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Abstract
With the advances in technology, assistive medical systems are emerging with rapid growth and helping healthcare

professionals. The proactive diagnosis of diseases with artificial intelligence (AI) and its aligned technologies has been an

exciting research area in the last decade. Doctors usually detect tuberculosis (TB) by checking the lungs’ X-rays. Clas-

sification using deep learning algorithms is successfully able to achieve accuracy almost similar to a doctor in detecting

TB. It is found that the probability of detecting TB increases if classification algorithms are implemented on segmented

lungs instead of the whole X-ray. The paper’s novelty lies in detailed analysis and discussion of U-Net ? ? results and

implementation of U-Net ? ? in lung segmentation using X-ray. A thorough comparison of U-Net ? ? with three other

benchmark segmentation architectures and segmentation in diagnosing TB or other pulmonary lung diseases is also made

in this paper. To the best of our knowledge, no prior research tried to implement U-Net ? ? for lung segmentation. Most

of the papers did not even use segmentation before classification, which causes data leakage. Very few used segmentations

before classification, but they only used U-Net, which U-Net ? ? can easily replace because accuracy and mean_iou of

U-Net ? ? are greater than U-Net accuracy and mean_iou , discussed in results, which can minimize data leakage. The

authors achieved more than 98% lung segmentation accuracy and mean_iou 0.95 using U-Net ? ? , and the efficacy of

such comparative analysis is validated.
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1 Introduction

Tuberculosis (TB) is a primal disease that has probably

affected humans since the dawn of humankind. TB is a

contagious disease and caused by the bacteria mycobac-

terium tuberculosis. In 2019, TB was the cause of death of

almost 1.4 million people around the globe. It is among the

infectious diseases responsible for the death of millions of

people [1]. Early diagnosis of TB is essential to save the

patients from getting it fatal and life-threatening. TB can be

diagnosed using computed tomography scans, magnetic

resonance imaging, X-rays, etc. Analysis of X-ray is one of

the main tools for TB screening. Individuals suspected of

TB need biological and clinical investigation before con-

firming TB diagnosis, and the medication is prescribed as

per the guideline provided by World Health Organization

(WHO). Regular screening is necessary for the early and

correct diagnosis of TB. The chest is one of the primary

tools because of its sensitivity and interpretation [2].

However, it is inevitable to eliminate the chances of intu-

itive inconsistencies in diagnosing disease from radiogra-

phy [3, 4]. Chest X-ray of TB is often misdiagnosed with

other diseases because of similar radiologic patterns [5, 6].

Misdiagnosis of TB can lead to wrong medication and

worsening health conditions and cause other severe side

effects. Hence, there is a need for correct lung diagnosis.

Lower-middle- and low-income countries face a scarcity

of trained radiologists, especially in the country’s rural

areas. In these types of outlooks, large-scale screening of

pulmonary TB by analyzing CXR images can be done

using a computer-aided diagnosis (CAD) system. Recent

advancements in GPUs and computer vision and the

availability of large-scale chest X-ray-labeled datasets
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helped in successful image recognition. Convolutional

neural networks can learn highly nonlinear functions and

hierarchical visual features from appropriate training data,

but acquiring datasets in the medical imaging domain as

comprehensive annotation as ImageNet is challenging

[7, 8]. It can be seen that countries around the globe are

investing a significant part of their annual budget in the

healthcare industry. However, it is still unable to fulfill

society’s aspirations [9]. Furthermore, the lack of health

workers in the countries puts a significant workload on

existing healthcare workers, resulting in fatigue and health

issues [10]. Thus, the deep learning applications in the

healthcare sector are getting massive attention in the recent

decade.

Solutions based on machine learning (ML) and deep

learning (DL) have been suggested for many medical

applications, especially in diagnosing a brain tumor, lung

nodules, pneumonia, breast cancer, etc. Deep learning, part

of machine learning (ML), encourages image classification

and segmentation results, hence widely adopted by the

research community [11]. The cost associated with the

X-ray imaging technique is low, and the abundance of data

for deep learning techniques created a favorable condition

for computer-aided diagnostic system development. The

study shows that classification of lung images after seg-

mentation techniques improves model accuracy [12].

Therefore, the theme of this paper is to make use of four

popular segmentation techniques for the lung images.

Significant contributions of this paper could be stated as

• Review of state-of-the-art techniques in lung segmen-

tation problems.

• Implementation and analysis of four primary segmen-

tation techniques, namely FCN, SegNet, U-Net, and

U-Net ? ? .

• Result analysis of the above-implemented benchmark

segmentation architectures and their comparison on

different performance measures.

• Discussion of these segmentation techniques and their

efficacy in TB diagnosis.

The rest of the paper is organized as follows: Sect. 2

states the existing literature review and lung classification

techniques. In Sect. 3, the proposed comparison method-

ology is explained in a stepwise manner. Section 4 presents

the results and a discussion based on the results generated

by four segmentation techniques. Lastly, Sect. 5 concludes

with the findings of this implementation and gives rec-

ommendations for future work.

2 Literature review

The literature review is divided into two sections, namely

segmentation and classification.

2.1 Segmentation

Rehman et al. [12] generated lung segments from X-ray

images using U-Net with mean_iou of 92.82. Shaoyong

Guo et al. [39] proposed a novel automatic segmentation

model using radiomics with a combination of handcrafted

and automated features. Dice similarity coefficients of

89.42% are achieved on ILD database MedGIFT. Chen

Zhou et al. [40] developed an automatic segmentation

model by integrating (3D) V-Net and spatial transform

network (STN) to segment pulmonary parenchyma in CT

images and analyze texture and features from the seg-

mented pulmonary parenchyma regions to assist the radi-

ologist in COVID-19 diagnosis. Mizuho Nishio et al. [41]

used U-Net architecture optimized via Bayesian opti-

mization on Japanese and Montgomery and obtained DSC

of 0.976 and 0.973 on respective datasets. Ferreira et al.

[42] proposed a modified U-Net model for automatic

detection of infection caused by COVID-19. Trained and

evaluated on the CT database of the actual clinical case

from Pedro Ernesto University Hospital of the state of Rio

de Janeiro, this model achieved a dice value of 77.1% and

an average specificity of 99.76%. Feidao cao [43] improves

the traditional architecture of U-Net by introducing varia-

tional autoencoder (VAE) in each layer of decoder–en-

coder to improve the ability of the network to extract the

features. The network was tested and trained on NIH and

JRST datasets and achieved accuracy and F1 score of

0.9701, 0.9334 and 0.9750, 0.9578, respectively.

Advantages of segmentation:

1. Segmentation of the image is the most important

medical imaging process. It extracts the ROI (region of

interest) through an automatic process. Segmentation

divides the image into an area based on a specific

interest, like segmenting body organs/tissue.

2. Implementation of classification neural network algo-

rithms on segmented radiological images can improve

the segmentation accuracy significantly.

3. Segmentation can increase the computational cost, but

it can significantly decrease the overall cost of disease

diagnosis.

2.2 Classification

Detecting tuberculosis is an arduous job because of discrete

manifestations such as cavities, small opacities, large
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opacities, consolidation, and focal radiologists. Recent

advancements in convolutional neural network architecture

made it possible to detect lung infections, including TB and

pneumonia, from chest X-ray images. Convolutional neural

network (CNN) was used to detect tuberculosis from CXR

images. Rehman et al. [12] generated lung segments from

X-ray images using U-Net with a mean_iou of 92.82. They

performed classification using pre-trained models like

ResNet, Vgg-16, and Vgg-19 on segmented images with a

test accuracy of 98.14%. Tahir et al. [13] used transfer

learning to classify diseases that belong to the coronavirus

family (SARS, MERS, and COVID-19) with sensitivity

greater than 90%. Ali Narin et al. [14] used pre-trained

models like ResNet-50, ResNet-101, ResNet-152, and

Inception-ResNet V2 to classify between COVID-19,

normal, viral pneumonia, and bacterial pneumonia.

ResNet-50 performs the highest classification with a max

accuracy of 99.17%. Pchhikara et al. [15] used some pre-

trained models (ResNet, ImageNet, Xception Net, and

Inception Net) to detect pneumonia from chest X-ray

images.

Zak et al. [16] implemented TB classification using pre-

trained Vgg-16, Vgg-19, ResNet-50, and inception V2 with

accuracies 64%, 72%, and 81%, AUC 0.82, 0.76, and 0.87,

and sensitivity 0.77, 0.68, and 0.77. Rohan et al. [17] pro-

posed a model comprising three standard architectures:

AlexNet, GoogLeNet, and ResNet, with an accuracy of

88.24% and AUC 0.93. Melendez et al. [18] classify tuber-

culosis using MIL, SVM, and MIL ? AL with pixel-level

AUC 0.855, 0.900, and 0.877 and case-level AUC 0.801,

0.878, 0.861. Rahul et al. [19] presented a convolutional

neural networkmodel comprising 7 Conv layers and 13 fully

connected layers. The optimizer used was Adam, with a

validation accuracy of 88.76% from chest X-ray images.

Volkov et al. [22] introduced a CNNmodel with an accuracy

of 86.6%. Dao et al. [23] classified the performance of the

pre-trained models for the classification of TB using Shen-

zhen (CHN) and Montgomery (MC). UKloupes et al. [24]

worked on the pre-trained model’s performance on two

datasets (CHN and MC) to distinguish between positive and

negative, and the accuracy achieved is 80%.

Four different CNNmodels (Vgg-16,Vgg-19,ResNet-50,

and GoogLeNet) were explored, and the results generated by

these models were analyzed (Yaakob et al. [25]). For TB

detection, Ahsan et al. [26] presented a general pre-trained

CNN, and accuracies achieved are 81.25% and 80%. Yadav

et al. [27] transfer learning technique was used along with a

deep learning framework which shows an accuracy of

99.98%. Ardila et al. [28] introduced a deep learning archi-

tecture to detect lung cancer and achieved anAUC of 94.4%.

Thriach et al. [29] proposed a pre-trained Conv neural net-

work for lung cancer classification with a mean accuracy of

74.43%,mean specificity of 74.96%, andmean sensitivity of

74.68%. Hua et al. [30] used CNN and DBN to classify lung

cancer for achieving 82.2% and 73.4% of specificity and

sensitivity. Islam et al. [31] presented the architecture, a

combination of LSTM and CNN, to classify COVID-19 by

analyzing chest X-ray and achieved AUC of 99.9%, speci-

ficity of 99.2%, sensitivity 99.3%, and an F1-score of 98.9%.

Based on the above extensive literature review, it is found

that plenty of CAD architectures usedML and traditional DL

architectures to detect TB and other infectious diseases and

achieved accuracy up to 90% and more. In medical appli-

cations, robust and flexible algorithms or methods can

increase the accuracy of the CAD system to diagnose TB

from chest X-ray images and make the system reliable. The

utilization of the latest and different architectures or

assembling of benchmark algorithms can increase classifi-

cation accuracy. Usually, the whole chest X-ray is used to

diagnose lung disorder using convolutional neural networks.

Although lungs are used to detect infectious diseases like TB

and pneumonia, CXR also contains other regions of the chest

cavity. Therefore, focusing only on lungs from CXR

throughout training and classification can increase the

accuracy significantly. Thus, to isolate lungs from X-ray

images, segmentation techniques are used. So in this study,

four benchmark segmentation techniques are explored, and

their results are analyzed comprehensively. Based on the

extensive literature review, along with detailed overview of

themodels and their accuracy in diagnosis of the lung related

diseases as presented in Table 1.

3 Proposed methodology

This section contains comprehensive information about the

dataset, preprocessing techniques, and segmentation mod-

els. Later in this section, the details about evaluation

metrics like accuracy, dice coefficient, mean_iou, recall,

specificity, sensitivity, and precision are discussed and are

used to compare four models employed in this study. In this

study, the authors explored four broadly used segmentation

algorithms in multiple fields, including medical diagnoses,

and tried to analyze which type of algorithm works well

with limited medical images. The attention net has an

additional mechanism that adds more parameters to the

model, resulting in increased training time. It requires

powerful graphical processing units (GPUs) to train, which

is not very cost-effective. These are the few reasons why

authors considered U-Net ? ? over attention net.

3.1 Dataset description

a. Montgomery County X-ray set:

Montgomery is a labeled dataset consisting of X-ray

images with a frontal view. This dataset contains 138
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X-ray images; 80 of these chest X-ray images contain

no disease and 58 chest X-ray images show infection

caused by TB. This dataset has been acquired by the

Department of Health and Human Services of Mont-

gomery County, MD, USA. Dataset also contains

manually generated lung segment masks of every

X-ray image of the dataset and is in DICOM format

[36].

b. Shenzhen Hospital X-ray set:

Shenzhen dataset is a labeled dataset consisting of

X-ray images with a frontal view. This dataset contains

662 X-ray images; 326 of which are regular chest

X-rays and 336 of these X-ray images show the

presence of infection caused by TB. The Hospital in

Shenzhen, China, has collected this dataset in JPEG

format [36].

3.2 Preprocessing

First, X-ray images of Montgomery and Shenzhen datasets

were converted to PNG format because X-ray images of

Montgomery and Shenzhen datasets are in DICOM and

JPEG format, so it will be simple to train CNN models.

Then, in the next level, standardization of images was

performed by resizing because both datasets had different

sizes. In this study, 512 9 512 pixel size was considered

for FCN, SegNet, U-Net, U-Net ? ? as the input size for

different convolutional architecture is different, and nor-

malization of data was done using Z-score normalization

using mean and standard deviation.

After preprocessing, the datasets were randomized and

divided into 80% training and 20% test data, where 80% of

the training data were used to provide experience to the

segmentation models regarding lung segments. The

remaining 20% of the data were used to evaluate the seg-

mentation models.

3.3 Segmentation models

There are many other algorithms which are used for

medical image segmentation, including DeepLab v1,

DeepLab v2, DeepLab v3, DeepLab v3 ? , 3D U-Net,

V-Net, Res-U-Net, DenseUNet, H DenseUNet, GANs,

SegAN, SCAN, PAN, AsynDGAN, etc. The authors have

chosen four segmentation models, namely FCN, SegNet,

U-Net, and U-Net ? ?, because of their features, for

example, SegNet requires low memory for training and

testing, FCN is fast and uses pixel-wise classification to

produce segments, U-Net is effective with fewer data, and

U-Net ? ? is a modified version of U-Net and thus uti-

lizes attributes such as redesign skip connection and deep

supervision to produce perfect segments. FCN is among the

first segmentation algorithms, so it is used as a benchmark

in this paper for the other three algorithms (SegNet, U-Net,

and U-Net ? ?). The authors also tried to track the

improvement in segmentation algorithms and their perfor-

mance in medical image segmentation, especially lung

segmentation. There are very few papers that tried to track

and analyze the improvement in segmentation algorithms

comprehensively. These are among the most used semantic

segmentation architectures shown by their Google Scholar

citation scores presented in Fig. 1.

These four segmentation models are called ‘‘modified’’

in their architecture diagrams as per the finalized dataset

and the problem statement.

a. Fully convolutional networks (FCNs)

Fully convolutional networks use CNNs for a pixel-

to-pixel transformation, as shown in Fig. 2. However,

unlike CNN, the weight and height of all intermediate

layers feature maps are brought back to the original

size through convolutional transpose in FCN, allowing

localization and skip connections to be implemented to

recover the fine spatial information lost downsampling

[37].

FCNmodel architecture: FCNs use locally connected

layers like convolution, upsampling, and pooling. Each

layer is a 3-D array of size h*w*d where h and w are

spatial dimensions and d represents no channels. Dense

layers are avoided in FCN, which means fewer param-

eters make the network faster and easier to train. The

downsampling path of the model is responsible for the

interpretation and extraction of the context, and upsam-

pling is used to model for localization. FCNs employ

skip connections to recover fine-grained information lost

in downsampling. This improvement allows the model

to have pixel-wise predictions.

b. SegNet

SegNet was developed by the University of Cam-

bridge and primarily used for semantic segmentation

[35]. This segmentation CNN model incorporates two

Fig. 1 Google scholar citation scores of segmentation models
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halves. The first half is an encoder, and the second half

is a decoder followed by a pixel-wise classification.

The network architecture of the encoder is identical to

Vgg-16, and low-resolution encoder feature maps are

converted into a full input feature map by the decoder

network of the architecture for pixel-wise classifica-

tion. The pooling indices of max-pooling layers are

computed during downsampling to perform nonlinear

upsampling, as shown in Fig. 3.

SegNet Architecture: SegNet architecture can be

divided into two halves, followed by a pixel-wise

classification layer.

c. Encoder network.

d. Decoder network.

e. Encoder:

It performs convolution with a filter to produce a set

of feature maps. It has 13 convolutional layers that are

not fully connected, max-pooling layers, and these are

used to achieve translation invariance. Combining it

with subsampling leads to pixels governing large input

feature maps. These methods achieve better classifica-

tion accuracy and a reduction in the size of the feature

maps. This is also responsible for the lossy image

presentation with faded boundaries, which are unsuit-

able for image segmentation. The output should have

the exact image resolution as the original image. This

is achieved by using upsampling in the decoder. To

achieve the exact image resolution in output as the

input image, it is essential to store and capture the

details of the edges in the encoder feature map before

subsampling. SegNet accumulates only the max-pool-

ing indices.

f. Decoder:

For each encoder, the corresponding decoder input

Fig. 2 Modified FCN architecture [37]

Fig. 3 Modified SegNet architecture [35]
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feature maps are upsampled by memorized max-

pooling indices from the corresponding encoder feature

map and convolved with decoder filter banks to

produce a dense feature map. The feature maps

produced by decoders are of the same size and

channels as their encoder inputs. The trainable classi-

fier is fed with the higher-dimensional feature repre-

sentation present at the final decoder as output. The

classifier classifies each pixel and produces a channel

image of probability at the output.

g. U-Net

The U-Net is a CNN architecture for solving

segmentation problems in the biomedical field and

other image transformation tasks. U-Net is more

successful than other convolutional models in pixel-

based image segmentation because it is very effective

with limited data. This unique model was developed by

Olal Ronneberger et al. [33], as shown in Fig. 4.

U-Net model architecture: To segment biomedical

images, the U-Net architecture has two paths. The first

path is a contraction (also called encoder). The encoder

captures context via a compact feature map. The

encoder is a stock of max-pooling and convolution

layers like Vgg-16. The other half of the architecture is

a uniform expanding path (also known as a decoder)

which is also the second path. The second path did the

precise localization using transposed convolution. The

encoder section is made of many contraction blocks.

The encoder follows the classic architecture of

ConvNet. The network uses a repeated implementation

of two 3 9 3 convolutions (ReLU) and a 2 9 2 max-

pooling operation with stride 2 for contraction. The

Table 1 An overview of deep learning and segmentation techniques

Author Models Diseases Datasets Accuracy

Rehaman et al. [12] CNN with transfer learning models like ResNet-101,

ResNet-50, Vgg-19

Tuberculosis Montgomery, Shenzhen, NLM,

NIAID TB, RSNA, CXR, Belarus

98.14%

Tahir et al. [13] CNN with transfer learning models like SqueezeNet,

MobileNet, DenseNet

COVID-19 QU-covid-family 90%

Ali Narin et al. [14] CNN with transfer learning Models like ResNet-152 COVID-19 Cohen’s GitHub and LDOCTCXR 99.7%

p.chhikara et al.

[15]

CNN with transfer learning models like Xception,

inception

Pneumonia Guangzhou women and children’s

medical center data[32]

90.1%

Zak M et al. [16] CNN with transfer learning model like Vgg-16 and

ResNet-50

Tuberculosis Montgomery, Shenzhen 81%

Rohan et al. [17] CNN with data augmentation Tuberculosis Montgomery, Shenzhen, Belarus 88.24%

J.Melendez et al.

[18]

MIL,SVM,MIL ? AL Tuberculosis Health center in Lusaka Zambia data _

Rahul et al. [19] CNN Tuberculosis Montgomery, Shenzhen 82.09%

A Rohilla et al. [20] CNN with transfer learning Tuberculosis Montgomery, Shenzhen 80%

LGC.Evangelista

et al. [21]

CNN with transfer learning Tuberculosis JSRT, Montgomery, Shenzhen 88.76%

F.pasa et al

[22]

CNN Tuberculosis Montgomery, Shenzhen, Belarus 86.6%

Nguyen et al. [23] CNN with transfer learning Tuberculosis Montgomery, Shenzhen _

UK Lopes et al.

[24]

CNN with transfer learning Tuberculosis Montgomery, Shenzhen 80%

S.S. Meray et al.

[25]

CNN with transfer learning, model, like Vgg-16 Tuberculosis Montgomery, Shenzhen, Indiana

university

_

Ahsan et al

[26]

CNN with transfer learning Tuberculosis Montgomery, Shenzhen 81.25%

O.Yadav et al.[27] CNN with transfer learning Tuberculosis Montgomery, Shenzhen, NIH CXR 94.98%

Ardila et al. [28] CNN Lung cancer LUNA, LIDC, NLST _

A.Thirach

[29]

CNN with transfer learning Lung cancer JSRT, NIH 74.43%

Hua et al. [30] CNN and DBN Lung cancer LIDC-IDRI 82.2%

M.Z. et al. [31] CNN ? LSTM COVID-19 Kaggle repository, NIH data,

Mendeley

92%
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numbers of feature channels double with every down-

sampling step. The expansive path contains a feature

map’s upsampling and 2 9 2 convolution (‘‘up-con-

volution’’), which halves the number of feature chan-

nels, concatenation with the corresponding feature map

from skip connection and two 3 9 3 convolutions

followed by ReLU. At the final layer, there is a 1 9 1

convolution used to map the component feature vector.

In total, the network has 23 convolutional layers.

h. U-Net ? ?

The U-Net ? ? was proposed by Zhou et al. [34].

U-Net ? ? is the modified version of U-Net.

U-Net ? ? uses the dense block ideas from DenseNet

to improve U-Net. U-Net ? ? has three additional

features to the original U-Net.

i. Redesigned skip pathways.

j. Dense skip connections.

k. Deep supervision.

U-Net ? ? model architecture: U-Net ? ? architec-

ture can be divided into three parts, as mentioned in the

overview that distinguishes U-Net ? ? and U-Net.

1. Redesigned skip pathways: The U-Net ? ? consists

of redesigned skip connections, as shown in Fig. 4.

These are used to connect the semantic gap between

encoder and decoder. The semantic gap of the feature

map between encoder and decoder is reduced by skip

connection Conv layers mentioned above. The direct

connection of feature maps between encoder and

decoder in U-Net results in semantic dissimilar feature

maps fusion. In U-Net ? ? , the output from the

convolutional of the previous layers is concatenated

with the output of the corresponding upsampled output

of the low, dense block. This helps bring the feature

maps of the encoders closer to the feature maps waiting

in the corresponding decoder and helps in optimization

quickly.

2. Dense skip connections: The U-Net ? ? has dense

skip connections, as shown in Fig. 5, inspired by the

DenseNet and the purpose of the dense skip connection

to implement skip pathways between the encoder and

decoder. This helps in improving the accuracy of

segmentation and gradient flow. In addition, deep skip

connection is responsible for accumulating prior fea-

ture maps and delivery to the right node due to dense

convolution blocks along the skip pathways. This

results in the generation of a full resolution feature at

multiple semantic levels.

3. Deep supervision: Deep supervision in U-Net ? ? ,

as shown in red in Fig. 5, is implemented to adjust the

model complexity to balance the speed and perfor-

mance of the architecture. It is a must for an

accurate CNN model to average the output from all

segmentation branches.

After discussing the segmentation models above, the

proposed methodology diagram (Fig. 6) gives a brief idea

about the implementation flow adopted for this research.

The dataset of chest X-ray is preprocessed first, and then

the data split of 80–20% training and testing, respectively,

takes place. Then, after applying four popular segmentation

Fig. 4 Modified U-Net architecture [33]
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techniques on the image dataset, results are generated,

compared, and analyzed in depth.

3.4 Performance matrix

Evaluation of models focuses on estimation of the perfor-

mance of the model on unseen data. Thus, evaluating the

performance of the neural network models for lung seg-

mentation was done after finishing the training and vali-

dation phases, and models were compared using loss,

accuracy, intersection over union (IoU), dice, sensitivity,

specificity, specificity, recall, and precision.

True positive (TP) False positive (FP)

True negative (TN) False negative (FN)

The equations were used to calculate loss, accuracy,

IoU, dice, sensitivity, and specificity:

Accuracy ¼ TPþ TNð Þ= TPþ FNð Þ þ FPþ TNð Þ: ð1Þ
IoU Jaccard Indexð Þ ¼ TPð Þ= TPþ FNþ FPð Þ: ð2Þ
Precision ¼ TPð Þ= TP þ FPð Þ: ð3Þ
Specificity ¼ ðTNÞ= FP þ TNð Þ: ð4Þ

Dice coefficient F1 � scoreð Þ
¼ ð2 � TPÞ=ð2 � TP þ FN þ FPÞ: ð5Þ

Sensitivity ¼ TPð Þ= TP þ FNð Þ: ð6Þ
Recall ¼ TP=ðTPþ FNÞ: ð7Þ

Fig. 5 Modified U-Net ? ? architecture [34]

Fig. 6 Proposed methodology for comparative analysis of chest X-ray images
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4 Results and discussion

In this study, four neural network architectures of lung

segmentation are evaluated on the Montgomery and

Shenzhen datasets. This study uses a dataset of 704 images

taken from these two datasets to check the model

performance.

4.1 Segmentation techniques results an FCN

FCN is trained and validated on the datasets, and then the

overall performance is evaluated using the test set. Best

performing training and validation results are stated in

Table 2.

Their results are discussed separately: Sect. 4.1 presents

the results generated by four segmentation techniques

separately, and 4.2 presents the comparison among them.

The performance of the FCN in the study is represented

in Figs. 7, 8, 9, and 10. Accuracy is the way to measure

how often an algorithm or architecture classifies positive

and negative. The specificity is the measure of true posi-

tives identified by the model, and the sensitivity is the

measure of true negatives identified by the model. FCN

shows low validation dice_coefficient and mean_iou,

which is shown in Figs. 22A and 23A, and Fig. 24B shows

low accuracy as well. Low values of parameters show that

the FCN is not suitable for organ segmentation which is a

valuable research finding.

As seen and discussed above, segmented lungs gener-

ated by FCN are not satisfactory, which shows that FCN is

unsuitable for medical application, which can be convinced

from Fig. 11.

4.2 SegNet

Two standard publicly available datasets such as Mont-

gomery and Shenzhen are used to generate training and

testing results. Best training and validation results are

stated in Table 3

The response of the SegNet Model is reported in

Figs. 12, 13, 14, and 15. It can be seen from Figs. 12A and

13A that the values of validation mean_iou and dice_co-

efficient are higher than training mean_iou and

dice_coefficient. Still, their values are 0.7914 and 0.6558.

These values show that the model is not preferable for

medical segmentation, and Fig. 14A and B shows that

Table 2 FCN best performing training and validation results

Model Loss Dice Specificity Mean_iou Sensitivity Recall Precision Accuracy

FCN training - 0.6670 0.6670 0.7313 0.5018 0.8029 0.8029 0.5735 0.7536

FCN validation - 0.6962 0.6962 0.7609 0.5343 0.8380 0.8380 0.5958 0.7832

difference - 0.0292 0.0292 0.0296 0.0325 0.0351 0.0351 0.0223 0.03

Fig. 7 Representation of training and validation coefficients (A),
representation of training and validation sensitivity (B)

Fig. 8 Representation of training and validation mean_iou (A),
representation of training and validation specificity (B)

Fig. 9 Representation of training and validation loss (A), represen-
tation of training and validation accuracy (B)

Fig. 10 Representation between training and validation recall (A),
representation between training and validation precision (B)
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there is a big difference in values of validation loss,

accuracy, and corresponding training values, which shows

that the SegNet model is not suitable for a dataset with

small size.

As presented and discussed above, segmented lungs

generated by SegNet are not satisfactory, showing that

SegNet is not suitable for medical application, as shown in

Fig. 16.

4.3 U-Net

Originally, U-Net was trained on training data, validated,

and evaluated on test datasets. As a result, the U-Net’s best

performing training and validation parameters are stated in

Table 4.

Dice coefficient is a measure of overlaps between two

sets here; these two sets are ground truth masks and pre-

dicted masks. Sensitivity is the measure of ground truth. It

can be seen from Fig. 17A, B that dice coefficient is

increased with every epoch; maximum training dice coef-

ficient and sensitivity are 0.8776, 0.8756. Validation dice

coefficient and sensitivity are 0.9217 and 0.8904. It can be

seen from the sensitivity results that U-Net does image

localization by predicting the image pixel by pixel.

Loss predicts error in the model and accurately predicts

how well the model is performed; as can be seen in

Fig. 18A, B, loss decreases and accuracy increases with

every epoch, and Fig. 19A, B shows that both mean_iou

and specificity increase with every epoch and maximum

Fig. 11 Segmented lungs predicted by FCN and ground truth

comparison

Table 3 SegNet best performing training and validation result

Model Loss Dice Specificity Mean_iou Sensitivity Recall Precision Accuracy

SegNet training - 0.6841 0.6841 0.6509 0.5219 0.9258 0.9258 0.5462 0.7358

SegNet validation - 0.7914 0.7914 0.7995 0.6558 0.9684 0.9698 0.6701 0.8409

Difference - 0.1073 0.1073 0.1486 0.1339 0.0426 0.044 0.1239 0.1051

Fig. 12 Representation of training and validation coefficients (A),
representation of training and validation sensitivity (B)

Fig. 13 Representation of training and validation mean_iou (A),
representation of training and validation specificity (B)

Fig. 14 Comparison of training and validation loss (A), comparison

of training and validation accuracy (B)
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validation values are 0.85 and 0.98, which shows that

U-Net is doing an excellent job in creating segmented

lungs as seen in Fig. 20.

Figure 21 shows segmented lungs predicted by U-Net,

corresponding ground truth (Gold std), and the difference

between ground truth and segmented lungs generated by

Fig. 15 Representation of training and validation recall (A), repre-
sentation of training and validation precision (B)

Fig. 16 Segmented lungs predicted by SegNet and ground truth

comparison

Table 4 U-Net best performing training and validation results

Model Loss Dice Specificity Mean_iou Sensitivity Recall Precision Accuracy

U-Net training - 0.8779 0.8779 0.9493 0.7852 0.8756 0.8756 0.8896 0.9256

U-Net validation - 0.9217 0.9217 0.9837 0.8572 0.8904 0.8904 0.9584 0.9555

Difference - 0.0438 0.0438 0.0344 0.072 0.0148 0.0148 0.0688 0.0299

Fig. 17 Representation of training and validation coefficients (A),
representation of training and validation sensitivity (B)

Fig. 18 Representation of training and validation loss (A), represen-
tation of training and validation accuracy (B)

Fig. 19 Comparison of training and validation mean_iou (A),
comparison of training and validation specificity (B)
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trained U-Net. It can be seen from Fig. 11 that U-Net

trained on Montgomery and Shenzhen datasets can seg-

ment the lung areas of X-ray images of the database very

reliably and correctly.

4.4 U-Net 1 1

To train the U-Net ? ?, training dataset was utilized, and

performance of the validation set is enhanced by using

hyperparameters tuning, and the test dataset is used to

evaluate the overall performance. Best performing training

and validation results are stated in Table 5.

Figures 22A and 23A show that the validation dice

coefficient and validation mean_iou are more significant

than the training dice coefficient and training mean_iou.

Validation dice coefficient and mean_iou are 0.9796,

0.9598. It shows that lung segmentation generated by

U-Net ? ? and ground truth are almost similar. Fig-

ures 22B and 23B show that specificity increases steadily

with every epoch. Validation values of specificity and

sensitivity are greater than training values. Value received

during validation are 0.9932 and 0.9753, which shows that

the redesigned skip pathway between the encoder and

decoder Subpaths bridges the semantic path between the

encoder and decoder which increased the optimization of

the U-Net??. Figures 24 and 25 represented that valida-

tion accuracy and precision are near one and loss declines

with every epoch, which indicates that U-Net ? ? is

pretty accurate in generating segmented lungs.

Figure 26 represents the segmented lung segments

generated by U-Net ? ? , ground truth, and the differ-

ence between ground truth and lung generated by

U-Net ? ? . It can be noticed from Fig. 24a that

U-Net ? ? generated pretty accurate lung segments.

4.5 Comparison Among models

In the section, the best training results of the four models

are presented with various performance measures. Tables 6

and 7 show the training and validation results, respectively,

and gives a fair idea about the superiority of

U-Net ? ? implementation results.

The performance of the models used in this study is

compared in this section. The authors trained four seg-

mentation models on Shenzhen and Montgomery datasets

and generated the results for all models: accuracy, preci-

sion, sensitivity, specificity, recall, precision, mean_iou,

and dice_coefficient. Tables 6 and 7 compare the deep

learning models trained and evaluated on the datasets. As

segmented images play a vital role in the perfect diagnosis

of the disease, Table 6 presents the performance for image

segmentation. The algorithm that scores the best results in

this study is U-Net ? ? . It can create segmented images

with dice_coefficient 0.9796, mean_iou 0.9598, and accu-

racy 0.9874. The U-Net also scores acceptable results in

this study and can segment lungs of dice_coefficient

0.9217, mean_iou 0.8572, and accuracy 0.9555, but SegNet

and score are not satisfactory. All models in this study are

based on encoder followed by decoder-type architecture,

but U-Net ? ? performance has shown its best results

because of redesigned skip pathways, dense skip connec-

tion, and deep supervision. So U-Net ? ? is the best

performing model for chest X-ray images.

5 Conclusion and future scope

Segmentation is an important step to reduce the chance of

data leakage and forces the classification architecture to

focus only on essential areas and helps improve classifi-

cation accuracy. The application of the segmentation

technique has proven to be very helpful in the real world.

Fig. 20 Comparison between training and validation (A), comparison

between training and validation precision (B)

Fig. 21 Segmented lungs predicted by U-Net and ground truth

comparison
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The existing literature review section papers implemented

machine learning and deep learning techniques for lung

segmentation and got encouraging results. However, to the

best of our knowledge, not even a single paper discussed

U-Net ? ? and compared other segmentation techniques

for lung segmentation. In this study, we studied four

benchmark neural network architectures: U-Net, FCN,

SegNet, and U-Net ? ?, and the performance of these

architectures is thoroughly explored and studied in this

paper. The results generated by FCN, U-Net, SegNet, and

U-Net ? ? are evaluated on Shenzhen and Montgomery

datasets. Comparison between the results of four archi-

tectures shows that the U-Net ? ? surpasses other

architectures by a considerable margin and achieved 98%

accuracy because of its state-of-the-art architecture. FCN

Table 5 U-Net ? ? best

performing training and

validation results

Model Loss Dice Specificity Mean_iou Sensitivity Recall Precision Accuracy

U-Net ? ?

training

- 0.9630 0.9630 0.9858 0.9293 0.9585 0.9585 0.9174 0.9771

U-Net ? ?

validation

- 0.9796 0.9796 0.9932 0.9598 0.9753 0.9838 0.9685 0.9874

Difference - 0.0166 0.0166 0.0074 -0.0305 0.0168 0.028 0.0511 0.0103

Fig. 22 Representation of training and validation coefficients (A),
representation of training and validation sensitivity (B)

Fig. 23 Representation of training and validation mean_iou (A),
representation of training and validation specificity (B)

Fig. 24 Representation of training and validation loss (A), represen-
tation of training and validation accuracy (B)

Fig. 25 Representation of training and validation recall (A), repre-
sentation training and validation precision (B)

Fig. 26 Segmented lungs predicted by U-Net ? ? and ground truth

comparison
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did not achieve satisfactory results with 78% and hence

was not encouraged to explore further studies based on

image segmentation.

The future work could be implementing other respira-

tory problems [e.g., chronic obstructive pulmonary dis-

eases (COPD), pneumonia, etc.] using chest X-rays.

Advanced feature extraction techniques with machine

learning algorithms and the ensemble model localization

scheme can be used to further downstream analysis, detect

lung abnormality, and visualize explainable artificial

intelligence (XAI) Grad-CAM.

Data availability It is confirmed by the authors that data supporting

this research finding are present within the article, and the publicly

available datasets used in this study are Montgomery County X-ray

Set and Shenzhen Hospital X-ray Set [36].
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