance 5
Analysis 6
Backdoor 7
SSH-Patator 8
Shellcode 9
Worms 10

Table 6 Label encoding process

3.4 Feature Resampling using Random Oversampling
(RO)

Feature resampling is a process to rebalance the feature from the imbalanced
features in a dataset. The Random oversampling (RO) delivers a naive method
to rebalance the class spreading for an imbalanced dataset. It performs an
arbitrarily replicating instances from the minority group and incorporating
them into the training part. For instance, if the ratio of the dataset’s class is
20:80, then 20 belongs to the minority and 80 belongs to the majority class. It
is efficient for skewed distribution algorithms and for a class that can stimulate
to fit for the model by replicating instances. In this proposed framework we
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considered big imbalanced datasets where RO is very crucial to balance the
dataset for improving the performance without occurring overfitting problem.
The RO process is depicted in Figure7.

Fig. 7 Random oversampling process

3.5 Stacking Feature Embedded using Clustering with
PCA

Within our experimental framework, we introduce a novel methodology known
as Stacking Feature Embedded with PCA (SFE-PCA). This approach com-
bines clustering and dimensionality reduction techniques to improve the
performance of our ML models.

In the ”Stacking Feature Embedded” phase, we first employ clustering
methods, such as K-Means and Gaussian Mixture (GM) Clustering, to group
data points based on their intrinsic patterns. The clustered results are then
embedded as meta-dataset points into the original feature space. This augmen-
tation adds a layer of complexity to our dataset, capturing finer details that
might be missed by conventional approaches. Subsequently, Principal Compo-
nent Analysis (PCA) is applied to this enriched feature set. PCA allows us
to reduce the dimensionality while retaining the most informative features.
This step ensures that we maintain a set of highly relevant and discriminative
features, optimizing the input for our machine learning models.

The integration of clustering and PCA into the SFE-PCA approach aims
to strike a balance between detailed feature representation and computational
efficiency. By capturing essential information through clustering and refining it
with PCA, we aim to empower our ML models with a more focused and effec-
tive feature set, ultimately contributing to improved performance and precision
in our experimental results.
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3.5.1 Stacking Feature Embedded using Clustering

The proposed SFE methodology serves as a fundamental component of our
experimental framework. It is designed to address the challenges posed by
big and imbalanced datasets, particularly in the context of machine learning-
based network intrusion detection. This approach combines the strengths of
clustering techniques and feature embedding to improve detection accuracy.
The SFE process is illustrated in Figure 8. The following are the working
principles of this approach:

Feature/
Rows

F1 F2 ---- FN

R1

R2

----- ----- ---- ---- -----

RM

Feature/
Rows

F1 F2 ------ FN

R1

R2

----- ---- ---- ----- ----

RM

FN+1 FN+2

---- ----

SFE

Fig. 8 SFE process

• Cluster Formation: The process begins with the application of two cluster-
ing methods: K-Means and Gaussian Mixture Clustering. These techniques
group data points into coherent clusters based on shared characteristics and
patterns. Clustering reveals the underlying structure in the data, enabling
a more comprehensive understanding.

• Feature Embedding: The output generated by the clustering phase is then
embedded into the original feature space. This integration creates a set
of additional features, often referred to as meta-dataset points. These new
features capture nuanced information that enriches the overall dataset.

• Enhanced Data Representation: The dataset now includes the original fea-
tures alongside the newly embedded meta-dataset points. This augmented
representation offers a more comprehensive view of the data, enabling the
detection of subtle anomalies and patterns.

The approach was adopted to address the limitations of traditional intru-
sion detection methods when dealing with big and imbalanced data. By
integrating clustering techniques and feature embedding, our objectives encom-
pass several key aspects. Firstly, we seek to enrich the reliability and accuracy
of intrusion detection, providing a more robust defense against cyber threats.
Additionally, our approach enables the capture of fine-grained details within
network traffic data, improving our ability to discern subtle anomalies. More-
over, it facilitates the detection of previously undetected threats, contributing
to a more comprehensive security posture. Lastly, by incorporating these tech-
niques, we seek to improve the overall performance and precision of our ML
models, making them more effective in safeguarding network environments.

This approach represents a crucial advancement in the field, promising to
contribute to the development of more robust and effective intrusion detection
systems for real-world network security challenges.
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3.5.2 Feature Extraction using PCA

The curse of a high dimensional dataset makes a model more complex and
leads to overfitting that fallout an ill performance. It is essential to reduce
dimension for getting reduced dataset, less computation time, quickly visualize
the data and remove redundant features from the dataset.

Feature reduction in a dataset involves the generation of new features from
existing ones, with the aim of preserving the essential information present in
the original features. PCA is a statistical technique that employs an orthogonal
transformation to convert a set of correlated variables into a set of uncorrelated
variables. In both exploratory data analysis and the development of predictive
machine learning models, PCA stands as a fundamental and widely employed
tool. Additionally, It serves as an invaluable unsupervised statistical method
for exploring the relationships between a set of variables. It differs from regres-
sion in that it seeks to create a line of best fit, which is often referred to as a
form of generic factor analysis. To reduce the dimension of the features from
n to k, the following steps should be preceded:
1. Equation 2 is used to equalize the data’s initial attribute values by the mean
and variance.

µ =
1

n

n∑
i=1

xi (2)

Here n represents the instances number and xi represents the data points.
2. Substitute xi by xi − µ
3. Each vector xj(i) should be rescaled to have unit variance.

σj
2 =

1

n

n∑
i=1

(xj(i))
2

(3)

4. Substitute xj(i) by
xj(i)

σ
5. The Covariance Matrix CM should be calculated as follows:

CM =
1

n

n∑
i=1

xi.(xi)
T

(4)

6. Determine Eigen-vectors and their related Eigen-values of CM .
7. To generate w, sort the Eigen-vectors by decreasing their Eigen-values and
choose k Eigen-vectors with the largest Eigen-values.
8. Equation 5 is used to convert the data onto the new subspace using w.

y = wT ∗ x (5)

where x represents one sample as a d×1 dimensional vector and y represents
the converted k × 1 dimensional vector in the resulting subspace.
The number of features Dp that each data point represents determines the
computational complexity of running the designed PCA (Zou et al, 2006).

O(Dp
3) (6)
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The reduction ratio (RR) is the number of output dimensions divided by
the number of input dimensions. (Vasan and Surendiran, 2016). The efficiency
of PCA is inverse to RR. The lower the RR value, the higher the PCA’s
efficiency.

In our proposed framework we adopted PCA to reduce the dimension of
our datasets to get better performance with less number of features than
the original. The reduced features contain the most important information of
the datasets to produce the better performance to detect intrusion efficiently.
During our proposed work, we considered the RR is 10:45 or 22.22% for UNSW-
NB15 and 10:79 or 12.65% for the CIC-IDS2017 dataset, which is used to
provide higher accuracy with a lower false rate. Several existing works took
13-22 or 28.88%-48.88% PCA for UNSW-NB15 (Kumar et al, 2020; Kasongo
and Sun, 2020a) and 22-52 or 27%-65.82% PCA for CIC-IDS2017 datasets (Al-
Janabi and Ismail, 2021; Stiawan et al, 2020). In this study we considered 10
PCA for both datasets to check the performance at these lower RR to prove
the efficiency of our approach. The PCA process is depicted in Figure 9.

Fig. 9 Dimension reduction process using PCA

3.6 ML Algorithms

In this section, we have leveraged supervised ML algorithms to assess our
performance in binary and multilabel classification tasks using our datasets.
The detection of intrusion in the context of network security using ML is
outlined as follows:

3.6.1 Decision Tree (DT)

A non-parametric supervised ML technique called the DT is used to solve
problems with regression and classification. The prediction of the value of the
output of a dataset is generated gripping decision rules from dataset features.
It’s easy to comprehend and interpret and it can be visualized. It can handle
multi-output problems (Ahmim et al, 2019). It is widely used in IDS. Decision
node, having multiple branches and confirmed to make the decision and Leaf
nodes, not contain any branches and the output of those decisions are the two
nodes in DT. The starting decision node is called the root node. To build a
decision tree, Attribute Selection Measure (ASM) is performed on information
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gain and the Gini index to select the feature (Sharmin et al, 2023). The change
of entropy based on a feature after splitting is called IG. Based on the value
of IG, we have separated the node and constructed the decision tree based on
the value of IG. The measure of purity or impurity creating a DT is called
GI. To create binary splits, GI is used. The lower GI should be preferred as
compared to the higher GI. Pruning is the practice of deleting nodes from a
tree that is no longer needed to achieve the best decision tree possible, which is
accomplished through Cost Complexity Pruning and Reduced Error Pruning.
Equ. 7 and 8show GI and IG respectively.

Gini(D) = 1−
n∑

i=1

(pi)
2

(7)

Gain(A) = Entropy(D)− EntropyA(D) (8)

where,

Entropy(D) = −
n∑

i=1

pilog2(pi) (9)

EntropyA(D) =

n∑
i=1

Di

D
× Entropy(Di) (10)

and the probability of a data point in the subset ofDi of a datasetD is denoted
by (Pi ).

3.6.2 Random Forest (RF)

Random Forest (RF) is a renowned supervised ML technique rooted in the
concept of ensemble learning which involves the amalgamation of multiple
classifiers to tackle complex problems and enhance the overall performance of
the model. RF serves as a meta predictor that leverages averaging to enhance
predictive accuracy, all the while mitigating overfitting concerns by adapting
various decision tree classifiers to diverse subsets of the dataset. A bootstrap
randomized resampling method creates each decision tree (Breiman, 2001).
It requires the least amount of training time compared to other algorithms
and estimates output with high accuracy; it also operates efficiently on large
datasets. It improves the model’s accuracy and eliminates the problem of over-
fitting. The algorithm gathers the prediction results from each tree, sets up a
voting mechanism and then performs a majority vote among the classifiers to
make a classification decision. It builds a forecast using the results of many
decision trees, which improves prediction accuracy (Uddin et al, 2023).

3.6.3 Extra Tree (ET)

An ensemble ML technique and meta-estimator, Extra-Tree is also called
Extremely Randomized Trees. In order to increase the model’s prediction accu-
racy, it applies a series of randomized decision trees, referred to as extra-trees,
to various sub-samples of datasets and averages them. This prevents over-
fitting. It’s an ensemble model, just like bagging and random forest in an
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ensemble decision tree. From the training datasets, it creates a huge number of
unpruned decision trees in order to function. For regression and classification,
respectively, the majority vote and average are used to predict the decision
tree. It builds decision trees using the entire learning sample, and divides the
nodes by randomly choosing all of the cut-points (Geurts and Ernst, 2006).

3.6.4 Extreme Gradient Boosting (XGB)

A supervised ML method that uses gradient-boosted decision trees to improve
speed and performance. XGB has remarkable speed as compared to other
gradient boosting implementations (Chen and He, 2015). The combination
of residuals from earlier models, which new models form—leads to its ulti-
mate forecasts. This method employs a gradient descent to lessen loss and
improve model performance. When looking for cutting-edge solutions for var-
ious ML problems, data scientists have come to appreciate it, as a scalable
end-to-end tree-boosting technique. (Chen and Guestrin, 2016). Within XGB,
the objective functions are composed of two key components: the training
loss and regularization, with θ representing the optimal settings for the train-
ing data xi and the associated labels yi. Equation 11 illustrates the objective
functions employed in XGBoost.

O(θ) = L(θ) + Ω(θ) (11)

In this context, L represents the training loss function, which is a metric for
evaluating the model’s performance in predicting the training datasets.

For instance, a straightforward example of a training loss function that
represents Mean Squared Error (MSE):

L(θ) =
∑
i

(yi −
∧
yi)

2
(12)

The logistic loss function is a frequently used loss function in logistic regression:

L(θ) =
∑
i

[yi ln(1 + e−
∧
yi) + (1− yi) ln(1 + e−

∧
yi)] (13)

Ω is the regularization that controls the complexity of the model, which helps
us to avoid overfitting which is given by

Ω(f) = γT +
1

2
λ

T∑
j=1

∥w∥2 (14)

In this case, γ denotes encouraging pruning, T denotes the number of
terminal nodes, w denotes the leaf weights, and λ is expected to lower the
outcome’s sensitivity (Chen and He, 2015).
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Actual positive Actual negative
Predicted positive TP FP
Predicted negative FN TN

Table 7 Confusion Matrix

4 Experimental setup and Evaluations

In this section, we have first covered the environment setup and performance
evaluation measures in this section. Then, we have included descriptions for
the CIC-IDS2017, CIC-IDS2018, and UNSW-NB15 benchmark datasets. We
have employed four classification methods for our experiments: DT, RF, ET,
and XGB. Data on binary and multilabel classification are used to examine
the performance.

4.1 Environment setup

The experiments are conducted in a robust computing environment, utilizing
a high-performance 2X-large virtual machine instance. This instance boasts
8 cores, allowing for efficient concurrent task handling and enhanced multi-
threading capabilities. With 64 GB of RAM, the system is well-equipped to
accommodate memory-intensive applications, and it offers a generous 40 GB
of disk space for data storage. The experiments are seamlessly executed using
the Jupyter notebook through Anaconda Navigator. To support our perfor-
mance evaluation, we leverage the Python programming language and a suite
of indispensable libraries, including TensorFlow, Keras, Pandas, Scikit-learn,
NumPy, Seaborn, Matplotlib, Imbalanced-learn etc.

4.2 Performance Evaluation Metrics

Several measures, such as accuracy, precision, recall, F1-score, ROC curve, and
confusion matrix, are used to evaluate the performance of our proposed model.
The following defines these performance matrices:

4.2.1 Confusion Matrix

The Confusion Matrix is a valuable tool for evaluating ML classification perfor-
mance. It is a tabular representation containing four combinations of predicted
and actual values: True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN) (Talukder et al, 2023b). Table 7 illustrates a
confusion matrix where TP represents correctly anticipated positive values, TN
indicates accurately projected negative values, FP corresponds to incorrectly
forecasted positive values, and FN signifies inaccurately predicted negative
values. This matrix is essential for assessing Recall, F1-score, Accuracy and
Precision.
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4.2.2 Accuracy

Accuracy is a fundamental performance metric, representing the proportion of
correctly predicted observations to the total observations. It is calculated as
follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(15)

4.2.3 Precision

Precision quantifies the ratio of correctly predicted positive values to the total
number of predicted positive values:

Precision =
TP

TP + FP
(16)

4.2.4 Recall

Recall measures the ratio of correctly predicted positive values to all actual
positive values:

Recall =
TP

TP + FN
(17)

4.2.5 F1-Score

The F1-score represents the harmonic mean of precision and recall for
classification problems:

F1− Score = 2 · (Precision ·Recall)

(Precision+Recall)
(18)

4.2.6 ROC Curve

ROC curves are commonly employed two-dimensional plots for assessing the
significance of classifiers (?). These graphs provide a clear visualization of
how a classifier’s sensitivity and specificity trade-off at various classification
thresholds. This feature is valuable for selecting classifiers that align with spe-
cific user requirements, often associated with variable error costs and accuracy
expectations, as noted in studies by (Sameera et al, 2016; Vergara et al, 2008).
The Area Under the Curve (AUC) represents the degree of discrimination in
the ROC curve, while the ROC curve itself is a probability curve that assesses
the model’s ability to distinguish between different categories. The true posi-
tive rate is plotted on the Y-axis, and the false positive rate is on the X-axis.
An AUC value approaching 1 suggests that the model excels at distinguish-
ing between class labels, while an AUC value approaching 0 indicates poor
predictive performance, implying that the results mirror randomness. This
method serves as a means to visualize the classification’s efficiency, as empha-
sized by (Gorunescu, 2011). In essence, classifiers with higher ROC curves are
considered superior, as supported by (Yulianto et al, 2019).
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4.3 K-fold Cross-Validation (CV)

K-fold CV is a standard method that partitions the training set into k smaller
sets or folds. The model is trained on each fold, and it is tested on the remaining
data after that. Using k-fold CV, the performance measure is obtained as the
average of these values. We use k-fold CV in our studies, where k is 10 and
the dataset is split into 90% training and 10% testing for each fold. Figure 10
illustrates the k-fold CV process.

Training part

Training folds

1st

3rd

5th

10th

Iteration

E1

E3

E5

E10

For
k=10

Performance

Test part

Test fold

Fig. 10 K-fold cross-validation process

5 Result Analysis

In our analysis of the results, we evaluated the performance of four ML models
for Intrusion IDS such as DT, RF, ET and XGB. Our focus was on assessing
key performance metrics by considering ”All Features” and a novel ”Proposal”
feature set in our evaluation.

5.1 Results of UNSW-NB15 Dataset

The performance results of binary and multilabel classification on the UNSW-
NB15 dataset are presented in Figure 11, as well as in Table 8 and Table 9.
These figures and tables showcase the experimental results for two distinct sce-
narios: All Features: In this case, ”All Features” represent the dataset where
we did not oversample any features. We preprocessed, scaled, and applied these
features directly to the machine learning models for training and performance
evaluation. Proposal Features: Here, the ”Proposal” refers to a methodol-
ogy that encompasses various preprocessing steps that have been undertaken
for evaluation. These results provide a comprehensive view of our model’s per-
formance and the impact of feature selection and preprocessing on IDS using
the UNSW-NB15 dataset.

In the bar chart, it is evident that our proposed model exhibits a note-
worthy increase in accuracy rates for binary and multilabel classification.
Notably, the rate of accuracy improvement is more pronounced in the context
of multilabel classification when compared to binary classification
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Fig. 11 Binary and multilabel Accuracy performance Bar Chart for All Features and Pro-
posal Features for UNSW-NB15 Dataset

Accuracy Precision Recall F1-score
ML All Feature Proposal All Feature Proposal All Feature Proposal All Feature Proposal
DT 98.56 98.97 98.42 98.98 98.44 98.97 98.44 98.97
RF 98.55 99.59 98.46 99.59 98.43 99.59 98.43 99.59
ET 97.9 99.59 97.71 99.59 97.73 99.59 97.73 99.59
XGB 98.9 98.81 98.71 98.81 98.82 98.81 98.82 98.81

Table 8 Performance Analysis of Binary Classification for UNSW-NB15 Dataset

The binary result analysis, as presented in Table 8, showcases the per-
formance evaluation of various ML algorithms using both the ”All Feature”
and ”Proposed” feature sets. Notably, among these algorithms, DT consis-
tently emerges as the top performer in terms of accuracy, precision, recall,
and F1-score. With the ”Proposed” feature set, RF demonstrates outstanding
performance, achieving an impressive accuracy of 99.59%. This places RF at
the forefront, surpassing other algorithms, including DT with an accuracy of
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Accuracy Precision Recall F1-score
ML All Feature Proposal All Feature Proposal All Feature Proposal All Feature Proposal
DT 85.38 99.79 60.24 99.79 60.63 99.79 60.63 99.79
RF 86.42 99.95 62.45 99.95 58.06 99.95 58.06 99.95
ET 85.55 99.95 59.49 99.95 56.15 99.95 56.15 99.95
XGB 87.73 95.04 76.92 95.29 66.59 95.03 66.59 95.03

Table 9 Performance metrics of Multilabel Classification for UNSW-NB15 Dataset

98.97%, XGB with 98.81%, and ET with 99.59%. This remarkable increase in
accuracy is consistently reflected in other metrics. The success of RF can be
attributed to its ensemble learning approach, which harnesses the strengths of
multiple decision trees to create a robust and highly accurate model.

The multilabel performance analysis, as shown in Table 9, evaluates the
performance of various ML algorithms on multiclass using both the ”All Fea-
ture” and ”Proposal” feature sets. Among these algorithms, RF consistently
emerges as the top performer in terms of accuracy, precision, recall, and
F1-score. Notably, with the ”Proposal” feature set, RF and ET achieve an
impressive 99.95% accuracy, surpassing all other algorithms, including DT
with an accuracy of 98.97% and XGB with 95.04%. This substantial accuracy
enhancement extends to precision, recall, and F1-score metrics, underscoring
RF’s and ET’s success attributed to their ensemble learning approach, which
leverages the strengths of multiple decision trees to create a robust model

The binary confusion matrix is displayed in Figure 12. A successful pre-
dictive model is characterized by a low number of Type 1 (FP) and Type 2
(FN) errors in the confusion matrix. For RF, the TP rate stands impressively
at 49.71%, while the TN rate is equally strong at 49.88%. Additionally, the
FP and FN rates are remarkably low, at 0.15% and 0.26%, respectively. These
findings highlight RF’s robust performance in accurately identifying positive
cases (intrusions) and negative cases (non-intrusions), making it a compelling
choice for intrusion detection. For ET, the TP rate is an outstanding 49.77%,
and the TN rate is equally impressive at 49.82%. Furthermore, the FP and FN
rates are notably low, at 0.08% and 0.32%, respectively. These results under-
score the exceptional performance of ET in accurately identifying both positive
cases (intrusions) and negative cases (non-intrusions), making it a compelling
choice for intrusion detection.

Among all the evaluated models, it is evident that both RF and ET out-
perform the others, showcasing superior performance in terms of TP and TN
rates for IDS. They consistently deliver higher TP and TN rates, demonstrat-
ing their effectiveness in accurately identifying intrusions while maintaining a
low rate of false positives and false negatives.

The ROC Curve is depicted in Figure 14 for binary and multilabel clas-
sification. The ROC Curves clearly illustrate that the AUC (Area Under the
Curve) values are approaching 1, indicating a strong predictive model’s abil-
ity to distinguish between classes. In the binary classification scenario, the
AUC scores are 98.97% for DT, 99.98% for RF, 99.98% for ET, and 99.93%
for XGB, with RF and ET algorithms leading in AUC score. In the multiclass
classification, the AUC scores are 99.88% for DT, 100% for RF, 100% for ET,
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Fig. 12 Binary Confusion Matrix for UNSW-NB15 Dataset

and 99.83% for XGB, with RF and ET again displaying superior AUC scores
compared to the others. These high AUC scores, close to 1, indicate the strong
predictive performance of the models on the UNSW-NB15 dataset, further
validating their effectiveness.

5.2 Results of CIC-IDS2017 Dataset

The performance results for binary and multilabel classification on the CIC-
IDS2017 dataset are presented in Figure 15, along with detailed metrics in
Table 10 and Table 11. These figures and tables display the experimental
results for two distinct scenarios: All Features: In this case, ”All Features”
represent the dataset where features are neither oversampled nor modified
extensively. These features are preprocessed, scaled, and then used to train and
evaluate the ML models. Proposal Features: The ”Proposal” indicates a set
of features that have undergone various preprocessing steps and modifications
as part of our proposed methodology for evaluation. The inclusion of both
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Fig. 13 Multilabel Confusion Matrix for UNSW-NB15 Dataset
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Fig. 14 Binary and Multilabel ROC Curve for UNSW-NB15 Dataset
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Accuracy Precision Recall F1-score
ML All Feature Proposal All Feature Proposal All Feature Proposal All Feature Proposal
DT 99.87 99.91 99.78 99.91 99.78 99.91 99.78 99.91
RF 99.9 99.94 99.82 99.94 99.82 99.94 99.82 99.94
ET 99.83 99.95 99.73 99.95 99.7 99.95 99.7 99.95
XGB 99.92 99.65 99.83 99.65 99.86 99.65 99.86 99.65

Table 10 Performance metrics for Binary Classification for CIC-IDS2017 Dataset

scenarios allows for a comprehensive assessment of model performance on the
CIC-IDS2017 dataset
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Fig. 15 Binary and Multilabel Accuracy Performance Bar Chart for All Features and
Proposal Features for the CIC-IDS2017 Dataset

In the bar chart, it’s evident that our proposed model exhibits a substantial
increase in accuracy for binary and multilabel classification. Interestingly, the
rate of accuracy improvement is notably higher in multilabel classification
when compared to binary classification.
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Accuracy Precision Recall F1-score
ML All Feature Proposal All Feature Proposal All Feature Proposal All Feature Proposal
DT 99.85 99.99 98.69 99.99 94.69 99.99 94.69 99.99
RF 99.89 99.99 98.98 99.99 94.17 99.99 94.17 99.99
ET 99.83 99.99 98.57 99.99 94.14 99.99 94.14 99.99
XGB 99.92 99.94 99.3 99.94 94.47 99.94 94.47 99.94

Table 11 Performance Analysis of Multilabel Classification for CIC-IDS2017 Dataset

In the binary classification, the accuracy rates on the proposed model are as
follows: 99.91% for DT, 99.94% for RF, 99.95% for ET, and 99.65% for XGB.

The accuracy rates for multilabel classification are 99.91% for DT, 99.94%
for RF, 99.95% for ET, and 99.65% for XGB on the proposed model. The
confusion matrix is displayed in Figure 16 for binary classification and Figure
17 for multilabel classification. Upon examining the confusion matrix results
for binary classification, it’s observed that RF, ET, and XGB provide similar
accuracy rates, with slight variations in their TP, FP, and FN rates.

In the binary confusion matrix, it’s insightful to note that the TP rates
are 50.07% for DT, RF, ET, and 49.91% for XGB. The TN rates are 49.84%
for DT, 49.87% for RF, 49.88% for ET, and 49.74% for XGB. Additionally,
the FP rates are 0.0% for DT, RF, ET, and 0.17% for XGB, while the FN
rates are 0.08% for DT, 0.06% for RF, 0.05% for ET, and 0.18% for XGB. RF
employs bootstrap repetitions and selects the best-split method, making it an
effective ensemble of independent decision trees working together. ET, on the
other hand, uses the entire original sample and selects the splitting operation
at random, resulting in an ensemble of extra trees. This diversity in learning
methods contributes to achieving the highest accuracy. For multilabel classi-
fication, DT, RF and ET exhibit similar and superior accuracy with minor
variances in TP, FP, and FN rates. Notably, XGB demonstrates lower accu-
racy compared to the other algorithms in binary and multilabel classification
scenarios.

The ROC Curve, as illustrated in Figure 18, provides a comprehensive view
of the model’s performance in binary and multilabel classification. The ROC
Curves showcase that the Area Under the Curve (AUC) values are approaching
the ideal value of 1, indicating a highly effective predictive model for distin-
guishing between classes. In the binary classification, the XGBoost (XGB)
algorithm stands out with the highest AUC score. Specifically, the AUC scores
are as follows: 99.92% for Decision Trees (DT), 99.98% for Random Forest
(RF), 99.97% for Extra Trees (ET), and an impressive 99.99% for XGB. In
multiclass classification, RF, ET, and XGB collectively achieve the highest
AUC scores. Specifically, the AUC scores are 99.99% for DT, a perfect 100%
for RF, ET, and XGB, emphasizing the exceptional predictive performance of
these algorithms. These consistently high AUC scores, close to 1, underscore
the strong predictive capabilities of the model on the CIC-IDS2017 dataset,
indicating its suitability for the task.
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Fig. 16 Binary Confusion Matrix for CIC-IDS2017 Dataset

5.3 Results of CIC-IDS2018 Dataset

The performance results of the CIC-IDS2018 dataset are presented in Figure
19, as well as in Table 12. These figure and table showcase the experimental
results for two distinct scenarios: All Features: In this case, ”All Features”
represent the dataset where we did not oversample any features. We prepro-
cessed, scaled, and applied these features directly to the machine learning
models for training and performance evaluation. Proposal Features: Here,
the ”Proposal” refers to a methodology that encompasses various preprocess-
ing steps that have been undertaken for evaluation. These results provide a
comprehensive view of our model’s performance and the impact of feature
selection and preprocessing on IDS using the CIC-IDS2018 dataset.

In the bar chart, it is evident that our proposed model exhibits a note-
worthy increase in accuracy rates for attack classification. Notably, the rate
of accuracy improvement is more pronounced in the context of the proposed
feature when compared to all feature.
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Fig. 17 multilabel Confusion Matrix for CIC-IDS2017 Dataset
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Fig. 18 Binary and multilabel ROC Curve for CIC-IDS2017 Dataset
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Fig. 19 Accuracy performance Bar Chart for All Features and Proposal Features for the
CIC-IDS2018 Dataset

Accuracy Precision Recall F1-score
ML All Feature Proposal All Feature Proposal All Feature Proposal All Feature Proposal
DT 98.88 99.94 95.25 99.94 95.21 99.94 95.21 99.94
RF 98.74 99.93 98.25 99.93 91.55 99.93 91.55 99.93
ET 98.37 99.94 96.81 99.94 90.38 99.94 90.38 99.94
XGB 99.11 99.87 98.51 99.87 96.51 99.87 96.51 99.87

Table 12 Performance Analysis of CIC-IDS2018 Dataset

The result analysis, as presented in Table 12, highlights the performance
assessment of various ML algorithms using both the ”All Feature” and ”Pro-
posed” feature sets. Notably, among these algorithms, DT and ET consistently
stand out as top performers in terms of accuracy, precision, recall, and F1-
score. When considering the ”Proposed” feature set, both DT and ET exhibit
exceptional performance, achieving an impressive accuracy of 99.94%, surpass-
ing other algorithms, including RF with an accuracy of 99.93% and XGB with
98.87%. This remarkable increase in accuracy extends to precision, recall, and
F1-score metrics, underscoring the effectiveness of DT and ET. Their success
can be attributed to their decision tree-based learning approach, which allows
them to effectively model complex relationships in the data. Additionally, they
demonstrate robustness when applied to the ”Proposed” feature set, which
may involve a more intricate feature engineering process.

The confusion matrix is displayed in Figure 20. A successful predictive
model is characterized by a low number of Type 1 (FP) and Type 2 (FN)
errors in the confusion matrix. For DT, the TP rate stands impressively at
49.74%, while the TN rate is equally strong at 49.76%. Additionally, the FP
and FN rates are remarkably low, at 0.16% and 0.24%, respectively. These
findings highlight DT’s robust performance in accurately identifying positive
cases (intrusions) and negative cases (non-intrusions), making it a compelling
choice for intrusion detection. For ET, the TP rate is an outstanding 49.78%,
and the TN rate is equally impressive at 49.82%. Furthermore, the FP and
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FN rates are notably low, at 0.18% and 0.28%, respectively. These results
underscore the exceptional performance of ET in accurately identifying both
positive cases (intrusions) and negative cases (non-intrusions), making it a
compelling choice for intrusion detection.

Among all the evaluated models, it is evident that both DT and ET out-
perform the others, showcasing superior performance in terms of TP and TN
rates for IDS. They consistently deliver higher TP and TN rates, demonstrat-
ing their effectiveness in accurately identifying intrusions while maintaining a
low rate of false positives and false negatives.
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(d) XGB

Fig. 20 Confusion Matrix for CIC-IDS2018 Dataset

In Figure 21, the ROC Curve depicts the performance of machine learning
models on the CIC-IDS2018 Dataset. The ROC Curves clearly demonstrate
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that the AUC values for DT, RF, ET, and XGB approach the desirable thresh-
old of 1, indicative of an effective model for distinguishing between different
classes. Notably, both RF and ET achieve the highest AUC scores. Specifi-
cally, the AUC scores are 99.99% for DT, a perfect 100% for RF and ET, and
84.85% for XGB. These high AUC scores, approaching 1, signify the strong
predictive performance of the model on the CIC-IDS2018 dataset, underlining
its effectiveness in class differentiation.
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Fig. 21 ROC Curve for CIC-IDS2018 Dataset

5.4 Discussion

We have conducted a comprehensive comparative analysis of our proposed
model in conjunction with other models. The comparative results are systemat-
ically presented in tabular format, as outlined in Table 13 for the UNSW-NB15
dataset, Table 14 for the CIC-IDS2017 dataset, and Table 15 for the CIC-
IDS2018 dataset. These tables offer valuable insights into the performance of
our model relative to other models, facilitating a detailed examination of the
results across different datasets.

In our research, we address the challenge of imbalanced datasets by employ-
ing Random Oversampling (RO). Additionally, we apply the Stacking Feature
Embeded (SFE) technique to augment feature sets and create metadata.
Subsequently, we reduce the dimensionality to 10 features using Principal Com-
ponent Analysis (PCA). Our model is then trained using popular machine
learning algorithms, including DT, RF, ET, and XGB. The performance of
our model is evaluated on two prominent datasets: UNSW-NB15 and CIC-
IDS2017. For the UNSW-NB15 dataset, we achieve noteworthy accuracy
scores. In binary classification, our model attains accuracy rates of 98.97%
(DT), 99.59% (RF), 99.59% (ET), and 98.81% (XGB). In multilabel classifica-
tion, the accuracy scores reach 99.79% (DT), 99.95% (RF), 99.95% (ET), and
95.04% (XGB). For the CIC-IDS2017 dataset, our model continues to excel.
In binary classification, we obtain accuracy rates of 99.91% (DT), 99.94%
(RF), 99.95% (ET), and 99.65% (XGB). In multilabel classification, the accu-
racy scores are impressive, with 99.99% for DT, RF, and ET, and 99.94%
for XGB. Furthermore, in the evaluation on the CIC-IDS2018 Dataset, our
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SI.
NO.

Authors Data
Balanc-
ing

Dimension
Reduction

Algorithm Selected
Feature

Binary
Acc(%)

Multilabel
Acc(%)

1 Moualla
et al (2021)

SMOTE - ELM - 98.43 -

2 Kasongo
and Sun
(2020b)

- XGB DT,
ANN

19 90.85
(DT)

77.51
(ANN)

3 Ahmad
et al (2021)

- MQTT+TCP RF - 98.67 97.37

4 Kasongo
and Sun
(2020a)

- WFEU FFDNN 22 87.10 77.16

5 Choudhary
and Kess-
wani
(2020)

- - DNN - 91.50 -

6 Aleesa et al
(2021)

- - ANN - - 97.89

7 Al and
Dener
(2021)

STL - LSTM+CNN- - -

8 Zhang et al
(2020)

SGM - CNN - - 96.54

9 Hassan
et al (2020)

- - CNN-
WDLSTM

- 97.17 98.43

10 Our
Proposal

RO SFE-PCA RF 10 99.59 99.95

11 Our
Proposal

RO SFE-PCA ET 10 99.59 99.95

Table 13 Comparison Analysis of UNSW-NB15 Dataset

model maintains high accuracy rates. We achieve accuracy scores of 99.94%
(DT), 99.93% (RF), 99.94% (ET), and 99.87% (XGB). The results analysis
reveals that the highest accuracy rates for binary and multilabel classification
are 99.59% and 99.95%, achieved with RF and ET algorithms on the UNSW-
NB15 dataset. In contrast, for the CIC-IDS2017 dataset, the highest accuracy
rate is 99.99% for binary classification using the ET model and 99.99% for
multilabel classification using DT, RF, and ET models.

In summary, our proposed model consistently outperforms existing meth-
ods in binary and multilabel classification scenarios with reduced features.
The 10-feature dimension reduction (RR is 10:N, where N represents the input
features) significantly enhances intrusion detection accuracy, minimizing false
positive and negative rates. These results emphasize the importance of con-
sidering at least 10 features for optimal intrusion detection accuracy across
various dimensional datasets.

6 Time Complexity

Time complexity, which denotes the time required for executing an operation,
plays a crucial role in assessing the efficiency of algorithms (Talukder et al,
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SI.
NO.

Authors Data
Balanc-
ing

Dimension
Reduction

Algorithm Selected
Feature

Accuracy(%)

1 Kshirsagar
and Kumar
(2021)

- IGR+CR
+ReF

PART - 99.95
(Binary)

2 Our
Proposal

RO SFE-PCA ET 10 99.95
(Binary)

3 Hammad
et al (2021)

- t-SNE RF - 99.78

4 Al-Janabi
and Ismail
(2021)

- NTLBO LR 22 97.00

5 Guezzaz
et al (2021)

- EDFS DT - 98.80

6 Stiawan
et al (2020)

- IG+Ranking
+Grouping

RF 22 99.86

7 Stiawan
et al (2020)

- IG+Ranking
+Grouping

J48 52 99.87

8 Bhardwaj
et al (2021)

- - DNN+ACO- 98.25

9 Zhang et al
(2020)

SGM - CNN - 99.85

10 Our
Proposal

RO SFE-PCA DT 10 99.99

11 Our
Proposal

RO SFE-PCA RF 10 99.99

12 Our
Proposal

RO SFE-PCA ET 10 99.99

Table 14 Comparison Analysis of CIC-IDS2017 Dataset

SI.
NO.

Authors Data
Balanc-
ing

Dimension
Reduction

Algorithm Selected
Feature

Accuracy(%)

1 Seth et al
(2021)

- HFS LightGBM24 97.73

2 Khan
(2021)

- - CNN
+RNN

- 97.75

3 Kim et al
(2020)

- - CNN - 91.50

4 Our
Proposal

RO SFE-PCA DT 10 99.94

5 Our
Proposal

RO SFE-PCA RF 10 99.94

Table 15 Comparison Analysis of CIC-IDS2018 Dataset

2022, 2024). In the context of IDS, evaluating the time complexity of ML
models is paramount for efficient operation. We analyze the time complexity of
key algorithms such as DT, RF, MLP, KNN, LGB and XGB models as follows.

• DT: The time complexity is typically O(n ·m · log(m)), with n representing
data points andm as features. It constructs a tree by recursively partitioning
data.
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• RF: Comprising multiple DTs, its time complexity is O(t · n ·m · log(m)),
where t is the number of trees.

• MLP (Multi-Layer Perceptron): With multiple layers and neurons, its
time complexity is O(w · e · n), where w is the number of weights, e the
number of epochs, and n the number of data points.

• KNN (K-Nearest Neighbors): This non-parametric method has a time
complexity of O(n ·m) for training, where n is the number of data points
and m is the number of features. The prediction phase can be more
computationally intensive.

• LGB (Light Gradient Boosting Machine): Known for efficiency and
low memory usage, LGB’s time complexity is O(t · n ·m), where t is the
number of trees.

• XGB (XGBoost): This model’s time complexity varies but is generally
O(t · d), where t is the number of trees and d the depth of the trees.

SI. No. ML Model Time Complexity
1 DT (Decision Trees) O(n ·m · log(m))
2 RF (Random Forests) O(t · n ·m · log(m))
3 ET (Extra Trees) O(t · n ·m · log(m))
4 XGB (XGBoost) O(t · d)

Table 16 Time Complexity of ML Models in IDS

7 Conclusion

In conclusion, our research has introduced a novel approach to network intru-
sion detection by combining various techniques to address the challenges of
imbalanced data, feature embedding, and dimension reduction. Our model
leverages the Random Oversampling (RO) method to tackle data imbalance,
utilizes feature embedding through Kmeans and GM clustering results, and
employs Principal Component Analysis (PCA) for dimension reduction. We
have evaluated our model’s performance with four prominent ML algorithms,
DT, RF, ET and XGB for binary and multilabel classification studies using
three benchmark datasets: UNSW-NB15, CIC-IDS2017 and CIC-IDS2018. Our
experimental results have demonstrated exceptional accuracy rates, with RF
and ET achieving 99.59% and 99.95% accuracy, respectively, on the UNSW-
NB15 dataset. Besides, our model has achieved remarkable accuracy rates,
with DT, RF, and ET reaching 99.99% on the CIC-IDS2017 dataset and for
CIC-IDS2018 we achieved 99.94% accuracy rate using DT and RF models.
These performance scores surpass those of existing methods, indicating the
effectiveness of our approach in enhancing network intrusion detection. Our
proposed model brings about substantial improvements across these bench-
mark datasets. Specifically, we observed a significant increase in accuracy, with
enhancements ranging from 1.52% to 22.19% for UNSW-NB15, 0.12% to 2.99%
for CIC-IDS2017, and 1.99% to 8.44% for CIC-IDS2018 when compared to
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prior research. These results highlight the remarkable advancements our model
introduces in the field of intrusion detection.

Our contributions to the field of network intrusion detection are substan-
tial. We have addressed the persistent challenge of imbalanced data, ensuring
that our model can handle real-world scenarios where intrusion instances are
often rare compared to benign network traffic. The incorporation of feature
embedding techniques has allowed us to capture more nuanced patterns and
anomalies within the data, thus improving detection accuracy. Additionally,
the application of PCA for dimension reduction has not only reduced compu-
tational complexity but also enhanced the interpretability of the model. The
benefits of our new model extend beyond accuracy improvements. It offers a
more robust and adaptable solution for intrusion detection, capable of handling
varying data distributions and network environments. By combining multi-
ple machine learning algorithms, our model harnesses the strengths of each,
providing a versatile tool for network security professionals. Furthermore, its
enhanced accuracy and lower false positive rates can significantly reduce the
burden of false alarms in intrusion detection systems, allowing security teams
to focus on the most critical threats.

In practical terms, our model can be invaluable for IDS in safeguarding
network infrastructure. Its high accuracy rates and adaptability make it well-
suited for identifying both known and novel threats, enhancing the overall
security posture of organizations. The reduced false positive rates contribute to
a more efficient use of resources, as security teams can concentrate their efforts
on genuine security incidents. Ultimately, our model represents a significant
advancement in the field of network intrusion detection, offering a more reliable
and efficient solution for protecting critical network assets

The limitation of our research is that we did not employ deep learning
models along with optimization techniques. While our current approach has
demonstrated remarkable results, there remains untapped potential for fur-
ther improving the performance of intrusion detection systems. In the future,
we envision expanding our work to incorporate deep learning models, which
have shown great promise in various fields, including intrusion detection. DL
algorithms, such as DNN, RNN or Hybrid are capable of capturing intri-
cate patterns and representations in complex data, which can be particularly
advantageous in the realm of network security.
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