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RNA 5-methyluridine (m5U) sites play a significant role in understanding RNA modifications, 
which influence numerous biological processes such as gene expression and cellular functioning. 
Consequently, the identification of m5U sites can play a vital role in the integrity, structure, and 
function of RNA molecules. Therefore, this study introduces GRUpred-m5U, a novel deep learning-
based framework based on a gated recurrent unit in mature RNA and full transcript RNA datasets. 
We used three descriptor groups: nucleic acid composition, pseudo nucleic acid composition, and 
physicochemical properties, which include five feature extraction methods ENAC, Kmer, DPCP, DPCP 
type 2, and PseDNC. Initially, we aggregated all the feature extraction methods and created a new 
merged set. Three hybrid models were developed employing deep-learning methods and evaluated 
through 10-fold cross-validation with seven evaluation metrics. After a comprehensive evaluation, the 
GRUpred-m5U model outperformed the other applied models, obtaining 98.41% and 96.70% accuracy 
on the two datasets, respectively. To our knowledge, the proposed model outperformed all the existing 
state-of-the-art technology. The proposed supervised machine learning model was evaluated using 
unsupervised machine learning techniques such as principal component analysis (PCA), and it was 
observed that the proposed method provided a valid performance for identifying m5U. Considering its 
multi-layered construction, the GRUpred-m5U model has tremendous potential for future applications 
in the biological industry. The model, which consisted of neurons processing complicated input, 
excelled at pattern recognition and produced reliable results. Despite its greater size, the model 
obtained accurate results, essential in detecting m5U.

Keywords RNA 5-methyluridine, RNA modifications, Physicochemical properties, Deep-learning, Principal 
component analysis, Transcript RNA

Post-transcriptional regulation is the modification method, where the prime transcriptions RNA is transformed 
into a balanced RNA called a “mature RNA” in the species. This strategy usually includes molecular compounds 
to the foundation of RNA, which is a significant phase for gene transcription1,2. According to the study, more 
than 170 post-transcriptional variations have been successfully discovered using high-quality technology3. 
These 170 variations are defined as “epi transcriptomics”4. 5- methyluridine termed “m5U” is one of the most 
crucial components of RNAs among all the epi transcriptomics variants5, which is mostly found in rRNAs, 
tRNAs, mRNAs, and incRNAs. So, m5U impacts their functionalities6–8. The m5U is obtained in the fifth 
carbon (C5) position of uridine catabolized in RNAs9. Various major catalysts are involved in the chemical 
transformation of m5U, which is in Escherichia coli (E.coli): TrmA, RlmC, and RlmD10,11, in mammals: TRMT2A 
and TRMT2B12,13, and in Saccharomyces cerevisiae: Trm214. In E. coli tmRNA, TrmA efficiently methylates the 
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T-loop, which has been observed to modify the bacterial 16 S in vivo, but this alteration was not identified in 
vivo15,16. The researchers have verified distinct biochemical impacts from this molecule, such as the growth of 
the brain17,18, different stages of embryogenesis19, determinations affecting tumorigenesis20,21, modulation of 
plants’ evolution, and signaling pathway22. Advanced and effective innovations should be introduced for locating 
m5U sites. Deep learning approaches can be one of the innovative methods to detect these sites. From this 
perspective, we aim to design a deep-learning method to identify m5U sites.

In recent years, some methods have been introduced to identify m5U sites using both machine learning 
and deep learning methods. In 2019, Carter et al. presented the Fluorouracil-Induced-Catalytic-Crosslinking-
Sequencing method abbreviation of “FICC-Seq” to locate the m5U from Homo sapiens13, where the authors 
highlighted that this method has been described the characteristics by the molecule m5U sites. However, 
machine-learning and deep-learning approaches are more suitable and more accessible to obtain the sequences 
than traditional methods. Jiang et al. proposed a m5U prediction model called “m5Upred” based on a support 
vector machine (SVM), a machine learning method in 202023. The authors evaluated for performance by using 
independent tests and five-fold cross-validation approaches. However, there could be a severe possibility of 
overfitting concerns with redundant information. Feng et al. proposed the “iRNA-m5U” technique based on 
the SVM algorithm to detect the m5U sites from the RNA sequences in 202124. The researchers stated that they 
only utilized a limited dataset to train their framework. Besides, the feature selection method was inadequate 
at acquiring the relevant information to accurately identify the nucleotides, which include the m5U site in all 
organisms.

Li et al. in 2022, proposed a deep transfer learning neural network framework, called RNADSN, to identify 
the m5U in mRNA by a similar feature extraction method between mRNA and tRNA25. However, the authors 
did not compare their models with the existing models. They did not present any graphical presentation of 
how much their model performance is between negative and positive classes. In 2023, Yu et al. developed the 
“Deepm5U” model based on the deep neural network method26 using auto BioSeqpy tools27. However, the 
researchers did not address their model’s biases or state which deep learning model is best suited to detect the 
m5U. In the same year, Ao et al. designed a machine learning algorithm called “m5U-SVM”, where the authors 
demonstrated the Multiview feature selection approaches to predict the m5U sites from the RNA sequences28. 
As the m5U sites in RNA are associated with various diseases due to their regulatory roles in RNA stability and 
function, research indicates their relevance in antifungal and antiviral responses, suggesting potential therapeutic 
targets for combating these infections such as the study “iAFPs-Mv-BiTCN” presents a technique for predicting 
antifungal peptides utilizing evolutionary characteristics, bidirectional temporal convolutional networks, and 
self-attention transformer embedding29. The models “Deepstacked-AVPs” and “DeepAVP-TPPred” focus on 
predicting antiviral peptides, leveraging deep learning architectures to enhance accuracy in identifying peptides 
with antiviral properties30,31. Additionally, the “pAtbP-EnC” framework is tailored to predict anti-tubercular 
peptides, aiming to support tuberculosis treatment strategies. Other models like “AIPs-SnTCN” are designed 
for detecting anti-inflammatory peptides32,33, and the “Deep5HMC” model for 5-hydroxymethylcytosine 
modification34. In another study, Naeem et al. introduced various computational methods, including a deep 
learning-based model for diabetes prediction35, in another article, the “DBSCAN” framework was applied 
for improving clustering techniques36. Another paper developed a model for predicting SUMOylating sites37. 
Another “Enet-6  mA” was designed to predict RNA sites38 and ORI-Explorer to identify origin replication 
sites39. These efforts showcase the wide-ranging applications of computational techniques in peptide research 
aimed at therapeutic development.

The discussion above indicates a potential scope for developing a more efficient model for identifying 
m5U sites. Consequently, we performed this study to introduce a well-performed, efficient, and reliable deep 
learning model to identify m5U sites with higher efficiency. In the current study, we have explored deep-learning 
approaches to develop the expected model. Our contribution to this study is as follows:

 1.  The study merged five features from three distinct descriptor categories. This vigilant dataset has 454 fea-
tures, including both accomplished transcript RNA and mature RNA.

 2.  This study applied several deep-learning models to detect the active and inactive classes in the sequences and 
picked the best-fit models for identifying m5U sites.

 3.  The proposed approach developed based on the Gated Recurrent Unit (GRU) model obtained better perfor-
mances than the other existing predictors.

Our work follows Chou’s five-point guidelines40,41, to this end, we formulate the RNA modification prediction 
problem precisely, build a complete model with Conv1D and GRU layers and all required preprocessing steps, 
create a robust algorithm that is validated by 10-fold cross-validation, and offer thorough documentation to 
guarantee repeatability. This systematic process guarantees our research’s rigor, dependability, and clarity.

Materials and methods
Data collection
The current study collected 3262 positive and 4825 negative samples from the Ao et al.28 articles, where the 
datasets had already been preprocessed with a 0.8 threshold in order to remove redundancy by employing the 
Cluster Database at High Identity with Tolerance (CD-HIT) method42. The full transcript dataset has 2034 active 
m5U sequences and 3593 inactive m5U sequences. The mature dataset has 1228 active and inactive sequences. 
We collected another dataset from a study conducted by Jiang et al., where the authors obtained 4928 positive 
and 4928 negative redundant datasets23.
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Data preprocessing phase
This study proposes a robust deep learning-based prediction approach, and the corresponding flowchart of the 
study is represented in Fig. 1. After collecting the dataset, we extracted features using five methods from three 
descriptor groups. This step is essential because sequential data must be numerically represented for model 
development. Machine learning models, especially GRUs or LSTMs, require numerical inputs to learn patterns 
and perform mathematical operations for training. This transformation enables effective model optimization. 
Therefore, from nucleic acid composition groups, we have considered enhanced nucleic acid composition 
(ENAC)43, and basic Kmer (Kmer)44, from physicochemical property groups, we have applied dinucleotide 
physicochemical properties (DPCP) and (DPCP Type 2)45, and from pseudo nucleic acid composition groups, 
we considered Pseudo dinucleotide composition (PseDNC) descriptor46,47. All the features were generated by 
using the ilearnplus tool48. We combined every characteristic to produce a new dataset with 454 properties. To 
create the best-fit model, we used independent testing, individual assessments, and 10-fold cross-validation on 
this dataset. Our study design was motivated by the analysis’s conclusions that a merged-based cross-validation 
technique would be more acceptable.

Fig. 1. Overview of the m5U analysis workflow. (A) collection of the two types of datasets: the full transcript 
and mature mRNA, (B) feature extraction and fusion method to create a two-stage feature selection approach, 
(C) applying deep learning model on cross-validation evaluation method, (D) performance assessment with 
the evaluation metrics and finally discovering the active class from the datasets. (Icons collection and diagram 
design URLs: https://www.flaticon.com/icons, and https://app.diagrams.net/).
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Description of the proposed model construction
In this study, different deep learning models were applied, and we considered three individual models to present 
in the article to compare their performances. These three hybridization models are GRU with Long Short-Term 
Memory (LSTM) model, GRU with Recurrent neural network (RNN), convolutional neural networks (CNN), 
and LSTM layer, and the proposed model with GRU and CNN layer. All the hyperparameters used in this 
study are represented in Table  1. All the layers consist of convolutional layers (Conv1D) followed by Batch 
Normalization, activation functions (sigmoid and ReLU), max pooling, and dropout layers. The models were 
built using the Adam optimizer and binary cross-entropy loss, with accuracy and the Area Under the ROC 
Curve (AUC) used as evaluation metrics. In this section, we describe our proposed construction procedure 
approach in a proper mathematical way. Accordingly, the other model’s architecture is found in supplementary 
files Figure S1 and Figure S2 with descriptions.

Construction of the GRUpred-m5U framework
The proposed GRUpred-m5U model was developed using the GRU and CNN layer. Figure 2 represents the 
proposed model, where we developed the proposed model following nine steps, using various layers such as 
convolution layers, batch normalization layers, activation layers, max-pooling layers, GRU layers, dense layers, 
and dropout layers. Every stage has particular characteristics and functions. The following steps represent the 
GRUpred-m5U model:

 Conv1x(j) = φ (w1× x[j : j + 3] + k1) (1)

 max1j =
(
Conv1x(2× j),Conv1(j)[2j+1]

)
 (2)

 
bn1j =

θ (j −m(j)

sqrt (v (j) + ϵ ) + λ
 (3)

Models Parameters

GRU-LSTM

Conv1D (1): filters = 64, kernel_size = 3,
Conv1D (2): filters = 64, kernel_size = 3,
BatchNorm (1): Yes,
Activation (1): sigmoid,
MaxPool (1): pool_size = 2,
Dropout (1): rate = 0.5
GRU (1): units = 256, return_sequences = True
LSTM (1): units = 128, return_sequences = True
GRU (2): units = 64, return_sequences = True
LSTM (2): units = 32, return_sequences = True
Flatten: Yes
Dense (1): units = 64
BatchNorm (2): Yes
Activation (2): relu
Dropout (2): rate = 0.5
Dense (2): units = 1, activation = sigmoid

RNN-CNN-GRU-LSTM

Conv1D (1): filters = 64, kernel_size = 3
BatchNorm (1): Yes
Activation (1): relu
MaxPool (1): pool_size = 2
Dropout (1): rate = 0.5
SimpleRNN: units = 64, return_sequences = True
BatchNorm (2): Yes
LSTM: units = 64, return_sequences = True
GRU: units = 64
Dropout (2): rate = 0.5
Flatten: Yes
Dense: units = 64
Activation: relu
Dense: units = 1, activation = sigmoid

GRUpred-m5U

Conv1D (1): filters = 64, kernel_size = 3
BatchNorm (1): Yes
Activation (1): sigmoid
MaxPool (1): pool_size = 2
Conv1D (2): filters = 128, kernel_size = 3
BatchNorm (2): Yes
Activation (2): relu
MaxPool (2): pool_size = 2
Conv1D (3): filters = 64, kernel_size = 3
BatchNorm (3): Yes
Activation (3): relu
MaxPool (3): pool_size = 2
GRU (1): units = 128, return_sequences = True
GRU (2): units = 64
Dense (1): units = 64
BatchNorm (4): Yes
Activation (4): relu
Dropout: rate = 0.5
Dense (2): units = 1, activation = sigmoid

Table 1. Hyperparameters of applied three hybrid models.
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At first, we took 454 features as input shapes, whereas in the first convolutional layers, we used 64 filters with 
3 kernel sizes. To obtain an accurate performance, we used the ReLU activation function, and to reduce the 
variance, we used a max pooling size of 2. Here, φ  denotes the activation function, k1 is the bias vector, θ
is the scale parameter, λ  is the shift parameter, m (j) denotes the mean of j, and ϵ  reduces the division by 0, 
whereas the epsilon prevents generally positive numbers. Conv1x(j) means the convolutional layer, max1j  is 
the max-pool, and bn1j  is the batch normalization. After the first layer, we have created a second convolutional 
layer, as represented as:

 Conv2max1j = φ (w2× max1j [j : j + 3] + k2) (4)

 
max2j =

(
Conv2max1jConv22(max1j)[2j+1]

)
 (5)

We used 128 filters with 3 kernel sizes and applied similar activation functions and max-pool layers as used in 
the first convolution layers. In the second layer, we took the first layer output as an input and generated another 
result that passed through the third convolution layer. The third layer is denoted as:

 Conv3max2j = φ (w3× max2j[j : j + 3] + k3) (6)

 
max3j = max

(
Conv3max2jConv32(max2j)[2j+1]

)
 (7)

where we applied 64 filters, 3 kernel sizes, ReLU activation, and 2 max-pooling rare, accordingly. Afterward, we 
applied GRU layers, where in the first layer we took 128 unit numbers, and in the next layer we took 64 numbers 
of units. The GRU layers can be stated as:

 a1 [j] = φ (La1 .max3j + Ua1.d1[j − 1] + ga1 (8)

 b1 [j] = φ (Lb1 .max3j + Ub1.d1[j − 1] + gb1 (9)

 c ∼ 1 [j] = φ (Lc1 .max3j + U ∼ 1(b1 [j] .d1[j − 1] + gd1 (10)

 d1 [j] = (1− a1[j].d1[j − 1] + a1[j].c ∼ 1[j] (11)

After the first GRU layer output can be through to the another GRU layer and the second GRU layer as stated:

 a2 [j] = φ (La2 .d[j] + Ua2.d2[j − 1] + ga2 (12)

 b2 [j] = φ (Lb2 d1[ j] + Ub2.d2[j − 1] + gb2 (13)

 c ∼ 2 [j] = φ (Lc2 .d1[j] + U ∼ 2(b2 [j] .d2[j − 1] + gd1 (14)

 d2 [j] = (1− a2[j].d2[j − 1] + a2[j].c ∼ 2[j] (15)

Fig. 2. An Overview of the GRUpred-m5U Architecture. (Icons collection and diagram design URLs: https://
www.flaticon.com/icons, and https://app.diagrams.net/).
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where φ  the activation function, j is the weighted sum of time steps, j − 1is the hidden state at time steps, 
d1[j − 1], d2[j − 1] control the previous hidden states, ga1. gd1,ga2 · · · gd1 is the bias vector. a1 [j] , a2 [j] is the 
updated gate, b1 [j] , b2 [j] is the reset gate, c ∼ 1 [j] , c ∼ 2 [j] . is the candidate activation, d1 [j] , d2 [j] is the 
updated hidden state. Therefore, we added the dense layer with the batch normalization, The ReLU activation 
layer can be stated as:

 dense = W.d2 [j] +Dres (16)

Finally, we have created the final classifier with a sigmoid activation function and 0.5 dropout layer, the output 
layer expressed as:

 res = W.dr +Dres (17)

where W represents the weight matrix, dr denotes the 50% dropout and Dres denotes the bias vector.

Description of evaluation metrics
We used a wide range of evaluation metrics to evaluate the model’s performance. We applied accuracy (ACC) 
to measure the accurate classification of all the instances. Cohen’s kappa score (KP) evaluates the extent of 
compatibility between the envisioned and actual categorization. Matthew’s coefficient correlation (MCC) is a 
method for analyzing the reliability of dichotomous categories, particularly those derived from imbalanced data 
sets. Sensitivity (Sn), and specificity (Sp) are used to detect the actual positive class and specific classification 
from the RNA samples. To confirm the model’s ability to distinguish between the active and inactive sequences, 
we applied the area under curve score (AUC) and average precision score (AP). All the evaluation metrics can 
be stated as:

 
ACC =

(TP + TN)

(TP + TN + FP + FN)
 (18)

 
MCC =

TP ∗ TN − FP ∗ FN√
TP + FP ∗ (TP + FN) ∗ (TN + FP )

 (19)

 
Kp =

2 ∗ (TP ∗ TN − FP ∗ FN)

(TP + FP ) ∗ (FP + TN) + (TP + FN) ∗ (FN + TN)
 (20)

 
Sp =

TN

(TN + FP )
 (21)

 
Sn =

TP

(TP + FN)
 (22)

 
AP =

1

m
Σ m

k=1 (p(Vk)− p(Vk−1)× Vk (23)

where m is the total value of the recall on the precision curve, p (Vk) denotes the interpolated value at the kth 
recall level, Vk is the kth recall value. TP denotes the true positive, TN denotes the true negative, FP is the false 
positive, and FN is the false negative value49–51.

Experimental results
This study employed several deep-learning-based methods to find the best-performing classification method to 
identify m5U sites. Finally, the best-performing three models were chosen for further analysis to develop the 
proposed method. We used GRU-based hybridization methods such as RNN-CNN-GRU-LSTM, GRU with 
LSTM, and GRU with CNN, which is our proposed approach named GRUpred-m5U. In the result sections, we 
summarize the overall performance of our proposed models compared to other applied models and state-of-the-
art technology performance. Table 2 shows the three applied models’ performance on a 10-fold cross-validation 
approach for the two datasets. In the supplementary file, Table S1 presents the independent test results and Table 
S2 represents the performances of the applied models for individual feature extraction methods.

Mode Classifier ACC (%) MCC (%) Kp (%) Sp (%) Sn (%) AUC (%) AP (%)

Full_transcript RNA

RNN-CNN-GRU-LSTM 75.80 42.52 37.75 96.87 37.92 89.09 82.03

GRU-LSTM 90.85 80.55 80.30 91.63 89.49 95.94 93.41

GRUpred-m5U 96.70 92.77 92.76 97.41 95.37 98.89 98.18

Mature RNA

RNN-CNN-GRU-LSTM 82.24 65.92 64.30 96.08 68.08 94.11 93.73

GRU-LSTM 67.08 43.17 34.64 35.05 99.59 96.42 96.77

GRUpred-m5U 98.41 96.87 96.81 99.18 97.65 99.83 99.86

Table 2. Performance analysis on 10-fold cross-validation approach in two modes.
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Table 2 demonstrates that the GRUpred-m5U model obtained the most compatible performance on every 
evaluation metric. In full transcript mode, it provided 96.70% accuracy, which is higher than the other models. 
GRU-LSTM obtained 6% and RNN-CNN-GRU-LSTM achieved 15% less accuracy, compared to the proposed 
model. These evaluation metrics state that the proposed model can identify the active and inactive m5U sites 
from the input sequences. Moreover, in terms of AUC, sensitivity, and specificity, the model achieved 98.89%, 
95.37%, and 97.41%, respectively, which denotes that the proposed model identified the positive sequences and 
the negative sequences correctly more than 95% accurately, which denotes a successful performance. Accordingly, 
the other evaluation metrics demonstrated excellent performances. The GRU-LSTM achieved 90.85% accuracy, 
but this model could not perform better than the proposed model in evaluating the other metrics. Similarly, the 
RNN-CNN-GRU-LSTM performed lower than the other applied two models. The GRUpred-m5U model has 
successfully demonstrated acceptable performance on every platform in a 10-fold cross-validation method to 
compare them in full transcript RNA mode.

In mature RNA, GRUpred-m5U achieved higher accuracy with 98.41% in every aspect of the evaluation 
metrics. The proposed model accurately predicted the m5U sites, where this model gained 99.83%, 97.65%, 
and 99.18% AUC scores, sensitivity, and specificity, which denotes a remarkable performance of the proposed 
model. The other applied models, GRU-LSTM and RNN-CNN-GRU-LSTM achieved lower performance in 
all the evaluation metrics. It is seen that the GRU-LSTM method obtained 99.59% sensitivity, which denotes a 
higher performance in identifying positive classes. However, the specificity of the GRU-LSTM model could be 
better, which indicates that the model cannot identify negative sequences. Overall performances of the applied 
models on two datasets indicate that the proposed model, GRUpred-m5U, is highly capable of detecting the 
m5U sites from the RNA sequences in both methods.

Figure  3 exhibits the ROC curve in mature and complete transcript RNA modes. The ROC curve and 
measuring the AUC give an exhaustive understanding of a binary classification model’s effectiveness, promoting 
a well-informed comparative analysis. In these subplots, it is stated that our models play an important role in 
detecting the sites, where GRUpred-m5U obtained 99.89 and 99.83% of AUC scores in two datasets.

Figure  4 compares the performance of the GRUpred-m5U in two modes using two confusion matrices, 
labeled (A) and (B). There are 487 true negatives, 13 false positives, 23 false negatives, and 477 genuine positives 
in matrix (A). The model performs better with 488 true positives, 12 false negatives, 4 false positives, and 496 
true negatives in matrix (B). The number of samples is represented by a blue color gradient in both matrices; 
deeper shades indicate larger counts. Compared to matrix (A), matrix (B) shows a more accurate model with 
fewer classification mistakes.

Principal component analysis
In this study, we used unsupervised machine learning methods on two training datasets such as mature and full 
transcript RNA. We applied the principal component analysis (PCA) on two of the datasets to show the data 
distribution and the pattern of the data before and after the cluster to justify those two classes of positive and 
negative separating the processed data. In Fig. 5, A and C represent the original train sets of the two datasets, 
and B and D visualize the clustering result of the applied two datasets. We used the Gaussian matrix algorithm 
to cluster the datasets.

According to Fig. 5(A) and 5(C), the positive and negative classes are not differentiable from the raw data since 
they overlap in both datasets. However, the two classes are completely separate in both training datasets after 
preprocessing, according to Fig. 5(B) and 5(D). Moreover, the unsupervised machine learning results indicate 
that the m5U sites can be separated and identified from RNA sequences since they are linearly differentiable. 
The results also validate that the supervised machine learning performances are valid since the processed dataset 
shows a perfect distribution. The red circle marked data points are supposed to be in one cluster but belong to 
another. Consequently, it proves that these data points have some other characteristics that require further study. 
So, the unsupervised machine learning results indicate that the proposed model’s performance is highly reliable, 
and the model is highly efficient in identifying m5U sites.

Fig. 3. ROC curve analysis on full transcript RNA and mature RNA. (A) full-transcript RNA; (B) mature 
RNA.
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Discussion
5-methyluridine (m5U) findings become essential for numerous species, including humans, mammals, 
and plants. m5U has significance in RNA modification, especially in transfer RNA (tRNA). This alteration 
is required to preserve the consistency and functionality of tRNA compounds, which contribute to protein 
synthesis. Protein synthesis is critical for cells’ regular functioning and survival in all living creatures. As a 
result, identification of m5U proves essential to comprehending and ensuring the strength of processes in cells 
in many species, eventually affecting the health and well-being of creatures throughout the biological spectrum. 
The proposed model identifies the m5U precisely, where we developed a GRU-based model with several 
functions with multiple GRU and convolutional layers. The model could acquire hierarchical representations 
of the input data using the initial Conv1D layers with variable filter sizes and activation algorithms. The Batch 
Normalization layers assist in training stability and effectiveness by minimizing internal covariate alteration. The 
MaxPooling1D layers further mitigate computational strain by downsampling the learned features. The addition 
of GRU layers to the data adds the capacity to capture sequential patterns and long-term relationships, which is 
crucial for jobs with spatiotemporal periods. A selective choice of hyperparameters and optimization methods 
generates robust performance, leading to highly precise results. The proposed approach uses its capacity to 
automate feature extraction from data to improve classification performance over conventional feature selection 
techniques. Conventional techniques frequently depend on heuristic- or manual-based feature selection, which 
may miss intricate connections or interactions in the data. However, the suggested model—probably based on 
deep learning techniques—can better manage big, high-dimensional datasets. It improves classification accuracy 
and resilience by detecting complex patterns and connections that conventional approaches might overlook. An 
imbalanced dataset was employed int this study because, in the real world, the possibility of getting balanced 
dataset is very poor. In most cases, all the datasets are imbalanced. Consequently, we invested our efforts to build 
a model with imbalanced data with higher efficiency and reliability, so that the model can be used in the real 
world with any sort of balanced or imbalanced dataset. To ensure the reliability of the model with imbalanced 
dataset, we have considered some performance evaluation metrics especially, sensitivity, specificity, and AUROC 
curve. Our proposed model gained 97.65% and 95.37% sensitivity for Mature RNA and Full_transcript RNA 
respectively, which ensures that the proposed model is highly capable of identifying positive data. At the same 
time, the proposed model gained 97.41% specificity for Full_transcript RNA and 99.18% specificity for Mature 
RNA, which ensures that the model is highly capable of identifying negative. In addition to that we have drawn 
AUROC and found that the model is not overfitted. So, the overall result shows that imbalanced dataset did not 
impact the reliability of the proposed model. So, The proposed model is highly efficient and reliable.

Comparison of GRUpred-m5U with the state-of-the-art method
According to the literature search, it is found that our approach is the most successful compared to other 
methods. We compared the proposed model with the existing state-of-the-art models based on machine learning 
and deep learning-based approaches. Figure 6 compares the proposed model’s performance with other existing 
models. We have compared in terms of ACC, Sn, Sp, and AUC scores. Figure 5(A) denotes the full transcript 
RNA, and Fig. 5(B) denotes mature RNA. It is clearly shown that our proposed model obtained a remarkable 
performance compared to the other existing models. In the full transcript mode, our model achieved a higher 
level of performance, especially in the sensitivity our models distinguished the positive class more accurately. 
In the mature RNA, we can observe that our model acquired a higher performance in sensitivity and specificity. 

Fig. 4. Confusion matrix visualization of the proposed models, where A is the Full transcript RNA, and B is 
the mature RNA.
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Overall, we can conclude that the proposed model was successfully equipped with balancing performance to 
detect the m5U site more accurately.

In Table 3, we summarized the overall performance of our models with the other existing models for the 
full transcript and mature RNA datasets. We compared the proposed model with the recent studies. m5U-SVM 
model achieved 88.87% accuracy in full transcription with 95.53% AUC score with a good level of specificity, but 
they achieved 81.22% sensitivity, which indicates the model could not perform better to differentiate the positive 
sequences. Hence the model might count the positive sequences as unfavorable sometimes, which is a serious 
flaw in the bioinformatics field. Another model, m5UPred has similar issues with sensitivity. The model achieved 
a 72.81% sensitivity score, indicating that the m5UPred model detected negative sequences more precisely than 
positive ones. The DeepmU model has excellent accuracy and AUC scores, but we have a balanced performance 
in all the evaluation metrics. GRUpred-m5U has 95.37% sensitivity, which denotes the model differentiates the 
positive sequences more precisely than the others, which is improved by more than 10%.

Moreover, 98.89% of AUC scores indicate that the model can distinguish between the negative and positive 
classes of m5U sites. In the other dataset, in terms of mature RNA, our model obtained 98.41% accuracy, which 

Fig. 5. PCA analysis on the training sets. (A) original set of the full transcript RNA (B) clustering of the 
training set. (C) original set of the mature RNA, (D) clustering set of the training set of mature RNA.
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is more improved than the different models, where this model obtained < 4% of the recent studies. The model 
could be performed to specify the positive and negative sequences of more than 5%, Accordingly, in the AUC 
scores, our suggested model proved that it could access the sites from the RNA sequences. According to the 
study, we have chosen these features because they are highly effective in discovering drugs, which may have 
various implications for human metabolism and diseases. This comprehension contributes to the development 
of medications and oligonucleotide-based therapies. Xu et al., Wang et al., and Ao et al.28,52–54 validate that these 
feature groups contain valuable information for the potential drug targets and deployment of bioinformatics 
tools. A brief description has been included in the Supplementary file to help with comprehension of all the 
suitable feature groups55,56,57,58,59,60,61,62,63.

Conclusion
The current study has proposed a deep learning-based model named GRUped-m5U to identify the m5U sites 
from the FASTA format RNA sequences. Three descriptor groups were employed to extract features from the 
RNA sequences, including five feature extraction methods: ENAC, PseDNC, DPCP, DPCP type 1, and Kmer. The 
proposed model achieved outstanding performance compared to the existing state-of-the-art model. A 10-fold 
cross-validation approach with several evaluation metrics was used to evaluate the proposed model. The model 
accurately predicted the m5U sites from the multi-view feature extraction methods. In addition, our methodology 
for identifying m5U sites has broad significance for improving the understanding of RNA structure, including 
in the area of epi transcriptomics, potentially offering applications in biomarker identification and therapeutic 
development. Although this study has some limitations in model development, particularly with the use of the 
GRU model, GRUs can be unnecessarily complex and computationally expensive compared to simpler models, 
especially when dealing with smaller datasets. In the future, we will work with larger datasets and various species. 
Moreover, we will work on more feature extractions, reducing the model’s complexity. As the field continues to 

Mode Models ACC (%) Sn (%) Sp (%) AUC (%)

Full_transcipt RNA

m5U-SVM28 88.87 81.22 92.97 95.53

m5UPred23 83.59 72.81 89.37 91.09

Deepm5U26 92.91 - - 97.73

GRUpred-M5U 96.70 95.37 97.41 98.89

Mature RNA

m5U-SVM28 94.35 92.98 95.73 98.04

m5UPred23 89.91 88.64 91.18 95.60

Deepm5U26 92.48 - - 95.11

GRUpred-M5U 98.41 97.65 99.18 99.83

Table 3. Performance comparison of the state-of-the-art with GRUpred-m5U.

 

Fig. 6. Performance comparison of GRUpred-m5U with other existing approaches. (A) full-transcript RNA 
(B) mature RNA.

 

Scientific Reports |        (2024) 14:25688 10| https://doi.org/10.1038/s41598-024-76148-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


evolve, the accurate prediction of RNA modifications becomes increasingly vital for unraveling the complexities 
of cellular processes and disease mechanisms.

Data availability
The dataset and the source code have been available for this study is here. https://github.com/Shazzad-Shaon3404/
m5U_detection-.git.
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