See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/345326694

ResearchGate

Maximum shortest path interdiction problem by upgrading edges on trees

under weighted 11 norm

Article in Journal of Global Optimization - April 2021

DOI: 10.1007/510898-020-00958-0

CITATIONS
15

3 authors:

Zhang Qiao
Southeast University

12 PUBLICATIONS 67 CITATIONS

SEE PROFILE

Panos Pardalos
University of Florida
1,728 PUBLICATIONS 48,337 CITATIONS

SEE PROFILE

All content following this page was uploaded by Xiucui Guan on 17 January 2022.

The user has requested enhancement of the downloaded file.

READS
116

g Xiucui Guan

& ¢ SoutheastUniversity

41 PUBLICATIONS 235 CITATIONS

SEE PROFILE

https://www.researchgate.net/publication/345326694_Maximum_shortest_path_interdiction_problem_by_upgrading_edges_on_trees_under_weighted_l1_norm?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/345326694_Maximum_shortest_path_interdiction_problem_by_upgrading_edges_on_trees_under_weighted_l1_norm?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhang-Qiao-8?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhang-Qiao-8?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Southeast-University?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhang-Qiao-8?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiucui-Guan-2?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiucui-Guan-2?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Southeast-University?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiucui-Guan-2?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Panos-Pardalos?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Panos-Pardalos?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Florida2?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Panos-Pardalos?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiucui-Guan-2?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_10&_esc=publicationCoverPdf

Journal of Global Optimization (2021) 79:959-987
https://doi.org/10.1007/510898-020-00958-0

®

Check for
updates

Maximum shortest path interdiction problem by upgrading
edges on trees under weighted /1 norm

Qiao Zhang' - Xiucui Guan'® - Panos M. Pardalos?3

Received: 18 January 2020 / Accepted: 28 September 2020 / Published online: 7 October 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

Network interdiction problems by deleting critical edges have wide applicatio ns. However,
in some practical applications, the goal of deleting edges is difficult to achieve. We consider
the maximum shortest path interdiction problem by upgrading edges on trees (MSPIT) under
unit/weighted /; norm. We aim to maximize the the length of the shortest path from the root
to all the leaves by increasing the weights of some edges such that the upgrade cost under
unit/weighted /; norm is upper-bounded by a given value. We construct their mathematical
models and prove some properties. We propose a revised algorithm for the problem (MSPIT)
under unit /; norm with time complexity O(n), where n is the number of vertices in the
tree. We put forward a primal dual algorithm in O (n?) time to solve the problem (MSPIT)
under weighted /; norm, in which a minimum cost cut is found in each iteration. We also
solve the problem to minimize the cost to upgrade edges such that the length of the shortest
path is lower bounded by a value and present an O (n?) algorithm. Finally, we perform some
numerical experiments to compare the results obtained by these algorithms.

Keywords Network interdiction problem - Upgrading critical edges - Shortest path -
Weighted /; norm - Primal dual algorithm - Minimum cost cut

1 Introduction

Network interdiction problems by deleting critical edges (denoted by (NIP-DE)) have been
studied in recent twenty years. The classical problem (NIP-DE) mainly has two types. One is
the K-most-critical-edge problem [1-3,5-7,10,12,13], which aims at making some network
performance as poor as possible by deleting at most K edges, and the other one is the
critical edge interdiction problem [4,17], which aims to delete as fewer edges as possible to
assure some network performance bounded by a constant. The problem (NIP-DE) has been

B Xiucui Guan
xcguan@163.com
School of Mathematics, Southeast University, Nanjing 210096, China

Center for Applied Optimization, Department of Industrial and Systems Engineering, University of
Florida, Gainesville, FL, USA

3 LATNA, Higher School of Economics, Moscow, Russia

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-020-00958-0&domain=pdf
http://orcid.org/0000-0002-2653-1868

960 Journal of Global Optimization (2021) 79:959-987

widely studied in some main network performances including a shortest path [1,2,6,11,13], a
minimum spanning tree [5,8,10,12,15], a maximum matching [4,16,17,19], a maximum flow
[18,20] and a center or median location [3] etc. They have wide applications in communication
networks, transportation networks, network war and terrorist networks [7,11].

The problem (NIP-DE) was first applied to the shortest path problem by Corley and Sha
in [6]. For any K, Bar-Noy et al. [1] showed that it is N P-hard. Khachiyan et al. [11] showed
that there is no approximation algorithm with approximation ratio 2, which is the current
best result. When K = 1 Nardelli et al. [13] proposed an O (mo(m, n)) algorithm to solve
the problem on undirected networks, where « is the inverse Ackermann function, m, n are
the number of edges and vertices in the network.

From the perspective of parameterization, Bazgan et al. [2] gave the complexity and
approximation analysis of the shortest path interdiction problem based on the relationship
among the three parameters: shortest path whose length is at least /, the increment b of the
length of the path and the diameter or a graph. An algorithm with time complexity O (mn)
was proposed when b = 1, while the problem is much harder when b > 2. Zhang et al.
[20] studied the optimal shortest path set problem in an undirected graph, in which some
vehicles go from a source vertex s to a destination vertex ¢. The goal is to find a minimum
collection of paths for the vehicles before they start off to assure the fastest arrival of at least
one vehicle block at least K edges. They proposed an O (n?) algorithm when K = 1 and a
strong polynomial time algorithm when K > 1.

Almost all the network interdiction problems are to delete some critical edges. However,
in some practical applications, it is extremely difficult to delete edges in a network. What we
can do is only to lengthen or shorten the weights of some edges to prolong service due to
some emergence schemes or alternative schemes which are always available. For example,
in network war, our aim is to block support of enemies, but it is hard to achieve and we
can only prolong their support time. In terrorist networks given in Fig. 1 [7], once a terrorist
attacks node k1o which will cause fire, terrorists want to prevent the fire trucks’ transportation
from node k; to kjp via the shortest path, that is, to maximize the shortest path of fire
trucks depending on limited interdiction budget by interdicting some arcs. Correspondingly,
defenders should determine in advance the risky arc(s) that will interdict and present a
relatively safety paths as emergence schemes for the fire trucks. In this case, terrorists can only
increase the lengths of some arcs, but can not increase its lengths to +o00, which corresponds
to deleting those arcs. Therefore, we put forward a concept of upgrading critical edges, based
on which we consider the shortest path interdiction problems on trees.

The maximum shortest path interdiction problem by upgrading edges on trees (denoted
by (MSPIT-UE) and (MSPIT) in brief) can be defined as follows. Let T = (V, E, w) be an
edge-weighed tree rooted at vy, where V = {vy,va,...,v,} and E = {e2, €3, ..., ey} are
the sets of vertices and edges, respectively. Let Y = {#1, 12, ..., t;} be the set of leaves. Let
w(e) be an original length and u(e) be an upper-bound of w(e) after upgrade for each edge
e € E, where w(e) < u(e). Denote by d(e) = u(e) — w(e) the deviation between u(e) and
w(e). Let c(e) be a cost to upgrade the edge e € E. Denote by Py, ,; the path from v; to
v;j in T. Define f(v;,v;) = Zeepij f(e) for a vector f and a path Py, ;- The problem

(MSPIT) aims to find an upgrade scheme r to maximize the shortest path of the tree from
the root v; to all the leaves on the premise that the total upgrade cost under some norm is
upper-bounded by a given value M. The mathematical model can be stated as follows.

max min;cy (w(vy, 1) +r(vy, 1))
(MSPIT) s.¢. |r|| < M,

0<r<d.

@ Springer

Journal of Global Optimization (2021) 79:959-987 961

y26=34

y25=37

Fig. 1 A terrorist network consisting of 10 nodes and 26 arcs [7]. The interdiction costs are shown on the
relevant arcs

When the weighted /; norm is applied to the cost |r||, the problem (MSPIT;) under
weighted /1 norm can be formulated in the following form.

max min;cy (w(vy, t) + r(vy, 1))
(MSPIT)) s.t. Y, .pcler(e) <M, 1)
0<r(e) <d(e),ecE.

The problem (MSPIT) under unit /; norm (c(e) = 1 for each e € E) is denoted by
(MSPIT,). Hambrusch and Tu [9] considered a similar problem, the edge weight reduction
problem in directed trees (denoted by (EWRT)), in which some edge weights are reduced to
minimize the length of the longest paths from the root to the leaves and the total cost under
unit /; norm does not exceed a given value. The relative mathematical model is as follows.

min max;cy (w(vy, t) — r(vy, 1))
EWRT) 5.. Y, r(e) < M,
0<r(e) <d(e),ecE.

They proposed an O(n) algorithm in two steps. The first step is to determine a range
[Lx—1, Ly) in which the optimal objective value L* lies by a binary search algorithm in
O(n) time. The second step is to obtain the exact value L* and an optimal solution r*
according to the two reduction schemes obtained by L;_; and L;. However, we found a
mistake in the formula to calculate * in the second step. Thus, we revised the algorithm,
whose time complexity is still O(n) for our problem (MSPIT,) as well as their problem
(EWRT). In this paper, we mainly consider the problem (MSPIT) under weighted /; norm

@ Springer

962

Journal of Global Optimization (2021) 79:959-987

Table 1 The relationship between the previous research and our research

Problem Graph K/b/c Complexity Reference
General anv K N P-hard 1]
graph 1y Not approximable

NIP-DE [11)

on shortest path within ratio 2
p K=1 O(ma(m,n)) [13]
Undirected b=1 O(mn) 12]
. — s
networks K=1 O(n?) [20]
Strongly
K>1 . .
polynomial time
EWRT Tree K>1,c=1 O(n) 9] & Alg. 3
MSPIT;-UE K o=t O(n) Alg. 3
c>1 O(n?) Alg. 5
Tree > c=1 O(n) Alg. 2
MCOSPIT,-UE S O(n?) Alg. 6

and proposed an O (n?) algorithm, which was not studied in [9] and other references as far
as we know.

Furthermore, we consider a minimum cost shortest path interdiction problem by upgrading
edges on trees (denoted by (MCSPIT|)) under weighted /; norm, which is similar to the
problem (MSPIT). We aim to upgrade some edges to minimize the total cost under weighted
[1 norm on the premise that the length of the shortest path of the tree is lower-bounded by a
given value L.

min), c(e)r(e),
(MCSPIT)) s.t. minsey(w(vy, t) +r(vy,t)) > L 2)
0<r(e) <d(e),ecE.

The relationship between the previous research and our research can be shown in Table 1.
Upgrading edges rather than deleting edges is the biggest difference.

The paper is organized as follows. In Sect. 2, we present a preprocessing algorithm to delete
some edges which are not needed to be upgraded for the current problem. In Sect. 3, we prove
some properties of the problem (MSPIT), ;) and propose a revised algorithm with time com-
plexity O (n).In Sect. 4, we study the problem (MSPIT) under weighted /; norm and propose
aprimal-dual algorithmin O (n?) time. In Sect. 5, we solve the problem (MCSPIT|)in O (n?)
time. In Sect. 6, we present some computational experiments to show the effectiveness of the
algorithms. In Sect. 7, we draw a conclusion and present future research.

2 A preprocessing algorithm

In this section, we first present some important definitions to identify a storage structure of
the rooted tree. Then we propose a preprocessing algorithm to delete the edges which are
definitely unnecessary to be upgraded for the current problem.

Given an upgrade scheme r for tree 7', the upgraded tree 7, is obtained from T by replacing
the edge weight vector w by w + r. Let

R(T)) = rtréi;l(w(v] 1) +r(ui, 1) 3

@ Springer

Journal of Global Optimization (2021) 79:959-987 963

Fig.2 A tree with cost c(e) on edge e. In the left tree, the Tab of the blue vertices is 1 and of the green vertices
is 2. In the right tree, the green vertices are the critical children of vq, and the chains are stored in the vertices
in green and yellow

be the length of the shortest path in 7. Obviously, R(7y) is the length of the shortest path in
T, when all the modifications of edges are upgraded to the upper-bound vector d. Let

Lmax = R(Td)- (4)
Obviously, we can conclude that

Lemma 1 The maximum length R(T,+) of the shortest path in T, with respect to an optimal
upgrade scheme r* of the problem (MSPIT 1) or (MSPIT) is not greater than L.

2.1 Some important definitions

In this subsection, we present some important definitions to identify a storage structure of the
rooted tree. We define a set of critical children for a vertex v whose degree deg(v) is larger
than 2 and its corresponding critical father, then store a chain from a critical father to one of
its critical child in the child vertex.

For convenience, the label of an edge e; = (v;, v;) is defined as the label of the endpoint
v; farther to the root vy in T'. For example, eg = (v7, vg) in Fig. 2. Let P; = Py, be the
path from vy to aleaf #; € Y. Let V* = {v € V|deg(v) > 2} be the set of vertices whose
degree is more than 2.

Definition 2 For ¢; = (v;, v;), where v; is closer to the root vy, we call v; is the father of
v;. Define Tab(vy) = 1 and the Tab of any other vertex v € V' \ {v;} by

Tab(father(v)), if deg(v) <2,

fabw = : Tab(father(v)) + 1. if deg(v) > 2.

Definition 2 gives a Tab for each vertex. As shown in Fig. 2, deg(vs) < 2, father(vs) =
vy, so Tab(vs) = Tab(vy) = 1. For vy, deg(vy) > 2, father(vy) = vy, thus, Tab(vy) =
1+1=2.

Definition 3 For a vertex u € {v;} U V*, we define a set CC () of Critical Children. Let u
be in the path from vy tov € YU V*. Ifv € V* and Tab(v) = Tab(u) + 1,thenv € CC(u);
ifveYand Tab(v) = Tab(u), thenv € CC(u). Correspondingly, we call u is the Critical
Father of v, denoted by C F (v) = u.

@ Springer

964 Journal of Global Optimization (2021) 79:959-987

For a vertex u € {v1} U V*, the set CC (u) of critical children is composed of the leaves
with the same Tab as u’s and the vertices in V* whose Tab is one more than u’s. In Fig. 2,
CC(v1) = {v2, v6, v7}, CF(v2) = v1 and CF (vg) = v1.

Definition 4 For any vertex v € Y U V*\{v}, define chain(v) = Pcr),» as the chain
from CF(v) to v and the minimum cost of the chain is defined as C(chain(v)) =
min c(e).

ecchain(v),d(e)>0

Definition 4 shows the storage of chains. For any v € Y U V*\{v1}, chain(v) contains
only one path, on which all the vertices exclude C F (v) and v have degrees 2. In Fig. 2, for
v2, CF(v2) = vy, thus chain(va) = Py, v,; for ve, chain(ve) = Py, v = {V1, V5, V6} =
{es, eg} and C(chain(vg)) = min{l, 8} = 1.

Definition 5 Define Layer(vi) = 0 and Layer(vj) = Tab(father(v;)) as the layer num-
ber of vertex v;. Let 8 = maxy,ev Layer(vj).

2.2 A preprocessing algorithm

The preprocessing algorithm aims to reduce the unnecessary steps by deleting the leaves, to
which the length from the root is no less than a given length L, and the relevant stored chains
excluding the critical fathers.

Let b(t;) = CC(CF(t;)) be the set of leaf brothers for aleaf #; € Y. Let

b*(t) ={t; e b(t) N Y|w(Pj) = L} Q)

be the set of useless leaf brothers in b(#;) to which the length from the root is no less than
a given value L. Then we should delete the chains stored in the leaves in b*(z;) excluding
CF(;). Then we update b'(t;) = b(1;)\b*(t;) and Y’ = Y\b*(t;). Moreover, if b'(t;) =
#, then C F(t;) becomes a vertex with degree 1, which is not a leaf in the original tree,
and hence we need to delete the chain stored in the leaves’ critical father C F(t;). We also
delete C F(¢;) from the set of critical children of C F'(C F (t;)), thatis, CC(CF (CF (t;))) :=
CC(CF(CF(t))\CF(t;). To assure the work of deleting chains run correctly, we perform
the above process in a bottom-top fashion and choose the leaves in the non-increasing order
of layers.

Note that for a given tree T, we first run the preprocessing algorithm for L = L4y,
then we need to delete all the paths P whose length w(P) > L,,x. For example, for the
left tree in Fig. 3, L.y := 38, w(Ps) = w(vy, ve) = 43, w(P7) = 52, w(Pg) := 43,
w(P1g) := 43, Layer(ve) := 3, Layer(v7) := 3, Layer(vg) := 2, Layer(vi4) = 2, and
B = maxyey Layer(v) := 3. For j := 3, Y3 := {vg, v7}, choose vg, then b(ve) := {ve, v7}
and b*(vg) := {vg, v7}. We delete chain(ve)\{vs}, chain(v7)\{vs}, and then b(vg) = 0,
delete chain(vs)\{v4} and update CC(v4) = {vs, vg}\{vs} := {vs}, as shown in Fig. 3.
For j = 2, Y2 = {vg, v11, v13, V14, }, choose vg, then b(vg) = b*(vg) := {vg}. We
delete chain(vg)\{v4}, then b(vg) := ¥ and delete chain(vs)\{v1}. Choose vi4 and delete
chain(vi4)\{ve}, as shown in Fig. 4. Finally, after the preprocessing, we obtain the right tree
in Fig. 4.

We can easily conclude that

@ Springer

Journal of Global Optimization (2021) 79:959-987 965

Algorithm 1 (7', Y’, Ey.;) = Preprocess(T,Y,CC, CF, chain, Layer, w, L)

Require: A tree 7 := (V, E), the set Y of leaves; the set C F of critical fathers and the chains; the Layer of
vertices, an edge weight vector w, and a given value L.

Ensure: A tree 77, the set Y’ of leaves and the set E;,; of deleted edges.

1: For tree T rooted at vy, let Y := {t, 3, ..., 4}, Y := Y and T’ := T. Initialize E ,; := 0.

2: Let P := Py, ;; and w(FP;) := Zeepi w(e) foreach t; € Y'. Let B := maxycy Layer(v).

3:for j=p:—1:1 do

4: letY/ := {1 € Y|Layer(t;) = j}.
5: while Y/ 3 () do ' . ' '
6: choose t/ € Y/ Let b(t)) := CC(CF(#/)) and b*(t]) := {t € b(t]) N Y'|w(vy, 1) > L}.
7: if b*(t/) # 0 then
. — ; j i —
8: delete Vg, = UlkEb*(f’-j)(Chaln(tk)\CF(ti) and Ey ;= {eg|vk € Vger} from T', Ege i=
Eger U ES b(t]) := b(t) \b*(]), Y/ == Y'\b* (t]).
o: if b(t/) =0 then
10: delete Vge := (chain(CF(t{)\CF(CF()))) and E},; := {ex|vp € Vge} from T',

Egel := Egor U Eéel, CC(CF(CF(tiJ))) = CC(CF(CF(tiJ)))\CF(tiJ).
11: end if

12: end if
13: end while
14: end for

31+18 18+20 31+18 18+20 31+18 18+20
=49 =38 =49 =38 =49 =38

Fig.4 For the left tree L;,qx = 38, delete the chain(vg)\{v4}, chain(vq)\{v1}, chain(vig)\{vo}

@ Springer

966 Journal of Global Optimization (2021) 79:959-987

Fig.5 An example of Ty, and
T = Ty, obtained by deleting vq
and its adjacent edges

Theorem 6 The preprocessing Algorithm 1 can be done in O (n) time.

3 Solve the problem (MSPIT 1)

Let M(T;) = Y ek
formulated as (6).

r(e) be the total upgrade cost. Then the problem (MSPIT, ;) can be

max R(T) = minsey (w(vy, 1) +r(vi, 1))
(MSPIT,) s.t. M(T,) <M, 6)
0<r(e) <d(e),ecE.

When solving the problem (MSPIT), we need to solve a sub-problem, minimum cost
shortest path interdiction problem on trees by upgrading critical edges under unit /1 norm,
which is denoted by (MCSPIT, ;). We aim to minimize the cost to upgrade some edges on
the premise that the shortest path of the tree is lower-bounded by a given value L.

min M(T,)
(MCSPIT,,)) s.t. R(T;) > L, (@)
0<r(e) <d(e),ecE.

To solve the problem (MCSPIT), we construct an auxiliary network 7, by adding an
artificial terminal vy and some edges (¢, vp) with w(¢, vp) = 0 and d(¢, v9) = O for every
leaf t € Y, just as shown in Fig. 5.

In this section, we first analyze some properties of the problem (MCSPIT), then propose
a linear time algorithm to solve it. Finally, we present a linear time algorithm to solve the
problem (MSPIT) followed by complexity analysis and an example.

3.1 Solve the problem (MCSPIT,1)
To solve the problem (MCSPIT,), we aim to generate an upgrade scheme r* satisfying

R(T;+) > L and minimizing M (7,«). We first analyze some properties of an optimal scheme
r*, then propose a linear time algorithm.

@ Springer

Journal of Global Optimization (2021) 79:959-987 967

Let r be an upgrade scheme. Define

w(vi, vj) + r(vi, vj), if vj # vo,

minpepvi’vj (w(P) +r(P)), if vj = vp. ®)

Rr(viv U/) = {
Hence, R,(vi,v9) = R(T;). Specially, when r(v;,v;) = 0 for all (v;,v;) € E,
Ro(vi, vj) = w(v;, vj) if v; # vo and Ro(v;, vo) = mil’lpgpvi_u() w(P).

Definition 7 [9] An upgrade scheme r is canonical if R (vi, v;) > R,/ (vy, v;) for all v; €
V U {vo} and for any other scheme r’ with M (T,) = M (T,/).

Notice that the upgrades occur as close to the root as possible in a canonical upgrade
scheme. Furthermore, we can divide the edges into three classes due to their upgrade weight.

Definition 8 [9] We refer to an edge e with r(e) = d(e) (resp. r(e) = 0) as an edge with full
(resp. zero) upgrade. An edge e with O < r(e) < d(e) is called an edge with partial upgrade.

The following lemma gives a characterization of edge upgrade in an optimal canonical
upgrade scheme.

Lemma 9 [9] Assume that r is an optimal upgrade scheme. Then r is the optimal canonical
upgrade scheme if and only if for every path P from vy to vy, if P contains upgraded edges,
then there exists one edge (v;,v;) on P (v; is closer to the root vy) such that each edge on
P from vy to v; has full upgrade and each edge on P from v; to vy has zero upgrade.

According to Lemma 9, we can obtain Algorithm 2 to solve the problem (MCSPIT,),
which is similar to the method given in Page 71 of [9]. For each edge (v;,v;) € E, let
AR;j = L — w(vy, v;) — Ro(v;, vo), then we can determine an optimal upgrade scheme
r*(v;, v;) based on the relationships among d(vy, v;), AR;; and d(vy, v;) + d(v;, v;).

Algorithm 2 Solve the problem (MCSPIT,): r* = OPT (L)

Require: An auxiliary tree Ty, the set E 4, of deleted edges in the preprocessing algorithm; two edge weight
vectors w, d, and two values L and L.

Ensure: An optimal canonical upgrade scheme r*.

1:if L > Lj,qx then

2: Output “The upgraded length of the shortest path is impossible to be L, and its maximum length is

Lmax”. Return.

3: end if

4: if Ry(vy, vp) > L then

5: output r*(v;, v;j) = 0forall (v;, v;) € E and Return.

6: else

7: Letr*(vi,vj) :=0for (v;,v;) € Ege-

8: for (v;,v;) € E\ Ege do

9: Let AR;j := L —w(vy, v;) — Ro(v;, vo) and d(vy, v;) := ZeEPv|.vl' d(e).

0. if dvi,v;) = AR;j;
P (i, vj) =1 ARij —d(vi, v, if d(vi,vi) < ARjj < d (v, v) +d i, v (9)
d(vi. v)). if ARij zd(vi,v) +d @i, v)).
10: end for
11: end if

Theorem 10 Algorithm 2 can solve the problem (MCSPIT) in O (n) time.

@ Springer

968 Journal of Global Optimization (2021) 79:959-987

3.2 Solve the problem (MSPIT,1)

In this subsection, we first analyze some properties of the problem (MSPIT), then propose
an algorithm to solve it, finally we show its linear time complexity.
Every vertex v; € V induces the entry

L; =w(vy,vj) + Ro(vj, vo) + d(vi, vj). (10)

Let £ ={L;|vj € V} be the list containing all the entries.

Lemma 11 For each edge ej = (v;, v;) € E, the lengths of entries are nondecreasing, that
is, L; < Lj.

Proof For any e; = (v;, v;) € E, we have

Lj—L,
= (w(v1, vj) + Ro(vj, vo) + d(v1, vj)) — (w(vi, vi) + Ro(vi, vo) + d(v1, v;))
= (w(vi, vi) + w(vi, vj) + Ro(vj, vo) + d(v1, vi) + d(vi, v;))
—(w(vi, vi) + Ro(vi, vo) +d(v1, vi))
= w(v;, vj) + Ro(vj, vo) +d(vi, vj) — Ro(v;, vo)

If w(v;,vj) + Ro(vj,vo) > Ro(vi,vp), then L; — L; > d(v;,v;) > 0. Otherwise,
w(v;, vj) + Ro(vj, vo) = Ro(v;, vo), then L; — L; =d(v;, v;) > 0. O]

From Lemma 11, we can see that the smallest entry is L = Ry (v, vg) induced by the root
v1, and the largest efficient entry is L,,,,. Therefore, we update £ = {L; € Z|L; < Lyax}
as the list of efficient entries in the remainder of the paper. Furthermore, based on Lemmas
11 and 1, we can conclude that

Corollary 12 If L > Ly for vertex vj, then r*(e) = 0 for any edge e on the path from v
to a leaf in any optimal upgrade scheme r*.

For two given entries L, and L, we call Algorithm 2 and obtain r, = OPT(L,) and
rp = O PT(Lp). Determine the sets E,, E¢, Ej, E; and E,, on tree T as follows.

— Set E, = {e; € El|rs(e;) = rp(e;) = 0} contains the edges which have zero upgrade in
both r, and 7.

Set Er = {e; € E|rq(e;) =rp(e;) = d(e;)} contains the edges which have full upgrade
in both r, and rp.

Set E, = {e; € E|0 < rg(e;) < d(e;),0 < rp(e;) < d(e;),rp(ej) =0,Ve; € Py}
includes the edges having partial/full upgrade in both r, and r.

Set Eg = E \ (E; U Ey) is the set of edges not included in sets £, and E r.

— Set E,, = E; \ E, contains all edges not included in sets E;, E, and E .

If the entries in £ =< Ly, L, ..., L, > are in nondecreasing order and r; = O PT(L;),
we have M(T,,_|) < M(T,,)andri_y <r;asLi_1 < L;.

Let k be the index such that M (T,,_,) < M < M(T,,). Next we suppose that E, E y and
E are defined for the indexesa = k — 1 and b = k.

Lemma 13 Let k be the index such that M (T, _

D < M < M(T,,). Then E; = {e €
Elri(e) =0}, Ef ={e € E|rg—1(e) =d(e)} and E; =

{elri-1(e) < ri(e)}.

@ Springer

Journal of Global Optimization (2021) 79:959-987 969

Proof On one hand, an edge e having zero upgrade in ry also has zero upgrade in r;_; and
thus E, = {e € E|rr(e) = 0}. On the other hand, an edge e having full upgrade in r¢_; also
has full upgrade in r¢ and thus £y = {e € E|ry—1(e) = d(e)}. Furthermore, we show that
ri—1(e) < ri(e)fore € Eg = E\ (E; U Ey). It holds obviously fore ¢ E, when ri_(e) =
0 <rr(e) <d(e),andfore ¢ Ey when0 <rr_i(e) <d(e) =rr(e).Ife € E\ (E;UEy)
with 0 < rr(e) < d(e) and 0 < rr—1(e) < d(e), suppose rx—i(e) = rr(e). Then by (9) in
Algorithm 2, we have ry—1(e) = ri—1(v;, vj) = ARllfj_l —dy,v) = AR{‘J. —dy,v) =
ri(e) and Ly_; = Ly, which follows a contradiction M(7T,,_,) = M(T,,). Hence, we have
ri—1(e) <ri(e),e € E\ (E;UEy)and E; = {e|ry_1(e) < rr(e)}. O m}

We will determine an optimal upgrade scheme r* satisfying ry_j(e) < r*(e) < rr(e) for
all e € E and the length R(T,+) of the shortest path. For an edge (v;, v;) € Ej, let

Rr (P3) = Ry, (v1,vi) + w(vi, vj) + re—1(vi, vj) + Ro(vj, vo) (1D

be the length of the shortest path from v; to vg that goes through edge (v;, v;) with respect
torg_1. Let Ef = {(v;,vj) € E; |1‘§,,\,71 (Pi’;.) < R(T,+)}. We have the following property.

Lemma 14 Let k be the index such that M(T,,_|) < M < M(T,,). Then the following
statements hold. (1) Every path P from vy to vy contains at most one edge belonging to set

E; = {elri—1(e) < re(e)}. (2)If
M = M(Ty) + 2, 0))eks Ry, (P

R(T+) = , 12
(Tr+) E7] (12)
then an optimal upgrade scheme r* can be calculated by
d(vi, vj), if (vi,vj) € Ey,
0, if (vi,vj) € E;,
Ky vi) = : J z
PR =), if Wivp) e E\E;, 1)

re-1 (i, v)) + R(T=) = Re (P), if (v, v)) € EY.

Proof (1) Suppose there are two edges (v;, vz) and (v, v;) in one path P from v; to vo,
in which vj is closer to vy and v; is closer to vg. Then we have 0 < ry_1(vj, vz) <
d(vg, vz). Case 1.0 < ry—1(vj, va) < d(vj, va) = rr(vj, va), then ry—1(vz, v;) =0 <
ri(va, v;j) < d(vg, vj). By (9) in Algorithm 2, we have Ly — w(vy, vz) — Ro(va, vo) >
d(vi,vz), then Ly > w(vy, vz) + Ro(vz, vo) + d(vi,v;) = L;. Similarly, we have
Lyx—1 < Lz. Additionally, if Ly_; = Lz, we have

Li—1 = Lz = w(v, vz) + Ro(vz, vo) +d(v1, va)
w(vy, vp) + w(vg, va) + Ro(va, vo) + d(vy, vjy) + d(vj, va)
w(vy, vp) + Ro(vj, vo) + d (v, vp) +d(vj, va),

v

as w(vj, va) + Ro(va, vo) = Ro(vj, vo). Then Li—1 — w(vy, vj) — Ro(vj, vo) =
d(v1, vg) + d(vs, vz) holds in (9), thus rx—1 (v, va) = d(vj, vz) which contradicts
to rx—1(vj, va) < d(vj, vz). Hence we have Ly < Lz < Ly which contradicts Ly_;
and Ly are sequential in Z. Case 2. 0 = rr_1(vz, va) < d(vp, vz) = rx(vj, vz), then
re—1(va, vj) = 0 < ri(vz, vj) < d(vg, vj). Similarly we have Ly < Lj; < Lz and
Ly > L, thus L;_; < L; < Ly results in a contradiction.

(2) Obviously, anedge e € Ef has full upgrade in 7* and an edge e € E; has zero upgrade in
r*. Additionally, for (v;, v;) € E; \ E}, we have Iérk_l (P;;) > R(T;+) and r*(v;, v;) =
Ti—1(vi, V).

@ Springer

970 Journal of Global Optimization (2021) 79:959-987

For an edge (v;, v;) in EY, if there is only one path P = Pl.’; going through (v;, v;), then
r*(vi,vj) = rr—1(vi, vj) + R(T+) — (w(P) + rg—1(P)); if there are more than one path
going through (v;, v;), we find the maximum upgrade amount from the shortest path P;;"

which results in 7*(v;, vj) = re—1(vi, v;) + R(Tp+) — f(’,,H (Pi’;). Furthermore,
P, vj) = 1 (Ui,) + R(T) = Ry (P)
< 11 (vis v)) + R(Ty) = Rey_ (PY)
= rr(vi, vj) < d(v;, vj).

The total upgrade cost is

M(Tr*)

=Y d@+ Y n-i@+ Y (r-i(e)+ R(Tx) — Ry (Pf)

EEEf eEEs\E.T (U,‘,vj)EE_;k

=MTy)+ Y. RTGw)— Y Ry (P}

(vi,v./)eE;‘ (l)[,vJ')EE;<
=M(T,)+ |E}R(T) = Y Ry (P
(vi,vj)EE}
=MTy)+M—-MTy)+ Y. Ry (PH— > Ry (PY)
(U,’,Uj)EE_;k (v,-,vj)eE;‘
=M.

Next we will show that R(T}«) is the length of the shortest path under *. For (v;, v;) €
E, \ E}, we have Ry, _,(P;) > R(Ty+). For (vj, v)) € E}, we have

Ry« (P})
= Ry (v1, vi) + w(vi, vj) +r*(vi, vj) + Ro(vj, vo)
= Ry_, (1, vi) + w(v;, vj) + (rg—1(vi, vj) + R(Tp+) — Iérk_l (P{)) + Ro(vj, vo)
= R(T}+).
Combining with (1), we can conclude that the R(7,+) is the length of the shortest path in 7.
] O

To determine the set E and the length R(7,+), we consider a series of r“(x =0, 1,...)
such that

M — M(Trk_l) + Z(vi,vj)eE;‘ Rrk—l (Pij)

R(Ty«) =
|ES|

, (14)

where EY = Eg, EXt! = {(vi,v)) € EX|Ry,_(P}}) < R(T;)}, k > 0. Such a circulation
terminates until E§‘+1 = E¥. In this case, R(T,+) = R(Tyx).

Lemma15 If M(T,,_,) < M, then EY1 # W and R(T,1) < R(T,0). Furthermore, R(T,x) <
R(T1) < --- < R(T.1) < R(T,0). When EX\E“T! = ¢, R(T,+) = R(T).

Proof 1f Es1 = (J, then Ié,,H (Pi"jf) > R(T,0) for any edge in E,. Hence, it follows from (14)
that
M —M(Ty_,) + |Es|R(T0) M- M,)

R(T,0) > = R(T.0) +
" |Ey] " |Eg|

> R(T,0),

@ Springer

Journal of Global Optimization (2021) 79:959-987 971

which is a contradiction.
It follows from (14) that

M—MT)+ > Ry (P})=|E|R(Ty) (15)
(vi,vj)€E;S

M—MT)+ Y Ry (P} =I|E}|R(T) (16)
(v,-,vj)eEsl

By (15) minus (16), we can obtain

(Es| = |EIDR(To) < > Ry (P}) =|E|R(T,0) — |E}|R(T,1). (17
(Vi vj)EE\E]

Then |E!|R(T,1) < |E}|R(T,0).1tfollows from E! # ¢that|E!| > Oand R(T,.1) < R(T0).
Similarly, we can show that R(T,«) < R(T,x-1) <--- < R(T,1) < R(T,0).

When E;‘\E;‘Jrl = (J,then E;f“ = Ef and R,k_l(P;;.) < R(T,«)holds foreach (v;, vj) €
EY.Hence, Ef = Ef = {(v;,v;) € ES|1§rk_l(P;;) < R(T;+)} and R(T,») = R(T,«). O O

Based on the above properties, we can state the Algorithm 3 to solve the problem
(MSPIT ;). The main idea is in two steps. The first step is to determine arange [Lx—_1, Lg) of
the optimal value R(7;*) by a binary search method in O (n) time without sorting the entries
in the list Z [9]. The second step is to obtain the exact value R(7*) and an optimal solution
r* according to the two upgrade schemes ry—1 = OPT (Li—1) and ry = OPT (Ly).

Here are some notations. Let Z,; be the sublist of £ containing the entries L; with
Ly <Lj<Lpandng, = [Zgp|. Let My = Z(v[’vj)eE/_ d(v;, v;) be the total upgrade spent
onthe edgesinset Ef. Let My =), E, Tb(€) be the total upgrade made on the set E,, in
upgrade scheme r,,. Let L be the (L"%”J)th smallest element in list Z4p. Let 8 = Ly — L.
Let Ey -, Ey,p and E, be the sets of edges in E, have zero, partial and full upgrade in r,,
respectively. Then E,, = E, ; U E, , U E, 7. The total upgrade of scheme r, is determined
below.

M(Trq)sz+(Mp,b_8X |Ep|)+Mu,f+Mu,ps (18)

with M, r = 3, vpye, ; Wi V) Mup = 3, 0))ek, , Ta Wi V))-

Now we analyze the time complexity of Algorithm 3. It is easy to see that work done in
Lines 11-22, an iteration in while circulation, is bounded by O(|E,|). The authors in [9]
showed that |E,| < 2n,4p and n,p reduces by half from one iteration to the next. The edge
(vi, vg) € E, inducing the entry L, is no longer in E, by the end of the current iteration.
When L, < Ly < Ly, we have ng, < "% and when L, < Ly < L, we have ng, < ™E.
Hence, searching for index & in the whole while circulation takes O (n) time. Obtaining the
exact value R(7,") in lines 25-32 can be completed in O (n) time and the optimal upgrade
scheme r* is generated from ry and rx_; in Line 33 by (13) in O(n) time. Thus, the O (n)
time bound for the problem (MSPIT,) follows.

Theorem 16 Algorithm 3 can solve the problem (MSPIT) in O (n) time.

Remark 17 The optimal upgrade scheme r* generated from ry and rz_1 in (1)-(3) in page 75
of [9] is given below.

dv;, vj), if re—1(ui,vj) =d(v;, vj),

*(wiovi) =140, if re(ui,vj) =0,

r (vl’v]) MM,)]. (19)
-1 (i, vj) + — g7 i (i, v)) € E;.

@ Springer

972 Journal of Global Optimization (2021) 79:959-987

Algorithm 3 An algorithm to solve the problem (MSPIT,;).

Require: Atree 7 = (V, E), the set Y of leaves; the set CC of critical children, the set C F of critical fathers
and the chains; the Layer of vertices, two edge weight vectors w, u and the maximum cost M.
Ensure: The optimal canonical upgrade scheme r*.

1: Calculate d := u — w and Ljqx := R(Ty).

2: Call (T,Y, Ege) := Preprocess(T,Y,CC,CF,chain, Layer, w, Lyax).

3: Determine ryqx = O PT (Lpayx), get the minimum cost My qx 1= ZeeE\EM Tmax (€).

4: if M > Myqy then '

5: output an optimal solution ¥ := ry4y and the optimal value L4y, return.

6: else

7. Construct an auxiliary network Ty, by adding an artificial terminal vy and some edges (7, vg) with
w(t,vg) :=0and d(¢, vg) := 0 for every leaf t € Y.

8: Calculate L by (10) for each vertex v; € V. Determine the list £ of the efficient entries induced by

Lj which is no more than L4 .

9: Set Ly := Ly, Lp := Lmax, ZLap = £, ngp = |Zapl, ra := OPT(Lgy) and ry, := OPT(Lp). For
tree 7', determine the sets E;, E,, Ep and Ef.

10: while n,, # 0 do

11: Let Ly be the (_"‘T”’J)th smallest element in list Z,p. Obtain r4 (v;, v;) by (9) and determine the
sets Ey,z, Ey,p and Ey,, r. Calculate M(Trq) according to (18).
12: if M(Trq) < M then
13: let Ly =Ly, Ef:=EfUEy , Ey:=Ey\ Ey f.
14: Edges from E,, that qualify for £, are moved from set £y to Ep.
15: Update 2, by deleting the entries smaller than Lg. Let ngp 1= [Zgp|.
16: else if M(Trq) > M then
17: let Ly :=Lg,E; ;= E;UEy ;, Ey == Ey\ Ey ;.
18: Edges from Ey, j and E,, ¢ that qualify for E), are moved from set £, to E .
19: Update Z, by deleting the entries larger than Lg. Let ngp := [Zgpl.
20: else
21: let Ly := Ly, Return r* := OPT(Ly).
22: end if
23: end while
24: Let Ly := Lq, Ly := Lp and E5 1= E\ (E; U Ey).
25: Determine ry := OPT (Ly) and rg—1 :== OPT (Lp_1).
M=M(Ty_,)+Z(Ul“vj)EEs Ry ()

26: Let R(T,0) := 5
27: LetE{ := Es, Ef := (v, v)) € E{|Ry_, (P}}) < R(T,0)}, R(T,1) := R(T,0), i = 1.
28: while ESTI\EX ¢ do
M=MTr,_)+ (o o rep R (P5)
29: R(Ty) = Ao el el 0
s
30: Update E§+l ={(v;,vj) € E§|1§rk_| (PI.*}) < R(Ty«x)}and k :=k + 1.
31: end while
32: Let Ef := EX and R(T}+) := R(Tyx).
33: Calculate r*(v;, v;) by (13) for (v;,v}) € E \ Ege and ¥ (v;, vj) := 0 for (v;, vj) € Egey-
34: end if

This implies that the rest cost (M — M (T},_,)) is distributed to 7*(v;, v;) for (v;, v;) € Ej
in average, which is not actually true. The distribution must be made according to the length
of every path, which may not be equal, just as (13) shows.

For example, in Fig. 5, for a given M := 30, according to lines 7-24 in Algorithm 3, we can
determine two consecutive entries Lg := 38 and L5 := 42 with M5 := 35 > M > Mg := 17.
We have

rg = OPT(Lg) :=(3,6,0,2,1,0,5,0,0,0),
rs = OPT(Ls) := (3,10,0,6,5,0,5,4,0,2),

@ Springer

Journal of Global Optimization (2021) 79:959-987 973

Fig.6 A tree and its auxiliary network Ty, in Example 1

and E; := {e3, es, e¢, €9, e11}. The solution calculated by (19) is
r*:=(3,8.6,0,4.6,3.6,0,5,2.6,0,2.6),

and the length of the shortest path is 40.6. But the solution obtained by Lines 25-33 in
Algorithm 3 is

= (3,9,0,5,4,0,5,3,0, 1),

and the length of the shortest path is 41 which is larger than the former one.

3.3 Two examples of the problem

For the better understanding of Algorithm 3, Example 1 and Example 2 are given to show
the detailed computing process.

Example 1 AsisshowninFig.6,V :={vy,...,vi7}, E :={ea, ..., e17}, M := 40,11 := v,
Iy 1= V7,13 1= Vg, 14 1= V11, I5 = V13, I 1= V14, I7 1= V17,

w:= (7, 12, 8, 6, 1,12, 14, 19, 11, 11, 17, 9, 38, 10, 14, 17),

u = (10, 22, 16, 16, 2, 19, 19, 31, 16, 12, 24, 10, 41, 15, 19, 23).

Itis easy tohaved = u — w := {3,10,8,10,1,7,5,12,5,1,7,1,3,5,5,6}, Ly = 57.
By calling the Preprocess Algorithm, we can delete the leaf vi4 from T as w(Py,,) := 57
and obtain Eg4.; := {e14}. Then determine

Tmax ‘= OPT (Lpax) = (3,10,8,2,0,0,0,12,4,0,0,0,5,5,6), Myax :=55.
By Line 8, for every vertex v; € V, determine the entry list
£ :={34,37,47,55, 65, 66, 83, 67,53, 68, 59, 64, 65, 46, 51, 57}

and the efficient list obtained by deleting the entries larger than L,,, = 57 is £ =
{L1, Ly, L3, L4, Lo, L15, L16, L17} = {34,37,47,55,53,46,51,57}. L, = 34,L) =
57.Call r, := OPT(L,) = (0,...,0) and r, := OPT(Lp) = (3,10,8,2,0,0,0, 12,
4,0,0,0,5,5,6). Determine E; := {eg,e7,es, e11,e12,€13,e14}, Ef = 0, E, =

@ Springer

974

Journal of Global Optimization (2021) 79:959-987

Table 2 The results for the detailed 3 iterations in Example 1 by Algorithm 3

Iteration 1 2 3
Lg 47 51 53
(3,10,0,0,0,0,0, (3,10,4,0,0,0,0, (3,10,6,0,0,0,0,

'q 6,0,0,0,0,5,1,0) 10,0,0,0,0,5,5,0) 12,0,0,0,0,5,5,2)

Ey,z {ea, es5, €10, 17} {es, €10, €17} {es. e10}

Ey,p {eg, e16} {e4, e9} {eq, e17}

Eyf {ea. €3, €15} {e16} {eg}

M(Trq) 25 <M 37 <M 43> M

La 47 51 51

Lp 57 57 53

£ {es. €7, €8, €11, {es, €7, 8. €11, {es, e, €7, €8, €10,
N €12, €13, 14} €12, €13, €14} €11, €12, €13, €14}

Ep 7 7 {ea)

Ey {e2. €3, €15} {ea, e3, €15, €16} {ez. €3, €15, €16}

Ey {eq, e5. €9, €10, €16, €17} {eq, 5. €9, €10, €17} {eg. e17}

Zab {Lg4, Lg, L16} = {55,53,51} {Ly4, Lo} = {55, 53} (4]

Nab 3 2 0

@, E, = {e2,e3,e4,e5,¢9, €10, €15, €16, €17}, Lap = {L2, L3, L4, Lo, Lis, L1g} =

{37,47,55,53,46,51}, ngp := 6.

In the first iteration, Ly := L3 = 47 is the third smallest value in Z. Obtain r, =
(3,10,0,0,0,0,0,6,0,0,0,0,5,1,0) for edges in E, by (9) when L := L, = 47. Then
we have E, ; = {e4, e5, €10, €17}, Ey,p := {eg, e16} and Ey 5 = {e2, e3, e15}. We get
M(Trq) =25 < M :=40by (18). Thus L, := 47, Ey := Ef U E, r = {e2, e3, €15},
E, := E,\\E, ; = {e4, e5, €9, €10, €16, €17}, E;, := . The results for the first three iterations
can be shown in Table 2.

After the third iteration, n,p, := 0, so the iteration terminates and we have Ly_| := L, =
Lig=51,Ly :=Lp =Ly =53.

Determine R(7+): R(T,0) := 52, E? := E; = E\ (E, UEy) = {es, e9, €17}, E! :
{es, €9, €17}, R(T,1) = R(T,0), E} \ E? = @, then R(T;+) := R(T,1) = 52 with E¥ :=
{ea, e9, e17}.

Generate r* := (3, 10,5,0,0,0,0, 11,0,0,0,0,0, 5,5, 1) by (13).

Example2 In Fig. 5, V := {vy,...,v11}, E := {es,...,e11}, 11 = v4, tr = vs,
3 = v, 4 = vip, 5 = v, w = (7,12,10,26, 19,18, 10,9, 14,25), u :=
(10,22,17, 32, 31, 23, 15,20, 19,35), M := 10. Then d := (3,10,7,6,12,5,5,11,5,
10), Lyax := 42, the efficient list £ := {Li, L, L3, L5, Lg} = {29,32,42,42,38}.
L, =29, Ly :=42. Then ryqy := (3, 10,0, 6,5,0,5,4,0,2) and M, := 35.

For the given M := 10 < M4, according to lines 7-24 in Algorithm 3, we can determine
two consecutive entries L, := 32 and Lg := 38 with Mg := 17 > M > M> := 3 in the list
/. We have

rp:=0OPT(Ly)=(3,0,0,0,0,0,0,0,0,0),r3 :=(3,6,0,2,1,0,5,0,0,0).

@ Springer

Journal of Global Optimization (2021) 79:959-987 975

Through lines 26-33, determine R(7,+): E; := {e3, es5, eg, €3},

10-3+(32+4+36+37+33 1
R(T0) := + (32436437 +33) =36-,
4 4
E? = Eg = {e3, e5, g, €3}, ES1 = {e3, eg}, R(T,1) := R(T0) = 361, k= 1. E? \ ES1 =
{es, e6} # @, then do the first while-iteration. We have R(7,1) := w = 36,

EY2 = {e3,eg},k := 2, Es1 \ EY2 := {J, thus the iteration terminates. Hence, E; := {e3, eg},
R(Ty+) := R(T,1) = 36. Finally, generate r* := (3,4, 0,0,0,0, 3,0, 0, 0) by (13).

4 Solve the problem (MSPIT,)

In this section, we solve the problem (MSPIT;) under weighted /; norm through a primal
dual algorithm. Based on two sub-algorithms, the preprocessing algorithm (Algorithm 1) and
the minimum cost cut algorithm (Algorithm 4), we give the primal dual algorithm followed
by time complexity analysis and a computational example.

4.1 An algorithm to find a minimum cost cut

In this subsection, we firstly define a minimum cost cut, then give an algorithm to find such
a cut.
Definition 18 A set E;(T,) of edges is called a feasible cut of a tree T, rooted at v with
respect to d if there is one and only one edge e € E(T),) on every path from v to every leaf
tj € Y NT,, where d(e) > 0. A minimum cost cut E:;(TU) is a feasible cut whose cost
C(Ty) = C(E}(Ty)) = ZeeE;(Tu) c(e) is minimum.
The main idea of the algorithm to find a minimum cost cut is as follows. For a given
length z, we firstly call the preprocessing algorithm (77, Y’, Ege;) = Preprocess(T,
Y,CC,CF,chain, Layer, w, 7) to delete the paths whose length are no less than z. Then
for the tree T’, we determine a minimum cost cut for each subtree T, when v € V* U {v}
in a decreasing order of Layers. For v € V* U {1}, let CC(v) = {vp,, iy, -+, Ui}
be the set of critical children of v, and let th = chain(vy) U T, be a branch of T,
rooted at v,. Then we can divided T, into the union of all the branches th, that is,
T, = thECC(v) fvh. Based on this structure and the definition of a minimum cost cut, we
can calculate C(T,,) = min{C (chain(vy)), C(Ty,)}. Hence, C(T,) = ., cccqw) C(Ty,) is
the sum of the minimum costs C(th) for all the branches th, v, € CC(v).

Obviously, we need to transverse the tree from bottom to up to find a minimum cost cut.
Then we can conclude that
Lemma 19 Algorithm 4 can find a minimum cost cut in O (n) time.

Given an example in Fig. 7, we call Algorithm 4 in details as follows.
V2= {vs), C(Tys) := C(Tys) + C(Ty;) = min{9, 400} + min(16, +-00} = 25;
V= {4, v9}, C(Ty,) := C(Tys) + C(Tyg) = 10 + 15 = 25;
C(Ty) := C(Ty,,) + C(Tyy;) = min{l, 400} + min{13, 00} = 1 + 13 = 14;
Vo= (v}, C(Ty,) i= C(Ty,) + C(Tyy) + C(Tyy,) = 4+ 7+ 15 = 26.
Therefore, C(T') := C(T},) = 26 and a minimum cost cut of T' given in Fig. 7 is E}}(T) :=
{(v2, v3), (v1, v9), (v1, V15)}.

@ Springer

976 Journal of Global Optimization (2021) 79:959-987

Algorithm 4 (Ej(T), C(T)) =MinCut(T,Y,CC,CF,chain, Layer,c,w,d, 7)

Require: Atree T = (V, E), the set Y of leaves, the set CC of critical children, the set C F of critical fathers
and the chains, the Layer of vertices; a cost vector ¢, two edge weight vectors w, d and the length z of
shortest path;

Ensure: The minimum cost cut E; (T) of the tree and the relative cost C(T).

1: Call(T,Y, Egp1) = Preprocess(T,Y,CC,CF,chain, Layer,w, 7).

2: fort € Y do
3. Ty :=0,C(Ty) := +o0, E;(Tt) = (.
4: end for

5: Let B := maxycy Layer(v).
6:forj=p—-1:-1:0 do
7: letV/ :={v e V*U{v}|Layer(v) = j}.

8: while V/ # ¢ do

9: choose v € V/. Determine CC (v) = {vpy, Vpy, - - - vhp}, where p := degree(v) — 1 if v # v
and p :=degree(v) ifv=v; .

10: for v, € CC(v) do

11: let th := chain(vy) U Ty, C(chain(vy)) = _ min c(e) == c(ep).

eechain(vy),d(e)>0

12: if C(chain(vy)) < C(Ty;,) then

13: C(Ty,) := C(chain(vy)), E;(th) ={en)s

14: else ~

15: C(Tyy,) = C(Ty,), E}(Ty;,) = E};(Ty,).

16: end if

17: end for B ~

18: Calculate C(Ty) := Zu;,eCC(v) C(Ty,), Ej(Ty) = UuhGCC(v) E}3(Ty,).

19: Update vi= Vj\{v}.

20: end while

21: end for

22: Return E}j(T) := E}(Ty)), C(T) := C(Ty,).

Fig.7 The minimum cost cut is
{(v2, v3), (v1, v9), (v1, v15)}

4.2 A primal dual algorithm to solve the problem (MSPIT,)
In this subsection, we first present the main idea of the primal dual algorithm [14, Chapter 5—

6] to solve the problem (MSPIT)), then describe the algorithm in details and analyze its time
complexity.

@ Springer

Journal of Global Optimization (2021) 79:959-987 977

The model (1) of the problem (MSPIT}) is equivalent to the following model.

max 7
st w(P) +r(P) >z, €Y
(D) Y cleyr(e) < M, (20)

eckE

0<r(e)<d(e),eck,
z>0.

Obviously, the problem (20) is a linear programming problem with / 4+ n constraints and
n variables. Now we present the main idea of the primal dual algorithm [14, Chapter 5-6].
Firstly, we consider the problem (20) as a dual problem (D). Given a dual feasible solution
7k = 'k, Z%) of the problem (D), we can determine a set J k" of admissible rows where
equality constraints hold in the constraint conditions of (D) for 7*. Based on the set JX,
we can get the dual of the restricted primal problem, denoted by (DRPX). Secondly, we
solve the problem (DRPX) by finding a minimum cost cut and obtain its optimal solution
7k = (7, 7). If the optimal objective value z¥ of (DRP¥) is positive, then we determine
the adjustment amount 6 to obtain a better dual feasible solution 7*+! = 7% 4 6% 7k whose
objective value zt! = z& ++ 97K is larger than z¥ and continue to find a set J¥*! for 7*+1.
The above iteration terminates until the optimal objective value z% of (DRP) is zero, we
obtain an optimal dual solution 7% of (D).

1. Transform the problem (20) as a standard dual problem (D;), where all the constraints
are in the form of “less than and equal to” and all the variables are unconstrained.

max z
sit. —r(P)+z<w(P), ;€Y
(Dy) ZeeE cle)r(e) = M,
r(e) <d(e),e € E
—r(e) <0,ee E
-z =<0.

2. Determine an initial dual feasible solution (7%, z*) when k = 0.

Let P;+ = argmin;, cy {w(P;)} be the shortest path of tree 7', w(P;1+) = min{w (P;)|w(P;) >
w(Pi+)} and LY = min{w(Pi1*), Liax}, where Lo = R(Ty). Initialize g0 =0,/ =
0, ZO = w(Pi*).

(1) Call (E;(T), C(T)) = MinCut(T,Y,CC,CF,chain, Layer,c,w,d, zo) to deter-
mine a minimum cost cut E;(T). Let d(¢) = mineEE;(T) d(e) and 6 = min{%,
d(@), L — %) Let 7%(e) = 6 for e € E3(T) and 7’(e) = O for e ¢ E};(T). Then there
are three possible cases below.

(a) If6 = %, then the cost M is used up and z° = z° + @ is the length of the shortest
path with respect to an optimal upgrade scheme r°
g’ =g"+0Cc(T) =M.

(b) If0 = L0 — 20, update z° = 70 4 0, then z° = LY is the length of the shortest path with
a feasible upgrade scheme r% = 19 + 79 and hence (rO, zo) is a dual feasible solution.

(c) If0 = d(e), then update d by d(e) = d(e) — 0 fore € E%(T). Go back to (1) to find the
next minimum cost cut by the new weight d and z° = z¥ + 6. Such a process terminates
until case (b) or (c) occurs.

= r% + 79 and the upgrade cost

@ Springer

978 Journal of Global Optimization (2021) 79:959-987

Therefore, we can either find a dual feasible solution (r°, z%) or obtain a dual optimal
solution (r°, z%).

3. Determine the sets of admissible rows according to the dual feasible solution ok, 75y,

JE =t e Y| =M (P) + 25 = w(P)), 1)

k __ {1}’ lf Zee C(e)l’k(e) =M,

h = [@, Otherwkl?se. (22)

J5 = {ejlrf(e;) = d(e))), (23)

JE = {ejlrk(e;) =0}, (24)
1), ifzf=0;

=y Lss 2s)

4. Generate the problem (DRP*) based on the sets of admissible rows and the relation-
ship between the problems (D) and (DRP*). Then solve the problem (DRP") and obtain
its optimal solution (7K, 75y,

max z¥
s =P +28 <0, e Jf,
(DRPY) 7(e)) <0, ej € Jk,
—*(ej) <0, ejeJk
ey < 1, j=2,....n,
F<1.

An optimal solution to the problem (DRPX) is not unique. We try to find an optimal
solution (7¥, z¥) for the set Plk ={P; = Py ;lti € Jlk} of paths in the problem (DRP¥) by
a minimum cost cut E;k (Plk) on the edges with d¥(e) > 0. Let C(Plk) = C(E;k(Pll‘)) for
simplicity. Then we can obtain the following lemma.

Lemma 20 IfC(Plk) > 0, then

. * k
Zk:L ;k(e): lalfeEE.dk(P]) (26)
0, otherwise

is an optimal solution of the problem (DRP).

Proof Notice that J¥ = {e;[r*(e;) = d(e;)}, then d*(e;) = d(e;) — r*(e;) = 0 and
7k (ej) < O for edge ¢; € J;‘ . Moreover, the minimum cost cut E;k(Plk) contains the
edges with d*(e) > 0. Hence, J3k N E;k(Plk) = ¢ and 7 given by (26) satisfies the last

four constraints of the problem (DRPX). Tt follows from the definition of the minimum
cost cut that there is one and only one edge of E:;k(Plk) on each path P; € Plk. Then

—k —k ~k sk “k zky :
FE(P) = D pep T (€) = ZeepimE;k(Plk)r (e) = 1 = z*. Therefore, (¥, 7*) is a feasible
solution of the problem (DRPF¥) with the maximum objective value 7 = 1, and hence it is
also an optimal solution.] O
5. Determine the adjustment amount 6% of the cut E;k (Plk).
Let
of = min {01(1) == w(P) +r*(P) —) 27

t ¢J{‘,PiﬂE;‘k (PR =0

@ Springer

Journal of Global Optimization (2021) 79:959-987 979

M — gk
ok —) 28
5 crh (28)
9;‘ = min){d(ej) — rk(ej)}. (29)

6j¢J§,€jEE;k(Plk

kip.
For 6% = min rte;) ,
4 k _zk —*(e)
e_,-¢J4,—r/.(e_,~)>0 J

we have —7* (ej) < 0 by (26) before reaching the
optimality, and thus 9!{ = +o00. Similarly, for Oé‘ = _Z—;(> 0, we have z¥ = 1 > 0 before
reaching the optimality. Thus —z% < 0, and 6% = 4-cc.

Hence 9% = min{@k, Gé‘, 9§} is the the adjustment amount of the cut E;k (Plk). Ifok = 9{‘,
then the minimum length of the paths will reach to ZF+! = zX 4+ 9{‘ after this iteration and
at least one more path will be added to the set Plkle of paths. Then we need to find a new
minimum cost cut on the new set PlkJrl = {P|w(P,) + r*T1(P) = X+ = PF U P(6f) of
paths, where P(6f) = {P;|w(P))+rk(P)—z* = 6f, 1; ¢ Jf, PNE%(T) = 0).1f6* = 63,
then the total cost M has been used up and the number 65 of units can be distributed to the
current minimum cost cut E;k (Plk), which implies the iteration terminates. If ok = 9§, then
the upgrade amount of at least one edge ¢; in the cut E;k (Plk) will achieve its upper-bound
d(ej) and we have dk“(ej) = dk(ej) — Gé‘ = dk(ej) —d(ej) + rk(ej) = 0. In this case,
we can update J3kJrl =JFUle; € E;‘k(T)|dk+1(e]~) = 0}.

6. Update a better dual feasible solution.
Lemma 21 Suppose ok, Y isa dual feasible solution of (D) and 7, 7% is a dual optimal
solution of (DRP¥) given by (26). Let r*+1 = r* 4-0%7% and K41 = K 4+-0F. Then (P, ZF+1)
is a better dual feasible solution of (D) .
Proof For the edges e; € E% (P{), we have 0 < rk(e;) < r**l(ej) = rk(e;) + 65 <
rk(ej) + 05 < rf(ej) +d(ej) — rf(ej) = d(e)). For the edges e; ¢ E’ (P[), we have

0 < rktl(e;) = rk(e;) < d(e)).

deleyrt = Y et @+ + D clertie

eck ecE (Pf) et EN (Pf)
=Y clert(e) + 0 C(Pf) < gk + (M —gh =M.
eeE

—r)+ K = Ry — 0F 2 0F = R () + < w(p).
Furthermore, z¥t! = zk + 9% > zK as 0% > 0. As a conclusion, (F*T1, ZA+1) is a better dual

feasible solution of (D). U]

7. Satisfy the termination condition.

The above iteration terminates until 68 = Gf in some iteration. In this case, the total cost
M is used up, and we can find an optimal solution of the dual problem.

We summarize the steps above in Algorithm 5, and analyze its time complexity.

Theorem 22 Algorithm 5 can solve the problem (MSPIT)) in O(nz) time.

Proof In Lines 1-4, the algorithms of Preprocess and MinCut can all be completed in O (n)
time. The number of calling the MinCut Algorithm 4 is upper-bounded by n — 1 because

@ Springer

980 Journal of Global Optimization (2021) 79:959-987

there is at least one upgrade r**!(e) achieving its upper-bound value d(e) when finding a
dual feasible solution in Lines 5-16 and in Lines 17-35 in the worst case. Hence, Algorithm
5 can be completed in O (n?) time. a O

Algorithm 5 The primal dual algorithm to the problem (MSPIT)

Require: Atree T = (V, E), the set Y of leaves; the set CC of critical children, the set C F of critical fathers
and the chains; the Layer of vertices, three edge vectors w, u, ¢ and the maximum cost M.

Ensure: An optimal upgrade scheme ¥ and the length 2k of the shortest path.

1: Calculate d := u — w and Ly := R(Ty).

2: Call(T,Y, Egep) := Preprocess(T,Y,CC,CF,chain, Layer, w, Lyax).

3: Initialization: k := 0, w(P;*) = min,iey{w(Pi)}, w(Pix) = min{w(P;)|w(P;) > w(Px),t; € Y},
L := min{w(P; 1), Lmax}, d¥ :=d, ¥ := 0, gk := 0, 2K := w(Py).

4: Call (E*(T), C(T)) := MinCut(T Y, CC, CF, chain, Layer, ¢, w, dk, k.
5: while gk <Mand X < L0 do
k
6: Letd @) :=min,cpx 1y d*(e), 0% := min{%;ﬁ, k@), L0 — k.
ik (T)

7: Update g¥T1 = gk +okC(T), ZKF1 = 2k + 0k, Kt 1(e) := rk(e) + 0% and a¥t1(e) := dF (e) — 0F
fore € E;kk (T), r*+1(e) := rk(e) and dFT1(e) := d*(e) for e ¢ E:k (T); wkt! .= w + rk+1 and
k=k+1,

8: if ¥ < L0 then

9: call (E% (T), C(T) := MinCut(T, Y, CC,CF, chain, Layer, c, wk, dk, k).

10: end if

11: end while

12: if g¥ = M then

13: output an optimal solution K and the length K of the shortest path, Return.
14: else if z¥ = L0 then

150 let JE =t € Y| =K (P) + 2F = w(P)}, IK = {e; € ElrF(e;) = d(e)).
16: end if

17: while g < M do

18: if 28 = Lyqy then

19: ¥ reaches the maximum length of the shortest path, and output an optimal solution rk and ZK,
Return.
20: else
21: let Plk ={Pilt; € J. lk} be a subset of the tree 7' including all the paths for #; €]lk.
22: Call (E%, (PF), C(PF)) := MinCut(PF, Jf, CC, CF . chain, Layer, c, w*, d*, ¥).
23: if C(Pf) > 0 then
24: The optimal solution of the problem (DRP) is zX := 1,7k (e) := 1,e € E*, (PF), 7 (e) =
0, otherwise.
25: Caleulate 6% := min{6f, 65, 6%}, where 6F, 6%, 6X are defined as in (27)-(29).
26: Update g“t1 o= gk + 0k C(Pf), 1 1= ok ok K+l o= pk oy ghk gkl gk — gkik,
whtl = w KL 5 = gk U e € E* (PHId* (ej) = 0).
27: if 0¥ = 0% then
28: gk‘H := M, the cost M is used up and output an optimal solution rkt1 and A+,
29: else if 6% = 6f then
) k1. gk (g, _
30: let i = uF U {t101(1)) = 01},
31: end if
32: Update k :=k + 1.
33: end if
34: end if

35: end while

@ Springer

Journal of Global Optimization (2021) 79:959-987 981

34432 +1
=66 =83 =59 =65

Fig.8 For the left tree L;;qx = 57, delete the chain(vig)\vg = {vi4}

4.3 An example to show the computing process of Algorithm 5

For the better understanding of Algorithm 5, Example 3 is given to show the detailed com-
puting process.

Example 3 For the left tree in Fig. 8, V := {vy,...,v17}, E = {ez, ..., e17}, 1 := v,
b =7, 13 1= Vg, 14 1= V|1, I5 1= V13, lg i= V14, t7 := v17, M = 150.

c:=(16,4,15,10,9,16,15,7,11,1,13,17,9, 15, 15, 16),
w:=(7,12,8,6,1,12,14,19,11, 11, 17,9, 38, 10, 14, 17),
u = (10,22, 16, 16, 2, 19, 19, 31, 16, 12, 24, 10, 41, 15, 19, 23),
d=u—w=(@3,10,8,10,1,7,5,12,5,1,7,1,3,5,5,6).

1. Call the preprocess algorithm. (Lines 1-2)

We have L,,,, := 57. Call the preprocess algorithm, we have w(vy, vi4) := 57, then
b(v14) := {v11, v13, v14} and b*(v14) := {vi4}. So we delete chain(vis)\v9 = {v14} and
obtain the right tree in Fig. 8.

2. Find a dual feasible solution of the problem (D). (Lines 3—16)

Initialization: k := 0, w(P) = 34, w(Pi+) = 41, L0 := 41, d° = d, r* =
,...,0),g°:=0,7°:=34.

Call (E*(T),C(T)) := MinCut(T,Y,CC,CF,chain, Layer, ¢, w,d"’, z°), and
obtain E* (T) = {e3}, C(T) = 4. In Line 6, d°(®) := 10, 6° := min{f‘g(;;’f,do(z),
L® — 2% = min{*%, 10, 7} = 7, shown in the left tree in Fig. 9.

Update g' :=28,z' :=34+7 =41,r'(e3) :=7,d"(e3) :== 10 -7 =3 and k := 1.
Please see the right tree in Fig. 9. In this case, Z =LY let Jl1 ={teY|— PP+ =
w(P)} = {11, 14,16}, J§ = {e; € E|r*(e;) = d(e;)} :== 0.

3. Find a dual optimal solution of the problem (D). (Lines 17-35)

The first iteration, £ := 1. Let Pl1 = {Pilt; € Jll} = {Py, P4, Ps}. Call the Algo-
rithm MinCut to obtain E:;l (Pll) = {e3, e11, €15}, C(Pll) :=20. Then z! := 1, Fl(e3) :=
Ll en) = 1,7 (e15) := 1,7'(e) := 0,e ¢ E}(P]). Calculate 6] := 4,6, :=
18.6,0) = 1, ' = min{9},0),0}} := 1. Update g*> = g' + 0'C(P) = 48,
2=z 460" :=42,r%e3) =8, r’(enn) =1, r2(e15) := 1,r%(e) := 0 fore ¢ E% (P]);

@ Springer

982 Journal of Global Optimization (2021) 79:959-987

(¢ 1%, a E,={e},6°=7,

g'=2827" =41

» Q.

s NS CEX) SER T

Yoo by Wy G ! .
a S 170,y (16,0,6) azeny (1606
El & W v !

o W

Fig.9 A dual feasible solution

E, ={e,an.65),

c(R)=20.6"=1,

Fig. 10 The first and second iterations

d*(e3) = 2, d*(en1) = 0, d*(e15) := 4, d*(e) = d'(e) = d(e) for e ¢ E} (P!);
J3 =Ji Ulej € E} (P)ld*(ej) = 0} := {en}; k := 2. Please see the left tree in Fig. 10.

The second iteration, k := 2. Let P} := {P, P4, Pg}. Call the Algorithm MinCut
to obtain E%,(PP) := {e3, e9, e15}, C(PP) := 26. Then 2% := 1,7%(e3) := 1,7%(e9) :=
1,72 (e1s) = 1,7%(e) := 0,e ¢ El,(P}). Calculate 67 := 400,67 := 13,0 = 2,
6% :=2. Update g3 =100, 2% 1= 44, 3 (e3) := 10, r3(e9) := 2, 3 (e15) := 3, r3(eq) = 1,
r3(e) := 0forother e; d>(e3) := 0,d>(e9) := 10, d3(e15) := 2,d>(e11) := 0,d>(e) := d(e)
for other e; 133 := {e3, e11}; k := 3. Please see the right tree in Fig. 10.

The results of the following third and fourth iterations are shown in the left and right tree
in Fig. 11, respectively. Table 3 shows the results of the four iterations in details.

The value 6% is obtained at 9; , which implies that the cost M = 150 is used up and the

iteration terminates. Then we output the optimal length z° := 45;—3 of the shortest path and
an optimal upgrade scheme

19 19 19
r>:=(0,10,0, —, 1,0,0,3—,0,1,0,0,0,4—, 0, 0).
32 32 32

@ Springer

Journal of Global Optimization (2021) 79:959-987

983

E:f ={e. .65},

¢ Q
c(B)=316"=1 N\wm
g'=131z' =45 O 7

@) -

E, ={e.e.e5},

P TIPN CN
C(H“)_sz,e*_ez_”\@“\

A0
g oss el LT

(cy %, d¥) A5

NM(Vs v
S G b
- o ‘ 6
??ll 2 (17’}0’1))
@ v Gy W
¢ e, 4 +6.
[34}11+8, 45410 +924 +0, 4543 +e ’
Fig. 11 The third and fourth iterations
Table 3 The results for the detailed 4 iterations in Example 3 by Algorithm 5
k 1 2 3 4
Pf {P1, P4, Ps} {P1, P4, Ps} {P1, P4, Ps} {P1, P4, Ps}
Ejk(Pf) {e3, e11, €15} {e3, €9, €15} {e, €9, €15} {es, e9, €15}
C(Pf) 20 26 31 32
o 4 +00 7 6
k 8 21 19
05 18.6 1373 951 3
o 1 2 1 1
k 19
0 1 2 1 2
gk 1 48 100 131 150
K+l 42 44 45 45%
(0,8,0,0,0, (0,10,0,0,0, (0,10,0,0,1, (0, 10, 0, %, 1,0,
phtl 0,0.0,0,1,0, 0,0.2,0,1,0, 0,0.3,0,1,0, 0.319.0.1,0,0,0,
0,0,1,0,0) 0,0,3,0,0 0,0,4,0,0) 433.0.0).
(3,2,8,10, 1, (3,0,8,10, 1, (3,0,8,10,0, (3,0,8, 9%, 0,7,
dkt! 7.5,12,5,0.7, 7,5.10,5,0,7, 7.5.9.5.0.7, 5.88.50.7.1.3,
1,3,4,5,6) 1,3,2,5,6) 1,3,1,5,6) B.5.6
J§+1 {er1} {e3, e11} {e3. 6, €11} {e3.e6. €11}

5 Solve the problem (MCSPIT,)

In this section, we solve the problem (MCSPIT|) under weighted /; norm, which can be
formulated as in (2). We aim to upgrade some edges to minimize the total cost under weighted
/1 norm on the premise that the length of the shortest path of the tree is lower-bounded by a

given value L.

Similar to Algorithm 5, replace (28) by «9§ =1L

k . .
— max, .k w (v1, t;), which is the

minimum length of the paths to be upgraded. Then we can obtain the relevant primal dual
algorithm to the problem (MCSPIT)) in Algorithm 6.

@ Springer

984 Journal of Global Optimization (2021) 79:959-987

Algorithm 6 The primal dual algorithm to the problem (MCSPIT)

Require: Atree 7 = (V, E), the set Y of leaves; the set CC of critical children, the set C F of critical fathers
and the chains; the Layer of vertices, three edge vectors w, u, ¢ and the given length L.

Ensure: An optimal upgrade scheme K and the relevant upgrade cost gk .

1: Calculate d := u — w and Ljqx := R(Ty).

2: Call (T,Y, Ege) := Preprocess(T,Y,CC,CF,chain, Layer, w, Lyax).

3: Initialization: k := 0, w(Pj*) = min,iey{w(Pi)}, w(P;1+) = minfw(P;)|w(P;) > w(Px),t; € Y},
d*:=d, k=0, wF = w, gF:=0,zF = w(P;x).

4: if L > L4y then

5: Output “The upgraded length of the shortest path is impossible to be L, and its maximum length is

Lmax”. Return.

6: end if

7: Tnitialize JF := {t; € Y|w(P;) = w(P)), JX := 0.

8

9

: while ¥ < L do
let Plk = {Plt; € J{‘} be a subset of the tree 7' including all the paths for #; € Jlk.

10: Call (B (P(), C(P])) = MinCut(P{, J{, CC, CF, chain, Layer, ¢, w*, d*,).
11: if C(Pf) > 0 then

12: The optimal solution of the problem (DRP) is * = 1, Fk(e) = 1l,e € E;k(Plk), 7k (e) :=
0, otherwise.

13: Calculate 60X := min{6f, 05 6%}, where 6F 0% are defined as in (27), (29), 65 = L —
maXt,-eJ{‘ wk(vl, t).

14: Update gl = gk 4 GkC(Plk), KL= gk ook, kL = pk g gkRk gkt D= gk _ gk,
Wit o= w AL = IR U e € EX (PRI ej) = 03,

15: if 0K = 0¥ then

16: let JET o= TR U (1108 (1)) = 0F).

17: end if

18: Update k :=k + 1.

19: endif

20: end while
21: Output an optimal solution K and its cost gk.

Corollary 23 Algorithm 6 can solve the problem (MCSPIT) in O (n?) time.

6 Computational experiments

Now we present computational experiments of Algorithms 2, 3, 5 and 6. The programs were
coded in Matlab 7.0 and run on a PC Intel(R), Core(TM)i7-8565U CPU @ 1.8 GHz 1.99
GHz under Windows 10. We have tested the algorithms on 10 classes of random trees, with
the number n of vertices varying from 100 to 20000. For each class, we randomly generate
30 instances. For each instance, we use two numbers to show the structure property of a
randomly generated tree. One is the max number A of edges in each path from the root v to a
leaf and the other is the number / of leaves. Let A4y, and /,,, be the average values of A and /,
respectively. We randomly generated three vectors w, u, ¢ satisfying w < u which means that
d = u — w > 0. For each randomly generated tree, under weighted /; norm, we first solve
the problem (MCSPIT;) with a randomly generated integer L in the range [Lin, Lmax]
by Algorithm 6, where L,,;, = R(Ty) and L., = R(Ty), respectively. Next, solve the
problem (MCSPIT;) with L = L,,,, by Algorithm 6 to obtain the cost M,,,,. Then solve
the problem (MSPIT)) by Algorithm 5 with a randomly generated integer M in the range
[1, M4y]. Similarly, we solve the problems (MCSPIT) and (MSPIT,,;;) under unit/; norm

@ Springer

Journal of Global Optimization (2021) 79:959-987 985

Table 4 Performances of Algorithms 2, 3, 5 and 6

n 100 200 500 1000 3000 5000 7000 10,000 15,000 20,000
Aave 7.03 1647 4327 7850 24547 45527 61343 79273 1277.50 1619.10
Lave 50.80 60.77 75.17 85.07 93.63 70.63 63.67 91.70 99.97 95.83

?/ilfgg) 0.06 0.2 089 3.04 2777 7874 23293 28842 66229 997.48
T3 0.02 003 007 0.17 152 872 24.12 4253 14263 343.75
T3min 0.01 002 006 0.14 085 3.64 11.16 23.84 65.63 133.36
Tamax 0.06 003 011 023 231 12.05 34.82 65.81 27044 633.48
T5"1 0.12 012 044 096 778 2671 11736 115.08 408.74 831.80
Tsunim 0.04 005 009 0.17 048 181 1.98 3.94 887 10.47

T;”{ax 040 031 234 338 3370 273.98 122920 672.13 2023.10 6764

M

(X2f3§) 0.008 0.03 0.64 3.76 101.55 475 1918.70 3294.10 12781 32169

Ts 0.16 0.3 057 122 885 2840 12095 12398 131240 1198.30
Tspmin 0.04 005 010 020 055 269 5.60 532 624 27.18

Tsmax 0.72 041 3.65 6.12 48.92 194.85 74796 473.15 23446 10074

(Lj';f)3) 0.05 018 122 444 4139 144 281.73 45843 10862 16952
T, 0.0l 002 005 010 061 257 6.68 1170 38.79 90.37

Tomin 0.01 002 004 010 043 1.33 3.56 7.11 17.66 4137

Trmax 0.04 004 008 0.15 088 3.39 9.30 19.16 70.63 162.82
T 0.10 0.1 042 078 724 2234 94.38 90.31 299.07 540.56
Tgr},m 0.04 006 012 023 096 221 2.93 532 7.95 14.37

Tg;}m 045 034 175 2.89 44.15 287.95 118620 670.77 2780.60 2408.60
Ts 0.16 0.13 046 086 7.78 24.15 106.08 98.63 327.67 592.60
Tomin 005 007 011 025 091 1.84 278 540 8.05 13.59

Tomax 1.01 037 190 279 47.36 308.36 1309.80 731.62 3151.70 2256.10

by Algorithms 2 and 3, respectively. For comparison, we also solve the weighted problems
(MCSPIT)) and (MSPIT,) by Algorithms 6 and 5 when the cost vector ¢ = (1,..., 1),
respectively. That is, solve the problems under unit /; norm by the primal dual algorithms for
the weighted /1 norm, whose time complexity is O (n?) and much worse than O (n) for the
the problems under unit /; norm. We recorded the average CPU time of the six algorithms.
Let T», T3, Ts, Ty be the average CPU time of Algorithms 2, 3, 5 and 6, respectively. Let
TS’“, T6“1 be the average CPU time of Algorithms 5 and 6 when ¢ = (1, ..., 1), respectively.
For each algorithm, the relevant minimum and maximum running time are also recorded,
denoted by T,,;, and T, respectively.

It can be seen from Table 4 that Algorithm 3 for the problem (MSPIT,), which has time
complexity O (n), is really more efficient than the primal dual algorithm 5 that runs in O (n?)
time. Correspondingly, Algorithm 2 for the problem (MCSPIT,) with time complexity
O (n) also operates better than Algorithm 6 running in O (n?) time.

@ Springer

986 Journal of Global Optimization (2021) 79:959-987

7 Conclusion and further research

In this paper, we consider the maximum shortest Path interdiction problem by upgrading edges
on tree network under unit/weighted /1 norm. Under the unit /; norm, we present two linear
time algorithms for the problems (MCSPIT,) and (MSPIT,), respectively. Furthermore,
we revised a mistake in the method given in [9] and improved the algorithm to solve the
problem (MSPIT, ;). Under weighted /; norm, we propose two primal dual algorithms for
the problems (MSPIT ;) and (MCSPIT,) in O (n?) time, respectively, in which a minimum
cost cut is solved in each iteration.

For further research, we can focus on the maximum shortest Path interdiction problem on
some networks including series parallel graphs and general graphs. On the other hand, we
can consider other network interdiction problem based on network performances such as the
minimum spanning tree and the maximum matching.

Acknowledgements Research is supported by National Natural Science Foundation of China (11471073).
The work of P.M. Pardalos was conducted within the framework of the Basic Research Program at the National
Research University Higher School of Economics (HSE).

References

1. Bar-Noy, A., Khuller, S., Schieber, B.: The complexity of finding most vital arcs and nodes, Technical
Report CS-TR-3539. University of Maryland, Department of Computer Science (1995)

2. Bazgan, C., Nichterlein, A., et al.: A refined complexity analysis of finding the most vital edges for
undirected shortest paths: algorithms and complexity. Lect. Notes Comput. Sci. 9079, 47-60 (2015)

3. Bazgan, C., Toubaline, S., Vanderpooten, D.: Complexity of determining the most vital elements for the
p-median and p-center location problems. J. Comb. Optim. 25(2), 191-207 (2013)

4. Bazgan, C., Toubaline, S., Vanderpooten, D.: Critical edges for the assignment problem: complexity and
exact resolution. Oper. Res. Lett. 41, 685-689 (2013)

5. Bazgan, C., Toubaline, S., Vanderpooten, D.: Efficient determination of the k most vital edges for the
minimum spanning tree problem. Comput. Oper. Res. 39(11), 2888-2898 (2012)

6. Corley, H.W., Sha, D.Y.: Most vital links and nodes in weighted networks. Oper. Res. Lett. 1, 157-161
(1982)

7. Ertugrl, A., Gokhan, O., Cevriye, T.G.: Determining the most vital arcs on the shortest path for fire trucks
in terrorist actions that will cause fire. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68(1), 441-450
(2019)

8. Frederickson, G.N., Solis-Oba, R.: Increasing the weight of minimum spanning trees. In: Proceedings of
the 7th ACM-SIAM Symposium on Discrete Algorithms (SODA 1996), pp. 539-546 (1996)

9. Hambrusch, S.E., Tu, H.Y.: Edge weight reduction problems in directed acyclic graphs. J. Algorithms
24(1), 66-93 (1997)

10. Iwano, K., Katoh, N.: Efficient algorithms for finding the most vital edge of a minimum spanning tree.
Inf. Process. Lett. 48(5), 211-211-213 (1993)

11. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Rudolf, G., Zhao, J.: On short paths
interdiction problems: total and node-wise limited interdiction. Theory Comput. Syst. 43(2), 204-233
(2008)

12. Liang, W.: Finding the k most vital edges with respect to minimum spanning trees for fixed k. Discrete
Appl. Math. 113(2-3), 319-327 (2001)

13. Nardelli, E., Proietti, G., Widmyer, P.: A faster computation of the most vital edge of a shortest path
between two nodes. Inf. Process. Lett. 79(2), 81-85 (2001)

14. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity, 2nd edn.
Dover Publications, New York (1988)

15. Pettie, S.: Sensitivity analysis of minimum spanning tree in sub-inverse-Ackermann time. In: Proceedings
of 16th International Symposium on Algorithms and Computation (ISAAC 2005), Lecture Notes in
Computer Science, 3827, pp. 964-73 (2005)

@ Springer

Journal of Global Optimization (2021) 79:959-987 987

16.

20.

Ries, B., Bentz, C., Picouleau, C., Werra, D., de Costa, M., Zenklusen, R.: Blockers and transversals
in some subclasses of bipartite graphs: when caterpillars are dancing on a grid. Discrete Math. 310(1),
132-146 (2010)

Zenklusen, R.: Matching interdiction. Discrete Appl. Math. 158(15), 1676—1690 (2010)

Zenklusen, R.: Network flow interdiction on planar graphs. Discrete Appl. Math. 158(13), 1441-1455
(2010)

Zenklusen, R., Ries, B., Picouleau, C., de Werra, D., Costa, M., Bentz, C.: Blockers and transversals.
Discrete Math. 309(13), 4306—4314 (2009)

Zhang, H.L., Xu, Y.F.,, Wen, X.G.: Optimal shortest path set problem in undirected graphs. J. Combin.
Optim. 29(3), 511-530 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://www.researchgate.net/publication/345326694

	Maximum shortest path interdiction problem by upgrading edges on trees under weighted l1 norm
	Abstract
	1 Introduction
	2 A preprocessing algorithm
	2.1 Some important definitions
	2.2 A preprocessing algorithm

	3 Solve the problem (MSPITu1)
	3.1 Solve the problem (MCSPITu1)
	3.2 Solve the problem (MSPITu1)
	3.3 Two examples of the problem

	4 Solve the problem (MSPIT1)
	4.1 An algorithm to find a minimum cost cut
	4.2 A primal dual algorithm to solve the problem (MSPIT1)
	4.3 An example to show the computing process of Algorithm 5

	5 Solve the problem (MCSPIT1)
	6 Computational experiments
	7 Conclusion and further research
	Acknowledgements
	References

