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Abstract
An effective way to analyze and apprehend structural properties of networks is to find their most critical nodes. This paper 
studies a bi-objective critical node detection problem, denoted as Bi-CNDP. In this variant, we do not make any assump-
tions on the psychology of decision makers and seek to find a set of solutions which minimize the pairwise connectivity of 
the induced graph and the cost of removing these critical nodes at the same time. After explicitly stating the formulation of 
Bi-CNDP, we first prove the NP-hardness of this problem for general graphs and the existence of a polynomial algorithm 
for constructing the �-approximated Pareto front for Bi-CNDPs on trees. Then different approaches of determining the 
mating pool and the replacement pool are proposed for the decomposition-based multi-objective evolutionary algorithms. 
Based on this, two types of decomposition-based multi-objective evolutionary algorithms (MOEA/D and DMOEA-�C ) are 
modified and applied to solve the proposed Bi-CNDP. Numerical experiments on sixteen famous benchmark problems with 
random and logarithmic weights are firstly conducted to assess different types of the mating pool and the replacement pool. 
Besides, computational results between two improved algorithms, i.e., I-MOEA/D and I-DMOEA-�C , demonstrate that 
they behave differently on these instances and I-DMOEA-�C shows better performance on the majority of test instances. 
Finally, a decision-making process from the perspective of minimizing the pairwise connectivity of the induced graph given 
a constraint on the cost of removing nodes is presented for helping decision makers to identify the most critical nodes for 
further protection or attack.

Keywords  Bi-objective critical node detection problems · NP-hardness · �-Approximation · Decomposition-based multi-
objective evolutionary algorithms · Mating pool · Replacement pool

1  Introduction

Common networks such as telecommunication, trans-
portation, power systems, and others are exposed to vari-
ous threats coming from the environment. Any failure of 

elements of these networks may lead to a complete or partial 
halt of their services and result in unexpected consequences 
(Atputharajah and Saha 2009; Liang et al. 2017). An effec-
tive way to analyze and apprehend structural properties of 
networks is to find the most critical nodes. A node is critical 
if its failure or removal significantly degrades the perfor-
mance of a network. Once identified, the critical node can 
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be used either to implement protection or attack strategies 
for networks. The identification of critical nodes in vari-
ous networks is a fundamental task. In the literature, this 
problem has attracted a significant amount of research atten-
tion in a number of fields, including social network analysis 
(Borgatti 2006; Fan and Pardalos 2010; Kempe et al. 2010; 
Leskovec et al. 2007), transportation networks’ vulnerability 
assessment (Jenelius et al. 2006), power grid construction 
(Salmeron et al. 2015), network risk management (Arulsel-
van et al. 2007), epidemic control (Zhou et al. 2006), and 
network immunization strategies (Arulselvan et al. 2009; 
Kuhlman et al. 2010). Besides, a number of applications in 
the military domain have also been researched (Walteros 
and Pardalos 2012).

In this paper, we are motivated primarily by the critical 
node detection problem (CNDP) described in Arulselvan 
et al. (2009). Given a network, the CNDP consists in find-
ing a set of nodes, the deletion of which results in minimiz-
ing a connectivity measure in the induced graph. Different 
connectivity measures can be devised according to specific 
applications of interest. The choice of different measures 
typically leads to different optimal solutions, as described 
in Aringhieri et al. (2016a), Shen and Smith (2012) and Ver-
emyev et al. (2014a). In the literature, three mostly common 
used connectivity measures are: (1) pairwise connectivity, 
i.e., the number of pair of nodes connected by a path inside 
the graph; (2) the size of the largest connected component; 
and (3) the number of connected components (Aringhieri 
et al. 2016a). Even though these measures are different and 
can lead to different optimal solutions, they are not totally 
unrelated. The ideal situation for minimizing the pairwise 
connectivity is to obtain the largest number of connected 
components with the smallest variance in their cardinality. 
This implies that minimizing the pairwise connectivity is a 
trade-off between minimizing the cardinality of the largest 
connected component and maximizing the number of con-
nected components. This paper concentrates on the pairwise 
connectivity measure which is generally enough to deter-
mine which nodes are still connected in the induced network.

Considering one of the above-mentioned connectivity 
measures, several variants of the CNDP have been inves-
tigated. Among them, the first two variants, namely CNP 
and CC-CNP, are the most common used formulation in the 
literature. Firstly, the basic CNDP [denoted as CNP in the 
original (Arulselvan et al. 2009; Tomaino et al. 2012)] aims 
at minimizing the connectivity measure in the induced graph 
given a constraint on the maximum number of nodes that can 
be removed. Secondly, in the cardinality constrained critical 
node detection problem (CC-CNP) (Arulselvan et al. 2011), 
the objective is to minimize the number of nodes required to 
be removed given the maximum size of connected compo-
nents. It belongs to the connectivity constrained formulation 
which minimizes the number of deleted nodes in order to 

meet a threshold on certain connectivity metric. The CNDPs 
are also related to a variety of graph fragmentation prob-
lems in the literature. The vertex separator problem (Balas 
and Souza 2005) and the k-separator problem (Ben-Ameur 
et al. 2015) have the most in common with CNDP. Other 
relevant examples include the minimum contamination prob-
lem (Kumar et al. 2010), the sum-of-squares partitioning 
problem (Aspnes et al. 2005; Chen et al. 2010), and so on. 
Further information pertaining to graph fragmentation prob-
lems can be found in Shen and Smith (2012).

Theoretical studies on combinatorial aspects of CNDP for 
general graphs were first given in Arulselvan et al. (2009) 
and Di Summa et al. (2011). As mentioned above, Arul-
selvan et al. presented two variants of the CNDP, namely 
CNP (Arulselvan et al. 2009) and CC-CNP (Arulselvan et al. 
2011). They also proved the complexity of two variants for 
general graphs and introduced some heuristic algorithms for 
solving them. Since then, many studies have been presented 
depending on different connectivity metrics to be checked 
in the induced graph. Recently, CNDPs on special classes of 
graphs including split graphs, bipartite graphs, and graphs of 
bounded treewidth were considered in Addis et al. (2013). 
Lalou et al. (2016) proposed a new variant of this problem, 
called component-cardinality-constrained critical node prob-
lem (3C-CNP). This variant seeks to find a minimal set of 
nodes, removal of which constrains the size of each con-
nected component in the induced graph to a given bound. 
Aringhieri et al. (2019) studied the distance critical node 
problem. It is a generalization of the critical node prob-
lem where the distances between node pairs impact on the 
objective function. Dinh and Thai (2013) and Dinh et al. 
(2010) presented a new formulation of CNDP called the 
�-vertex separator problem. They studied the complexity 
and inapproximability on general graphs and proposed a 
pseudo-approximation method and a heuristic approach to 
solve this problem on general graphs. Similarly, Shen et al. 
(2013a, b) provided complexity analysis for CNDPs on gen-
eral graphs and power-law graphs. Aringhieri et al. (2016a) 
and Veremyev et al. (2014a) used the above-mentioned three 
different connectivity measures, took into account both the 
budget and connectivity constraints, and obtained six differ-
ent variants of the CNDP.

There are exact and heuristic algorithms proposed for 
CNDP in the literature. The exact algorithms for CNDP 
include an Integer Linear Program (ILP) for problems 
with a potentially non-polynomial number of constraints 
(Di Summa et al. 2012). Other models with a polynomial 
number of constraints were also studied in Veremyev et al. 
(2014a, b). A recent work by Pavlikov (2018) provided a 
model with a polynomial number of constraints, which has 
the same linear relaxation as the model of Di Summa et al. 
(2012). Addis et al. (2013) defined a dynamic programming 
recursion that solves the problem in polynomial time when 
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the graph has bounded treewidth and unit connection costs. 
Besides, an approximation algorithm named the bi-criteria 
randomized rounding approach was proposed in Ventresca 
and Aleman (2014). However, these exact methods offer 
limited applicability since most of them are based on the 
ILP formulation. Recently, several heuristic algorithms have 
been proposed for CNDP, for example, multiple greedy con-
structive heuristics (Addis et al. 2016; Ventresca and Ale-
man 2015) and local search metaheuristics (Ventresca and 
Aleman 2014; Aringhieri et al. 2016b). A simulated anneal-
ing algorithm and a population-based incremental learning 
algorithm without approximation bounds were applied to 
CNDP with up to 5,000 nodes (Ventresca 2012). A fast 
greedy algorithm has been recently presented for approxi-
mating solutions for large-scale networks (Ventresca and 
Aleman 2014). A variable neighborhood search which out-
performs the population-based method (Ventresca 2012) was 
proposed in Aringhieri et al. (2015). Purevsuren et al. (2017) 
provided results competitive with those of Aringhieri et al. 
(2016a) for the single-objective CNDP. Readers can refer to 
a recent survey of Lalou et al. (2018) for a detailed exposi-
tion of CNDP and relevant results in the literature.

Most of the aforementioned formulations and algorithms 
regard CNDP as single-objective problems. These formula-
tions assume that decision makers either have prior knowl-
edge on the maximum number of nodes that can be removed 
or have the ability to give a threshold of the induced network 
connectivity. However, it is not easy for decision makers 
to gain preference knowledge since they know little about 
the problem itself, and the CNDP is not an exception. In 
fact, the connectivity of an induced network and the cost of 
removing nodes are two conflicting objectives and should be 
considered simultaneously. Aringhieri et al. (2016a) are the 
first authors to propose fully bi-objective results for CNDP 
and display Pareto fronts for some instances. Furthermore, 
Faramondi et al. (2018) also considered the CNDP as a 
bi-objective problem and firstly provided an explicitly bi-
objective approach, i.e., a multi-objective ant colony opti-
mization algorithm. It should be noted that the CNDP is 
also recognized as a bi-objective problem in Ventresca et al. 
(2018), but in a different way. To be specific, Ventresca et al. 
(2018) tackled a bi-objective CNDP where the two objec-
tives are the number of components and the variance of their 
cardinality, which is kind of a generalization of pairwise 
connectivity. This paper studies a bi-objective formulation 
of CNDP (Bi-CNDP) which considers both the connectivity 
of an induced network and the cost of removing nodes and 
presents related theoretical and computational results.

For weighted networks, we assume that each node is 
assigned with a weighted value which is related to the 
cost of removing it, and decision makers want to mini-
mize the pairwise connectivity of an induced graph and 
minimize the cost of removing these nodes at the same 

time. We first prove the NP-hardness on general graphs 
and the existence of a polynomial algorithm for construct-
ing an �-approximated Pareto front for CNDPs on trees. 
Then, different types of mating pools and replacement 
pools are proposed and embedded in decomposition-based 
multi-objective evolutionary algorithms (MOEAs). Two 
state-of-the-art decomposition-based MOEAs including 
MOEA/D and DMOEA-�C are modified and applied to 
solve the Bi-CNDP. Numerical results on sixteen modified 
famous benchmark problems are conducted to assess effec-
tiveness of different mating pools and replacement pools. 
Further computational results demonstrate different per-
formances of two improved MOEAs, i.e., I-MOEA/D and 
I-DMOEA-�C , on solving Bi-CNDP. Finally, a decision-
making process from the perspective of minimizing the 
pairwise connectivity of the induced graph given a con-
straint on the cost of removing nodes is proposed for help-
ing decision makers to identify the most critical nodes.

The rest of this paper is organized as follows. The pre-
liminary definitions related to CNDP are recalled, and 
then, the formulation of Bi-CNDP and associated theoreti-
cal results is given in Sect. 2. Section 3 briefly describes 
two decomposition-based MOEAs and various approaches 
of determining the mating pool and the replacement pool. 
Numerical results among various variants of two decom-
position-based MOEAs with different types of mating 
pools and replacement pools on sixteen commonly used 
benchmark problems are shown in Sect. 4. Furthermore, 
Sect. 4 includes computational experiments between two 
improved MOEAs on these benchmarks and a decision-
making process. Finally, Sect. 5 concludes this paper.

2 � Mathematical formulations 
and theoretical results of Bi‑CNDP

This section first recalls some basic definitions related to 
CNDP and then presents mathematical formulations of Bi-
CNDP. Next, some important theoretical results related to 
the complexity analysis of Bi-CNDP are illustrated.

2.1 � Mathematical formulations of Bi‑CNDP

Let G = (V ,E,C) be a weighted and undirected graph 
composed of n nodes V = {v1,… , vn} with weight values 
related to the cost of removing these nodes C = {c1,… , cn} 
a n d  m  e d ge s  E = {(vi, vj), i, j = 1,… , n} ,  w h e r e 
(vi, vj) ∈ E ⊆ V × V  captures the existence of a relation 
between node vi and node vj . First, some basic definitions 
of graphs which will be used in the following are recalled.
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Definition 1  (Path) A path over an undirected graph 
G = (V ,E,C) starting at a node vi ∈ V  and ending at a node 
vj ∈ V  is a subset of links in E that connect nodes vi and vj.

Definition 2  (Connected) An undirected graph G is con-
nected if for each pair of nodes vi and vj there is a path over 
G that connects them.

Definition 3  (Connected component) A connected compo-
nent of G is a connected subgraph Gi = (Vi,Ei) such that, 
over Gi (i.e., Vi ⊆ V ,Ei ⊆ E ), no node in Vi is connected to 
a node in V∖Vi.

Here, the pairwise connectivity ( PWC ) (Arulselvan et al. 
2009) is adopted as a measure of connectivity of a graph. The 
PWC represents the number of distinct node pairs connected 
by a path over G. To be specific, the definition of PWC(G) is 
given as follows:

where xij equals 1 if node vi and node vj are connected via a 
path in G, and it is equal to 0 otherwise. PWC(G) is mono-
tonely non-increasing with respect to edge removals, since 
the removal of an edge cannot increase the number of pairs 
of nodes connected by a path. Moreover, PWC(G) =

n(n−1)

2
 

holds for a graph G when all pairs of nodes are connected. 
Therefore, we define the normalized pairwise connectivity 
as:

It is obvious that nPWC(G) ∈ [0, 1] . It is straightforward 
to note that nPWC(G) can be regarded as a measure of the 
degree of connectivity of G, since nPWC(G) is proportional 
to the fraction of node pairs that are connected at least via 
one path. The larger nPWC(G) is, the closer G is to a con-
nected graph.

The first goal of the Bi-CNDP is to determine a subset of 
nodes R ⊆ V such that the induced residual graph G(V�R) has 
minimum pairwise connectivity nPWC(G(V�R)) . Apart from 
minimizing the degree of connectivity of the reduced network 
after the removal, decision makers also consider minimizing 
the cost of removing selected nodes. Specifically, the cost of 
removing selected nodes R ⊆ V from G is given as:

where ci represents the weight value associated with node 
vi ∈ V  . 

∑
vi∈G

ci is introduced so that the two objectives are 

(1)PWC(G) =
1

2

∑

vi,vj∈V ,vi≠vj

xij

(2)nPWC(G) =
1

n(n − 1)

∑

vi,vj∈V ,vi≠vj

xij

(3)nCost(R) =
∑

vi∈R
ci

/∑
vi∈G

ci

comparable, as they both have values in [0, 1]. In conclusion, 
the formulation of Bi-CNDP is presented as:

where � = (y1, y2,… , yn) is the decision vector, yi is a 
Boolean variable, yi = 1 if node vi ∈ V  is removed from 
the original graph and yi = 0 otherwise. xij represents the 
connectivity between node vi and vj , and it equals to 1 if 
node vi and node vj are in the same connected component of 
G(V�R) ; otherwise it equals to 0.

The first constraint enforces the separation of nodes to 
different components. To be specific, deleted nodes do not 
share an edge to any other node by setting edge xij = 0 as 
deleted if either or both nodes vi and vj are deleted. The sec-
ond constraint is concerned with a triangle inequality. That 
is to say, if nodes vi and vj , vj and vk are in the same compo-
nent, then nodes vi and vk must be in the same component. 
In this formulation, there is no need to specify a hierarchy 
between two objectives nor to gain prior information about 
the psychology of decision makers.

2.2 � Theoretical results on Bi‑CNDP

Firstly, we transform the Bi-CNDP into a single-objective 
formulation (denoted as S-CNDP), as shown in (5) by con-
verting the first objective function into an additional con-
straint function. Then, we can get the following results.

Theorem 1  The Bi-CNDP is strongly NP-hard on general 
graphs.

The proof of Theorem 1 is straightforward. Since the 
S-CNDP formulated in (5) is just the K-CNP described in 
Arulselvan et al. (2009), the S-CNDP is strongly NP-com-
plete on general graphs (Addis et al. 2013). Furthermore, we 
know on general grounds that when the complexity status 
of an �-constrained version of a multi-objective problem 
is demonstrated, the multi-objective problem can only be 
harder to solve, which implies that the Bi-CNDP is strongly 
NP-hard. Indeed if it were not, a solution for each �-con-
strained version could be obtained in (pseudo-)polynomial 
time, which would imply that S-CNDP is not NP-hard. This 

(4)

minimize (nPWC(G(V�R)), nCost(R))

s.t.

xij + yi + yj ≥ 1,∀vi, vj ∈ V

xij + xjk + xki ≠ 2,∀vi, vj, vk ∈ V

xij ∈ {0, 1}, yi ∈ {0, 1},∀vi, vj ∈ V

(5)

minimize nPWC(G(V�R))

s.t.

nCost(R) ≤ C,∀vi, vj ∈ V

xij + yi + yj ≥ 1,∀vi, vj ∈ V

xij + xjk + xki ≠ 2,∀vi, vj, vk ∈ V

xij ∈ {0, 1}, yi ∈ {0, 1},∀vi, vj ∈ V
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leads to a contradiction. Hence, the Bi-CNDP is strongly 
NP-hard on general graphs.

The subclass of CNDP over trees was studied in Di 
Summa et al. (2011). It has been proved that CNDP over 
trees is still NP-complete when general connection costs are 
specified. However, the cases where all connections have 
unit cost are solvable in polynomial time by dynamic pro-
gramming approaches. Besides, a dynamic programming 
recursion that solves the problem in polynomial time when 
the graph has bounded treewidth was proposed in Addis 
et al. (2013). Besides, the complexity of removing larger 
node structures has also received significant attention. Gra-
nata et al. (2013) introduced the concept of a critical dis-
ruption path which means a path between a source and a 
destination vertex whose deletion minimizes the cardinality 
of the largest remaining connected component. The pro-
posed network interdiction model seeks to optimally disrupt 
network operations. In Walteros et al. (2018), authors have 
proved that the problems of removing critical cliques, stars, 
and connected subgraphs are all strongly NP-complete.

Finding all Pareto optimal solutions is often computation-
ally problematic for multi-objective discrete optimization, 
since there are usually exponentially (or infinite) large Pareto 
optimal solutions. Furthermore, for the simplest problems 
with two objectives, determining whether a point belongs to 
the Pareto optimal set is NP-hard (Papadimitriou and Yan-
nakakis 2000). One way to handle these problems is to intro-
duce the �-approximated Pareto set P

�
(x) whose definition 

is given as follows.

Definition 4  (�-approximated Pareto set P
�
(x) ) Given a sca-

lar 𝜀 > 0 , an �-approximate Pareto optimal set, denoted by 
P
�
(x) , is a subset of X such that there is no other solution 

y ∈ X such that (1 + �) ⋅ fi(y) ≤ fi(x) for all x ∈ P
�
(x) and for 

some i ∈ {1, 2,… ,m} , where X is a nonempty feasible set 
for a certain MOP and m represents the number of objectives 
of the MOP.

This definition says that every other solution is almost 
dominated by some solution in P

�
(x) , i.e., there is a solu-

tion in P
�
(x) that is within a factor of � in all objectives. 

According to theoretical results stated in Papadimitriou and 
Yannakakis (2000) and the fact that the CNDP is polynomi-
ally solvable on trees via dynamic programming (Di Summa 
et al. 2011), we can have the following statement.

Theorem 2  For CNDPs on trees, there is a polynomial algo-
rithm in n and 1∕� for constructing the approximate Pareto 
curve P

�
(x) for the Bi-CNDP formulated in (4), where n 

represents the size of an instance of the Bi-CNDP.

However, there is no such property for Bi-CNDPs on gen-
eral graphs. Thus, the exponential size of feasible solutions 

for Bi-CNDPs on general graphs calls for the use of heuristic 
algorithms to find Pareto optimal solutions for the proposed 
Bi-CNDP.

3 � Improved decomposition‑based 
multi‑objective evolutionary algorithms

Among various heuristic algorithms, the decomposition-
based MOEAs have gained much attention during these dec-
ades. This paper modifies two decomposition-based MOEAs 
to deal with Bi-CNDP. Thus, this section presents a brief 
description of two decomposition-based MOEAs and their 
variants which will all be used in the next section.

Decomposition is an efficient and prevailing strategy for 
solving multi-objective problems (MOPs). In decomposi-
tion-based MOEAs, an MOP is decomposed into a num-
ber of scalar subproblems by using various scalarizing 
functions. The weighting method, Tchebycheff approach, 
boundary intersection method, and the �-constraint method 
are classical generation methods in the field of mathemati-
cal programming and have been adopted for the multi-
objective optimization. Zhang and Li (2007) adopted the 
first three aggregation functions and proposed the multi-
objective evolutionary algorithm based on decomposition 
(MOEA/D). Many variants such as MOEA/D-DRA (Zhang 
et al. 2009), MOEA/D-AWA (Qi et al. 2014), and so on have 
been investigated.

Recently, a new MOEA named the decomposition-based 
multi-objective evolutionary algorithm with the �-con-
straint framework (DMOEA-�C ) was proposed in Chen 
et al. (2017) and has demonstrated its superiority over a 
number of MOEAs. DMOEA-�C firstly incorporates the 
�-constraint method into the decomposition strategy and 
decomposes an MOP into a series of scalar constrained opti-
mization subproblems by assigning each subproblem with 
an upper bound vector. In decomposition-based MOEAs, 
all subproblems are optimized simultaneously by only using 
information from neighboring subproblems. The decompo-
sition-based MOEAs have lower computational complexity 
than Pareto-based and indicator-based MOEAs. Besides, 
an external archive population EP is added to store non-
dominated solutions found so far. Details of MOEA/D and 
DMOEA-�C can be found in Zhang and Li (2007) and Chen 
et al. (2017), respectively.

Performances of these two MOEAs have been witnessed 
on continuous and discrete benchmark problems, but not 
on Bi-CNDP. Thus, it is reasonable to adopt them to solve 
the proposed Bi-CNDP. When applying two MOEAs to 
Bi-CNDP, there are two important issues that need to be 
discussed: (1) How to determine the mating pool for select-
ing parent candidates? (2) How to determine the replace-
ment pool to replace old candidates after a new candidate 



12734	 J. Li et al.

1 3

is generated? The above-mentioned two issues will be dis-
cussed in the next two subsections.

3.1 � The mating pool

Given a certain recombination operator, the mating pool 
plays a vital role in generating new solutions. In this paper, 
for certain solutions of a subproblem, we discuss four types 
of mating pools:

(1) -N: the set of solutions of neighboring subproblems of 
a subproblem serves as the mating pool, and parent solutions 
are randomly selected from the mating pool.

(2) -P: the whole population is regarded as the mating 
pool, and parent solutions are randomly selected from the 
whole population.

(3) -NP: the parent solutions are selected from the set of 
solutions of neighboring subproblems of a subproblem with 
a probability � . Parent solutions are selected from the whole 
population with a probability 1 − �.

(4) -NP-EP: one of parent solutions is selected randomly 
from the external archive population EP, and the other one 
is selected according to the third approach.

The four ways of determining the mating pool will be 
added into MOEA/D, thus obtaining four variants including 
MOEA/D-N, MOEA/D-P, MOEA/D-NP, and MOEA/D-NP-
EP. Similarly, four variants of DMOEA-�C , i.e., DMOEA-
�C-N , DMOEA-�C-P , DMOEA-�C-NP , and DMOEA-
�C-NP-EP can be developed.

3.2 � The replacement pool

When a new candidate is generated, it will be used to com-
pare with and update other old candidates in the replacement 
pool. For a new solution of one subproblem, we investigate 
effects of two types of replacement pools in decomposition-
based MOEAs.

(1) -L: a newly generated candidate is compared with the 
set of solutions of neighboring subproblems of a subprob-
lem, thus the replacement takes place locally.

(2) -G: the whole population serves as the replacement 
pool, which implies a global replacement strategy.

Two types of replacement pool will be integrated into 
MOEA/D, thus obtaining its variants, i.e., MOEA/D-L and 
MOEA/D-G. Similarly, two variants of DMOEA-�C includ-
ing DMOEA-�C-L and DMOEA-�C-G are designed.

4 � Numerical experiments

This section is devoted to experimental design for dem-
onstrating the overall quality of solutions found by two 
MOEAs and their variants over four sets of sixteen bench-
mark instances proposed in Ventresca (2012). First, details 

of the sixteen benchmark problems are outlined, then param-
eter settings are provided. Finally, the experimental results 
are illustrated. We compare results obtained via two MOEAs 
and their variants to evaluate the performance of different 
strategies of determining the mating pool and the replace-
ment pool. Further experiments are conducted to demon-
strate different performance of two improved MOEAs on 
solving Bi-CNDP. Additionally, a decision-making process 
based on obtained non-dominated solutions is illustrated.

4.1 � Benchmark problems

The benchmark set is composed of the graphs proposed in 
Ventresca (2012), and many results are available for these 
graphs as single-objective problems. This data set contains 
sixteen undirected, unweighted graphs belonging to four 
groups which are created by complex network generator 
algorithms. Barabasi–Albert (BA) graphs are scale-free 
networks and proved to be the easiest to process. While the 
Watts–Strogatz (WS) graphs are designed to mimic a small-
world structure with a denser structure, they turn out to be 
the most challenging ones. Erdos–Renyi (ER) graphs are 
random graphs and Forest–Fire (FF) graphs reproduce the 
behavior of how a fire spreads through a forest. None of 
these graphs is expected to reproduce a real network. How-
ever, real networks usually display a mixture of these char-
acteristics. Further information about these networks can be 
found in Ventresca (2012)1.

In order to characterize these graphs precisely, Table 1 
displays the following quantities: the number of nodes n, the 
number of edges m, the average degree <d> = 2 ⋅ m

/
n , the 

number of articulation points nAP2, the value of the cluster-
ing coefficient CC , the average shortest path length D (Arin-
ghieri et al. 2016a), the number of nodes having degree 1 
|D1| , and the number of nodes which are neighbors of those 
in D1 (Veremyev et al. 2014b), denoted as |N(D1)| (Aringh-
ieri et al. 2016a). The number of articulation points ( nAP ) 
is taken into account since a larger fraction of articulation 
points usually results in a graph which is easier to fragment. 
The clustering coefficient CC signals the tendency of nodes 
to be clustered together. The average shortest path length D 
indicates the average distance between two nodes taken at 
random inside the graph.

1  The numbers of nodes and edges of ER, WS, and FF graphs in the 
main body of Ventresca (2012) are slightly different from the data 
set obtained from the website given in Ventresca (2012). Here, these 
characteristics are given based on the data set downloaded from the 
website.
2  A vertex in an undirected connected graph is an articulation point 
if and only if removing it disconnects the graph. Articulation points 
represent vulnerabilities in a connected network.



12735The bi-objective critical node detection problem with minimum pairwise connectivity and cost:…

1 3

Since these networks are unweighted in the original, new 
benchmark instances are created by assigning a weight value 
to each node of each network. The weight value of each 
node is regarded as the cost of removing it. We adopt the 
weight generation method used in Ventresca et al. (2018), 
as described in the following:

(1) Weights are randomly assigned, where c(v) ∈ [0.2, 3] , 
∀v ∈ V;

(2) Weights are logarithmically assigned with node 
degree dv , where c(v) = log(dv) + 0.5,∀v ∈ V .

4.2 � Parameter settings

For fair comparison, the choice of parameters remains the 
same for two MOEAs. Specifically, we adopt binary vec-
tors as encoding schemes for solutions. The population 
size N is set to 300, 400, 500, and 600 for benchmark prob-
lems whose number of nodes is n ≤ 500 , 500 < n ≤ 1000 , 
1000 < n ≤ 2500 , and 2500 < n ≤ 5000 , respectively. For 
fair comparison, an external population with the size of 
S = ⌊1.5 ⋅ N⌋ is added to each algorithm, where ⌊⋅⌋ returns 
the nearest integer in the direction of negative infinity.

Besides, the parameterized uniform crossover (Spears and 
Jong 1991) and random mutation (Arulselvan et al. 2011) 
are adopted in generating new solutions. Moreover, control 
parameters for these reproduction operators are the same as 
those used in Arulselvan et al. (2011). To be specific, the 
biased probability of crossover is set as 0.65 and the random 
mutation probability for each variable of a solution is set 
as 0.03. Figure 1 provides an example of the parameter-
ized uniform crossover and the random mutation where the 
number of nodes is 5.

For MOEA/D, DMOEA-�C and their variants, the 
neighborhood size is T = ⌊0.1 ⋅ N⌋ , the probability of 
selecting mate solutions from neighborhood is � = 0.9 , 
the maximal number of replacement is nr = ⌊0.01 ⋅ N⌋ . 
Inspired by Ventresca (2012), the maximum num-
ber of iterations I is set as 2500, 4000, 6000, and 7500 
for test instances whose number of nodes n is n ≤ 500 , 
500 < n ≤ 1000 , 1000 < n ≤ 2500 , and 2500 < n ≤ 5000 , 
respectively. For DMOEA-�C and its variants, the iteration 
interval of alternating the main objective function INm is 
set to ⌊20% ⋅ I⌋ . Both algorithms stop when the number of 
iterations reaches the maximum number, and each algo-
rithm is executed 20 times independently on each instance.

Table 1   Main characteristics of 
sixteen benchmark instances

Instance n m <d> nAP CC D |D
1
| N(D

1
)

BA500 500 499 1.996 164 0.000 5.663 336 149
BA1000 1000 999 1.998 324 0.000 6.045 676 290
BA2500 2500 2499 1.999 825 0.000 6.901 1675 729
BA5000 5000 4999 1.999 1672 0.000 8.380 3328 1475
WS250 250 1246 9.968 0 0.473 3.327 0 0
WS500 500 1496 5.984 0 0.420 5.304 0 0
WS1000 1000 4996 9.992 0 0.483 4.444 0 0
WS1500 1500 4498 5.997 0 0.480 7.554 0 0
ER235 235 350 2.979 48 0.006 5.339 39 37
ER466 466 700 3.004 84 0.002 5.974 69 64
ER941 941 1400 2.976 177 0.005 6.559 147 139
ER2344 2344 3500 2.986 419 0.001 7.516 396 354
FF250 250 514 4.112 83 0.276 4.816 57 50
FF500 500 828 3.312 195 0.247 6.026 160 136
FF1000 1000 1817 3.634 362 0.216 6.173 280 236
FF2000 2000 3413 3.413 725 0.245 7.587 552 477

Fig. 1   An example of the parameterized uniform crossover and the 
random mutation where the number of nodes is 5. A and B are parent 
solutions. C and D are offspring solutions after crossover and muta-
tion, respectively. rand denotes a uniformly randomly distributed 
value in [0, 1] and g represents the objective value of each solution 
(i.e., subproblem)
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4.3 � Experimental results

This section includes two parts. The first part compares the 
performance of different variants of two decomposition-
based MOEAs, and the second part compares performance 

of two identified MOEAs obtained according to the experi-
mental results of the first part.

Two commonly used performance metrics, i.e., inverted 
generational distance (IGD) (Zhou et al. 2005) and hypervol-
ume (HV) (Zitzler and Thiele 1999) are employed to evalu-
ate the performance of compared algorithms.

The IGD metric measures the average distance from a 
set of uniformly distributed Pareto optimal points over the 
Pareto front (PF) P∗ to the approximation set P. It can be 
formulated as:

where d(x∗,P) is the minimal Euclidean distance between 
x∗ and any point in P, and |P∗| denotes the cardinality of 
P∗ . If |P∗| is large enough to represent the PF very well, 
IGD(P∗,P) could measure both diversity and convergence 
of P in a sense. To get a smaller IGD value, P must be close 
to the PF and cover most of the whole PF. Thus, a smaller 
IGD value indicates a better P.

The HV metric measures the size of the objective space 
dominated by the solutions in P and bounded by the refer-
ence point � . It is defined as:

where � = (r1,… , rm) is a reference point in the objec-
tive space dominated by any Pareto optimal point, and 

(6)IGD(P∗,P) =

∑
x∗∈P∗ d(x∗,P)

�P∗�

(7)HV(P, �) = VOL

(
⋃

x∈P

[f1(x), r1] ×⋯ × [fm(x), rm]

)

Table 2   Statistical results (Mean[Rank](Std.)) of MOEA/D and its variants with different types of mating pools over 20 independent runs on the 
sixteen instances with random weights in terms of IGD metrics

Instance MOEA/D-N -P -NP -NP-EP

BA500 3.80E−03[3](1.57E−04) 3.86E−03[4](1.70E−04) 3.51E−03[2](2.26E−04) 3.31E−03[1](4.60E−04)
BA1000 2.58E−02[3](1.05E−03) 2.97E−02[4](8.12E−03) 1.74E−02[2](1.92E−03) 1.50E−02[1](3.28E−03)
BA2500 5.63E−04[3](1.93E−04) 5.77E−04[4](1.25E−04) 5.36E−04[2](1.06E−04) 5.24E−04[1](7.50E−04)
BA5000 8.64E−03[3](7.33E−04) 8.82E−03[4](6.29E−04) 8.59E−03[2](3.09E−04) 8.29E−03[1](7.35E−04)
WS250 3.53E−02[3](6.87E−03) 3.68E−02[4](2.63E−03) 2.94E−02[1](1.47E−03) 3.15E−02[2](1.29E−03)
WS500 1.88E−02[3](1.40E−03) 1.96E−03[4](4.59E−03) 1.45E−02[1](3.45E−03) 1.47E−02[2](4.78E−03)
WS1000 2.16E−02[3](1.14E−03) 2.24E−02[4](1.85E−03) 1.77E−02[2](1.62E−03) 1.71E−02[1](1.47E−03)
WS1500 5.54E−02[3](3.40E−03) 5.60E−02[4](6.06E−03) 5.20E−02[1](4.12E−03) 5.42E−02[2](3.50E−03)
ER235 3.75E−02[2](1.08E−03) 4.07E−02[4](2.62E−03) 3.96E−02[3](3.75E−03) 3.55E−02[1](2.13E−03)
ER466 9.82E−02[4](5.60E−03) 9.70E−02[3](6.49E−03) 9.26E−03[2](5.12E−03) 9.22E−03[1](7.89E−03)
ER941 3.56E−02[3](2.01E−03) 3.73E−02[4](2.81E−03) 3.33E−02[2](1.11E−03) 3.14E−02[1](1.04E−03)
ER2344 3.19E−02[3](2.09E−03) 3.26−E02[4]1.99E−03) 2.88E−02[1](1.50E−03) 2.92E−02[2](1.63E−03)
FF250 4.79E−02[3](4.71E−03) 5.41E−02[4](2.91E−03) 4.71E−02[2](4.02E−03) 4.63E−02[1](3.04E−03)
FF500 4.38E−02[2](3.03E−03) 5.08E−02[4](1.64E−03) 4.76E−02[3](1.08E−03) 4.29E−02[1](1.30E−03)
FF1000 3.31E−02[3](1.73E−03) 3.83E−01[4](1.31E−03) 2.75E−02[2](1.97E−03) 2.61E−02[1](1.08E−03)
FF2000 2.89E−02[4](1.05E−03) 2.88E−02[3](6.28E−03) 2.54E−02[1](2.40E−03) 2.60E−02[2](1.89E−03)
Rank 3.000 3.875 1.813 1.313

Table 3   Statistical results (Mean[Rank](Std.)) of DMOEA-�C-NP-EP 
and its variants with different types of replacement pools over 20 
independent runs on the sixteen instances with logarithmic weights in 
terms of HV metrics

Instance DMOEA-�C-NP-EP-L -G

BA500 1.71E−01[2](1.41E−02) 1.89E−01[1](1.77E−02)
BA1000 5.58E−04[2](3.45E−05) 5.95E−04[1](1.70E−05)
BA2500 4.68E−05[1](1.17E−05) 4.54E−05[2](1.01E−05)
BA5000 6.37E−05[2](1.78E−05) 6.58E−05[1](2.08E−05)
WS250 4.16E−01[2](6.41E−02) 4.49E−01[1](2.97E−02)
WS500 2.46E−01[2](4.03E−02) 2.77E−01[1](3.71E−02)
WS1000 6.11E−02[2](5.67E−03) 6.51E−02[1](2.36E−03)
WS1500 7.10E−02[2](5.14E−03) 7.73E−02[1](3.93E−03)
ER235 5.37E−02[2](2.36E−03) 5.78E−02[1](1.44E−03)
ER466 2.01E−01[2](1.62E−02) 2.16E−01[1](2.73E−02)
ER941 1.73E−02[1](5.03E−03) 1.68E−02[2](4.89E−03)
ER2344 6.23E−04[1](9.39E−05) 6.01E−04[2](8.81E−05)
FF250 5.25E−01[2](2.30E−02) 5.62E−01[1](3.84E−02)
FF500 6.21E−02[1](1.41E−03) 6.09E−02[2](2.77E−03)
FF1000 7.35E−03[2](7.04E−03) 7.74E−03[1](4.58E−03)
FF2000 9.43E−03[2](8.01E−04) 9.89E−03[1](7.23E−04)
Rank 1.750 1.250
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VOL(⋅) denotes the Lebesgue measure. Mathematically, 
for each member in the non-dominated set P, a hypercube 
v = [f1(x), r1] ×⋯ × [fm(x), rm] is constructed with a refer-
ence point � = (r1,… , rm) and each member [f1(x),… , fm(x)] 
as the diagonal vertices of the hypercube. The reference 
point can be found by constructing a vector of the worst 
objective function values. A larger HV value implies a bet-
ter P. IGD and HV both take into account diversity and 

convergence and provide general quality measures of the 
approximation set P.

In calculating performance metrics, N non-dominated 
solutions are selected from the external population using 
the crowding distance approach (Deb et al. 2002). With the 
purpose of calculating the IGD metric value, P∗ is chosen 
to be the set of non-dominated solutions extracted from the 
combination of all solutions obtained via two MOEAs and 

Table 4   Statistical results 
(Mean(Std.)) of two improved 
MOEAs over 20 independent 
runs on the sixteen instances 
with random and logarithmic 
weights in terms of IGD metrics

Instance I-MOEA/D I-DMOEA-�C I-MOEA/D I-DMOEA-�C
Random weights Logarithmic weights

BA500 3.19E-03(1.79E−04) 1.74E−04†(5.29E−04) 3.41E−02(1.39E−03) 2.13E−04†(1.26E−05)
BA1000 1.57E-02(7.84E−03) 5.76E−04†(6.01E−05) 6.16E−03(6.88E−04) 4.21E−04†(1.01E−05)
BA2500 4.74E-04(2.21E−05) 4.64E−04≈(3.02E−05) 2.77E−02(1.86E−03) 6.19E−04†(3.72E−05)
BA5000 7.57E-03(8.13E−04) 7.34E−04†(1.30E−05) 6.05E−03(5.38E−04) 5.48E−04†(5.53E−05)
WS250 2.23E-02(1.02E−03) 9.36E−04†(1.90E−05) 2.28E−02(1.40E−03) 4.82E−04†(3.47E−05)
WS500 1.50E-02(1.39E−03) 6.23E−04†(3.78E−05) 7.86E−03(2.66E−03) 6.16E−03≈(5.53E−04)
WS1000 1.65E-02(1.72E−03) 1.40E−03†(6.18E−04) 9.84E−03(8.79E−04) 8.15E−04†(6.76E−05)
WS1500 4.89E-02(2.72E−03) 4.27E−03†(2.18E−04) 7.15−03(4.77E−04) 6.42E−04†(4.61E−05)
ER235 3.52E-02(1.89E−03) 2.64E−04†(3.47E−05) 2.19E−02(5.90E−03) 5.92E−04†(7.76E−05)
ER466 8.79E-03(8.40E−04) 8.64E−04†(5.81E−05) 1.42E−02(1.12E−03) 2.62E−03†(1.40E−04)
ER941 2.70E-02(2.29E−03) 4.62E−03†(5.73E−04) 2.35E−03(2.91E−04) 2.52E−03≈(1.63E−04)
ER2344 2.28E-02(3.79E−03) 6.99E−03†(5.31E−04) 7.54E−03(8.93E−04) 6.17E−04†(6.04E−05)
FF250 5.20E-02(2.24E−03) 9.84E−04†(6.48E−05) 5.19E−02(5.23E−03) 4.10E−03†(2.55E−04)
FF500 3.75E-02(4.71E−03) 2.73E−03†(7.68E−04) 1.30E−02(1.43E−03) 9.19E−04†(1.30E−05)
FF1000 2.28E-02(7.25E−03) 1.33E−03†(4.03E−04) 9.05E−02(6.20E−03) 6.81E−03†(1.64E−04)
FF2000 2.58E-02(3.50E−03) 2.81E−03†(1.92E−04) 3.24E−02(4.18E−03) 4.46E−03†(5.11E−04)

Table 5   Statistical results (Mean(Std.)) of two improved MOEAs over 20 independent runs on the sixteen instances with random and logarith-
mic weights in terms of HV metrics

Instance I-MOEA/D I-DMOEA-�C I-MOEA/D I-DMOEA-�C
random weights logarithmic weights

BA500 9.15E−03(3.78E−04) 6.81E-02† (2.12E-03) 5.25E−02(3.31E−03) 1.89E−01† (2.71E−02)
BA1000 8.81E−05(1.13E−05) 4.33E−04† (2.29E−05) 1.39E−04(1.67E−05) 5.95E−04† (6.61E−05)
BA2500 8.87E−06(8.90E−06) 4.55E−05† (3.87E−06) 5.59E−05(6.57E−06) 4.54E−05§(7.12E−06)
BA5000 6.48E−05(8.76E−05) 7.56E−05† (6.45E−06) 4.99E−05(1.50E−06) 6.58E−05≈ (4.17E−06)
WS250 3.44E−01(2.29E−02) 4.04E−01† (1.86E−02) 3.41E−01(2.41E−02) 4.49E−01† (1.79E−02)
WS500 2.89E−01(3.77E−02) 3.57E−01† (2.91E−02) 1.58E−01(3.32E−02) 2.77E−01† (1.51E−02)
WS1000 3.95E−02(5.69E−03) 3.17E−02§(7.54E−03) 1.75E−01(3.74E−02) 6.51E−02§(1.38E−03)
WS1500 6.61E−02(7.17E−03) 7.67E−02† (9.54E−04) 2.54E−02(3.12E−03) 7.73E−02† (4.91E−03)
ER235 2.98E−01(1.97E−02) 4.23E−01† (5.16E−02) 3.05E−01(4.18E−02) 5.78E−01† (4.63E−02)
ER466 1.16E−01(1.53E−02) 3.45E−01† (2.79E−02) 1.24E−01(1.13E−02) 2.16E−01† (2.34E−02)
ER941 2.48E−02(4.94E−03) 4.89E−02† (3.68E−03) 9.53E−03(8.73E−04) 1.68E−02† (1.29E−03)
ER2344 5.41E−05§(7.84E−06) 2.25E−04(6.17E−05) 6.47E−04(1.15E−05) 6.01E−04≈(2.23E−05)
FF250 1.37E−01(5.51E−02) 4.22E−01† (3.38E−02) 2.68E−01(1.36E−02) 5.62E−01† (4.81E−02)
FF500 7.11E−02(2.79E−03) 1.19E−01† (1.54E−02) 3.88E−02(3.71E−03) 6.09E−02† (7.46E−03)
FF1000 4.96E−03(1.56E−04) 1.72E−02† (3.06E−03) 3.77E−03(7.26E−04) 7.74E−03† (6.66E−04)
FF2000 3.86E−04(3.45E−05) 5.67E−04† (1.19E−05) 4.22E−03(2.13E−04) 9.89E−03† (6.41E−04)
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their various variants over 20 independent runs. In order to 
compute the HV metric value, the reference point is set as 
1.1 times the estimated nadir point3 based on P∗ for each 
instance.

4.3.1 � Comparison among various variants

As mentioned above, the determination of the mating pool 
and the replacement pool are important for evolving the pop-
ulation toward the desired PF. Therefore, effects of various 
variants of two MOEAs with different strategies of deter-
mining the mating pool and the replacement pool are deeply 
analyzed on all test problems with random and logarithmic 

weights. The means and standard deviations of IGD metric 
values over 20 runs of MOEA/D and its variants about the 
mating pool determination on all test instances with random 
weights are shown in Table 2. Additionally, the means and 
standard deviations of HV metrics over 20 runs of variants 
of DMOEA-�C-NP-EP about the replacement pool deter-
mination on all test instances with logarithmic weights 
are shown in Table 3. The bold data in each table are the 
best mean metric values for each instance. The mean IGD 
(HV) values for each instance are sorted in an ascending 
(descending) order, and the numbers in the square brackets 
are their ranks. Besides, the mean rank values in terms of 
the IGD and HV metrics over all test instances are displayed 
for each variant to have a global view of the performance 
of all variants.
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Fig. 2   Final populations in the objective space with the minimum IGD metric value within 20 runs obtained by I-MOEA/D and I-DMOEA-�C 
on BA2500, WS1500, ER2344, and FF2000 instances with random weights

3  The nadir point is the upper bound of the PF.
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As can be seen in Table 2, in terms of IGD metric val-
ues, MOEA/D-NP-EP shows obvious advantage over other 
variants on the majority of test instances with random 
weights. On the other instances, MOEA/D-NP performs 
best. Table 2 also reveals the overall rank of the four vari-
ants, that is, MOEA/D-NP-EP, MOEA/D-NP, MOEA/D-N, 
and MOEA/D-P according to the mean rank values. Results 
in Table 2 highlight the effectiveness of the fourth strategy 
of determining the mating pool. To be specific, first a parent 
solution is selected from the external archive population EP. 
Then, the other one is selected from the neighborhood with 
a probability � , and it is selected from the whole population 
with a probability 1 − � . As to DMOEA-�C and its variants 
about the mating pool determination, similar results can be 
obtained. That is, DMOEA-�C with the fourth type of mat-
ing pool performs the best among all variants.

The superiority of the fourth mating pool determina-
tion strategy can be explained in the following two aspects. 
Firstly, the basic assumption of decomposition-based 
MOEAs is that neighboring subproblems have similar opti-
mal solutions. Thus, two solutions of neighboring subprob-
lems have a higher chance to produce good solutions which 
can accelerate convergence. The participation of the whole 
population in the mating pool with a probability 1 − � is 
beneficial to give birth to diverse offspring. Additionally, 
since the external archive population EP is used to store non-
dominated solutions found so far, it is reasonable to make 
best use of it to produce new solutions with high quality.

It can be observed from Table  3 that DMOEA-
�C-NP-EP-G outperforms DMOEA-�C-NP-EP-L on the 
majority of test instances with logarithmic weights in 
terms of the HV metrics. Similar results can be obtained 
for MOEA/D and its variants about the replacement pool 
determination in terms of the HV metrics. The broadened 
range of the replacement pool makes the replacement more 
effective, which is good for convergence. Besides, the lim-
ited number of replacement takes control of maintaining 
the diversity of a population. In conclusion, effectiveness 
of the fourth strategy of determining the mating pool and 
the global replacement strategy are confirmed experimen-
tally. Thus, the improved MOEA/D and DMOEA-�C with 
the fourth type of mating pool and the global replacement 
pool are denoted as I-MOEA/D and I-DMOEA-�C , respec-
tively. They will be employed in the following numerical 
experiments.

4.3.2 � Comparison between two improved MOEAs: 
I‑MOEA/D and I‑DMOEA‑"C

This part of the experiments are designed to study the effec-
tiveness of I-MOEA/D and I-DMOEA-�C on Bi-CNDPs. 
Our comparison is made of two perspectives: (1) the com-
parison between single-objective and multi-objective for-
mulations and (2) the comparison between two improved 
multi-objective approaches.

Firstly, it has been theoretically proved that the solution 
of a single-objective problem whose objective is a convex 
linear combination of the objectives of the MOP is part of 
the PF of the MOP (Miettinen 1999). This statement is still 
valid for the Bi-CNDPs, and the optimization of Bi-CNDP 
can present a set of Pareto optimal solutions for decision 
makers to have a global view of the problem and make more 
reasonable decisions.

Secondly, concerning the latter perspective, the IGD 
(Zhou et al. 2005) and HV (Zitzler and Thiele 1999) are still 
employed to evaluate the performance of compared algo-
rithms. The means and standard deviations of IGD and HV 
metric values of two improved MOEAs over 20 independent 
runs of each algorithm on sixteen instances with random 
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Fig. 3   Frequency of occurrence of each node in the set of final non-
dominated solutions for FF500 instances with random and logarith-
mic weights
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and logarithmic weights are shown in Tables 4 and 5. The 
Wilcoxon’s rank sum test at a 95% significance level is con-
ducted to test the significance of differences between the 
metric values yielded by I-DMOEA-�C and I-MOEA/D. † , 
§ , and ≈ indicate that the performance of the I-DMOEA-�C 
is better than, worse than, and similar to that of I-MOEA/D 
according to the Wilcoxon’s rank sum test, respectively. The 
bold data in each table are the best mean metric values for 
each instance.

As can be seen in Tables 4 and 5, in terms of IGD metric 
values, I-DMOEA-�C shows a significant advantage over 
I-MOEA/D on all test instances except for BA2500 with ran-
dom weights, WS500 and ER941 with logarithmic weights 

on which two algorithms show competitive performance. 
As to HV, I-DMOEA-�C shows significant superiority over 
I-MOEA/D on the majority of test instances. To be specific, 
I-MOEA/D performs better than I-DEMOA-�C on BA2500 
with logarithmic weights, WS1000 with random and loga-
rithmic weights, and ER2344 with random weights. The two 
algorithms perform competitively on BA5000 and ER2344 
with logarithmic weights. On the remaining test instances, 
I-DMOEA-�C outperforms I-MOEA/D significantly.

Figure 2 shows the distribution of the final solutions with 
the minimum IGD value within 20 runs found by I-MOEA/D 
and I-DMOEA-�C on BA2500, WS1500, ER2344, and 
FF2000 instances with random weights.It can be seen from 

Fig. 4   The network of the BA500 instance with random weights a 
initial; b after removing a preferred non-dominated solution with the 
smallest pairwise connectivity in the induced graph and the total cost 

of removing nodes less than a predefined threshold 134. The size of 
each node is proportional to its degree, and the color of each node 
color is related to its weight value

Fig. 5   The network of the WS500 instance with logarithmic weights 
a initial; b after removing a preferred non-dominated solution with 
the smallest pairwise connectivity in the induced graph and the total 

cost of removing nodes less than a predefined threshold 589. The size 
of each node is proportional to its degree, and the color of each node 
color is related to its weight value
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Fig. 2 that I-MOEA/D and I-DMOEA-�C exhibit different 
behaviors and can find different parts of the PF for each 
instance. To be specific, I-MOEA/D tends to find solutions 
with high cost values, while I-DMOEA-�C shows opposite 
behavior. Additionally, results obtained via I-DMOEA-�C 
achieve better convergence. The reason that I-DMOEA-�C 
cannot cover the PF well can be attributed to bad estimations 
of nadir points during the evolutionary process. In summary, 
Fig. 2 shows that I-MOEA/D and I-DMOEA-�C can find 
different parts of the PF for each instance and I-DMOEA-�C 
exhibits better performance compared with I-MOEA/D.

After optimizing the above-mentioned Bi-CNDP via 
certain MOEA, a set of non-dominated solutions will be 

obtained. We calculate the frequency of occurrence of each 
node in the set of final non-dominated solutions for all 
instances with random and logarithmic weights. Figure 3 
shows frequency values of all nodes that exist in the set of 
final non-dominated solutions for FF500 instances with 
random and logarithmic weights. According to Fig. 3, we 
note that frequency values of the majority of nodes of the 
instance with logarithmic weights are lower than that of the 
instance with random weights. This suggests that assign-
ing higher weight values to nodes with larger node degree 
has the effect of reducing frequency values of nodes in the 
non-dominated solutions. It can be concluded that it is an 
effective way to spend more resources on protecting nodes 

Fig. 6   The network of the ER235 instance with random weights a 
initial; b after removing a preferred non-dominated solution with the 
smallest pairwise connectivity in the induced graph and the total cost 

of removing nodes less than a predefined threshold 90. The size of 
each node is proportional to its degree, and the color of each node 
color is related to its weight value

Fig. 7   The network of the FF500 instance with logarithmic weights 
a initial; b after removing a preferred non-dominated solution with 
the smallest pairwise connectivity in the induced graph and the total 

cost of removing nodes less than a predefined threshold 282. The size 
of each node is proportional to its degree, and the color of each node 
color is related to its weight value



12742	 J. Li et al.

1 3

with high node degree in order to increase the robustness 
of a network.

Furthermore, a decision-making process from the per-
spective of minimizing the pairwise connectivity of the 
induced graph given a constraint on the cost of removing 
nodes is proposed. Specifically, after obtaining a set of non-
dominated solutions, decision makers can select a preferred 
non-dominated solution with the smallest pairwise connec-
tivity in the induced graph given a constraint on the cost of 
removing nodes. In the end, we exhibit the visual results of 
the decision-making process for the BA500, WS500, ER235, 
and FF500 instances, as shown in Figs. 4, 5, 6 and 7. In all 
figures, we use a color map to represent the topology of the 
initial network and the network after removing a set of nodes 
based on a selected Pareto optimal solution. The size of each 
node is proportional to its degree, and the color of each node 
is related to its weight value.

5 � Concluding remarks

Given a graph, the critical node detection problem consists 
of finding a set of nodes, deletion of which satisfies one or 
more metrics in the induced graph. In contrast to most pre-
vious approaches, we use a bi-objective formulation, rather 
than make hypotheses on the psychology of decision makers. 
In this paper, we propose and study a new variant of this 
problem called bi-objective critical node detection problem 
(Bi-CNDP). In this formulation, we assume that removing 
each node has a cost, and decision makers want to minimize 
the pairwise connectivity of the induced graph and minimize 
the cost of removing a set of nodes at the same time.

We firstly prove the NP-hardness of this problem on 
general graphs and the existence of a polynomial algorithm 
for constructing the �-approximated Pareto front for Bi-
CNDPs on trees. Then, different types of the mating pool 
and the replacement pool are proposed and integrated in 
two state-of-the-art decomposition-based MOEAs including 
MOEA/D and DMOEA-�C . Two MOEAs and their variants 
are applied to solve the proposed Bi-CNDP. Sixteen com-
mon benchmark problems are modified by assigning random 
and logarithmic weight to each node. Computational experi-
ments on all test instances were conducted first to evaluate 
the performance of different variants about the mating pool 
and the replacement pool. Then, further numerical experi-
ments are used to compare the performance of two improved 
MOEAs, i.e., I-MOEA/D and I-DMOEA-�C , on Bi-CNDP. 
Numerical results not only show the effectivenesses of the 
proposed fourth mating pool and the global replacement 
strategy, but also demonstrate different behaviors of two 
improved MOEAs and the superiority of I-DMOEA-�C on 
the majority of test problems. Finally, a decision-making 
process from the perspective of single-objective is proposed 

for helping decision makers to identify the most critical 
nodes with the smallest pairwise connectivity and the total 
cost of removing nodes less than a predefined threshold.

Future research work will include investigations of 
designing more effective reproduction operators, embed-
ding problem-specific knowledge during the optimization 
process, using single-objective methods to further refine 
solutions obtained via multi-objective approaches, and con-
sidering uncertainties in Bi-CNDPs.
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