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Abstract Speed and price are the two most important

factors in customer satisfaction and business success in

today’s competitive environment. Time-based product

differentiation and segment pricing have provided firms

with a great opportunity to profit enhancement. This paper

presents a coding system for pricing/queuing models in the

literature. In this article, a service/make-to-order firm with

heterogeneous price and delivery time-sensitive customers

as an M/M/1 queuing system is analyzed. The firm uses

customers’ heterogeneity to create market segments. Prod-

ucts offered to each segment differ only in price and

delivery time. The objective of this profit-maximizing firm

is to determine optimal price, delivery time, and capacity

for different market segments. Moreover, solving this

problem can help to strategic decision making about supply

chain decoupling point. An approach based on uniformiza-

tion and matrix geometric method so as to calculate the

distribution of low-priority customers’ time in system is

developed. Then, the proposed pricing/queuing model is

implemented by a numerical study and firm’s optimal

decisions under shared and dedicated capacity strategies are

analyzed and the effect of capacity costs and product

substitution is studied. Finally, we have shown how firm’s

decisions are influenced by market characteristics, capacity

costs, and operational strategies.

Keywords Time-based product differentiation . Pricing .

Capacity management . Delivery time guarantees . Queuing

systems

1 Introduction

An effective way to maintain customer responsiveness and

to enhance demand is through time-based product differen-

tiation and segment pricing (Boyaci and Ray [4]). Offering

products which are different only in delivery times and

prices is a common strategy in markets with heterogeneous

price and time-sensitive customers. Many companies,

especially in service and make-to-order (MTO) industries,

are using delivery time guarantees as their marketing

strategy. Since shorter delivery times allow firms a price

premium, they try to benefit from customers’ sensitivity to

speed. Adopting time-based product differentiation brings

capacity-related issues to the forefront because speed of

product delivery is directly influenced by a firm’s capacity.

Companies that offer different products should decide

whether a given product is available to all customers or

distinct groups. For example, FedEx quotes different

logistic services with different guaranteed delivery times

to every customer willing to pay its price. Customers select

the appropriate option based on their preferences for speed

and willingness to pay. In this case, the menu of products

offered is substitutable and demands are dependent. On the

other hand, the price and delivery time combinations that

Dell offers to government and health care corporations are
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different from those offered to individuals. Dell decides on

a product’s availability to each market segment, and

customers have no choice. In this case, options are non-

substitutable, and the demand from each segment is

independent from others.

As a firm’s marketing decisions are closely linked to its

operation strategies, time-based product differentiation

would have a direct influence on operational systems that

produce and deliver these products. A natural question that

comes to mind is whether firms differentiate systems used

for production and delivery of different products or not. In

other words, companies should decide on using shared or

dedicated capacities.

The last two decades have observed significant research

progress on the interaction of pricing and operations. This

literature falls into two fundamental categories: pricing/

inventory models and pricing/queuing models. In the first

case, prices are determined jointly with inventory decisions

or based on current inventory levels. In the second case,

prices are used to control the arrival rate to a queue or

queues and may or may not be set based on the current

queue length (Ray and Jewkes [27]). Here, we have

classified pricing/queuing models based on two general

specifications: problem definition and modeling assump-

tions. A coding system is proposed in Table 1 and models

available in recent literature are coded based on this system

in Table 2. Among these pricing/queuing literatures, the

closest works to ours are by Boyaci and Ray [4] and Sinha

et al. [29]. Boyaci and Ray [4] studied a firm using

dedicated facilities to serve two customer classes with

different delivery time guarantees and at different prices.

They modeled mean demand from each customer class as a

linear function of its own price and delivery time as well as

price and delivery time quoted to the other class. Our

demand function is more general and uses different

sensitivities (to price and time) for each class of customers.

Besides, we consider two different operational strategies

(shared and dedicated). Sinha et al. [29] consider a firm

which uses shared capacities and delay dependent priority

discipline to serve existing (primary class) and new

customers (secondary class).

An outline of the remainder of this paper is as follows. In

Section 2, the problem is defined more precisely. Section 3

is dedicated to the mathematical formulation of our model.

Computational results are discussed in Section 4. We

conclude the paper in Section 5.

2 Statement of the problem

According to the new business model of Internet/telephone

ordering and quick response time requirement, MTO

business model is growing quickly. We consider an MTO

or a service firm that serves customers with different

sensitivities to price and delivery time. The firm uses

customers’ heterogeneity to create market segments and

offers them different prices and delivery times for the same

product. For simplicity, we assume there are two classes of

customers, express customers—who are more time sensi-

tive and are willing to pay a price premium—and regular

customers who are more price sensitive and are willing to

accept a longer delivery time for a price discount than a

shorter delivery time. Moreover, solving this problem can

help strategic decision making about supply chain decou-

Problem Definition Modeling assumptions

Market Monopolistic Mo Objective function Profit maximization MxP

Competitive Co Value maximization MxV

Customers Homogeneous Hm Constraints Delivery time reliability DTR

Heterogeneous Ht Customer’s utility CU

Pricing Internal (transfer) In Expected waiting time EWT

External Ex Decision variables Price P

Operation strategy Shared capacity ShC Capacity C

Dedicated capacity DeC Delivery time D

Product differentiation With W Other O

Without WO Queuing system M/M/1 MM1

Product substitution Substitutable S Other O

Non-substitutable NS Demand Linear L

Nonlinear NL

Cost Capacity CC

Operating OC

Delay DC

Table 1 Coding system

proposed for classification

236 Int J Adv Manuf Technol (2011) 57:235–244



pling point. Assumptions and decisions determined by the

model are explained as follows.

2.1 Assumptions

& Demand from customer class i arrives according to a

Poisson process with rate 1i that depends not only on its

own price and delivery time but also on price and

delivery time quoted to the other class.

& Customers cannot observe the congestion in the firm,

and their choices are based on the prices and delivery

times offered.

& The time taken to serve each demand from class i is

exponentially distributed with rate μi, therefore the service

facility is modeled as an M/M/1 queuing system. We also

assume that in SC, both service rates are equal to μ.

& Customers within each class are served based on FCFS

priority discipline.

& Applying SC strategy, express customers are served

based on preemptive priority discipline.

& All customers are served by the same service capacities

hence capacity costs are equal for both classes.

& The operating cost the firm incurs for serving customers

of either class is equal.

& Delivery time is predetermined and fixed for regular

customers.

2.2 Decisions

& Which prices are to be offered for product/service to

express and for regular customers.

& Which delivery time is to be quoted to express

customers.

& Using different capacity strategies, which service rates

are to be used in order to meet the guaranteed delivery

times with a determined service level.

We also investigate how these decisions are influenced

by changes in capacity costs, capacity strategies, and

product substitutability. According to the coding system

Item no. Author(s) Article’s code (problem definition/modeling assumptions)

1 Mendelson [17] Mo/Hm/In/DeC/SP/NS/MxP&MxV//P&C/O/L/CC&DC

2 Dewan and Mendelson [6] Mo/Ht/In/ShC/SP/NS/MxV//P&C/MM1/L/CC&DC

3 Mendelson and Whang [18] Mo/Ht/In/ShC/MP/NS/MxV//P&C/MM1/L/DC

4 Hill and Khosla [11] Mo/Hm/Ex/DeC/SP/NS/MxP//P&D//NL

5 Stidham [32] Mo/Ht/In/ShC/SP/NS/MxP//P&C/O/L/CC&DC

6 Li and Lee [15] Co/Ht/Ex/DeC/SP/NS/MxP//P&C&O/MM1/NL

7 Lederer and Li [14] Co/Ht/Ex/ShC/MP/NS/MxP//P&O/O/L/DC

8 So and Song [31] Mo/Hm/Ex/DeC/SP/NS/MxP/DTR/P&D&C/MM1/NL/CC&OC

9 Palaka et al. [20] Mo/Hm/Ex/DeC/SP/NS/MxP/DTR/P&D/MM!/L/OC&DC

10 Ha [8] Mo/Hm/In/DeC/SP/NS/MxP&MxV//P/O/L/OC&DC

11 Rao and Petersen [26] Mo/Ht/In/ShC/MP/NS/MxP&MxV//P/MM1/L/OC&DC

12 So [30] Co/Hm/Ex/DeC/SP/NS/MxP/DTR/P&D/MM1/L/OC

13 Van Mieghem [34] Mo/Ht/Ex/ShC/MP/NS/MxP//P&O/MM1/L/OC&DC

14 Ha [9] Mo/Ht/In/ShC/MP/S/MxV//P/O/L/OC&DC

15 Hall et al. [10] Mo/Ht/Ex/ShC/MP/NS/MxP/EWT/P/L/

16 Boyaci and Ray [4] Mo/Ht/Ex/DeC/MP/S/MxP/DTR/P&C&D/MM1/L/CC&OC

17 Mandjes [16] Mo/Ht/Ex/ShC/MP/S&NS/MxP//P&C/MM1/L/CC&OC

18 Ray and Jewkes [27] Mo/Hm/Ex/DeC/SP/NS/MxP/DTR/P&D/MM1//L/CC&OC

19 Allon and Federgruen [3] Co/Hm/Ex/DeC/SP/NS/MxP/DTR/P&D/MM1//L/CC&OC

20 Afeche [1] Mo/Ht/Ex/ShC/MP/NS/MxP/CU/P&O/MM1/L

21 Afeche and Mendelson [2] Mo/Ht/Ex/ShC/MP/NS/MxP&MxV//P/MM1/L/DC

22 Katta and Sethuraman [13] Mo/Ht/Ex/ShC/MP/NS/MxP//P&O/MM1/L/DC

23 Boyaci and Ray [5] Mo/Ht/Ex/DeC/MP/S/MxP/DTR/P&C&D/MM1/L/CC&OC

24 Pekgun et al. [23] Mo/Hm/Ex/DeC/SP/NS/MxP/DTR/P&D/MM1/L

25 Dobson and Stavrulaki [7] Mo/Hm/Ex/DeC/SP/NS/MxP/CU/P&C&O/O/L/CC&DC

26 Allon and Federgruen [3] Co/Ht/Ex/DeC&ShC/MP/NS/MxP/DTR/P&D/MM1/L/CC&OC

27 Pekgun et al. [22] Co/Hm/Ex/DeC/SP/NS/MxP/DTR/P&D/MM1/L

28 Pangburn and Stavrulaki [21] Mo/Ht/Ex/DeC&ShC/SP/NS/MxP/CU/P&C/MM1&O/L/CC&DC

29 Sinha et al. [29] Mo/Ht/Ex/ShC/MP/NS//MxP/EWT/P&DC&O/MM1/L

Table 2 Classification of

reviewed article
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presented in Table 2, our studied problem will be coded as:

Mo/Ht/Ex/DeC & ShC/W/S&NS/MxP/DTR&EWT/

P&C&D/MM1/L/CC&OC.

3 Problem formulation

This section is dedicated to mathematical formulation of

model. The following notations are used for the mathematical

formulation of our problem:

Sets and indices

i Customer classes’ index i=1,2

Parameters

2a Market size

bip Sensitivity of customer within class i to its own price

biL Sensitivity of customer within class i to its own

guaranteed delivery time

θp Sensitivity of demand to interclass price difference

θL Sensitivity of demand to interclass price difference

C Unit operating cost

A Capacity cost

α Service level

Variables

pi Price quoted to customers within class i

Li Delivery time guaranteed to customers within class i

μi Mean service rate for customers within class i

1i Mean arrival rate for customers within class i

Tsi Time in system for customers within class i

The mathematical formulation of the problem is as

follows:

Max
X2

i¼1

pi � li �
X2

i¼1

c� li �
X2

i¼1

A� mi ð1Þ

Subject to

Stability condition ð2Þ

Pr Tsi � Lið Þ � a 8i ð3Þ

L1 < L2 ð4Þ

pi � 0;mi � 0; L1 � 0 ð5Þ

Objective function (1) maximizes a firm’s profit.

Constraint (2) is the stability condition for the M/M/1

queuing system used for a modeling service facility.

Constraint (3) imposes that the time that each customer

spend in the system (time in queue+service time) of a

customer should not exceed the guaranteed delivery time

related to his class with a probability of at least α.

Constraint (4) assures that the guaranteed delivery time

for express customers be shorter than regular customers.

According to assumptions in Section 2.1., demand from

customer class i arrives according to a Poisson process with

rate 1i, which depends not only on its own absolute price

and delivery time but also on its price and delivery time

quoted relative to the other class. Then, the firm can attract

new customers by reducing price and/or by offering shorter

delivery times. The price and/or delivery time reduction for

one class can also induce customers to switch preferences.

It is assumed that customers cannot observe the congestion

levels of the firms, and their choices are only based on the

prices and delivery times announced by the firms. The

demand rates are modeled using the linear functions

(Eq. 6), inspired by Tsay and Agrawal [33], Boyaci and

Ray [4]:

li ¼
l1 ¼ a� b1pp1 þ qp p2 � p1ð Þ � b1LL1 þ qL L2 � L1ð Þ; i ¼ 1

l2 ¼ a� b2pp2 þ qp p1 � p2ð Þ � b2LL2 þ qL L1 � L2ð Þ; i ¼ 2

(

ð6Þ

This demand model (Eq. 6) also confirms the effects of

price and time differentiation on the demand rates: one

extra unit of price differentiation decreases the demand rate

from express customer and increases that from regular

customers by the same amount, while one extra unit of time

differentiation increases the demand rate from express

customers and decreases that from regular customers by

the same amount (Jayaswal et al. [12] and Sachin Jayaswal

[28]). Constraints (2) and (3) can be written as

li < mi 8i ð7Þ

Pr Tsi � Lið Þ ¼ 1� e li�mið ÞLi � a 8i ð8Þ

while using dedicated capacities and as

l1 þ l2 < m ð9Þ

Pr Tsi � L1ð Þ ¼ 1� e l1�mð ÞLi � a i ¼ 1 ð10Þ

while using shared capacities. For regular customers, a

closed form expression for distribution of time in a

system does not exist. We describe the continuous time

Markov chain model for an SC system in Section 3.1.

Steady state probabilities are computed using the matrix

geometric method (MGM). Ramaswami and Lucantoni

[24] and Neuts [19] presented an algorithm based on

238 Int J Adv Manuf Technol (2011) 57:235–244



uniformization to derive the complimentary distribution

function of the stationary waiting times in quasi birth and

death (QBD) processes. We adopt their algorithm to derive

Ts2.

3.1 The Markov chain

Consider the continuous time Markov chain i; jð Þ; i � 0;f
0 � j � Mg, where i (the level) and j (the interlevel state)

are respectively the number of low and high priority

customers in the system. The generator matrix of this

QBD process Q is given as

Q ¼

B0;0 A0 0 0 . . .

A2 A1 A0 0 . . .

0 A2 A1 A0 . . .

0 0 A2 A1 . . .

..

. ..
. ..

. ..
. . .

.

2

666664

3

777775

where

A0 ¼

l2 0 0 . . .

0 l2 0 . . .

0 0 l2 . . .

..

. ..
. ..

. . .
.

2

6664

3

7775 A2 ¼

m 0 0 . . .

0 0 0 . . .

0 0 0 . . .

..

. ..
. ..

. . .
.

2

664

3

775

B0;0 ¼

�ðmþ l2Þ l1 0 . . .

m �ðmþ l2 þ l1Þ l1 . . .

0 m �ðmþ l2 þ l1Þ . . .

..

. ..
. ..

. . .
.

2

6664

3

7775A1 ¼

�ð2mþ l2Þ l1 0 . . .

m �ðmþ l2 þ l1Þ l1 . . .

0 m �ðmþ l2 þ l1Þ . . .

..

. ..
. ..

. . .
.

2

6664

3

7775

Submatrices A0, A1, A2, and B0,0 show transitions from level

i to level i+1, transitions within level i>1, transitions from

level i to level i−1 and transitions within level i=0,

respectively.

3.2 Stability conditions

Let A ¼ A0 þ A1 þ A2. We have

A ¼

�m l1 0 . . .

m � mþ l1ð Þ l1 . . .

0 m �ðmþ l1Þ . . .

..

. ..
. ..

. . .
.

2

6664

3

7775

It is obvious that A is a generator matrix and its associated

stationary distribution p ¼ p0; p1; . . . ; pM½ � is driven as a

solution to πA=0 and π1=1.

3.3 The stationary distribution

Let x ¼ x0; x1; x2; . . .½ � be the stationary distribution associ-

ated with the Markov chain such that x1=1 and xQ=0.

From the matrix geometric theorem we know that

xiþ1 ¼ xiR; i � 0

where R is the minimal nonnegative solution to the matrix

quadratic equation

A0 þ RA1 þ R2A2 ¼ 0

The matrix R can be computed very easily using the

iterative approach presented by Ramaswami and Lucantoni

[25] and Neuts [19].

The boundary vector x0 is obtained from

x0 B0;0 þ RA2

� �
¼ 0

We then normalize it by

x0 I � Rð Þ�1
e ¼ 1

3.4 Computing regular customers’ time in system

Based on the approach presented by Ramaswami and

Lucantoni [24] and Neuts [19], the probability that a

regular customer arriving to the system at an arbitrary time

will wait longer than x units is equal to

Pr Ts > xð Þ ¼
X1

n¼0

dne
�qx qxð Þn

n!

where q ¼ max1�j�m � A0 þ A1ð Þjj and

dn ¼ p0 I � Rð Þ�1
RHne

H0 ¼ I Hnþ1 ¼ Hn
bA1 þ RHn

bA2

where

bA1 ¼
1

q
A0 þ A1ð Þ þ I bA2 ¼

1

q
A2
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Table 3 Values of parameters

TDSMPDSM

30.9931000152545403025101025

Fig. 1 The effect of capacity cost increase on a prices offered to regular customers, b prices offered to express customers, c delivery time offered

to express customers, d delivery time difference, and e price difference, in a time difference-sensitive market
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Now we can rewrite constraint (3) for regular customers as

Pr Tsi < L2ð Þ ¼ 1�
X1

n¼0

e�qx ðqxÞ
n

n!
p0ðI � RÞ�1

RHne > a; i ¼ 2

4 Numerical examples

In this section, we illustrate how a firm’s decisions relate to the

capacity cost and operational strategies and present the

optimal solution for a variety of parameter settings. Parame-

ters θL and θp are assumed to be different for time difference-

sensitive markets (TDSM) and price difference-sensitive

markets (PDSM). Parameter values are presented in Table 3.

To study the effect of capacity costs on a firm’s optimal

decisions, we solved the problem for A=5, 7, 9, 11, 13, 15,

17. The results for TDSM, PDSM, and non-substitutable

products (θp=θL=0) are respectively illustrated in Figs. 1,

2, and 3.

Fig. 2 The effect of capacity cost increase on a prices offered to regular customers, b prices offered to express customers, c delivery time offered

to express customers, d delivery time difference, and e price difference, in a price difference-sensitive market

Int J Adv Manuf Technol (2011) 57:235–244 241



As shown above, irrespective of market characteristics,

for a firm using shared capacities, the optimal decision in

reaction to an increase in marginal capacity cost is to

increase the delivery time for express customers and prices

for both classes. Obviously, when the capacity costs

increase, it will not be beneficial for the firm to expand

its capacities, therefore the service rate decreases and the

delivery time will increase. The delivery time and the prices

should be set so that the delivery time differentiation

decreases and the price differentiation increases. For a firm

Fig. 3 The effect of capacity cost increase on a prices offered to regular customers, b prices offered to express customers, c delivery time offered

to express customers, d delivery time difference, and e price difference for non-substitutable products

242 Int J Adv Manuf Technol (2011) 57:235–244



using dedicated capacities, optimal decisions are similar to

the ones in a shared capacity strategy, but delivery time and

prices should be set so that the delivery time differentiation

and price differentiation decrease.

The results for A=15 in TDSM, PDSM, and non-

substitutable cases are reported in Table 4. Tables 5 and 6

illustrate the effect of product substitution and capacity

strategies on a firm’s optimal decisions and profit.

Product substitution will lead to a decrease in an

express product’s price and an increase in a regular

product’s price and express product’s delivery time

(see Table 4). In other words, when products are

substitutable, the price and delivery time differentiations

are less than non-substitutable cases (see Table 4).

Besides, using dedicated capacities in TDSM and PDSM,

μ1 is larger and μ2 is smaller compared to non-

substitutable case.

As presented in Table 5, using shared capacities to

serve different customer classes will cause an increase in

an express product’s price and a decrease in a regular

product’s price and express product’s delivery time. In

other words, when capacities are shared, price and

delivery time differentiations are more than dedicated

cases.

5 Conclusions

According to the new business model of Internet/telephone

ordering and quick response time requirement, the MTO

business model is growing quickly. In this article, the

authors have studied an MTO service firm that serves

nonhomogeneous price and time-sensitive customers. The

firm uses nonhomogeneity and differentiates its product

based on the delivery time. Therefore, different delivery

times and prices are offered to different customer classes. In

this study, the firm modeled as an M/M/1 queuing system.

Then, an approach based on uniformization and MGM so

as to calculate the distribution of low-priority customers’

time in a system is developed. A numerical example is

provided and a firm’s optimal decisions under shared and

dedicated capacity strategies are analyzed. The effect of

capacity costs and product substitution is studied. Conse-

quently, solving this queuing–pricing problem can help

strategic decision making about the supply chain decou-

pling point. This study modeled the firm as an M/M/1

queuing system. More general systems like G/G/1 and

implementation in a real case study such as an electronic

product supply chain can also be a topic of future studies.

Moreover, considering competitive markets would be a

challenging problem.

Table 5 Effect of product substitution on a firm’s optimal decisions

TDSM PDSM

SC DC SC DC

p1 Decrease Decrease Decrease Decrease

p2 Increase Increase Increase Increase

p1–p2 Decrease Decrease Decrease Decrease

L1 Increase Increase Increase Increase

L1–L2 Decrease Decrease Decrease Decrease

Table 6 Effect of using shared capacities on a firm’s optimal

decisions

TDSM PDSM Non-substitutable

p1 Increase Increase Increase

p2 Decrease Decrease Decrease

p1–p2 Increase Increase Increase

L1 Decrease Decrease Decrease

L1–L2 Increase Increase Increase

TDSM PDSM Non-substitutable

SC DC SC DC SC DC

p1 25.12542 25.32329 23.9578 23.8629 25.45487 25.32329

p2 20.64079 20.5625 31.05279 21.63891 20.44629 20.5625

L1 0.284547 0.45783 0.31452 0.49139 0.06384 0.45783

μ1 339.6329 229.7573 335.4478 240.8582 334.64511 229.7573

μ2 104.0351 91.49204 104.0351

Profit 1,898.76 1,697.669 1,701.837 1,520.929 1,837.234 1,697.669

Table 4 Results for A=15

in TDSM, PDSM, and

non-substitutable cases

Int J Adv Manuf Technol (2011) 57:235–244 243
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