
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/345326694

Maximum shortest path interdiction problem by upgrading edges on trees

under weighted l1 norm

Article in Journal of Global Optimization · April 2021

DOI: 10.1007/s10898-020-00958-0

CITATIONS

15
READS

116

3 authors:

Zhang Qiao

Southeast University

12 PUBLICATIONS 67 CITATIONS

SEE PROFILE

Xiucui Guan

Southeast University

41 PUBLICATIONS 235 CITATIONS

SEE PROFILE

Panos Pardalos

University of Florida

1,728 PUBLICATIONS 48,337 CITATIONS

SEE PROFILE

All content following this page was uploaded by Xiucui Guan on 17 January 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/345326694_Maximum_shortest_path_interdiction_problem_by_upgrading_edges_on_trees_under_weighted_l1_norm?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/345326694_Maximum_shortest_path_interdiction_problem_by_upgrading_edges_on_trees_under_weighted_l1_norm?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhang-Qiao-8?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhang-Qiao-8?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Southeast-University?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhang-Qiao-8?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiucui-Guan-2?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiucui-Guan-2?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Southeast-University?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiucui-Guan-2?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Panos-Pardalos?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Panos-Pardalos?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Florida2?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Panos-Pardalos?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiucui-Guan-2?enrichId=rgreq-7faff41e54fdbe333e21016d58296f32-XXX&enrichSource=Y292ZXJQYWdlOzM0NTMyNjY5NDtBUzoxMTEzMjE0NzQ2MTQ0NzgxQDE2NDI0MjI0ODY3MTE%3D&el=1_x_10&_esc=publicationCoverPdf

Journal of Global Optimization (2021) 79:959–987
https://doi.org/10.1007/s10898-020-00958-0

Maximum shortest path interdiction problem by upgrading
edges on trees under weighted l1 norm

Qiao Zhang1 · Xiucui Guan1 · Panos M. Pardalos2,3

Received: 18 January 2020 / Accepted: 28 September 2020 / Published online: 7 October 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Network interdiction problems by deleting critical edges have wide applicatio ns. However,
in some practical applications, the goal of deleting edges is difficult to achieve. We consider
the maximum shortest path interdiction problem by upgrading edges on trees (MSPIT) under
unit/weighted l1 norm. We aim to maximize the the length of the shortest path from the root
to all the leaves by increasing the weights of some edges such that the upgrade cost under
unit/weighted l1 norm is upper-bounded by a given value. We construct their mathematical
models and prove some properties. We propose a revised algorithm for the problem (MSPIT)
under unit l1 norm with time complexity O(n), where n is the number of vertices in the
tree. We put forward a primal dual algorithm in O(n2) time to solve the problem (MSPIT)
under weighted l1 norm, in which a minimum cost cut is found in each iteration. We also
solve the problem to minimize the cost to upgrade edges such that the length of the shortest
path is lower bounded by a value and present an O(n2) algorithm. Finally, we perform some
numerical experiments to compare the results obtained by these algorithms.

Keywords Network interdiction problem · Upgrading critical edges · Shortest path ·
Weighted l1 norm · Primal dual algorithm · Minimum cost cut

1 Introduction

Network interdiction problems by deleting critical edges (denoted by (NIP-DE)) have been
studied in recent twenty years. The classical problem (NIP-DE)mainly has two types. One is
the K -most-critical-edge problem [1–3,5–7,10,12,13], which aims at making some network
performance as poor as possible by deleting at most K edges, and the other one is the
critical edge interdiction problem [4,17], which aims to delete as fewer edges as possible to
assure some network performance bounded by a constant. The problem (NIP-DE) has been

B Xiucui Guan
xcguan@163.com

1 School of Mathematics, Southeast University, Nanjing 210096, China

2 Center for Applied Optimization, Department of Industrial and Systems Engineering, University of
Florida, Gainesville, FL, USA

3 LATNA, Higher School of Economics, Moscow, Russia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-020-00958-0&domain=pdf
http://orcid.org/0000-0002-2653-1868

960 Journal of Global Optimization (2021) 79:959–987

widely studied in some main network performances including a shortest path [1,2,6,11,13], a
minimum spanning tree [5,8,10,12,15], a maximummatching [4,16,17,19], a maximum flow
[18,20] and a center ormedian location [3] etc. Theyhavewide applications in communication
networks, transportation networks, network war and terrorist networks [7,11].

The problem (NIP-DE) was first applied to the shortest path problem by Corley and Sha
in [6]. For any K , Bar-Noy et al. [1] showed that it is N P-hard. Khachiyan et al. [11] showed
that there is no approximation algorithm with approximation ratio 2, which is the current
best result. When K = 1 Nardelli et al. [13] proposed an O(mα(m, n)) algorithm to solve
the problem on undirected networks, where α is the inverse Ackermann function, m, n are
the number of edges and vertices in the network.

From the perspective of parameterization, Bazgan et al. [2] gave the complexity and
approximation analysis of the shortest path interdiction problem based on the relationship
among the three parameters: shortest path whose length is at least l, the increment b of the
length of the path and the diameter or a graph. An algorithm with time complexity O(mn)

was proposed when b = 1, while the problem is much harder when b ≥ 2. Zhang et al.
[20] studied the optimal shortest path set problem in an undirected graph, in which some
vehicles go from a source vertex s to a destination vertex t . The goal is to find a minimum
collection of paths for the vehicles before they start off to assure the fastest arrival of at least
one vehicle block at least K edges. They proposed an O(n2) algorithm when K = 1 and a
strong polynomial time algorithm when K > 1.

Almost all the network interdiction problems are to delete some critical edges. However,
in some practical applications, it is extremely difficult to delete edges in a network. What we
can do is only to lengthen or shorten the weights of some edges to prolong service due to
some emergence schemes or alternative schemes which are always available. For example,
in network war, our aim is to block support of enemies, but it is hard to achieve and we
can only prolong their support time. In terrorist networks given in Fig. 1 [7], once a terrorist
attacks node k10 which will cause fire, terrorists want to prevent the fire trucks’ transportation
from node k1 to k10 via the shortest path, that is, to maximize the shortest path of fire
trucks depending on limited interdiction budget by interdicting some arcs. Correspondingly,
defenders should determine in advance the risky arc(s) that will interdict and present a
relatively safety paths as emergence schemes for the fire trucks. In this case, terrorists can only
increase the lengths of some arcs, but can not increase its lengths to +∞, which corresponds
to deleting those arcs. Therefore, we put forward a concept of upgrading critical edges, based
on which we consider the shortest path interdiction problems on trees.

The maximum shortest path interdiction problem by upgrading edges on trees (denoted
by (MSPIT-UE) and (MSPIT) in brief) can be defined as follows. Let T = (V , E, w) be an
edge-weighed tree rooted at v1, where V = {v1, v2, . . . , vn} and E = {e2, e3, . . . , en} are
the sets of vertices and edges, respectively. Let Y = {t1, t2, . . . , tl} be the set of leaves. Let
w(e) be an original length and u(e) be an upper-bound of w(e) after upgrade for each edge
e ∈ E , where w(e) ≤ u(e). Denote by d(e) = u(e) − w(e) the deviation between u(e) and
w(e). Let c(e) be a cost to upgrade the edge e ∈ E . Denote by Pvi ,v j the path from vi to
v j in T . Define f (vi , v j) = ∑

e∈Pvi ,v j
f (e) for a vector f and a path Pvi ,v j . The problem

(MSPIT) aims to find an upgrade scheme r to maximize the shortest path of the tree from
the root v1 to all the leaves on the premise that the total upgrade cost under some norm is
upper-bounded by a given value M . The mathematical model can be stated as follows.

max mint∈Y (w(v1, t) + r(v1, t))
(MSPIT) s.t . ‖r‖ ≤ M,

0 ≤ r ≤ d.

123

Journal of Global Optimization (2021) 79:959–987 961

Fig. 1 A terrorist network consisting of 10 nodes and 26 arcs [7]. The interdiction costs are shown on the
relevant arcs

When the weighted l1 norm is applied to the cost ‖r‖, the problem (MSPIT1) under
weighted l1 norm can be formulated in the following form.

max mint∈Y (w(v1, t) + r(v1, t))
(MSPIT1) s.t .

∑
e∈E c(e)r(e) ≤ M,

0 ≤ r(e) ≤ d(e), e ∈ E .

(1)

The problem (MSPIT) under unit l1 norm (c(e) = 1 for each e ∈ E) is denoted by
(MSPITu1). Hambrusch and Tu [9] considered a similar problem, the edge weight reduction
problem in directed trees (denoted by (EWRT)), in which some edge weights are reduced to
minimize the length of the longest paths from the root to the leaves and the total cost under
unit l1 norm does not exceed a given value. The relative mathematical model is as follows.

min maxt∈Y (w(v1, t) − r(v1, t))
(EWRT) s.t .

∑
e∈E r(e) ≤ M,

0 ≤ r(e) ≤ d(e), e ∈ E .

They proposed an O(n) algorithm in two steps. The first step is to determine a range
[Lk−1, Lk) in which the optimal objective value L∗ lies by a binary search algorithm in
O(n) time. The second step is to obtain the exact value L∗ and an optimal solution r∗
according to the two reduction schemes obtained by Lk−1 and Lk . However, we found a
mistake in the formula to calculate r∗ in the second step. Thus, we revised the algorithm,
whose time complexity is still O(n) for our problem (MSPITu1) as well as their problem
(EWRT). In this paper, we mainly consider the problem (MSPIT1) under weighted l1 norm

123

962 Journal of Global Optimization (2021) 79:959–987

Table 1 The relationship between the previous research and our research

Problem Graph K/b/c Complexity Reference

NIP-DE
on shortest path

General
graph any K

NP -hard [1]
Not approximable
within ratio 2 [11]

Undirected
networks

K = 1 O(mα(m, n)) [13]
b = 1 O(mn) [2]
K = 1 O(n2) [20]
K > 1 Strongly

polynomial time
EWRT Tree K > 1, c = 1 O(n) [9] & Alg. 3

MSPIT1-UE
Tree

K
>
1

c = 1 O(n) Alg. 3
c > 1 O(n2) Alg. 5

MCSPIT1-UE c = 1 O(n) Alg. 2
c > 1 O(n2) Alg. 6

and proposed an O(n2) algorithm, which was not studied in [9] and other references as far
as we know.

Furthermore,we consider aminimumcost shortest path interdiction problemby upgrading
edges on trees (denoted by (MCSPIT1)) under weighted l1 norm, which is similar to the
problem (MSPIT1).We aim to upgrade some edges tominimize the total cost under weighted
l1 norm on the premise that the length of the shortest path of the tree is lower-bounded by a
given value L .

min
∑

e∈E c(e)r(e),
(MCSPIT1) s.t . mint∈Y (w(v1, t) + r(v1, t)) ≥ L

0 ≤ r(e) ≤ d(e), e ∈ E .

(2)

The relationship between the previous research and our research can be shown in Table 1.
Upgrading edges rather than deleting edges is the biggest difference.

The paper is organized as follows. In Sect. 2,we present a preprocessing algorithm to delete
some edges which are not needed to be upgraded for the current problem. In Sect. 3, we prove
some properties of the problem (MSPITu1) and propose a revised algorithm with time com-
plexityO(n). In Sect. 4,we study the problem (MSPIT1) underweighted l1 normand propose
a primal-dual algorithm in O(n2) time. In Sect. 5, we solve the problem (MCSPIT1) in O(n2)
time. In Sect. 6, we present some computational experiments to show the effectiveness of the
algorithms. In Sect. 7, we draw a conclusion and present future research.

2 A preprocessing algorithm

In this section, we first present some important definitions to identify a storage structure of
the rooted tree. Then we propose a preprocessing algorithm to delete the edges which are
definitely unnecessary to be upgraded for the current problem.

Given an upgrade scheme r for tree T , the upgraded tree Tr is obtained from T by replacing
the edge weight vector w by w + r . Let

R(Tr) = min
t∈Y (w(v1, t) + r(v1, t)) (3)

123

Journal of Global Optimization (2021) 79:959–987 963

Fig. 2 A tree with cost c(e) on edge e. In the left tree, the Tab of the blue vertices is 1 and of the green vertices
is 2. In the right tree, the green vertices are the critical children of v1, and the chains are stored in the vertices
in green and yellow

be the length of the shortest path in Tr . Obviously, R(Td) is the length of the shortest path in
Td when all the modifications of edges are upgraded to the upper-bound vector d . Let

Lmax = R(Td). (4)

Obviously, we can conclude that

Lemma 1 The maximum length R(Tr∗) of the shortest path in Tr∗ with respect to an optimal
upgrade scheme r∗ of the problem (MSPITu1) or (MSPIT1) is not greater than Lmax .

2.1 Some important definitions

In this subsection, we present some important definitions to identify a storage structure of the
rooted tree. We define a set of critical children for a vertex v whose degree deg(v) is larger
than 2 and its corresponding critical father, then store a chain from a critical father to one of
its critical child in the child vertex.

For convenience, the label of an edge e j = (vi , v j) is defined as the label of the endpoint
v j farther to the root v1 in T . For example, e8 = (v7, v8) in Fig. 2. Let Pj = Pv1,t j be the
path from v1 to a leaf t j ∈ Y . Let V ∗ = {v ∈ V |deg(v) > 2} be the set of vertices whose
degree is more than 2.

Definition 2 For e j = (vi , v j), where vi is closer to the root v1, we call vi is the father of
v j . Define Tab(v1) = 1 and the Tab of any other vertex v ∈ V \ {v1} by

Tab(v) =
{
Tab(f ather(v)), if deg(v) ≤ 2,
Tab(f ather(v)) + 1, if deg(v) > 2.

Definition 2 gives a Tab for each vertex. As shown in Fig. 2, deg(v5) ≤ 2, f ather(v5) =
v1, so Tab(v5) = Tab(v1) = 1. For v2, deg(v2) > 2, f ather(v2) = v1, thus, Tab(v2) =
1 + 1 = 2.

Definition 3 For a vertex u ∈ {v1} ∪ V ∗, we define a set CC(u) of Critical Children. Let u
be in the path from v1 to v ∈ Y ∪V ∗. If v ∈ V ∗ and Tab(v) = Tab(u)+1, then v ∈ CC(u);
if v ∈ Y and Tab(v) = Tab(u), then v ∈ CC(u). Correspondingly, we call u is the Critical
Father of v, denoted by CF(v) = u.

123

964 Journal of Global Optimization (2021) 79:959–987

For a vertex u ∈ {v1} ∪ V ∗, the set CC(u) of critical children is composed of the leaves
with the same Tab as u’s and the vertices in V ∗ whose Tab is one more than u’s. In Fig. 2,
CC(v1) = {v2, v6, v7}, CF(v2) = v1 and CF(v6) = v1.

Definition 4 For any vertex v ∈ Y ∪ V ∗\{v1}, define chain(v) = PCF(v),v as the chain
from CF(v) to v and the minimum cost of the chain is defined as C(chain(v)) =

min
e∈chain(v),d(e)>0

c(e).

Definition 4 shows the storage of chains. For any v ∈ Y ∪ V ∗\{v1}, chain(v) contains
only one path, on which all the vertices exclude CF(v) and v have degrees 2. In Fig. 2, for
v2, CF(v2) = v1, thus chain(v2) = Pv1,v2 ; for v6, chain(v6) = Pv1,v6 = {v1, v5, v6} =
{e5, e6} and C(chain(v6)) = min{1, 8} = 1.

Definition 5 Define Layer(v1) = 0 and Layer(v j) = Tab(f ather(v j)) as the layer num-
ber of vertex v j . Let β = maxv j∈V Layer(v j).

2.2 A preprocessing algorithm

The preprocessing algorithm aims to reduce the unnecessary steps by deleting the leaves, to
which the length from the root is no less than a given length L , and the relevant stored chains
excluding the critical fathers.

Let b(ti) = CC(CF(ti)) be the set of leaf brothers for a leaf ti ∈ Y . Let

b∗(ti) = {t j ∈ b(ti) ∩ Y |w(Pj) ≥ L} (5)

be the set of useless leaf brothers in b(ti) to which the length from the root is no less than
a given value L . Then we should delete the chains stored in the leaves in b∗(ti) excluding
CF(ti). Then we update b′(ti) = b(ti)\b∗(ti) and Y ′ = Y\b∗(ti). Moreover, if b′(ti) =
∅, then CF(ti) becomes a vertex with degree 1, which is not a leaf in the original tree,
and hence we need to delete the chain stored in the leaves’ critical father CF(ti). We also
delete CF(ti) from the set of critical children of CF(CF(ti)), that is, CC(CF(CF(ti))) :=
CC(CF(CF(ti)))\CF(ti). To assure the work of deleting chains run correctly, we perform
the above process in a bottom-top fashion and choose the leaves in the non-increasing order
of layers.

Note that for a given tree T , we first run the preprocessing algorithm for L = Lmax ,
then we need to delete all the paths P whose length w(P) ≥ Lmax . For example, for the
left tree in Fig. 3, Lmax := 38, w(P6) = w(v1, v6) := 43, w(P7) := 52, w(P8) := 43,
w(P14) := 43, Layer(v6) := 3, Layer(v7) := 3, Layer(v8) := 2, Layer(v14) = 2, and
β = maxv∈V Layer(v) := 3. For j := 3, Y 3 := {v6, v7}, choose v6, then b(v6) := {v6, v7}
and b∗(v6) := {v6, v7}. We delete chain(v6)\{v5}, chain(v7)\{v5}, and then b(v6) = ∅,
delete chain(v5)\{v4} and update CC(v4) = {v5, v8}\{v5} := {v8}, as shown in Fig. 3.
For j := 2, Y 2 := {v8, v11, v13, v14, }, choose v8, then b(v8) := b∗(v8) := {v8}. We
delete chain(v8)\{v4}, then b(v8) := ∅ and delete chain(v4)\{v1}. Choose v14 and delete
chain(v14)\{v9}, as shown in Fig. 4. Finally, after the preprocessing, we obtain the right tree
in Fig. 4.

We can easily conclude that

123

Journal of Global Optimization (2021) 79:959–987 965

Algorithm 1 (T ′, Y ′, Edel) = Preprocess(T , Y ,CC,CF, chain, Layer , w, L)

Require: A tree T := (V , E), the set Y of leaves; the set CF of critical fathers and the chains; the Layer of
vertices, an edge weight vector w, and a given value L .

Ensure: A tree T ′, the set Y ′ of leaves and the set Edel of deleted edges.
1: For tree T rooted at v1, let Y := {t1, t2, . . . , tl }, Y ′ := Y and T ′ := T . Initialize Edel := ∅.
2: Let Pi := Pv1,ti and w(Pi) := ∑

e∈Pi
w(e) for each ti ∈ Y ′. Let β := maxv∈V Layer(v).

3: for j = β : −1 : 1 do
4: let Y j := {ti ∈ Y |Layer(ti) = j}.
5: while Y j �= ∅ do
6: choose t ji ∈ Y j . Let b(t ji) := CC(CF(t ji)) and b∗(t ji) := {tk ∈ b(t ji) ∩ Y ′|w(v1, tk) ≥ L}.
7: if b∗(t ji) �= ∅ then

8: delete Vdel := ⋃

tk∈b∗(t ji)
(chain(tk)\CF(t ji)) and E j

del := {ek |vk ∈ Vdel } from T ′, Edel :=
Edel ∪ E j

del , b(t
j
i) := b(t ji)\b∗(t ji), Y ′ := Y ′\b∗(t ji).

9: if b(t ji) = ∅ then

10: delete Vdel := (chain(CF(t ji))\CF(CF(t ji))) and E j
del := {ek |vk ∈ Vdel } from T ′,

Edel := Edel ∪ E j
del , CC(CF(CF(t ji))) := CC(CF(CF(t ji)))\CF(t ji).

11: end if
12: end if
13: end while
14: end for

Fig. 3 For the left tree Lmax = 38, delete the chain(v6)\{v5}, chain(v7)\{v5} and chain(v5)\{v4}

Fig. 4 For the left tree Lmax = 38, delete the chain(v8)\{v4}, chain(v4)\{v1}, chain(v14)\{v9}

123

966 Journal of Global Optimization (2021) 79:959–987

Fig. 5 An example of Tv0 and
T = Tv1 obtained by deleting v0
and its adjacent edges

Theorem 6 The preprocessing Algorithm 1 can be done in O(n) time.

3 Solve the problem (MSPITu1)

Let M(Tr) = ∑
e∈E r(e) be the total upgrade cost. Then the problem (MSPITu1) can be

formulated as (6).

max R(Tr) = mint∈Y (w(v1, t) + r(v1, t))
(MSPITu1) s.t . M(Tr) ≤ M,

0 ≤ r(e) ≤ d(e), e ∈ E .

(6)

When solving the problem (MSPITu1), we need to solve a sub-problem, minimum cost
shortest path interdiction problem on trees by upgrading critical edges under unit l1 norm,
which is denoted by (MCSPITu1). We aim to minimize the cost to upgrade some edges on
the premise that the shortest path of the tree is lower-bounded by a given value L .

min M(Tr)
(MCSPITu1) s.t . R(Tr) ≥ L,

0 ≤ r(e) ≤ d(e), e ∈ E .

(7)

To solve the problem (MCSPITu1), we construct an auxiliary network Tv0 by adding an
artificial terminal v0 and some edges (t, v0) with w(t, v0) = 0 and d(t, v0) = 0 for every
leaf t ∈ Y , just as shown in Fig. 5.

In this section, we first analyze some properties of the problem (MCSPITu1), then propose
a linear time algorithm to solve it. Finally, we present a linear time algorithm to solve the
problem (MSPITu1) followed by complexity analysis and an example.

3.1 Solve the problem (MCSPITu1)

To solve the problem (MCSPITu1), we aim to generate an upgrade scheme r∗ satisfying
R(Tr∗) ≥ L and minimizing M(Tr∗). We first analyze some properties of an optimal scheme
r∗, then propose a linear time algorithm.

123

Journal of Global Optimization (2021) 79:959–987 967

Let r be an upgrade scheme. Define

Rr (vi , v j) =
{

w(vi , v j) + r(vi , v j), i f v j �= v0,

minP∈Pvi ,v j
(w(P) + r(P)), i f v j = v0.

(8)

Hence, Rr (v1, v0) = R(Tr). Specially, when r(vi , v j) = 0 for all (vi , v j) ∈ E ,
R0(vi , v j) = w(vi , v j) if v j �= v0 and R0(vi , v0) = minP∈Pvi ,v0

w(P).

Definition 7 [9] An upgrade scheme r is canonical if Rr (v1, vi) ≥ Rr ′(v1, vi) for all vi ∈
V ∪ {v0} and for any other scheme r ′ with M(Tr) = M(Tr ′).

Notice that the upgrades occur as close to the root as possible in a canonical upgrade
scheme. Furthermore, we can divide the edges into three classes due to their upgrade weight.

Definition 8 [9] We refer to an edge e with r(e) = d(e) (resp. r(e) = 0) as an edge with full
(resp. zero) upgrade. An edge e with 0 < r(e) < d(e) is called an edge with partial upgrade.

The following lemma gives a characterization of edge upgrade in an optimal canonical
upgrade scheme.

Lemma 9 [9] Assume that r is an optimal upgrade scheme. Then r is the optimal canonical
upgrade scheme if and only if for every path P from v1 to v0, if P contains upgraded edges,
then there exists one edge (vi , v j) on P (vi is closer to the root v1) such that each edge on
P from v1 to vi has full upgrade and each edge on P from v j to v0 has zero upgrade.

According to Lemma 9, we can obtain Algorithm 2 to solve the problem (MCSPITu1),
which is similar to the method given in Page 71 of [9]. For each edge (vi , v j) ∈ E , let
ΔRi j = L − w(v1, vi) − R0(vi , v0), then we can determine an optimal upgrade scheme
r∗(vi , v j) based on the relationships among d(v1, vi),ΔRi j and d(v1, vi) + d(vi , v j).

Algorithm 2 Solve the problem (MCSPITu1): r∗ = OPT (L)

Require: An auxiliary tree Tv0 , the set Edel of deleted edges in the preprocessing algorithm; two edge weight
vectors w, d, and two values L and Lmax .

Ensure: An optimal canonical upgrade scheme r∗.
1: if L > Lmax then
2: Output “The upgraded length of the shortest path is impossible to be L , and its maximum length is

Lmax ”. Return.
3: end if
4: if R0(v1, v0) ≥ L then
5: output r∗(vi , v j) := 0 for all (vi , v j) ∈ E and Return.
6: else
7: Let r∗(vi , v j) := 0 for (vi , v j) ∈ Edel .
8: for (vi , v j) ∈ E \ Edel do
9: Let ΔRi j := L − w(v1, vi) − R0(vi , v0) and d(v1, vi) := ∑

e∈Pv1,vi
d(e).

r∗(vi , v j) :=
⎧
⎨

⎩

0, i f d(v1, vi) ≥ ΔRi j ;
ΔRi j − d(v1, vi), i f d(v1, vi) < ΔRi j < d(v1, vi) + d(vi , v j);
d(vi , v j), i f ΔRi j ≥ d(v1, vi) + d(vi , v j).

(9)

10: end for
11: end if

Theorem 10 Algorithm 2 can solve the problem (MCSPITu1) in O(n) time.

123

968 Journal of Global Optimization (2021) 79:959–987

3.2 Solve the problem (MSPITu1)

In this subsection, we first analyze some properties of the problem (MSPITu1), then propose
an algorithm to solve it, finally we show its linear time complexity.

Every vertex v j ∈ V induces the entry

L j = w(v1, v j) + R0(v j , v0) + d(v1, v j). (10)

Let ∠ = {L j |v j ∈ V } be the list containing all the entries.

Lemma 11 For each edge e j = (vi , v j) ∈ E, the lengths of entries are nondecreasing, that
is, Li ≤ L j .

Proof For any e j = (vi , v j) ∈ E , we have

L j − Li

= (w(v1, v j) + R0(v j , v0) + d(v1, v j)) − (w(v1, vi) + R0(vi , v0) + d(v1, vi))

= (w(v1, vi) + w(vi , v j) + R0(v j , v0) + d(v1, vi) + d(vi , v j))

−(w(v1, vi) + R0(vi , v0) + d(v1, vi))

= w(vi , v j) + R0(v j , v0) + d(vi , v j) − R0(vi , v0)

If w(vi , v j) + R0(v j , v0) > R0(vi , v0), then L j − Li > d(vi , v j) ≥ 0. Otherwise,
w(vi , v j) + R0(v j , v0) = R0(vi , v0), then L j − Li = d(vi , v j) ≥ 0. �
�

FromLemma 11, we can see that the smallest entry is L1 = R0(v1, v0) induced by the root
v1, and the largest efficient entry is Lmax . Therefore, we update ∠ = {Li ∈ ∠|Li ≤ Lmax }
as the list of efficient entries in the remainder of the paper. Furthermore, based on Lemmas
11 and 1, we can conclude that

Corollary 12 If L j > Lmax for vertex v j , then r∗(e) = 0 for any edge e on the path from v j

to a leaf in any optimal upgrade scheme r∗.

For two given entries La and Lb, we call Algorithm 2 and obtain ra = OPT (La) and
rb = OPT (Lb). Determine the sets Ez, E f , Ep, Es and Eu on tree T as follows.

– Set Ez = {ei ∈ E |ra(ei) = rb(ei) = 0} contains the edges which have zero upgrade in
both ra and rb.

– Set E f = {ei ∈ E |ra(ei) = rb(ei) = d(ei)} contains the edges which have full upgrade
in both ra and rb.

– Set Ep = {ei ∈ E |0 < ra(ei) < d(ei), 0 < rb(ei) ≤ d(ei), rb(e j) = 0,∀e j ∈ Pvi ,t }
includes the edges having partial/full upgrade in both ra and rb.

– Set Es = E \ (Ez ∪ E f) is the set of edges not included in sets Ez and E f .
– Set Eu = Es \ Ep contains all edges not included in sets Ez, Ep and E f .

If the entries in ∠ =< L1, L2, . . . , Ln > are in nondecreasing order and ri = OPT (Li),
we have M(Tri−1) ≤ M(Tri) and ri−1 ≤ ri as Li−1 ≤ Li .

Let k be the index such that M(Trk−1) ≤ M < M(Trk). Next we suppose that Ez, E f and
Es are defined for the indexes a = k − 1 and b = k.

Lemma 13 Let k be the index such that M(Trk−1) ≤ M < M(Trk). Then Ez = {e ∈
E |rk(e) = 0}, E f = {e ∈ E |rk−1(e) = d(e)} and Es = {e|rk−1(e) < rk(e)}.

123

Journal of Global Optimization (2021) 79:959–987 969

Proof On one hand, an edge e having zero upgrade in rk also has zero upgrade in rk−1 and
thus Ez = {e ∈ E |rk(e) = 0}. On the other hand, an edge e having full upgrade in rk−1 also
has full upgrade in rk and thus E f = {e ∈ E |rk−1(e) = d(e)}. Furthermore, we show that
rk−1(e) < rk(e) for e ∈ Es = E \ (Ez ∪ E f). It holds obviously for e /∈ Ez when rk−1(e) =
0 < rk(e) ≤ d(e), and for e /∈ E f when 0 ≤ rk−1(e) < d(e) = rk(e). If e ∈ E \ (Ez ∪ E f)

with 0 < rk(e) < d(e) and 0 < rk−1(e) < d(e), suppose rk−1(e) = rk(e). Then by (9) in
Algorithm 2, we have rk−1(e) = rk−1(vi , v j) = ΔRk−1

i j − d(v1, vi) = ΔRk
i j − d(v1, vi) =

rk(e) and Lk−1 = Lk , which follows a contradiction M(Trk−1) = M(Trk). Hence, we have
rk−1(e) < rk(e), e ∈ E \ (Ez ∪ E f) and Es = {e|rk−1(e) < rk(e)}. �
�

We will determine an optimal upgrade scheme r∗ satisfying rk−1(e) ≤ r∗(e) ≤ rk(e) for
all e ∈ E and the length R(Tr∗) of the shortest path. For an edge (vi , v j) ∈ Es , let

R̂rk−1(P
∗
i j) = Rrk−1(v1, vi) + w(vi , v j) + rk−1(vi , v j) + R0(v j , v0) (11)

be the length of the shortest path from v1 to v0 that goes through edge (vi , v j) with respect
to rk−1. Let E∗

s = {(vi , v j) ∈ Es |R̂rk−1(P
∗
i j) < R(Tr∗)}. We have the following property.

Lemma 14 Let k be the index such that M(Trk−1) ≤ M < M(Trk). Then the following
statements hold. (1) Every path P from v1 to v0 contains at most one edge belonging to set
Es = {e|rk−1(e) < rk(e)}. (2) If

R(Tr∗) =
M − M(Trk−1) + ∑

(vi ,v j)∈E∗
s
R̂rk−1(P

∗
i j)

|E∗
s |

, (12)

then an optimal upgrade scheme r∗ can be calculated by

r∗(vi , v j) =

⎧
⎪⎪⎨

⎪⎪⎩

d(vi , v j), i f (vi , v j) ∈ E f ,

0, i f (vi , v j) ∈ Ez,

rk−1(vi , v j), i f (vi , v j) ∈ Es \ E∗
s ,

rk−1(vi , v j) + R(Tr∗) − R̂rk−1(P
∗
i j), i f (vi , v j) ∈ E∗

s .

(13)

Proof (1) Suppose there are two edges (vb̄, vā) and (vā, v j) in one path P from v1 to v0,
in which vb̄ is closer to v1 and v j is closer to v0. Then we have 0 ≤ rk−1(vb̄, vā) <

d(vb̄, vā). Case 1. 0 < rk−1(vb̄, vā) < d(vb̄, vā) = rk(vb̄, vā), then rk−1(vā, v j) = 0 <

rk(vā, v j) ≤ d(vā, v j). By (9) in Algorithm 2, we have Lk − w(v1, vā) − R0(vā, v0) >

d(v1, vā), then Lk > w(v1, vā) + R0(vā, v0) + d(v1, vā) = Lā . Similarly, we have
Lk−1 ≤ Lā . Additionally, if Lk−1 = Lā , we have

Lk−1 = Lā = w(v1, vā) + R0(vā, v0) + d(v1, vā)

= w(v1, vb̄) + w(vb̄, vā) + R0(vā, v0) + d(v1, vb̄) + d(vb̄, vā)

≥ w(v1, vb̄) + R0(vb̄, v0) + d(v1, vb̄) + d(vb̄, vā),

as w(vb̄, vā) + R0(vā, v0) ≥ R0(vb̄, v0). Then Lk−1 − w(v1, vb̄) − R0(vb̄, v0) ≥
d(v1, vb̄) + d(vb̄, vā) holds in (9), thus rk−1(vb̄, vā) = d(vb̄, vā) which contradicts
to rk−1(vb̄, vā) < d(vb̄, vā). Hence we have Lk−1 < Lā < Lk which contradicts Lk−1

and Lk are sequential in ∠. Case 2. 0 = rk−1(vb̄, vā) < d(vb̄, vā) = rk(vb̄, vā), then
rk−1(vā, v j) = 0 < rk(vā, v j) ≤ d(vā, v j). Similarly we have Lk−1 ≤ Lb̄ < Lā and
Lk > Lā , thus Lk−1 < Lā < Lk results in a contradiction.

(2) Obviously, an edge e ∈ E f has full upgrade in r∗ and an edge e ∈ Ez has zero upgrade in
r∗. Additionally, for (vi , v j) ∈ Es \ E∗

s , we have R̂rk−1(P
∗
i j) ≥ R(Tr∗) and r∗(vi , v j) =

rk−1(vi , v j).

123

970 Journal of Global Optimization (2021) 79:959–987

For an edge (vi , v j) in E∗
s , if there is only one path P = P∗

i j going through (vi , v j), then
r∗(vi , v j) = rk−1(vi , v j) + R(Tr∗) − (w(P) + rk−1(P)); if there are more than one path
going through (vi , v j), we find the maximum upgrade amount from the shortest path P∗

i j ,

which results in r∗(vi , v j) = rk−1(vi , v j) + R(Tr∗) − R̂rk−1(P
∗
i j). Furthermore,

r∗(vi , v j) = rk−1(vi , v j) + R(Tr∗) − R̂rk−1(P
∗
i j)

< rk−1(vi , v j) + R(Trk) − R̂rk−1(P
∗
i j)

= rk(vi , v j) ≤ d(vi , v j).

The total upgrade cost is

M(Tr∗)

=
∑

e∈E f

d(e) +
∑

e∈Es\E∗
s

rk−1(e) +
∑

(vi ,v j)∈E∗
s

(rk−1(e) + R(Tr∗) − R̂rk−1(P
∗
i j))

= M(Trk−1) +
∑

(vi ,v j)∈E∗
s

R(Tr∗) −
∑

(vi ,v j)∈E∗
s

R̂rk−1(P
∗
i j)

= M(Trk−1) + |E∗
s |R(Tr∗) −

∑

(vi ,v j)∈E∗
s

R̂rk−1(P
∗
i j)

= M(Trk−1) + M − M(Trk−1) +
∑

(vi ,v j)∈E∗
s

R̂rk−1(P
∗
i j) −

∑

(vi ,v j)∈E∗
s

R̂rk−1(P
∗
i j)

= M .

Next we will show that R(Tr∗) is the length of the shortest path under r∗. For (vi , v j) ∈
Es \ E∗

s , we have R̂rk−1(P
∗
i j) ≥ R(Tr∗). For (vi , v j) ∈ E∗

s , we have

R̂r∗(P∗
i j)

= Rr∗(v1, vi) + w(vi , v j) + r∗(vi , v j) + R0(v j , v0)

= Rrk−1(v1, vi) + w(vi , v j) + (rk−1(vi , v j) + R(Tr∗) − R̂rk−1(P
∗
i j)) + R0(v j , v0)

= R(Tr∗).

Combining with (1), we can conclude that the R(Tr∗) is the length of the shortest path in Tr∗ .
�
�

To determine the set E∗
s and the length R(Tr∗), we consider a series of rκ (κ = 0, 1, . . .)

such that

R(Trκ) =
M − M(Trk−1) + ∑

(vi ,v j)∈Eκ
s
R̂rk−1(P

∗
i j)

|Eκ
s | , (14)

where E0
s = Es, Eκ+1

s = {(vi , v j) ∈ Eκ
s |R̂rk−1(P

∗
i j) < R(Trκ)}, κ ≥ 0. Such a circulation

terminates until Eκ+1
s = Eκ

s . In this case, R(Tr∗) = R(Trκ).

Lemma 15 If M(Trk−1) < M, then E1
s �= ∅ and R(Tr1) ≤ R(Tr0). Furthermore, R(Trκ) ≤

R(Trκ−1) ≤ · · · ≤ R(Tr1) ≤ R(Tr0). When Eκ
s \Eκ+1

s = ∅, R(Tr∗) = R(Trκ).

Proof If E1
s = ∅, then R̂rk−1(P

∗
i j) ≥ R(Tr0) for any edge in Es . Hence, it follows from (14)

that

R(Tr0) ≥ M − M(Trk−1) + |Es |R(Tr0)

|Es | = R(Tr0) + M − M(Trk−1)

|Es | > R(Tr0),

123

Journal of Global Optimization (2021) 79:959–987 971

which is a contradiction.
It follows from (14) that

M − M(Trk−1) +
∑

(vi ,v j)∈Es

R̂rk−1(P
∗
i j) = |Es |R(Tr0) (15)

M − M(Trk−1) +
∑

(vi ,v j)∈E1
s

R̂rk−1(P
∗
i j) = |E1

s |R(Tr1) (16)

By (15) minus (16), we can obtain

(|Es | − |E1
s |)R(Tr0) ≤

∑

(vi ,v j)∈Es\E1
s

R̂rk−1(P
∗
i j) = |Es |R(Tr0) − |E1

s |R(Tr1). (17)

Then |E1
s |R(Tr1) ≤ |E1

s |R(Tr0). It follows from E1
s �= ∅ that |E1

s | > 0 and R(Tr1) ≤ R(Tr0).
Similarly, we can show that R(Trκ) ≤ R(Trκ−1) ≤ · · · ≤ R(Tr1) ≤ R(Tr0).

When Eκ
s \Eκ+1

s = ∅, then Eκ+1
s = Eκ

s and R̂rk−1(P
∗
i j) < R(Trκ) holds for each (vi , v j) ∈

Eκ
s . Hence, E

κ
s = E∗

s = {(vi , v j) ∈ Es |R̂rk−1(P
∗
i j) < R(Tr∗)} and R(Tr∗) = R(Trκ). �
�

Based on the above properties, we can state the Algorithm 3 to solve the problem
(MSPITu1). Themain idea is in two steps. The first step is to determine a range [Lk−1, Lk) of
the optimal value R(T ∗

r) by a binary search method in O(n) time without sorting the entries
in the list ∠ [9]. The second step is to obtain the exact value R(T ∗

r) and an optimal solution
r∗ according to the two upgrade schemes rk−1 = OPT (Lk−1) and rk = OPT (Lk).

Here are some notations. Let ∠ab be the sublist of ∠ containing the entries L j with
La < L j < Lb and nab = |∠ab|. Let M f = ∑

(vi ,v j)∈E f
d(vi , v j) be the total upgrade spent

on the edges in set E f . Let Mp,b = ∑
e∈Ep

rb(e) be the total upgrade made on the set Ep in

upgrade scheme rb. Let Lq be the (� nab
2 �)th smallest element in list ∠ab. Let δ = Lb − Lq .

Let Eu,z, Eu,p and Eu, f be the sets of edges in Eu have zero, partial and full upgrade in rq ,
respectively. Then Eu = Eu,z ∪ Eu,p ∪ Eu, f . The total upgrade of scheme rq is determined
below.

M(Trq) = M f + (Mp,b − δ × |Ep|) + Mu, f + Mu,p, (18)

with Mu, f = ∑
(vi ,v j)∈Eu, f

d(vi , v j), Mu,p = ∑
(vi ,v j)∈Eu,p

rq(vi , v j).
Now we analyze the time complexity of Algorithm 3. It is easy to see that work done in

Lines 11–22, an iteration in while circulation, is bounded by O(|Eu |). The authors in [9]
showed that |Eu | ≤ 2nab and nab reduces by half from one iteration to the next. The edge
(vi , vq) ∈ Eu inducing the entry Lq is no longer in Eu by the end of the current iteration.
When Lq < Lk < Lb, we have nqb ≤ nab

2 and when La < Lk < Lq we have naq ≤ nab
2 .

Hence, searching for index k in the whole while circulation takes O(n) time. Obtaining the
exact value R(T ∗

r) in lines 25–32 can be completed in O(n) time and the optimal upgrade
scheme r∗ is generated from rk and rk−1 in Line 33 by (13) in O(n) time. Thus, the O(n)

time bound for the problem (MSPITu1) follows.

Theorem 16 Algorithm 3 can solve the problem (MSPITu1) in O(n) time.

Remark 17 The optimal upgrade scheme r∗ generated from rk and rk−1 in (1)-(3) in page 75
of [9] is given below.

r∗(vi , v j) =

⎧
⎪⎨

⎪⎩

d(vi , v j), i f rk−1(vi , v j) = d(vi , v j),

0, i f rk(vi , v j) = 0,

rk−1(vi , v j) + M−M(Trk−1)

|Es | , i f (vi , v j) ∈ Es .

(19)

123

972 Journal of Global Optimization (2021) 79:959–987

Algorithm 3 An algorithm to solve the problem (MSPITu1).
Require: A tree T = (V , E), the set Y of leaves; the set CC of critical children, the set CF of critical fathers

and the chains; the Layer of vertices, two edge weight vectors w, u and the maximum cost M .
Ensure: The optimal canonical upgrade scheme r∗.
1: Calculate d := u − w and Lmax := R(Td).
2: Call (T , Y , Edel) := Preprocess(T , Y ,CC,CF, chain, Layer , w, Lmax).
3: Determine rmax := OPT (Lmax), get the minimum cost Mmax := ∑

e∈E\Edel rmax (e).
4: if M ≥ Mmax then
5: output an optimal solution r∗ := rmax and the optimal value Lmax , return.
6: else
7: Construct an auxiliary network Tv0 by adding an artificial terminal v0 and some edges (t, v0) with

w(t, v0) := 0 and d(t, v0) := 0 for every leaf t ∈ Y .
8: Calculate L j by (10) for each vertex v j ∈ V . Determine the list ∠ of the efficient entries induced by

L j which is no more than Lmax .
9: Set La := L1, Lb := Lmax , ∠ab := ∠, nab := |∠ab|, ra := OPT (La) and rb := OPT (Lb). For

tree T , determine the sets Ez , Eu , Ep and E f .
10: while nab �= 0 do
11: Let Lq be the (� nab2 �)th smallest element in list ∠ab . Obtain rq (vi , v j) by (9) and determine the

sets Eu,z , Eu,p and Eu, f . Calculate M(Trq) according to (18).
12: if M(Trq) < M then
13: let La := Lq , E f := E f ∪ Eu, f , Eu := Eu \ Eu, f .
14: Edges from Eu,p that qualify for Ep are moved from set Eu to Ep .
15: Update ∠ab by deleting the entries smaller than Lq . Let nab := |∠ab|.
16: else if M(Trq) > M then
17: let Lb := Lq , Ez := Ez ∪ Eu,z , Eu := Eu \ Eu,z .
18: Edges from Eu,p and Eu, f that qualify for Ep are moved from set Eu to Ep .
19: Update ∠ab by deleting the entries larger than Lq . Let nab := |∠ab|.
20: else
21: let Lk := Lq , Return r∗ := OPT (Lq).
22: end if
23: end while
24: Let Lk−1 := La , Lk := Lb and Es := E \ (Ez ∪ E f).
25: Determine rk := OPT (Lk) and rk−1 := OPT (Lk−1).

26: Let R(Tr0) :=
M−M(Trk−1)+∑

(vi ,v j)∈Es R̂rk−1 (P∗
i j)

|Es | .

27: Let E0
s := Es , E1

s := {(vi , v j) ∈ E0
s |R̂rk−1 (P

∗
i j) < R(Tr0)}, R(Tr1) := R(Tr0), κ := 1.

28: while Eκ−1
s \Eκ

s �= ∅ do

29: R(Trκ) :=
M−M(Trk−1)+∑

(vi ,v j)∈Eκ
s
R̂rk−1 (P∗

i j)

|Eκ
s | ,

30: Update Eκ+1
s = {(vi , v j) ∈ Eκ

s |R̂rk−1 (P
∗
i j) < R(Trκ)} and κ := κ + 1.

31: end while
32: Let E∗

s := Eκ
s and R(Tr∗) := R(Trκ).

33: Calculate r∗(vi , v j) by (13) for (vi , v j) ∈ E \ Edel and r
∗(vi , v j) := 0 for (vi , v j) ∈ Edel .

34: end if

This implies that the rest cost (M − M(Trk−1)) is distributed to r∗(vi , v j) for (vi , v j) ∈ Es

in average, which is not actually true. The distribution must be made according to the length
of every path, which may not be equal, just as (13) shows.

For example, in Fig. 5, for a givenM := 30, according to lines 7–24 inAlgorithm3,we can
determine two consecutive entries L8 := 38 and L5 := 42withM5 := 35 > M > M8 := 17.
We have

r8 = OPT (L8) := (3, 6, 0, 2, 1, 0, 5, 0, 0, 0),

r5 = OPT (L5) := (3, 10, 0, 6, 5, 0, 5, 4, 0, 2),

123

Journal of Global Optimization (2021) 79:959–987 973

Fig. 6 A tree and its auxiliary network Tv0 in Example 1

and Es := {e3, e5, e6, e9, e11}. The solution calculated by (19) is

r∗ := (3, 8.6, 0, 4.6, 3.6, 0, 5, 2.6, 0, 2.6),

and the length of the shortest path is 40.6. But the solution obtained by Lines 25–33 in
Algorithm 3 is

r∗ := (3, 9, 0, 5, 4, 0, 5, 3, 0, 1),

and the length of the shortest path is 41 which is larger than the former one.

3.3 Two examples of the problem

For the better understanding of Algorithm 3, Example 1 and Example 2 are given to show
the detailed computing process.

Example 1 As is shown in Fig. 6, V := {v1, . . . , v17}, E := {e2, . . . , e17},M := 40, t1 := v6,
t2 := v7, t3 := v8, t4 := v11, t5 := v13, t6 := v14, t7 := v17,

w := (7, 12, 8, 6, 1, 12, 14, 19, 11, 11, 17, 9, 38, 10, 14, 17),
u := (10, 22, 16, 16, 2, 19, 19, 31, 16, 12, 24, 10, 41, 15, 19, 23).

It is easy to have d = u − w := {3, 10, 8, 10, 1, 7, 5, 12, 5, 1, 7, 1, 3, 5, 5, 6}, Lmax := 57.
By calling the Preprocess Algorithm, we can delete the leaf v14 from T as w(Pv14) := 57
and obtain Edel := {e14}. Then determine

rmax := OPT (Lmax) = (3, 10, 8, 2, 0, 0, 0, 12, 4, 0, 0, 0, 5, 5, 6), Mmax := 55.

By Line 8, for every vertex vi ∈ V , determine the entry list

∠ := {34, 37, 47, 55, 65, 66, 83, 67, 53, 68, 59, 64, 65, 46, 51, 57}
and the efficient list obtained by deleting the entries larger than Lmax = 57 is ∠ :=
{L1, L2, L3, L4, L9, L15, L16, L17} = {34, 37, 47, 55, 53, 46, 51, 57}. La := 34, Lb :=
57. Call ra := OPT (La) = (0, . . . , 0) and rb := OPT (Lb) = (3, 10, 8, 2, 0, 0, 0, 12,
4, 0, 0, 0, 5, 5, 6). Determine Ez := {e6, e7, e8, e11, e12, e13, e14}, E f := ∅, Ep :=

123

974 Journal of Global Optimization (2021) 79:959–987

Table 2 The results for the detailed 3 iterations in Example 1 by Algorithm 3

Iteration 1 2 3

Lq 47 51 53

rq
(3, 10, 0, 0, 0, 0, 0,
6, 0, 0, 0, 0, 5, 1, 0)

(3, 10, 4, 0, 0, 0, 0,
10, 0, 0, 0, 0, 5, 5, 0)

(3, 10, 6, 0, 0, 0, 0,
12, 0, 0, 0, 0, 5, 5, 2)

Eu,z {e4, e5, e10, e17} {e5, e10, e17} {e5, e10}
Eu,p {e9, e16} {e4, e9} {e4, e17}
Eu, f {e2, e3, e15} {e16} {e9}
M(Trq) 25 < M 37 < M 43 > M

La 47 51 51

Lb 57 57 53

Ez
{e6, e7, e8, e11,
e12, e13, e14}

{e6, e7, e8, e11,
e12, e13, e14}

{e5, e6, e7, e8, e10,
e11, e12, e13, e14}

Ep ∅ ∅ {e4}
E f {e2, e3, e15} {e2, e3, e15, e16} {e2, e3, e15, e16}
Eu {e4, e5, e9, e10, e16, e17} {e4, e5, e9, e10, e17} {e9, e17}
∠ab {L4, L9, L16} = {55, 53, 51} {L4, L9} = {55, 53} ∅
nab 3 2 0

∅, Eu := {e2, e3, e4, e5, e9, e10, e15, e16, e17}, ∠ab := {L2, L3, L4, L9, L15, L16} =
{37, 47, 55, 53, 46, 51}, nab := 6.

In the first iteration, Lq := L3 = 47 is the third smallest value in ∠ab. Obtain rq :=
(3, 10, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 5, 1, 0) for edges in Eu by (9) when L := Lq = 47. Then
we have Eu,z := {e4, e5, e10, e17}, Eu,p := {e9, e16} and Eu, f := {e2, e3, e15}. We get
M(Trq) := 25 < M := 40 by (18). Thus La := 47, E f := E f ∪ Eu, f = {e2, e3, e15},
Eu := Eu\Eu, f = {e4, e5, e9, e10, e16, e17}, Ep := ∅.The results for the first three iterations
can be shown in Table 2.

After the third iteration, nab := 0, so the iteration terminates and we have Lk−1 := La =
L16 = 51, Lk := Lb = L9 = 53.

Determine R(Tr∗): R(Tr0) := 52, E0
s := Es = E \ (Ez ∪ E f) = {e4, e9, e17}, E1

s :=
{e4, e9, e17}, R(Tr1) = R(Tr0), E

1
s \ E0

s = ∅, then R(Tr∗) := R(Tr1) = 52 with E∗
s :=

{e4, e9, e17}.
Generate r∗ := (3, 10, 5, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 5, 5, 1) by (13).

Example 2 In Fig. 5, V := {v1, . . . , v11}, E := {e2, . . . , e11}, t1 := v4, t2 := v5,
t3 := v7, t4 := v10, t5 := v11, w := (7, 12, 10, 26, 19, 18, 10, 9, 14, 25), u :=
(10, 22, 17, 32, 31, 23, 15, 20, 19, 35), M := 10. Then d := (3, 10, 7, 6, 12, 5, 5, 11, 5,
10), Lmax := 42, the efficient list ∠ := {L1, L2, L3, L5, L8} = {29, 32, 42, 42, 38}.
La := 29, Lb := 42. Then rmax := (3, 10, 0, 6, 5, 0, 5, 4, 0, 2) and Mmax := 35.

For the givenM := 10 < Mmax , according to lines 7–24 inAlgorithm3,we can determine
two consecutive entries L2 := 32 and L8 := 38 with M8 := 17 > M > M2 := 3 in the list
∠. We have

r2 := OPT (L2) = (3, 0, 0, 0, 0, 0, 0, 0, 0, 0), r8 := (3, 6, 0, 2, 1, 0, 5, 0, 0, 0).

123

Journal of Global Optimization (2021) 79:959–987 975

Through lines 26–33, determine R(Tr∗): Es := {e3, e5, e6, e8},
R(Tr0) := 10 − 3 + (32 + 36 + 37 + 33)

4
= 36

1

4
,

E0
s := Es = {e3, e5, e6, e8}, E1

s = {e3, e8}, R(Tr1) := R(Tr0) = 361
4 , κ := 1. E0

s \ E1
s :=

{e5, e6} �= ∅, then do the first while-iteration. We have R(Tr1) := 10−3+(32+33)
2 = 36,

E2
s := {e3, e8}, κ := 2, E1

s \ E2
s := ∅, thus the iteration terminates. Hence, E∗

s := {e3, e8},
R(Tr∗) := R(Tr1) = 36. Finally, generate r∗ := (3, 4, 0, 0, 0, 0, 3, 0, 0, 0) by (13).

4 Solve the problem (MSPIT1)

In this section, we solve the problem (MSPIT1) under weighted l1 norm through a primal
dual algorithm. Based on two sub-algorithms, the preprocessing algorithm (Algorithm 1) and
the minimum cost cut algorithm (Algorithm 4), we give the primal dual algorithm followed
by time complexity analysis and a computational example.

4.1 An algorithm to find aminimum cost cut

In this subsection, we firstly define a minimum cost cut, then give an algorithm to find such
a cut.

Definition 18 A set Ed(Tv) of edges is called a feasible cut of a tree Tv rooted at v with
respect to d if there is one and only one edge e ∈ E(Tv) on every path from v to every leaf
t j ∈ Y ∩ Tv , where d(e) > 0. A minimum cost cut E∗

d (Tv) is a feasible cut whose cost
C(Tv) = C(E∗

d (Tv)) = ∑
e∈E∗

d (Tv) c(e) is minimum.

The main idea of the algorithm to find a minimum cost cut is as follows. For a given
length z, we firstly call the preprocessing algorithm (T ′, Y ′, Edel) = Preprocess(T ,

Y ,CC,CF, chain, Layer , w, z) to delete the paths whose length are no less than z. Then
for the tree T ′, we determine a minimum cost cut for each subtree Tv when v ∈ V ∗ ∪ {v1}
in a decreasing order of Layers. For v ∈ V ∗ ∪ {v1}, let CC(v) = {vh1 , vh2 , . . . , vh p }
be the set of critical children of v, and let T̄vh = chain(vh) ∪ Tvh be a branch of Tv

rooted at vh . Then we can divided Tv into the union of all the branches T̄vh , that is,
Tv = ⋃

vh∈CC(v) T̄vh . Based on this structure and the definition of a minimum cost cut, we

can calculate C(T̄vh) = min{C(chain(vh)),C(Tvh)}. Hence, C(Tv) = ∑
vh∈CC(v) C(T̄vh) is

the sum of the minimum costs C(T̄vh) for all the branches T̄vh , vh ∈ CC(v).
Obviously, we need to transverse the tree from bottom to up to find a minimum cost cut.

Then we can conclude that

Lemma 19 Algorithm 4 can find a minimum cost cut in O(n) time.

Given an example in Fig. 7, we call Algorithm 4 in details as follows.

V 2 := {v5},C(Tv5) := C(T̄v6) + C(T̄v7) = min{9,+∞} + min{16,+∞} = 25;
V 1 := {v4, v9},C(Tv4) := C(T̄v5) + C(T̄v8) = 10 + 15 = 25;
C(Tv9) := C(T̄v11) + C(T̄v13) = min{1,+∞} + min{13,+∞} = 1 + 13 = 14;
V 0 := {v1},C(Tv1) := C(T̄v4) + C(T̄v9) + C(T̄v17) = 4 + 7 + 15 = 26.

Therefore, C(T) := C(Tv1) = 26 and a minimum cost cut of T given in Fig. 7 is E∗
d (T) :=

{(v2, v3), (v1, v9), (v1, v15)}.

123

976 Journal of Global Optimization (2021) 79:959–987

Algorithm 4 (E∗
d (T),C(T)) = MinCut(T , Y ,CC,CF, chain, Layer , c, w, d, z)

Require: A tree T = (V , E), the set Y of leaves, the set CC of critical children, the set CF of critical fathers
and the chains, the Layer of vertices; a cost vector c, two edge weight vectors w, d and the length z of
shortest path;

Ensure: The minimum cost cut E∗
d (T) of the tree and the relative cost C(T).

1: Call (T , Y , Edel) = Preprocess(T , Y ,CC,CF, chain, Layer , w, z).
2: for t ∈ Y do
3: Tt := ∅,C(Tt) := +∞, E∗

d (Tt) := ∅.
4: end for
5: Let β := maxv∈V Layer(v).
6: for j = β − 1 : −1 : 0 do
7: let V j := {v ∈ V ∗ ∪ {v1}|Layer(v) = j}.
8: while V j �= ∅ do
9: choose v ∈ V j . Determine CC(v) := {vh1 , vh2 , . . . , vh p }, where p := degree(v) − 1 if v �= v1

and p := degree(v) if v = v1 .
10: for vh ∈ CC(v) do
11: let T̄vh := chain(vh) ∪ Tvh , C(chain(vh)) = min

e∈chain(vh),d(e)>0
c(e) := c(êh).

12: if C(chain(vh)) ≤ C(Tvh) then
13: C(T̄vh) := C(chain(vh)), E∗

d (T̄vh) := {êh};
14: else
15: C(T̄vh) := C(Tvh), E∗

d (T̄vh) := E∗
d (Tvh).

16: end if
17: end for
18: Calculate C(Tv) := ∑

vh∈CC(v) C(T̄vh), E∗
d (Tv) := ⋃

vh∈CC(v) E
∗
d (T̄vh).

19: Update V j := V j \{v}.
20: end while
21: end for
22: Return E∗

d (T) := E∗
d (Tv1), C(T) := C(Tv1).

Fig. 7 The minimum cost cut is
{(v2, v3), (v1, v9), (v1, v15)}

4.2 A primal dual algorithm to solve the problem (MSPIT1)

In this subsection, we first present the main idea of the primal dual algorithm [14, Chapter 5–
6] to solve the problem (MSPIT1), then describe the algorithm in details and analyze its time
complexity.

123

Journal of Global Optimization (2021) 79:959–987 977

The model (1) of the problem (MSPIT1) is equivalent to the following model.

max z

s.t . w(Pi) + r(Pi) ≥ z, ti ∈ Y

(D)
∑

e∈E
c(e)r(e) ≤ M, (20)

0 ≤ r(e) ≤ d(e), e ∈ E,

z ≥ 0.

Obviously, the problem (20) is a linear programming problem with l + n constraints and
n variables. Now we present the main idea of the primal dual algorithm [14, Chapter 5-6].
Firstly, we consider the problem (20) as a dual problem (D). Given a dual feasible solution
πk = (rk, zk) of the problem (D), we can determine a set J k of admissible rows where
equality constraints hold in the constraint conditions of (D) for πk . Based on the set J k ,
we can get the dual of the restricted primal problem, denoted by (DRPk). Secondly, we
solve the problem (DRPk) by finding a minimum cost cut and obtain its optimal solution
π̄k = (r̄ k, z̄k). If the optimal objective value z̄k of (DRPk) is positive, then we determine
the adjustment amount θk to obtain a better dual feasible solution πk+1 = πk + θk π̄k whose
objective value zk+1 = zk + θ z̄k is larger than zk and continue to find a set J k+1 for πk+1.
The above iteration terminates until the optimal objective value z̄k of (DRP) is zero, we
obtain an optimal dual solution πk of (D).

1. Transform the problem (20) as a standard dual problem (Ds), where all the constraints
are in the form of “less than and equal to” and all the variables are unconstrained.

max z
s.t . −r(Pi) + z ≤ w(Pi), ti ∈ Y

(Ds)
∑

e∈E c(e)r(e) ≤ M,

r(e) ≤ d(e), e ∈ E
−r(e) ≤ 0, e ∈ E
−z ≤ 0.

2. Determine an initial dual feasible solution (rk, zk) when k = 0.
Let Pi∗ = argminti∈Y {w(Pi)}be the shortest path of treeT ,w(Pi1∗) = min{w(Pi)|w(Pi) >

w(Pi∗)} and L0 = min{w(Pi1∗), Lmax }, where Lmax = R(Td). Initialize g0 = 0, r0 =
0, z0 = w(Pi∗).

(1) Call (E∗
d (T),C(T)) = MinCut(T , Y ,CC,CF, chain, Layer , c, w, d, z0) to deter-

mine a minimum cost cut E∗
d (T). Let d (̃e) = mine∈E∗

d (T) d(e) and θ = min{ M
C(T)

,

d (̃e), L0 − z0}. Let r̄0(e) = θ for e ∈ E∗
d (T) and r̄0(e) = 0 for e /∈ E∗

d (T). Then there
are three possible cases below.

(a) If θ = M
C(T)

, then the cost M is used up and z0 = z0 + θ is the length of the shortest

path with respect to an optimal upgrade scheme r0 = r0 + r̄0 and the upgrade cost
g0 := g0 + θC(T) = M .

(b) If θ = L0 − z0, update z0 = z0 + θ , then z0 = L0 is the length of the shortest path with
a feasible upgrade scheme r0 = r0 + r̄0, and hence (r0, z0) is a dual feasible solution.

(c) If θ = d (̃e), then update d by d(e) = d(e) − θ for e ∈ E∗
d (T). Go back to (1) to find the

next minimum cost cut by the new weight d and z0 = z0 + θ . Such a process terminates
until case (b) or (c) occurs.

123

978 Journal of Global Optimization (2021) 79:959–987

Therefore, we can either find a dual feasible solution (r0, z0) or obtain a dual optimal
solution (r0, z0).

3.Determine the sets of admissible rows according to the dual feasible solution (rk, zk).

J k1 = {ti ∈ Y | − rk(Pi) + zk = w(Pi)}, (21)

J k2 =
{ {1}, i f

∑
e∈E c(e)rk(e) = M;

∅, Otherwise.
(22)

J k3 = {e j |rk(e j) = d(e j)}, (23)

J k4 = {e j |rk(e j) = 0}, (24)

J k5 =
{ {1}, i f zk = 0;

∅, i f zk �= 0.
(25)

4. Generate the problem (DRPk) based on the sets of admissible rows and the relation-
ship between the problems (D) and (DRPk). Then solve the problem (DRPk) and obtain
its optimal solution (r̄ k, z̄k).

max z̄k

s.t . −r̄ k(Pi) + z̄k ≤ 0, ti ∈ J k1 ,

(DRPk) r̄ k(e j) ≤ 0, e j ∈ J k3 ,

−r̄ k(e j) ≤ 0, e j ∈ J k4 ,

r̄ k(e j) ≤ 1, j = 2, . . . , n,

z̄k ≤ 1.

An optimal solution to the problem (DRPk) is not unique. We try to find an optimal
solution (r̄ k, z̄k) for the set Pk

1 = {Pi = Pv1,ti |ti ∈ J k1 } of paths in the problem (DRPk) by
a minimum cost cut E∗

dk
(Pk

1) on the edges with dk(e) > 0. Let C(Pk
1) = C(E∗

dk
(Pk

1)) for
simplicity. Then we can obtain the following lemma.

Lemma 20 If C(Pk
1) > 0, then

z̄k = 1, r̄ k(e) =
{
1, i f e ∈ E∗

dk
(Pk

1)

0, otherwise
(26)

is an optimal solution of the problem (DRPk).

Proof Notice that J k3 = {e j |rk(e j) = d(e j)}, then dk(e j) = d(e j) − rk(e j) = 0 and
r̄ k(e j) ≤ 0 for edge e j ∈ J k3 . Moreover, the minimum cost cut E∗

dk
(Pk

1) contains the

edges with dk(e) > 0. Hence, J k3 ∩ E∗
dk

(Pk
1) = ∅ and r̄ k given by (26) satisfies the last

four constraints of the problem (DRPk). It follows from the definition of the minimum
cost cut that there is one and only one edge of E∗

dk
(Pk

1) on each path Pi ∈ Pk
1 . Then

r̄ k(Pi) = ∑
e∈Pi r̄

k(e) = ∑
e∈Pi∩E∗

dk
(Pk

1) r̄
k(e) = 1 = z̄k . Therefore, (r̄ k, z̄k) is a feasible

solution of the problem (DRPk) with the maximum objective value z̄k = 1, and hence it is
also an optimal solution. �
�

5. Determine the adjustment amount θk of the cut E∗
dk

(Pk
1).

Let

θk1 = min
ti /∈J k1 ,Pi∩E∗

dk
(Pk

1)=∅
{θ1(ti) := w(Pi) + rk(Pi) − zk}; (27)

123

Journal of Global Optimization (2021) 79:959–987 979

θk2 = M − gk

C(Pk
1)

; (28)

θk3 = min
e j /∈J k3 ,e j∈E∗

dk
(Pk

1)

{d(e j) − rk(e j)}. (29)

For θk4 = min
e j /∈J k4 ,−r̄ kj (e j)>0

rk (e j)
−r̄ k (e j)

, we have −r̄ k(e j) ≤ 0 by (26) before reaching the

optimality, and thus θk4 = +∞. Similarly, for θk5 = zk

−z̄k
> 0, we have z̄k = 1 > 0 before

reaching the optimality. Thus −z̄k < 0, and θk5 = +∞.
Hence θk = min{θk1 , θk2 , θk3 } is the the adjustment amount of the cut E∗

dk
(Pk

1). If θk = θk1 ,

then the minimum length of the paths will reach to zk+1 = zk + θk1 after this iteration and
at least one more path will be added to the set Pk+1

1 of paths. Then we need to find a new
minimum cost cut on the new set Pk+1

1 = {Pi |w(Pi) + rk+1(Pi) = zk+1} = Pk
1 ∪ P(θk1) of

paths, where P(θk1) = {Pi |w(Pi)+rk(Pi)−zk = θk1 , ti /∈ J k1 , Pi ∩E∗
dk

(T) = ∅}. If θk = θk2 ,

then the total cost M has been used up and the number θk2 of units can be distributed to the
current minimum cost cut E∗

dk
(Pk

1), which implies the iteration terminates. If θk = θk3 , then

the upgrade amount of at least one edge e j in the cut E∗
dk

(Pk
1) will achieve its upper-bound

d(e j) and we have dk+1(e j) = dk(e j) − θk3 = dk(e j) − d(e j) + rk(e j) = 0. In this case,
we can update J k+1

3 = J k3 ∪ {e j ∈ E∗
dk

(T)|dk+1(e j) = 0}.
6. Update a better dual feasible solution.

Lemma 21 Suppose (rk, zk) is a dual feasible solution of (D) and (r̄ k, z̄k) is a dual optimal
solution of (DRPk) given by (26). Let rk+1 = rk+θkr̄ k and zk+1 = zk+θk . Then (rk+1, zk+1)

is a better dual feasible solution of (D) .

Proof For the edges e j ∈ E∗
dk

(Pk
1), we have 0 ≤ rk(e j) ≤ rk+1(e j) = rk(e j) + θk ≤

rk(e j) + θk3 ≤ rk(e j) + d(e j) − rk(e j) = d(e j). For the edges e j /∈ E∗
dk

(Pk
1), we have

0 ≤ rk+1(e j) = rk(e j) ≤ d(e j).
∑

e∈E
c(e)rk+1(e) =

∑

e∈E∗
dk

(Pk
1)

c(e)(rk(e) + θk) +
∑

e/∈E∗
dk

(Pk
1)

c(e)rk(e)

=
∑

e∈E
c(e)rk(e) + θkC(Pk

1) ≤ gk + (M − gk) = M .

−rk+1(Pi) + zk+1 = −rk(Pi) − θk + zk + θk = −rk(Pi) + zk ≤ w(Pi).

Furthermore, zk+1 = zk + θk > zk as θk > 0. As a conclusion, (rk+1, zk+1) is a better dual
feasible solution of (D). �
�

7. Satisfy the termination condition.
The above iteration terminates until θk = θk2 in some iteration. In this case, the total cost

M is used up, and we can find an optimal solution of the dual problem.
We summarize the steps above in Algorithm 5, and analyze its time complexity.

Theorem 22 Algorithm 5 can solve the problem (MSPIT1) in O(n2) time.

Proof In Lines 1–4, the algorithms of Preprocess and MinCut can all be completed in O(n)

time. The number of calling the MinCut Algorithm 4 is upper-bounded by n − 1 because

123

980 Journal of Global Optimization (2021) 79:959–987

there is at least one upgrade rk+1(e) achieving its upper-bound value d(e) when finding a
dual feasible solution in Lines 5–16 and in Lines 17–35 in the worst case. Hence, Algorithm
5 can be completed in O(n2) time. �
�

Algorithm 5 The primal dual algorithm to the problem (MSPIT1)
Require: A tree T = (V , E), the set Y of leaves; the set CC of critical children, the set CF of critical fathers

and the chains; the Layer of vertices, three edge vectors w, u, c and the maximum cost M .
Ensure: An optimal upgrade scheme rk and the length zk of the shortest path.
1: Calculate d := u − w and Lmax := R(Td).
2: Call (T , Y , Edel) := Preprocess(T , Y ,CC,CF, chain, Layer , w, Lmax).
3: Initialization: k := 0, w(Pi∗) := minti∈Y {w(Pi)}, w(Pi1∗) := min{w(Pi)|w(Pi) > w(Pi∗), ti ∈ Y },

L0 := min{w(Pi1∗), Lmax }, dk := d, rk := 0, gk := 0, zk := w(Pi∗).
4: Call (E∗

dk
(T),C(T)) := MinCut(T , Y ,CC,CF, chain, Layer , c, w, dk , zk).

5: while gk < M and zk < L0 do

6: Let dk (̃e) := mine∈E∗
dk

(T) d
k (e), θk := min{ M−gk

C(T)
, dk (̃e), L0 − zk }.

7: Update gk+1 := gk + θkC(T), zk+1 := zk + θk , rk+1(e) := rk (e) + θk and dk+1(e) := dk (e) − θk

for e ∈ E∗
dk

(T), rk+1(e) := rk (e) and dk+1(e) := dk (e) for e /∈ E∗
dk

(T); wk+1 := w + rk+1 and
k := k + 1,

8: if zk < L0 then
9: call (E∗

dk
(T),C(T)) := MinCut(T , Y ,CC,CF, chain, Layer , c, wk , dk , zk).

10: end if
11: end while
12: if gk = M then
13: output an optimal solution rk and the length zk of the shortest path, Return.
14: else if zk = L0 then
15: let Jk1 := {ti ∈ Y | − rk (Pi) + zk = w(Pi)}, Jk3 := {ei ∈ E |rk (ei) = d(ei)}.
16: end if
17: while gk < M do
18: if zk = Lmax then
19: zk reaches the maximum length of the shortest path, and output an optimal solution rk and zk ,

Return.
20: else
21: let Pk

1 := {Pi |ti ∈ Jk1 } be a subset of the tree T including all the paths for ti ∈ Jk1 .

22: Call (E∗
dk

(Pk
1),C(Pk

1)) := MinCut(Pk
1 , Jk1 ,CC,CF, chain, Layer , c, wk , dk , zk).

23: if C(Pk
1) > 0 then

24: The optimal solution of the problem (DRP) is z̄k := 1, r̄ k (e) := 1, e ∈ E∗
dk

(Pk
1), r̄ k (e) :=

0, otherwise.
25: Calculate θk := min{θk1 , θk2 , θk3 }, where θk1 , θk2 , θk3 are defined as in (27)-(29).

26: Update gk+1 := gk + θkC(Pk
1), zk+1 := zk + θk , rk+1 := rk + θk r̄ k , dk+1 := dk − θk r̄ k ,

wk+1 := w + rk+1, Jk+1
3 := Jk3 ∪ {e j ∈ E∗

dk
(Pk

1)|dk+1(e j) = 0}.
27: if θk = θk2 then
28: gk+1 := M , the cost M is used up and output an optimal solution rk+1 and zk+1.
29: else if θk = θk1 then

30: let Jk+1
1 := Jk1 ∪ {t j |θ1(t j) = θ1}.

31: end if
32: Update k := k + 1.
33: end if
34: end if
35: end while

123

Journal of Global Optimization (2021) 79:959–987 981

Fig. 8 For the left tree Lmax = 57, delete the chain(v14)\v9 = {v14}

4.3 An example to show the computing process of Algorithm 5

For the better understanding of Algorithm 5, Example 3 is given to show the detailed com-
puting process.

Example 3 For the left tree in Fig. 8, V := {v1, . . . , v17}, E := {e2, . . . , e17}, t1 := v6,
t2 := v7, t3 := v8, t4 := v11, t5 := v13, t6 := v14, t7 := v17, M := 150.

c := (16, 4, 15, 10, 9, 16, 15, 7, 11, 1, 13, 17, 9, 15, 15, 16),

w := (7, 12, 8, 6, 1, 12, 14, 19, 11, 11, 17, 9, 38, 10, 14, 17),

u := (10, 22, 16, 16, 2, 19, 19, 31, 16, 12, 24, 10, 41, 15, 19, 23),

d := u − w = (3, 10, 8, 10, 1, 7, 5, 12, 5, 1, 7, 1, 3, 5, 5, 6).

1. Call the preprocess algorithm. (Lines 1–2)
We have Lmax := 57. Call the preprocess algorithm, we have w(v1, v14) := 57, then

b(v14) := {v11, v13, v14} and b∗(v14) := {v14}. So we delete chain(v14)\v9 = {v14} and
obtain the right tree in Fig. 8.

2. Find a dual feasible solution of the problem (D). (Lines 3–16)
Initialization: k := 0, w(Pi∗) := 34, w(Pi1∗) := 41, L0 := 41, d0 := d , r0 :=

(0, . . . , 0), g0 := 0, z0 := 34.
Call (E∗

dk
(T),C(T)) := MinCut(T , Y ,CC,CF, chain, Layer , c, w, d0, z0), and

obtain E∗
d0

(T) = {e3}, C(T) = 4. In Line 6, d0 (̃e) := 10, θ0 := min{M−g0

C(T)
, d0 (̃e),

L0 − z0} = min{ 4004 , 10, 7} = 7, shown in the left tree in Fig. 9.
Update g1 := 28, z1 := 34 + 7 = 41, r1(e3) := 7, d1(e3) := 10 − 7 = 3 and k := 1.

Please see the right tree in Fig. 9. In this case, z1 = L0, let J 11 = {ti ∈ Y | − r1(Pi) + z1 =
w(Pi)} := {t1, t4, t6}, J 13 = {ei ∈ E |rk(ei) = d(ei)} := ∅.
3. Find a dual optimal solution of the problem (D). (Lines 17–35)

The first iteration, k := 1. Let P1
1 = {Pi |ti ∈ J 11 } := {P1, P4, P6}. Call the Algo-

rithm MinCut to obtain E∗
d1

(P1
1) := {e3, e11, e15},C(P1

1) := 20. Then z̄1 := 1, r̄1(e3) :=
1, r̄1(e11) := 1, r̄1(e15) := 1, r̄1(e) := 0, e /∈ E∗

d1
(P1

1). Calculate θ11 := 4, θ12 :=
18.6, θ13 := 1, θ1 = min{θ11 , θ12 , θ13 } := 1. Update g2 = g1 + θ1C(P1

1) := 48,
z2 = z1 + θ1 := 42, r2(e3) := 8, r2(e11) := 1, r2(e15) := 1, r2(e) := 0 for e /∈ E∗

d1
(P1

1);

123

982 Journal of Global Optimization (2021) 79:959–987

Fig. 9 A dual feasible solution

Fig. 10 The first and second iterations

d2(e3) := 2, d2(e11) := 0, d2(e15) := 4, d2(e) := d1(e) = d(e) for e /∈ E∗
d1

(P1
1);

J 23 = J 13 ∪ {e j ∈ E∗
d1

(P1
1)|d2(e j) = 0} := {e11}; k := 2. Please see the left tree in Fig. 10.

The second iteration, k := 2. Let P2
1 := {P1, P4, P6}. Call the Algorithm MinCut

to obtain E∗
d2

(P2
1) := {e3, e9, e15},C(P2

1) := 26. Then z̄2 := 1, r̄2(e3) := 1, r̄2(e9) :=
1, r̄2(e15) := 1, r̄2(e) := 0, e /∈ E∗

d2
(P2

1). Calculate θ21 := +∞, θ22 := 13 8
13 , θ

2
3 := 2,

θ2 := 2. Update g3 := 100, z3 := 44, r3(e3) := 10, r3(e9) := 2, r3(e15) := 3, r3(e11) := 1,
r3(e) := 0 for other e; d3(e3) := 0, d3(e9) := 10, d3(e15) := 2, d3(e11) := 0, d3(e) := d(e)
for other e; J 33 := {e3, e11}; k := 3. Please see the right tree in Fig. 10.

The results of the following third and fourth iterations are shown in the left and right tree
in Fig. 11, respectively. Table 3 shows the results of the four iterations in details.

The value θ4 is obtained at θ42 , which implies that the cost M = 150 is used up and the
iteration terminates. Then we output the optimal length z5 := 4519

32 of the shortest path and
an optimal upgrade scheme

r5 := (0, 10, 0,
19

32
, 1, 0, 0, 3

19

32
, 0, 1, 0, 0, 0, 4

19

32
, 0, 0).

123

Journal of Global Optimization (2021) 79:959–987 983

Fig. 11 The third and fourth iterations

Table 3 The results for the detailed 4 iterations in Example 3 by Algorithm 5

k 1 2 3 4

Pk
1 {P1, P4, P6} {P1, P4, P6} {P1, P4, P6} {P1, P4, P6}

E∗
dk

(Pk
1) {e3, e11, e15} {e3, e9, e15} {e6, e9, e15} {e5, e9, e15}

C(Pk
1) 20 26 31 32

θk1 4 +∞ 7 6

θk2 18.6 13 8
13 9 2131

19
32

θk3 1 2 1 1

θk 1 2 1 19
32

gk+1 48 100 131 150

zk+1 42 44 45 45 1932

rk+1
(0, 8, 0, 0, 0,
0, 0, 0, 0, 1, 0,
0, 0, 1, 0, 0)

(0, 10, 0, 0, 0,
0, 0, 2, 0, 1, 0,
0, 0, 3, 0, 0)

(0, 10, 0, 0, 1,
0, 0, 3, 0, 1, 0,
0, 0, 4, 0, 0)

(0, 10, 0, 19
32 , 1, 0,

0, 3 1932 , 0, 1, 0, 0, 0,
4 19
32 , 0, 0).

dk+1
(3, 2, 8, 10, 1,
7, 5, 12, 5, 0, 7,
1, 3, 4, 5, 6)

(3, 0, 8, 10, 1,
7, 5, 10, 5, 0, 7,
1, 3, 2, 5, 6)

(3, 0, 8, 10, 0,
7, 5, 9, 5, 0, 7,
1, 3, 1, 5, 6)

(3, 0, 8, 9 13
32 , 0, 7,

5, 8 1332 , 5, 0, 7, 1, 3,
13
32 , 5, 6)

Jk+1
3 {e11} {e3, e11} {e3, e6, e11} {e3, e6, e11}

5 Solve the problem (MCSPIT1)

In this section, we solve the problem (MCSPIT1) under weighted l1 norm, which can be
formulated as in (2).We aim to upgrade some edges tominimize the total cost under weighted
l1 norm on the premise that the length of the shortest path of the tree is lower-bounded by a
given value L .

Similar to Algorithm 5, replace (28) by θk2 = L − maxti∈J k1
wk(v1, ti), which is the

minimum length of the paths to be upgraded. Then we can obtain the relevant primal dual
algorithm to the problem (MCSPIT1) in Algorithm 6.

123

984 Journal of Global Optimization (2021) 79:959–987

Algorithm 6 The primal dual algorithm to the problem (MCSPIT1)
Require: A tree T = (V , E), the set Y of leaves; the set CC of critical children, the set CF of critical fathers

and the chains; the Layer of vertices, three edge vectors w, u, c and the given length L .
Ensure: An optimal upgrade scheme rk and the relevant upgrade cost gk .
1: Calculate d := u − w and Lmax := R(Td).
2: Call (T , Y , Edel) := Preprocess(T , Y ,CC,CF, chain, Layer , w, Lmax).
3: Initialization: k := 0, w(Pi∗) := minti∈Y {w(Pi)}, w(Pi1∗) := min{w(Pi)|w(Pi) > w(Pi∗), ti ∈ Y },

dk := d, rk := 0, wk := w, gk := 0, zk := w(Pi∗).
4: if L > Lmax then
5: Output “The upgraded length of the shortest path is impossible to be L , and its maximum length is

Lmax ”. Return.
6: end if
7: Initialize Jk1 := {ti ∈ Y |w(Pi) = w(Pi∗)}, Jk3 := ∅.
8: while zk < L do
9: let Pk

1 := {Pi |ti ∈ Jk1 } be a subset of the tree T including all the paths for ti ∈ Jk1 .

10: Call (E∗
dk

(Pk
1),C(Pk

1)) := MinCut(Pk
1 , Jk1 ,CC,CF, chain, Layer , c, wk , dk , zk).

11: if C(Pk
1) > 0 then

12: The optimal solution of the problem (DRP) is z̄k := 1, r̄ k (e) := 1, e ∈ E∗
dk

(Pk
1), r̄ k (e) :=

0, otherwise.
13: Calculate θk := min{θk1 , θk2 , θk3 }, where θk1 , θk3 are defined as in (27), (29), θk2 := L −

maxti∈Jk1
wk (v1, ti).

14: Update gk+1 := gk + θkC(Pk
1), zk+1 := zk + θk , rk+1 := rk + θk r̄ k , dk+1 := dk − θk r̄ k ,

wk+1 := w + rk+1, Jk+1
3 := Jk3 ∪ {e j ∈ E∗

dk
(Pk

1)|dk+1(e j) = 0}.
15: if θk = θk1 then

16: let Jk+1
1 := Jk1 ∪ {t j |θk1 (t j) = θk1 }.

17: end if
18: Update k := k + 1.
19: end if
20: end while
21: Output an optimal solution rk and its cost gk .

Corollary 23 Algorithm 6 can solve the problem (MCSPIT1) in O(n2) time.

6 Computational experiments

Now we present computational experiments of Algorithms 2, 3, 5 and 6. The programs were
coded in Matlab 7.0 and run on a PC Intel(R), Core(TM)i7-8565U CPU @ 1.8 GHz 1.99
GHz under Windows 10. We have tested the algorithms on 10 classes of random trees, with
the number n of vertices varying from 100 to 20000. For each class, we randomly generate
30 instances. For each instance, we use two numbers to show the structure property of a
randomly generated tree. One is the max number λ of edges in each path from the root v1 to a
leaf and the other is the number l of leaves. Let λave and lave be the average values of λ and l,
respectively.We randomly generated three vectorsw, u, c satisfyingw < u whichmeans that
d = u − w > 0. For each randomly generated tree, under weighted l1 norm, we first solve
the problem (MCSPIT1) with a randomly generated integer L in the range [Lmin, Lmax]
by Algorithm 6, where Lmin = R(T0) and Lmax = R(Td), respectively. Next, solve the
problem (MCSPIT1) with L = Lmax by Algorithm 6 to obtain the cost Mmax . Then solve
the problem (MSPIT1) by Algorithm 5 with a randomly generated integer M in the range
[1, Mmax]. Similarly, we solve the problems (MCSPITu1) and (MSPITu1) under unit l1 norm

123

Journal of Global Optimization (2021) 79:959–987 985

Table 4 Performances of Algorithms 2, 3, 5 and 6

n 100 200 500 1000 3000 5000 7000 10,000 15,000 20,000

λave 7.03 16.47 43.27 78.50 245.47 455.27 613.43 792.73 1277.50 1619.10

lave 50.80 60.77 75.17 85.07 93.63 70.63 63.67 91.70 99.97 95.83

M1ave
(×103)

0.06 0.12 0.89 3.04 27.77 78.74 232.93 288.42 662.29 997.48

T3 0.02 0.03 0.07 0.17 1.52 8.72 24.12 42.53 142.63 343.75

T3min 0.01 0.02 0.06 0.14 0.85 3.64 11.16 23.84 65.63 133.36

T3max 0.06 0.03 0.11 0.23 2.31 12.05 34.82 65.81 270.44 633.48

T u1
5 0.12 0.12 0.44 0.96 7.78 26.71 117.36 115.08 408.74 831.80

T u1
5min 0.04 0.05 0.09 0.17 0.48 1.81 1.98 3.94 8.87 10.47

T u1
5max 0.40 0.31 2.34 3.38 33.70 273.98 1229.20 672.13 2023.10 6764

M2ave
(×105)

0.008 0.03 0.64 3.76 101.55 475 1918.70 3294.10 12781 32169

T5 0.16 0.13 0.57 1.22 8.85 28.40 120.95 123.98 1312.40 1198.30

T5min 0.04 0.05 0.10 0.20 0.55 2.69 5.60 5.32 6.24 27.18

T5max 0.72 0.41 3.65 6.12 48.92 194.85 747.96 473.15 23446 10074

Lave
(×103)

0.05 0.18 1.22 4.44 41.39 144 281.73 458.43 1086.2 1695.2

T2 0.01 0.02 0.05 0.10 0.61 2.57 6.68 11.70 38.79 90.37

T2min 0.01 0.02 0.04 0.10 0.43 1.33 3.56 7.11 17.66 41.37

T2max 0.04 0.04 0.08 0.15 0.88 3.39 9.30 19.16 70.63 162.82

T u1
6 0.10 0.11 0.42 0.78 7.24 22.34 94.38 90.31 299.07 540.56

T u1
6min 0.04 0.06 0.12 0.23 0.96 2.21 2.93 5.32 7.95 14.37

T u1
6max 0.45 0.34 1.75 2.89 44.15 287.95 1186.20 670.77 2780.60 2408.60

T6 0.16 0.13 0.46 0.86 7.78 24.15 106.08 98.63 327.67 592.60

T6min 0.05 0.07 0.11 0.25 0.91 1.84 2.78 5.40 8.05 13.59

T6max 1.01 0.37 1.90 2.79 47.36 308.36 1309.80 731.62 3151.70 2256.10

by Algorithms 2 and 3, respectively. For comparison, we also solve the weighted problems
(MCSPIT1) and (MSPIT1) by Algorithms 6 and 5 when the cost vector c = (1, . . . , 1),
respectively. That is, solve the problems under unit l1 norm by the primal dual algorithms for
the weighted l1 norm, whose time complexity is O(n2) and much worse than O(n) for the
the problems under unit l1 norm. We recorded the average CPU time of the six algorithms.
Let T2, T3, T5, T6 be the average CPU time of Algorithms 2, 3, 5 and 6, respectively. Let
T u1
5 , T u1

6 be the average CPU time of Algorithms 5 and 6 when c = (1, . . . , 1), respectively.
For each algorithm, the relevant minimum and maximum running time are also recorded,
denoted by Tmin and Tmax , respectively.

It can be seen from Table 4 that Algorithm 3 for the problem (MSPITu1), which has time
complexity O(n), is really more efficient than the primal dual algorithm 5 that runs in O(n2)
time. Correspondingly, Algorithm 2 for the problem (MCSPITu1) with time complexity
O(n) also operates better than Algorithm 6 running in O(n2) time.

123

986 Journal of Global Optimization (2021) 79:959–987

7 Conclusion and further research

In this paper,we consider themaximumshortest Path interdictionproblembyupgrading edges
on tree network under unit/weighted l1 norm. Under the unit l1 norm, we present two linear
time algorithms for the problems (MCSPITu1) and (MSPITu1), respectively. Furthermore,
we revised a mistake in the method given in [9] and improved the algorithm to solve the
problem (MSPITu1). Under weighted l1 norm, we propose two primal dual algorithms for
the problems (MSPIT1) and (MCSPIT1) in O(n2) time, respectively, in which a minimum
cost cut is solved in each iteration.

For further research, we can focus on the maximum shortest Path interdiction problem on
some networks including series parallel graphs and general graphs. On the other hand, we
can consider other network interdiction problem based on network performances such as the
minimum spanning tree and the maximum matching.

Acknowledgements Research is supported by National Natural Science Foundation of China (11471073).
The work of P.M. Pardalos was conducted within the framework of the Basic Research Program at the National
Research University Higher School of Economics (HSE).

References

1. Bar-Noy, A., Khuller, S., Schieber, B.: The complexity of finding most vital arcs and nodes, Technical
Report CS-TR-3539. University of Maryland, Department of Computer Science (1995)

2. Bazgan, C., Nichterlein, A., et al.: A refined complexity analysis of finding the most vital edges for
undirected shortest paths: algorithms and complexity. Lect. Notes Comput. Sci. 9079, 47–60 (2015)

3. Bazgan, C., Toubaline, S., Vanderpooten, D.: Complexity of determining the most vital elements for the
p-median and p-center location problems. J. Comb. Optim. 25(2), 191–207 (2013)

4. Bazgan, C., Toubaline, S., Vanderpooten, D.: Critical edges for the assignment problem: complexity and
exact resolution. Oper. Res. Lett. 41, 685–689 (2013)

5. Bazgan, C., Toubaline, S., Vanderpooten, D.: Efficient determination of the k most vital edges for the
minimum spanning tree problem. Comput. Oper. Res. 39(11), 2888–2898 (2012)

6. Corley, H.W., Sha, D.Y.: Most vital links and nodes in weighted networks. Oper. Res. Lett. 1, 157–161
(1982)

7. Ertugrl, A., Gokhan, O., Cevriye, T.G.: Determining the most vital arcs on the shortest path for fire trucks
in terrorist actions that will cause fire. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68(1), 441–450
(2019)

8. Frederickson, G.N., Solis-Oba, R.: Increasing the weight of minimum spanning trees. In: Proceedings of
the 7th ACM–SIAM Symposium on Discrete Algorithms (SODA 1996), pp. 539–546 (1996)

9. Hambrusch, S.E., Tu, H.Y.: Edge weight reduction problems in directed acyclic graphs. J. Algorithms
24(1), 66–93 (1997)

10. Iwano, K., Katoh, N.: Efficient algorithms for finding the most vital edge of a minimum spanning tree.
Inf. Process. Lett. 48(5), 211–211-213 (1993)

11. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Rudolf, G., Zhao, J.: On short paths
interdiction problems: total and node-wise limited interdiction. Theory Comput. Syst. 43(2), 204–233
(2008)

12. Liang, W.: Finding the k most vital edges with respect to minimum spanning trees for fixed k. Discrete
Appl. Math. 113(2–3), 319–327 (2001)

13. Nardelli, E., Proietti, G., Widmyer, P.: A faster computation of the most vital edge of a shortest path
between two nodes. Inf. Process. Lett. 79(2), 81–85 (2001)

14. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity, 2nd edn.
Dover Publications, New York (1988)

15. Pettie, S.: Sensitivity analysis of minimum spanning tree in sub-inverse-Ackermann time. In: Proceedings
of 16th International Symposium on Algorithms and Computation (ISAAC 2005), Lecture Notes in
Computer Science, 3827, pp. 964–73 (2005)

123

Journal of Global Optimization (2021) 79:959–987 987

16. Ries, B., Bentz, C., Picouleau, C., Werra, D., de Costa, M., Zenklusen, R.: Blockers and transversals
in some subclasses of bipartite graphs: when caterpillars are dancing on a grid. Discrete Math. 310(1),
132–146 (2010)

17. Zenklusen, R.: Matching interdiction. Discrete Appl. Math. 158(15), 1676–1690 (2010)
18. Zenklusen, R.: Network flow interdiction on planar graphs. Discrete Appl. Math. 158(13), 1441–1455

(2010)
19. Zenklusen, R., Ries, B., Picouleau, C., de Werra, D., Costa, M., Bentz, C.: Blockers and transversals.

Discrete Math. 309(13), 4306–4314 (2009)
20. Zhang, H.L., Xu, Y.F., Wen, X.G.: Optimal shortest path set problem in undirected graphs. J. Combin.

Optim. 29(3), 511–530 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

View publication stats

https://www.researchgate.net/publication/345326694

	Maximum shortest path interdiction problem by upgrading edges on trees under weighted l1 norm
	Abstract
	1 Introduction
	2 A preprocessing algorithm
	2.1 Some important definitions
	2.2 A preprocessing algorithm

	3 Solve the problem (MSPITu1)
	3.1 Solve the problem (MCSPITu1)
	3.2 Solve the problem (MSPITu1)
	3.3 Two examples of the problem

	4 Solve the problem (MSPIT1)
	4.1 An algorithm to find a minimum cost cut
	4.2 A primal dual algorithm to solve the problem (MSPIT1)
	4.3 An example to show the computing process of Algorithm 5

	5 Solve the problem (MCSPIT1)
	6 Computational experiments
	7 Conclusion and further research
	Acknowledgements
	References

