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With the technological advancements of the modern era, the easy availability of image editing tools has dramatically minimized
the costs, expense, and expertise needed to exploit and perpetuate persuasive visual tampering. With the aid of reputable online
platforms such as Facebook, Twitter, and Instagram, manipulated images are distributed worldwide. Users of online platforms
may be unaware of the existence and spread of forged images. Such images have a significant impact on society and have the
potential to mislead decision-making processes in areas like health care, sports, crime investigation, and so on. In addition, altered
images can be used to propagate misleading information which interferes with democratic processes (e.g., elections and gov-
ernment legislation) and crisis situations (e.g., pandemics and natural disasters). )erefore, there is a pressing need for effective
methods for the detection and identification of forgeries. Various techniques are currently employed for the identification and
detection of these forgeries. Traditional techniques depend on handcrafted or shallow-learning features. In traditional techniques,
selecting features from images can be a challenging task, as the researcher has to decide which features are important and which
are not. Also, if the number of features to be extracted is quite large, feature extraction using these techniques can become time-
consuming and tedious. Deep learning networks have recently shown remarkable performance in extracting complicated
statistical characteristics from large input size data, and these techniques efficiently learn underlying hierarchical representations.
However, the deep learning networks for handling these forgeries are expensive in terms of the high number of parameters,
storage, and computational cost. )is research work presents Mask R-CNN with MobileNet, a lightweight model, to detect and
identify copy move and image splicing forgeries. We have performed a comparative analysis of the proposed work with ResNet-
101 on seven different standard datasets. Our lightweight model outperforms on COVERAGE and MICCF2000 datasets for copy
move and on COLUMBIA dataset for image splicing. )is research work also provides a forged percentage score for a region in
an image.

1. Introduction

Digital images are used in almost every domain, such as
public health services, political blogs, social media platforms,
judicial inquiries, education systems, armed forces, busi-
nesses, and so on. Rapid advances in digital technology have
led to the creation and circulation of a vast amount of images
over the last few years. With the use of image/photo editing
tools like Canva, CorelDRAW, PicMonkey, PaintShop Pro,

and many other applications, it has become very easy to
manipulate images and videos. Such digitally altered images
are a primary source for spreading misleading information,
impacting individuals and society. )e deliberate manipu-
lation of reality through visual communication with the aim
of causing harm, stress, and disruption is a significant risk to
society, given the increasing pace at which information is
shared through social media platforms such as Twitter,
Quora, and Facebook. It becomes a significant challenge for
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such social media platforms to identify the authenticity of
these images. For example, cybersecurity experts [1] have
reported that hackers have the ability to access patient’s 3-D
medical scans and can edit or delete images of cancerous
cells. In a recent study, surgeons were misled by scans
modified with AI software, possibly leading to a high risk of
misdiagnosis and insurance fraud. In addition, manipulated
images related to politics [2] distributed across social media
platforms have the potential to mislead and influence public
perceptions and decisions. For example, studies have shown
that that particular types of images are likely to be reused
and, in certain cases, exploited in online terrorism com-
munication channels through media sources [3–5]. Image
alteration becomes too easy using image editing software
and even altering the original image in such a way that
forensic investigators will not be able to identify the changes
in the image. )e major camera manufacturers use digital
certificates to solve this issue. However, some companies
have generated forged images taken from Canon and Nikon
camera models. )ese fake images are passed through
manufacturer verification software to perform their au-
thenticity test [6].

)erefore, there is a need to develop a forgery detection
technique that detects and identifies forgeries to resolve
these challenges. Many forgery detection techniques shown
in Figure 1 have been developed to authorize a digital image.
)ese techniques are usually split into two types, referred to
as active and passive detection techniques [7–9]. In active
detection, a message digest or digital signature [10–14] is
injected inside an image when it is created. In this forgery
detection technique, statistical information such as mean,
median, and mode is inserted into an image using some
encryption method; this information is then retrieved from
the image at the receiving side using a decryption method to
check its authenticity [15]. In passive detection, changes in
the entire image and local features are identified. It does not
leave any visual clues of forgery, but it alters the statistical
information of an image. It verifies the structure and content
of an image to determine its validity.

Passive detection is classified into forgery type-dependent
and independent detection techniques. Forgery-dependent
techniques are popular as they handle particular kinds of
image forgeries, like image splicing and copy move. Copy
move [16] duplicates a part of an image in several positions
within the same image. Image splicing is the process of
merging two or multiple images to produce a new image [17].
)ere aremany research studies into the identification of copy
move and image splicing forgeries. )e traditional forgery
detection techniques specified in the literature of image
forgery detection depend on the image’s frequency domain
properties or statistical information. )ese techniques utilize
relevant features, and then these features are used to differ-
entiate the original image from the forged image. )ese
techniques mainly focus on designing complex handcrafted
features. However, it is difficult to identify which feature
should be extracted for detecting forgery.

Some research works have used various machine
learning algorithms for forgery detection. Conventional
machine learning (ML) algorithms like logistic regression,

SVM, and K-means clustering consider every pixel of the
image as an individual dimension, thereby formulating
image classification as a geometry problem [18]. Images
are converted into high-dimensional vectors, and classi-
fication boundaries are learned through these algorithms.
Unfortunately, such algorithms are often unable to learn
very complex boundaries, leading to poor performance in
image classification. Few machine learning algorithms
that use distance metrics, such as K-nearest neighbours
and K-means clustering [19], are computationally ex-
pensive because they require large dimensional vector
spaces.

Rapid developments in computational capabilities such
as processing power, memory space, and power con-
sumption have enhanced the efficiency and cost-effec-
tiveness of computer vision-based applications. DL helps
computer vision researchers to gain better accuracy in
image classification [20], semantic segmentation [21], and
object identification [22] compared to conventional CV
techniques. DL algorithms are more versatile as compared
to traditional computer vision algorithms, which are more
domain-specific. For specific applications, pretrained CNN
models are used where the weights are already learned over
large datasets (which contain millions of images). )ese
models are open-sourced for all developers, and only the
last few layers need to be modified in order to fine-tune for
a specific application [23, 24]. Various DL networks have
been proposed in the computer vision area, including
AlexNet [25]; in 2012, it won the ImageNet Large Scale
Visual Recognition Challenge, thereby increasing classifi-
cation accuracy by 10% over traditional machine learning
algorithms. VGGNet [26] was proposed by the University
of Oxford’s Visual Geometry Group in 2014, and Goo-
gLeNet [27] and ResNet [28] were proposed in 2015. Several
DL networks in computer vision discussed above are be-
coming increasingly complex to achieve greater accuracy.
)e aforementioned DL network’s parameters increase
exponentially, making these networks more reliant on
computationally efficient graphical processing units
(GPUs) [29]. To address the challenges of existing work,
this work contributes a lightweight deep learning classi-
fication network based onMobileNet V1 [30]. )is network
is built on the depthwise separable convolution principle
[31, 32], which minimizes network parameters and com-
putational complexity in the convolution processing op-
eration, resulting in a lightweight network.

)e significant contributions of this research work are as
follows:

(i) Development of DL architecture for detection and
identification of copy move and image splicing
forgeries.

(ii) Detection and identification of copy move and
image splicing forgeries using Mask R-CNN with
MobileNet V1, a lightweight network and compu-
tationally less expensive.

(iii) Evaluation of Mask R-CNN with MobileNet V1 on
seven different datasets such as COVERAGE [33],
CASIA 1.0 [34], CASIA 2.0 [34], COLUMBIA [35],

2 Computational Intelligence and Neuroscience
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MICC F220 [36], MICC F600 [36], and MICC
F2000 [36].

(iv) Comparative analysis of the proposed work with
ResNet-101 on different standard datasets.

(v) Estimation of the percentage score for a region of a
forged image using Mask R-CNN and MobileNet
V1.

)is paper is structured as follows. Section 1 presents an
introduction, related work is outlined in Section 2, Section 3
shows the proposed architecture, the details of the datasets
are outlined in Section 4, dataset annotation is given in
Section 5, Section 6 outlines implementation details, Section
7 shows the results, and Section 8 presents the conclusion.

2. Related Work

)is section specifies related work for copy move using DL,
image splicing using DL, and DL networks for computer
vision.

2.1. Copy Move. )e research work in [37] uses CNN for
detecting copy move and image splicing forgeries. For
extracting features from patches, the CNN network had been
pretrained on labeled images. )e SVM model is then
trained using the extricated features. )e research work in
[38] uses CNN along with a deconvolutional network for
copy move forgery detection. )e test image is divided into
blocks, and then CNN is used to extract the features from
these image blocks. Self-correlations between these blocks
are then calculated. After that, the matched points between
blocks are localized, and finally, the deconvolutional net-
work reconstructs the forgery mask. )is copy move forgery
detection (CMFD) technique is more robust against post-
processing operations such as affine transformation, JPEG
compression, and blurring.

)e study in [39] uses Mask R-CNN and the Sobel filter
for detection and localization of copy move and image
splicing forgeries. Here the employed Sobel filter allows
predicted masks to identify gradients that are close to those
of the real mask.

)e work in [40] uses six convolutional layers and three
FC layers. Here batch normalization is used in all the
convolution layers and dropout in the FC layers (except in
the last layer). CoMoFoD and BOSSBase datasets are used
for evaluation of this technique which achieves an accuracy
of 95.97% and 94.26%, respectively, on these datasets. )e
research study in [41] uses various processes such as seg-
mentation, feature extraction, and dense depth recon-
struction, finally identifying the tampered area for copy
move forgery detection. Here forged image is segmented
with simple linear iterative clustering (SLIC). )en, from
these segmented patches, features from various scales are
extracted using VGG-16. )ese features are used to re-
construct the dense depth of the image pixel which aids in
the matching of the forged and original region. After the
reconstruction process, the ADM (adaptive patch matching)
technique is applied to find out the matched regions. )e
majority of the suspicious regions are apparent at the end of
this operation. During this process, the unforged regions are
removed and the forged regions are visible. )e MICC F220
dataset was used in the experiments, which achieves a
precision of 98%, recall of 89.5%, F1-score of 92%, and
accuracy of 95%. )e main contribution of the research in
[42] is the development of a CNN for categorizing images
into two groups: authentic and forged. Image features are
extracted and feature maps are created by the CNN. )e
CNN takes the average of the produced feature maps and
searches for feature correspondences and dependencies. )e
trained CNN is then used to classify the images. )is
technique has been tested on MICC F220, MICC F2000, and
MICC F600 datasets in a variety of copy move situations,
including single and multiple cloning with varying cloning

Copy
Move

Image
Splicing

Resampling

Compression

Forgery Type
Independent

Forgery 
Type

Dependent

Passive
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Digital Image
Forgery

Detection

Active
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Figure 1: Digital image forgery detection.
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regions, and achieved 100% accuracy and zero log loss using
50 epochs. )e earlier research work shows remarkable
performance but suffers from a few challenges such as
generalization issues due to significant reliance on training
data and the necessity for suitable hyperparameter selection.
To address this issue, the researchers proposed [43] two deep
learning techniques: a custom design of architecture and a
transfer learning model for copy move forgery detection. To
address the challenge of generalization, different standard
datasets were employed. In the custom design technique, five
architectures were designed with different depths (archi-
tectures with convolution layers up to five with two FC layers
were used). )e second technique is transfer learning for
which the VGG-16 pretrained model is used. )e pretrained
model (pretrained with VGG-16) differs from custom design
model in terms of depth, the number of filters in the con-
volutional layers, the activation function, and the number of
convolutional layers before the pooling layer. )e VGG-16
model by transfer learning obtained metrics is around 10%
higher than the model by custom design, but it required
more inference time.

)e research study in [44] uses MobileNet V2 for the
detection of copy move forgery with postprocessing oper-
ations related to visual appearance and geometrical opera-
tions. )e MobileNet V2 model is a notable performer with
TPR and FPR of 84% and 14.35%, respectively. Experiments
show that the improved MobileNet V2 CNN framework is
robust and resource-friendly. )e work in [45] uses a DL
technique based on a hybrid ConvLSTM and CNN. )e
main goal of this study was to develop and improve a deep
learning classification model for distinguishing between
authentic and forged digital image forgeries. )is method
extracts image features by a sequence number of convolution
(CNV) layers, ConvLSTM layers, and pooling layers,
matching features and detecting copy move forgery. )is
technique is then tested onMICC F220,MICC F2000, MICC
F600, and SATs-130. To address the generalization issue, a
new dataset was created by merging the aforementioned
datasets. )e model developed in this research work offers
good performance with low computing costs.

In [46], the researchers presented a framework for
classifying input images as authentic or forged by combining
the image transformation techniques along with pretrained
CNN. )e three image transformation techniques such as
LBP (local binary pattern), DWT (discrete wavelet trans-
form), and ELA (error level analysis) were used to extract
appropriate features. In this framework, ELA is used to
transform images and then these images are used to train a
CNN to detect forged images. )e model’s training potential
is further enhanced by using transfer learning to initialize
the weights of the CNN with pretrained VGG-16. )e ex-
periments are performed on public benchmark datasets. )e
model was tested on generalized images. )e research work
in [47] uses the CNNmodel which is developed using multi-
scale input with multiple stages of convolutional layers.
)ese layers are divided into two blocks, i.e., encoder and
decoder. )e encoder block combines and downsamples
derived feature maps from many levels of convolutional
layers. Similarly, extracted feature maps in decoder blocks

are concatenated and upsampled. )e final feature map is
employed to distinguish pixels as forged or non-forged using
a sigmoid activation function. Two publicly available
datasets are utilized to validate the model.

2.2. Image Splicing. )e study in [48] uses the FCN model
for detecting image splicing in an image. )e single-task
FCN is trained with a surface label that classifies an image’s
pixel as spliced or authentic. But single-task FCN generates
coarse localization output for some cases. )e improved
edge MFCN performs better than SFCN and MFCN. It is
trained with surface labels and boundary labels, and it uses a
surface label and edge probability map to localize the spliced
field. )e study in [49] employed the conditional generative
adversarial network (cGAN) to detect spliced forgeries in
satellite images. It had a high degree of accuracy in detecting
and locating spliced objects.

)e research work in [50] is based on a local feature
descriptor learned by a deep convolutional neural network
(CNN). A two-branch CNN is used to automatically train
hierarchical representations from RGB color or grayscale
test images using the local descriptor. )e proposed CNN
model’s first layer is used to suppress image content effects
and extract the various and expressive residual features,
which is specifically considered for image splicing detection.
)e first layer’s kernels are initialized with an improved
initialization method based on the SRM.)e proposed CNN
model’s generalization ability is improved by combining the
contrastive loss with cross-entropy loss. In order to acquire
the final discriminative features of the test image for image
splicing detection with SVM, an effective feature fusion
approach known as block pooling was used with the
blockwise dense features which were retrieved by the pre-
trained CNN-based local descriptor on a test image. For
image splicing, localization of spliced region is further de-
veloped based on the pretrained CNN model by including
the fully connected conditional random field (CRF). Ex-
tensive testing on many public datasets reveals that the
proposed CNN-based strategy outperforms the state-of-the-
art algorithms not only for image splicing detection and
localization performance but also in JPEG compression
robustness.

In [51], the researchers offer a new image splicing de-
tection system that uses ResNet-Conv, a new deep learning
backbone architecture. ResNet-Conv is created by
substituting a set of convolutional layers for the feature
pyramid network in ResNet-FPN. )e initial feature map is
generated using this new backbone, which is then used to
train the Mask-RCNN to build masks for spliced regions in
forged images. ResNet-50 and ResNet-101 are two distinct
ResNet architectures that are considered. Several post-
processing operations were employed on the input images to
get more realistic forged images. Using a computer-gener-
ated image splicing dataset, the proposed network is trained
and tested, and it is found to be more efficient than alter-
native networks. )e DL-based image splicing technique
proposed in [52] used a convolutional neural network and a
weight combination mechanism. In this technique, YCbCr

4 Computational Intelligence and Neuroscience
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features, edge features, and PRNU features were merged,
and their weight settings were automatically changed during
the CNN training process until the best ratio was achieved.

)e research work in [53] uses ResNet-50 pretrained deep
learning network and a quantum variational circuit. Using
Xanadu’s PennyLane quantum simulator and the PyTorch DL
framework, researchers presented a comparative empirical
analysis of classical versus quantum transfer learning ap-
proaches. )e model was tested on IBM’s genuine quantum
processor, the ibmqx2. )e quantum processor (accu-
racy� 85% and recall� 87.18%) and simulator (accu-
racy� 81.94% and recall� 91.67%) outperformed conventional
computers (accuracy� 80.57% and recall� 89.11%).

In [54], two techniques are used for image splicing
detection. Firstly, the “Noiseprint” technique is used which
suppresses the image content and exposes the tampering
artifacts in the spliced images more accurately. Secondly, the
ResNet-50 network is used as a feature extractor which
learns the distinguishing features between the authentic and
spliced images. Finally, the SVM classifier is used to classify
the images as spliced or authentic. )e future work of this
research focuses to distinguish authentic videos (videos
recorded using a single camera) from spliced videos (videos
created by merging different videos). It also locates the exact
spliced region in a spliced region. )e research study in [55]
introduces a convolution neural net-based technique for the
selection of features, which eliminates the time-consuming
job of manually selecting image features. )e feature vector
is then loaded into a dense classifier network to assess if an
image is authentic or spliced.)e proposed model is trained,
validated, and tested on CASIA v2.0. )e experimental
results show that the proposed technique outperforms the
current state-of-the-art techniques. )e limitation of this
technique is that it is not able to locate spliced region.

)e research study in [56] uses color illumination, deep
convolution neural networks, and semantic segmentation to
detect and localize image splicing forgery. After the pre-
processing step, color illumination is employed to apply the
color map. )e deep convolution neural network is used to
train VGG-16 with two classes using the transfer learning
approach. )is research study determined whether a pixel is
authentic or forged one. In order to locate forged pixels,
semantic segmentation was used which is trained on images
using color pixel labels. )e technique used in [57] integrates
handcrafted features based on color characteristics and deep
features using the image’s luminance channel to get patterns
for forgery detection. )e quaternion discrete cosine trans-
form of the image is used to compute 648-D Markov-based
features in the first stream. )e image’s local binary pattern is
extracted in the second stream using the YCbCr colorspace’s
luminance channel. Local binary feature maps are also input
into the pretrained ResNet-18 model to get a 512-D feature
vector named “ResFeats” from themodel’s convolutional base
portion’s last layer. An 1160-D feature vector is formed by
combining the handcrafted features from stream I and
ResFeats from stream II. A shallow neural network is used to
perform classification. )is technique was evaluated on the
CASIA v1 and CASIA v2 datasets, and on these datasets, this
fusion-based technique achieves 99.3% accuracy.

2.3.DeepLearningNetworks forComputerVision. In the field
of computer vision, image segmentation is a famous topic
for researchers. )is process divides an image into different
regions, and based on the characteristics of pixels of these
regions, it specifies various objects of the image and its
boundary. R-CNN [58], Fast R-CNN [59], Faster R-CNN
[60], and Mask R-CNN [61] are variants of region-based
CNN algorithms; these algorithms provide better segmen-
tation in a reasonable amount of time. R-CNN algorithm
[58] stood out among various algorithms when applied to
VOC2007 data. R-CNN is utilized for object identification
and classification in images, with bounding boxes for dif-
ferent image objects. In R-CNN [58], nearly two thousand
region proposals are generated using a selective search al-
gorithm, and they are wrapped to a fixed size.)ese wrapped
proposals are then fed to CNN, which acts as an image
feature extractor, extracting a predetermined-size image
feature vector from each region. R-CNN extracts 4096-di-
mensional feature vector from each region proposal. )e
extracted features are then fed to SVM, which helps in
classifying the presence of objects in the region. )e
bounding box’s coordinates are estimated using a regressor.

Fast R-CNN [59] is an object classification method, and
detection method based on deep ConvNets uses two
thousand ConvNets for each image region. A single deep
ConvNet significantly speeds up feature extraction. )en,
the softmax function is used for classification, which mar-
ginally outperforms SVM. Faster R-CNN [60] uses three
networks for object detection. CNN is the first network that
produces feature maps for the given input image. An RPN is
a second network that generates a collection of bounding
boxes called ROIs with more chances of having objects
inside them. A final network takes feature maps from the
convolutional layer and generates an object’s bounding
boxes as well as predicts its class. Faster R-CNN is improved
by Mask R-CNN [61], which provides a mask for the in-
dividual region of interest.

Recent literature shows that there has been growing
interest in developing small networks [62, 63]. Small net-
works are created using compression. )ere are two tech-
niques for performing compression: (i) by tuning the
network parameters to train the models and (ii) developing
and training small size models. For the first method, various
squeezing techniques like product quantization [63], Huff-
man coding [64], pruning, vector quantization, and hashing
[65] have been suggested for reducing the size of the net-
work. Pretrained networks could be shrunk, factorized, and
compressed to get smaller networks. Distillation [66] is
another compression model used to train small networks
from larger networks. )e second technique has gained
popularity with the development of lightweight networks
like SqueezeNet [67], ShuffleNet [68], and MobileNet V1
[30]. SqueezeNet [67] is a technique for building a tiny size
network that significantly decreases network specifications
and processing overhead by maintaining network efficiency.
ShuffleNet [68] uses channel shuffling and point-group
convolution to minimize network computation. MobileNet
V1 [30] is based on the concept of depthwise separable
convolution [30, 31]. Each channel’s features are convolved

Computational Intelligence and Neuroscience 5
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separately, and then all features of different channels are
spliced using 1× 1 convolution. )ese lightweight networks
minimize the total number of network parameters and
computing costs. )e following gaps are identified in the
current literature on copy move and image splicing
forgeries:

(1) Detection and identification of passive forgeries such
as copy move and splicing are computationally ex-
pensive due to the large number of parameters,
storage, and computational cost.

(2) Identification of percentage score for the image being
forged.

3. Proposed Architecture

)is section shows the proposed architecture for detection
and identification of copy move and image splicing forgeries
and provides the forged percentage of a forged image. )e
proposed architecture has facilities for detection and
identification of image forgeries such as copy move and
image splicing and calculation of the forged percentage of
given input image.

(i) Detection and Identification of Image Forgeries like
Copy Move and Image Splicing. )e approach

involves the use of Mask R-CNN with MobileNet V1
[30]. Figure 2 depicts the architecture of the pro-
posed system. In the first step, the proposed system
takes an image as an input and performs feature
extraction. RPN then provides the regions or image
characteristics maps that may contain various ob-
jects. )e image characteristics maps or regions
come in various sizes, and ROI is used to convert
them to a defined form. )e second step is the de-
tection step which specifies the class of forged ob-
ject(s), such as copied or spliced, and it also creates
bounding boxes around the forged object. )e last
step is segmentation which generates a mask around
the forged object. )us, the proposed model’s output
for the given input image is detection and identifi-
cation of the forged object(s) with a bounding box
and a classification of the type of forgery.

(ii) Calculating the Forged Percentage of a Given Input
Image. )e image forgery detection architecture is
also used to calculate the forged percentage for a
given image. )e general formula for calculating a
region’s forged percentage is shown below.

A � number of pixels of the entire image,

B � number of pixels of the forged region,

forged percentage of region �
[A − B]

dimension of image
× 100.

(1)

In the architecture, the forged regions are classified
and localized using a bounding box and semantic
segmentation that classifies each pixel. Every region of
interest gets a polygon segmentationmask. By utilizing
the predicted segmentation masks, the percentage of
the individual mask area of the forged regions is
calculated.)emasks generated by the architecture are
regarded as a binary image, so the forged region will be
white (true), and the background will be black (false).
To calculate the percentage of the area of the seg-
mentationmasks, firstly the number of pixels occupied
by the forged region is calculated. )is can be deter-
mined by counting the number of pixels belonging to a
white color or by counting the number of pixels be-
longing to black color (background pixels) and sub-
tracting it from the total number of pixels in the image.
)e total pixel count can be calculated by multiplying
the width and height of the image.)e final percentage
of area is calculated by using the following equation:

% �
white pixel count
total pixel count

× 100. (2)

In case of an input image having multiple forged
regions, the architecture will generate multiple
polygon masks. So, for an image having three forged
objects, three masks will be generated. To get the
total percentage of the area of these three segmen-
tation masks, first, the white pixel count of each
individual mask is calculated.

Total white pixel count � 
n

i�1
white pixel count of maski,

n � number of masks.
(3)

)en, the final percentage can be calculated.

% �
total white pixel count

total pixel count
× 100. (4)

)e architecture of the proposed system for detec-
tion, localization of copy move and image splicing
forgery, and calculation of the forged percentage is
explained below.

6 Computational Intelligence and Neuroscience
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3.1. MobileNet V1 [30]. In CV, CNN has become very
common in the image classification and segmentation
process. However, modern CNNs are becoming deeper
and increasingly complex to achieve a greater degree of
accuracy. MobileNet V1 reduces the size (in terms of the
number of parameters) and complexity (in terms of
multiplications and additions (multi-adds)) of the net-
work. MobileNets are based on DSCLs, where each DSCL
consists of two convolution types: depthwise convolution
and pointwise convolution. Figure 3 shows the standard
convolution operation [32]. Each pixel of an image is
multiplied by the number of filter channels and takes a
total of the input pixels handled by the filter that slides
through all the image’s input channels. Depthwise sepa-
rable convolution is shown in Figure 4. Image charac-
teristics are learned only using input channels, and thus
the output layer has an equal number of channels as the
input channels. In depthwise separable convolution,
kernels are split into smaller ones which yield the same
result with fewer multiplications. In these, two operations
such as depthwise convolution and pointwise convolution
are performed sequentially. Table 1 shows the calculation
of parameters and multi-add (multiplication and addi-
tion) operations of the standard convolution operation
and depthwise separable convolution. Table 2 shows the
computation cost of standard convolution and depthwise
separable convolution. Tables 1 and 2 show that com-
putation cost is reduced by 8-9 times.

Here, DK� size of kernel� 3, DF� size of image char-
acteristics, feature map� 14, P � total number of input
channels� 512, and Q � total number of output
channels� 512.

)e above-declared values are used for the calculation of
parameters and million multi-adds.

Figure 5 and Table 3 show the architecture of MobileNet
V1 [30]. )e first layer is the convolution layer with a stride
value equal to two. Following that, the depthwise and
pointwise layers take turns. )e stride of the depthwise layer
is one and two, respectively, to reduce the data’s dimension
(width and height) as it moves through the network model.
)e pointwise layer doubles the number of channels in the
data. A ReLU activation function follows each of the con-
volutional layers. )e said process repeats until the original
image size 224 × 224 is reduced to 7 × 7 pixels with 1024
channels. Lastly, an average pooling operation has been
performed that ends up with an image of dimension
1 × 1 × 1024. )e following hyperparameters are used to
reduce the network size and, in turn, make the network
faster.

(1) )e width multiplier is denoted by α, where α be-
tween 0 and 1 is used to control the channel depth or
a number of channels.

(2) )e resolution multiplier is denoted by ρ, where ρ
between 0 and 1 is used to control an input image’s
dimension.

3.2. RPN. RPN (Figure 6) takes the input of any size and
generates proposals created by sliding a small network
over the output of the last layer of the image characteristic
map. Its objective is to create a series of proposals, each of
which is likely to have an object within it, and also define
the class/label of the object, such as foreground or

Splicing

Copy Move
MobileNet V1

Backbone

FPN Feature Map Region
a�er NMS

Repeats for each
ROI

CNN

Mask

CNN

CNN Mask Classifier

NMS

Region Proposal Network

Classification
Layer

Regression
Layer

% of Forgery
of given image

Fully Connected Layer

So�max

BBox
Regression

Class

Warped
Feature
Vectors

RO
I

A
LI

G
N

ROI - Region of Interest

NMS - Non-Max Suppression

FPN - Feature Pyramid Network

CNN - Convolutional Neural Network

Figure 2: Proposed architecture for detection and identification of copy move and image splicing forgery.
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background. RPN uses nine bounding boxes to limit the
image characteristic map, and all are multiplex of three to
the reference bbox. Suppose the reference size of the box is
16 pixels, and the length and breadth are l and w, re-
spectively. It then creates three anchor boxes with l: w

ratios of 1 : 1, 1 : 2, and 2 : 1, as well as corresponding
anchor boxes with dimensions of 8 pixels and 32 pixels.
)ese anchor boxes are in charge of generating a series of

bboxes of various sizes and aspect ratios referred to during
object location predictions. )ese boxes are useful in
detecting multiple objects, objects of different sizes, and
overlapping objects. )e bboxes are chosen based on the
intersection over union (IOU) ratio between P and Q.
Here P and Q indicate the bboxes and the ground-truth
(GT) boxes. )e formula for intersection over union is
given below.

DF

DF

P
Channels

Input Data Output

DP

DP

Q

Convolution operation

DK

DK

Q Filters / Kernels

P

Figure 3: Standard convolution process.

Depthwise Convolution

Dk X Dk Conv
1 X 1 Conv

Pointwise Convolution

Figure 4: Depthwise separable convolution [31, 32].

Table 1: Calculation of parameters and million multi-adds [31, 32].

Standard convolution operation Depthwise separable convolution

#Total params� (DK×DK× P+ 1)×Q� (3× 3× 512 + 1)× 512� 2.36M
#Total multi-adds� (DF×DF)× #params� (14×14)× 2.36 M� 462M

Depthwise filters#Param� (DK×DK+1)× P� (3× 3 + 1)×

512� 5120
#Multi-adds� (DF×DF)× #params� (14×14)× 5120�1M

1× 1 conv filters
#Param� (1× 1× P+ 1)×Q� (1× 1× 512 + 1)× 512� 262656

#Multi-adds� (DF×DF)× #params� (14×14)×

262656� 51.3M
#Total params� 5120 + 262656� 0.27M
#Total multi-adds� 1M+ 51.3M� 52.3M

Table 2: )e computation cost of standard convolution and depthwise separable convolution.

Types of convolution Million multi-adds Million parameters
Standard convolution 462 2.36
Depthwise separable convolution 52.3 0.27

8 Computational Intelligence and Neuroscience
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IOU �
area of overlap betweenP andQ

area of union of P andQ
. (5)

)en, NMS sorts these bounding boxes by their prob-
ability score and eliminates the boxes with IOU< 0.5.

3.3. ROI Align. )e proposals generated from RPN are of
different sizes and aspect ratios; these need to be stan-
dardized to a fixed size to extract features. Faster R-CNN
[60] uses the ROI pooling concept to generate fixed-size
feature vectors from the feature map. ROI pooling works by
dividing the ROI frame of dimension height x width into the
H×W feature map of size height/H×width/W, and then the

max-pooling operation is used in each subframe. Each
channel of the feature map is pooled separately. In ROI
pooling, to map the generated proposal to exact x and y
index values, quantization operations such as floor and
ceiling operations are performed to get the whole number
for x and y index values. )e ROI and extracted features are
misaligned as a result of these quantizations. In order to
remove the quantization problem, ROI align (Figure 7) was
introduced in Mask R-CNN [61], which uses bilinear in-
terpolation to calculate exact indexes for feature vectors. )e
proposal is divided into a predetermined number of smaller
regions. In each region, four points are sampled; for each
sampled point, the feature value is computed with bilinear
interpolation.

1024 × 1024 × 3 224 × 224 × 3

112 × 112 × 32
56 × 56 × 64

28 × 28 × 256

Average Pool Train

Accuracy

Ma×_POOL

Convolution+RELU

Fully Connected Layer

Cross_Entropy

Final Training Operation

14 × 14 × 512 7 × 7 × 1024 1 × 1 × 1024

Figure 5: )e architecture of MobileNet V1 [30].

Table 3: MobileNet V1 architecture [30].

Type Stride value Filter shape Input size
Standard convolution Stride� 2 3 × 3 × 3 × 32 224 × 224 × 3
Depthwise separable convolution Stride� 1 3 × 3 × 32 112 × 112 × 32
Standard convolution Stride� 1 1 × 1 × 32 × 64 112 × 112 × 32
Depthwise separable convolution Stride� 2 3 × 3 × 64 112 × 112 × 64
Standard convolution Stride� 1 1 × 1 × 64 × 128 56 × 56 × 64
Depthwise separable convolution Stride� 1 3 × 3 × 128 56 × 56 × 128
Standard convolution Stride� 1 1 × 1 × 128 × 128 56 × 56 × 128
Depthwise separable convolution Stride� 2 3 × 3 × 128 56 × 56 × 128
Standard convolution Stride� 1 1 × 1 × 128 × 256 28 × 28 × 128
Depthwise separable convolution Stride� 1 3 × 3 × 256 28 × 28 × 256
Standard convolution Stride� 1 1 × 1 × 256 × 256 28 × 28 × 256
Depthwise separable convolution Stride� 2 3 × 3 × 256 28 × 28 × 256

Standard convolution Stride� 1 1 × 1 × 256 × 512
3 × 3 × 512 14 × 14 × 256

5 ×
depthwise separable convolution
convolution Stride� 1 1 × 1 × 512 × 512 14 × 14 × 512

14 × 14 × 512
Depthwise separable convolution Stride� 2 3 × 3 × 512 14 × 14 × 512
Standard convolution Stride� 1 1 × 1 × 512 × 1024 7 × 7 × 512
Depthwise separable convolution Stride� 2 3 × 3 × 1024 7 × 7 × 1024
Standard convolution Stride� 1 1 × 1 × 1024 × 1024 7 × 7 × 1024
Average pool Stride� 1 Pool 7 × 7 7 × 7 × 1024
Fully connected Stride� 1 1024 × 1000 1 × 1 × 1024
Softmax activation function Stride� 1 Classifier 1 × 1 × 1000

Computational Intelligence and Neuroscience 9
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Filter out negative anchors with Rpn_probs
and Non-Max Suppression

Depends on feature map’s size
Massive number of anchors

Anchors

Rpn_RolSProposal
Layer

Rpn_probs
Rpn_bbox

RPN Head

Anchor
generator

Figure 6: Region proposal network.

Feature Map

ROI

33.75

540/16=33.75

64

16X
less

1024/16 = 64

No quantization
1024

10
24

Input Image

33.75/7 = 4.82 each bin

7×7

ROI

Smaller feature
map for each ROI

FCN

Bilinear Interpolation

Bilinear Interpolation is used for
calculating exact value at each bin

Fixed Size
pooling

Figure 7: ROI align.

Table 4: Datasets used for experiment.

Name of
datasets Type of forgery Total number of images Size of image Format of images

COVERAGE
[33] Copy move 100 (100 original-forged image

pairs) 400× 486 TIFF

CASIA V 1.0
[34] Splicing 1725 (800 authentic images and

925 spliced images)
384× 256 and
256× 384 JPEG

COLUMBIA
[35] Splicing 363 (183 authentic images and

180 spliced images)
757× 568 to
1152× 768 BMP

CASIA V 2.0
[34]

Copy move,
splicing

12614 (7491 authentic images
and 5123 forged images)

320× 240 to
800× 600

BMP and TIFF uncompressed images. JPEG
images with different Q factors.

MICC F220
[36] Copy move 220 (110 original and 110 forged

images) 374 × 256 JPEG

MICC F600
[36] Copy move 600 (440 original and 160 forged

images
800 × 533 to
3888 × 2592 JPEG

MICC F2000
[36] Copy move 2000 (1300 original and 700

forged images) 2048 × 1536 JPEG

MISD [69] Multiple image
splicing

918 (618 original and 300
multiple spliced images 384× 256 JPG

10 Computational Intelligence and Neuroscience
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4. Datasets

)e proposed model or work is tested on various datasets
shown in Table 4 which are COVERAGE [33], CASIA 1.0
[34], CASIA 2.0 [34], COLUMBIA [35], MICC F220 [36],
MICC F600 [36], and MICC F2000 [36]. )e COVERAGE
[33] dataset includes 100 original-forged TIFF image pairs
having resolution 400× 486 where each original image
contains SGOs (similar-but-genuine objects), making it
difficult to differentiate between forged from genuine ob-
jects. )is dataset is created by applying various post-
processing operations and a combination of these
postprocessing operations to authenticate images. )e
postprocessing operations used for the creation of these
forged images are scaling, translation, rotation, and addition
of light effect addition. Ground-truth masks are available for
this dataset. It also provides the degree of tampering or
resemblance between the original and tampered images for
all image pairs in the dataset. Sample images for this are
shown in Figure 8.

)e CASIA dataset [34] comprises more tampering
images; in this dataset, all the tampering images are color
produced using Adobe Photoshop CS3 version 10.0.1 on
Windows XP. )is dataset has two versions, i.e., CASIA 1.0
and CASIA 2.0. )e CASIA 1.0 dataset contains 1725 JPEG
color images with a dimension of 384× 256 pixels, and there
are 800 genuine images and 925 tampered images in this
dataset. Authentic images are roughly grouped into eight
categories such as animal, architecture, scene, texture, plant,
nature, and character.)e tampered images are produced by
applying splicing operations on authentic images by utilizing
Adobe Photoshop.

CASIA 2.0 [34] is made up of 12614 images, in which
some images are uncompressed TIFF and BMP, and
others are JPEG with various Q factors of size in pixels
ranging from 320 × 240 to 800 × 600. )ere are 7491
original images and 5123 tampered images in this dataset.
Authentic images are roughly grouped into nine cate-
gories such as animal, architecture, scene, texture, plant,
nature, character, and indoor. )e tampered images
contain both copy move and spliced images. However,
these two datasets do not provide corresponding ground-
truth masks, and for these two datasets, ground-truth
masks are generated using VIA (VGG Image Annotator)
[70], an open-source annotation tool that can specify
regions in an image and generate textual information of
those regions. Sample images for CASIA 1.0 and CASIA
2.0 are shown in Figures 9–11.

COLUMBIA [35] has 363 images; here, 183 are genuine
images and 180 are spliced images. )is dataset is created
with four camera-captured images. Cameras used to create
this dataset are Canon G3, Canon EOS 350D Rebel XT,
Nikon D70, and Kodak DCS330. )e images are all in JPG
format, ranging in size from 757× 568 to 1152× 768 pixels;
categories for these images are mainly desks, computers, or
corridors.

MICC F220 [36] shows 220 images in this dataset, out of
which 110 are original, and the rest 110 are forged. )e
image’s size ranges from 722× 480 to 800× 600 pixels, with

the forged region accounting for about 1.2% of the whole
image area. Forged images in MICC F220 are created by
randomly picking a rectangular portion from an image,
copying it, then applying various attacks such as translation,
scaling, and rotation, and then this portion is pasted on to
image.

Forged images in MICC F600 [36] are generated by
applying more realistic and difficult postprocessing op-
erations; it contains 600 images, out of which 440 are
genuine, and 160 images are forged with image sizes
ranging from 800 × 533 pixels to 3888 × 2592 pixels. MICC
F2000 [36] contains 2000 images, out of which 1300 are
authentic, and 700 are forged ones. Each image’s size is
2048 ×1536 pixels, with the forged region accounting for
about 1.12% of the whole image area. )e sample image is
shown in Figure 12.

Multiple Image Splicing Dataset [69] contains 618 au-
thentic and 300 realistic multiple spliced images of size
384× 256 that have been processed with rotation and scaling
operations. It also includes images from various categories,
including animal, architecture, art, scene, nature, plant,
texture, character, and indoor scene. In this dataset, ground-
truth masks are also provided which specify spliced in-
stances for given multiple spliced images.

5. Dataset Annotation

One of the most significant areas in computer vision is
annotation, involving methods for labeling an image with a
class. )ere are a variety of tools for loading the images and
marking the objects using per-instance segmentation. )is
makes accurate localization much easier with the help of
bounding boxes and by generating masks. Annotation files
are used to store this information. Annotation is divided into
two types:

(1) Image-level annotation-binary class indicating
whether an object is present in the image or not.

(2) Object-level annotation-bounding box and class
label around an object instance in the image.

)e COCO annotation format is automatically un-
derstood by advanced neural network libraries (like
Facebook’s Detectron2). Understanding of how the COCO
annotation format is represented is necessary in order to
modify the existing datasets and to create the custom ones.
)e dataset uses instance-level segmentation for similar
pixels, and for different entities of a class, a unique label is
given. )e VGG Image Annotator [70] is a small and
lightweight image and video annotation tool running en-
tirely in the web browser to generate pixelwise annotations
for JSON format images. )e VGG Image Annotator [70] is
used to draw bounding boxes or polygons around objects in
the images and videos to form a computer vision model’s
supervision dataset. )e annotation details for the
bounding box are stored in JSON format. )e structure of
the file is given below:

(1) Filename: contains the name of the image file.
(2) Size: contains the size of the image in pixels.

Computational Intelligence and Neuroscience 11
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(a) (b) (c)

Figure 8: Sample images from COVERAGE dataset [64]. (a) Light effect/illumination change. (b) Scaling operation ∅ � 0.8. (c) Rotation
operation θ � 10°.

Figure 9: Sample images from CASIA 1.0 dataset [65].

Figure 10: Sample images from CASIA 1.0 dataset [65].

Figure 11: Sample images from CASIA 2.0 dataset [65].

12 Computational Intelligence and Neuroscience

 8483, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2022/6845326, W

iley O
nline L

ibrary on [13/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



RE
TR
AC
TE
D

6. Experimental Environment Configuration

)is section specifies the experimental setup for the pro-
posed model. Tables 5 and 6 show system specifications of
the training environment. All experiments are conducted
using Google Colab environment with specifications such as
NVidia 1×Tesla K80, compute capability 3.7, having 2496
CUDA cores with 12GB GDDR5 VRAM; the operating
environment has 1× single core hyper threaded Xeon
Processors @2.3Ghz, i.e., (1 core, 2 threads) with 13GB
RAM. For performing experiments, Tensorflow 1.8.0, a deep
learning framework, and Python 3.7 programming language
are used. COCO pretrained network [71] is used for the
generalization of parameters. Table 7 shows a few

configuration parameters which were modified from the
original Mask R-CNN. In this experiment, a total of 3000
images are used for training, and 700 images are used for
testing purposes.)e training images are sized to retain their
aspect ratio. )e mask size is 28× 28 pixels, and the size of
the image is 512× 512 pixels. )is approach varies from the
initial Mask R-CNN [39] approach, where image resize is
done in such a way that 800 pixels are regarded as the
smallest size and 512 pixels are trimmed to the highest.
Bbox(bounding box) selection is made by considering IOU,
which is the ratio of expected bboxes to ground-truth boxes
(GT boxes). Mask loss considers only positive ROI and is an
intersection of ROI and its ground-truth mask. Each mini-
batch contains one image per GPU, with each image having
an ROI of N samples and a 1 : 3 plus or minus ratio. )e C4
backbone has a value of 64, while FPN has a value of 512. A
batch size of one was maintained on a single GPU unit. )e
model was trained for 360 iterations with an initial learning
rate of 0.01 and then modified to 0.003 at epoch 120 and
0.001 at epoch 240. Stochastic gradient descent (SGD) is used
for optimization, with momentum initialized to 0.9 and
weight decay initialized to 0.0001.

7. Results

Various IOUs are used to measure the average precision
(AP). Tables 8 and 9 show mean average precision for copy
move and image splicing detection. In COCO, IoU values
change from 50% to 95%, at a step of 5%. So it is end up with
10 precision-recall pairs. If we take the average of those 10
values, we get AP@[0.5:0.95]. )e popular IOU scores are
50% (IOU� 0.5) and 75% (IOU� 0.75), interpreted as AP50
(AP0.5) and AP75 (AP0.75). F1-score (a pixel localization
metric) is the evaluation metric criterion. Mask IOU is used
to evaluate AP, and the F1-score is defined as follows:

F1 − score �
2 ×(precision∗ recall)
2 ×(precision + recall)

. (6)

Figures 13–15 show the ROC plots on COVERAGE [33],
CASIA 1.0 [34], and CASIA 2.0 [34] datasets, respectively,
for image forgery identification.

7.1. ROC AUC Curve. ROC AUC curves classify the given
pixel as authentic or forged one. )e proposed model

Table 5: GPU specifications of the training environment.

Parameter Specification
GPU Nvidia K80/T4
GPU memory 12GB
GPU memory clock 0.82GHz/1.59GHz
Performance 4.1 TFLOPS/8.1 TFLOPS
No. of CPU cores 2
RAM 12GB

Table 6: CPU specifications of the training environment.

Parameter Specification
CPU model name Intel® Xeon®CPU freq. 2.30GHz
CPU family Haswell
No. of CPU cores 2
RAM 12GB

Table 7: Configuration parameters of the proposed model.

Parameters Values
BACKBONE mobilenetv1
IMAGE MAX DIM 512
IMAGE META SIZE 15
IMAGE MIN DIM 800
IMAGE SHAPE [512, 512, 3]
LEARNING RATE 0.01
MASK SHAPE [28, 28]
RPN_ANCHOR_SCALES (8, 16, 32, 64, 128)
STEPS PER EPOCH 50
WEIGHT DECAY 0.0001

(a) (b) (c) (d)

Figure 12: Sample image fromMICC F2000 dataset [67]. (a) Original image. (b) Forged image without attack. (c) Forged image with scaling
operation. (d) Forged image with the rotation operation.
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classifies forged pixels with high confidence. )e trade-off
between the true positive rate (pixels correctly masked) and
the false positive rate (pixels incorrectly masked) for our
Mask R-CNN model using various probability thresholds is
represented by ROC Curves.)e graph shows false + rate (x-
axis) vs. the true + rate (y-axis) for various candidate
threshold values ranging from 0.0 to 1.0. It plots the rate of
incorrectly segmented pixels to the rate of correctly seg-
mented pixels. AUC is the area under the ROC curve. AUC

Table 8: AP comparison on five standard datasets using MASK R-CNN with MobileNet V1 as a backbone for copy move detection.

Method Backbone Avg. precision COVERAGE CASIA 2.0 MICC F220 MICC F600 MICC F2000 Mean

Mask R-CNN ResNet-101 AP 0.60 0.60 0.90 0.70 0.90 0.76
MobileNet V1 AP 0.90 0.60 0.90 0.70 0.90 0.80

Table 9: AP comparison on two standard datasets using MASK R-CNN with MobileNet V1 as a backbone for image splicing detection.

Method Backbone Avg. precision COLUMBIA CASIA 1.0 Mean

Mask R-CNN ResNet-101 AP 0.70 0.90 0.80
MobileNet V1 AP 0.90 0.70 0.80
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Figure 13: ROC curve on COVERAGE dataset.
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Figure 14: ROC plot on CASIA 1.0 dataset.
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Figure 15: ROC plot on CASIA 2.0 dataset.
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Figure 16: Precision-recall plot on COVERAGE dataset.
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Figure 17: Precision-recall plot on CASIA 1.0 dataset.
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with values [0.92, 1] [0.95, 0.1] have good effect, and AUC
with [0.9, 1] has an average effect.

7.2. Precision-Recall Plots. Figures 16–18 show the preci-
sion-recall plots for the masks generated by the proposed
technique on COVERAGE [33], CASIA 1.0 [34], and CASIA
2.0 [34] datasets. Different threshold values lead to changes
in precision and recall. )e high recall value indicates a
larger area under the curve showing minimum FPR which
shows improper masking of pixels, and minimal FNRmeans
absence of mask pixels for which they should be present.

7.3. Comparison of Results with Mask R-CNN Using Various
Datasets and Backbone Networks. As shown in Table 10, the
overall number of parameters in the Mask R-CNN using
ResNet-101 as a backbone network is substantially higher
than that in the proposed technique. Table 11 shows the
training time and inference time comparison of ResNet-101
and MobileNet V1 on copy move and image splicing
datasets. In terms of training time and inference time, Ta-
bles 11 and 12 indicate that MobileNet V1 outperforms
ResNet-101. MobileNet V1 contains less trainable param-
eters and is computationally simpler in terms of parameter
space usage, allowing it to make the most use of the existing
parameters. As a result, MobileNet V1 outperforms in terms
of training and inference times. In Tables 11 and 12, TT

indicates training time in minutes and IT indicates inference
time in milliseconds.

We evaluated the proposed Mask R-CNN model on
various datasets and backbone network ResNet-101 for copy
move and image splicing detection. Table 13 shows a
comparative analysis of Mask R-CNN with ResNet-101 and
MobileNet V1 for precision, recall, and F1-score on standard
datasets such as COVERAGE, CASIA 1.0, CASIA 2.0, MICC
F220, MICC F600, MICC F2000, and COLUMBIA datasets.
In terms of F1-score, the proposed model outperforms the
ResNet-101 without the Sobel filter specified in the literature
[39]. )e F1-score of the proposed technique and the
technique specified in the literature [39] is equal but the
number of parameters of the proposed technique is less
compared to the literature technique.

Figures 19 and 20 show F1-score, precision, and recall for
copy move and image splicing on various datasets using
backbone networks such as ResNet-101 and MobileNet V1.
)e x-axis represents themodel with F1-score, precision, and
Recall, and the y-axis corresponds to evaluated metrics.

Table 14 shows a comparative analysis of AP, AP0.5, and
AP0.75 on standard datasets such as COVERAGE, CASIA
1.0, CASIA 2.0, MICC F220, MICC F600, MICC F2000, and
COLUMBIA datasets using Mask R-CNN with ResNet-101
and MobileNet V1 as a backbone network. Here, for AP0.5,
IOU � 0.5, and for AP0.75, IOU is� 0.75. Figures 21 and 22
show AP, AP0.5, and AP0.75 for copy move and image
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Figure 18: Precision-recall plot on CASIA 2.0 dataset.

Table 10: Comparison of ResNet-101 and MobileNet V1 in terms of parameters

Method Backbone Parameters Trainable Non-trainable

Mask R-CNN ResNet-101 63,733,406 63,621,918 111,488
MobileNet V1 23,812,574 23,784,542 28,032

Table 11: Training time and inference time comparison of ResNet-101 and MobileNet V1 on copy move datasets.

Model Number of layers of model
Copy move datasets

COVERAGE CASIA 2.0 MICC F220 MICC F600 MICC F2000
TT IT TT IT TT IT TT IT TT IT

ResNet-101 347 432 610 508 656 505 620 515 612 665 628
MobileNet V1 92 220 429 315 478 260 415 320 435 402 420

Computational Intelligence and Neuroscience 15
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splicing on various datasets using backbone networks
ResNet-101 and MobileNet V1, where the x-axis represents
the model with various average precision values and y-axis
corresponds to evaluated metrics. Table 12 shows that in
terms of the average precision values, the proposed model
on standard datasets considerably outperforms the existing
architecture specified in literature [39] for identification
and detection of copy move forgery. It also shows that in
terms of average precision values, the proposed model

outperforms the ResNet-101 without the Sobel filter,
specified in the literature [39]. In the case of identification
and detection of image splicing forgery, average precision
values of the proposed model and the existing model
without the Sobel filter specified in the literature [39] are
equal but the number of parameters of the proposed model
is comparatively less.

Tables 8 and 9 show the mean average precision for copy
move and image splicing detection on standard datasets. In

Table 12: Training time and inference time comparison of ResNet-101 and MobileNet V1 on image splicing datasets.

Model Number of layers of model
Image splicing

COLUMBIA color CASIA 1.0
TT IT TT IT

ResNet-101 347 504.40 660 520.78 684
MobileNet V1 92 295.20 450 280.10 436

Table 13: F1-score, precision, and recall comparison analysis of Mask R-CNN with the backbone networks ResNet-101 and MobileNet V1
on various datasets for copy move and image splicing.

Type of forgery Dataset
ResNet-101 MobileNet V1

F1-score Precision Recall F1-score Precision Recall

Copy move

COVERAGE 0.54 0.59 0.60 0.61 0.60 0.63
CASIA 2.0 0.64 0.76 0.62 0.68 0.70 0.66
MICC F220 0.64 0.55 0.75 0.67 0.61 0.75
MICC F600 0.70 0.72 0.65 0.70 0.75 0.68
MICC F2000 0.66 0.50 0.77 0.64 0.54 0.80

Image splicing CASIA 1.0 0.61 0.67 0.66 0.64 0.61 0.68
COLUMBIA 0.63 0.65 0.62 0.61 0.60 0.63
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Figure 19: Comparison of F1-score, precision, and recall for copy move using backbone networks ResNet-101 and MobileNet V1.
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Figure 20: Comparison of F1-score, precision, and recall for image splicing using backbone networks ResNet-101 and MobileNet V1.

Table 14: AP comparison analysis of Mask R-CNNwith the backbone networks ResNet-101 andMobileNet V1 on various datasets for copy
move and image splicing.

Type of
forgery Dataset

ResNet-101 MobileNet V1
Avg.

precision
Avg. precision0.5

(AP0.5)
Avg. precision0.75

(AP0.75)
Avg.

precision
Avg. precision0.5

(AP0.5)
Avg. precision0.75

(AP0.75)

Copy move

COVERAGE 0.60 0.65 0.58 0.90 0.92 0.80
CASIA 2.0 0.66 0.74 0.75 0.60 0.65 0.80
MICC F220 0.90 0.90 0.80 0.90 0.93 0.83
MICC F600 0.78 0.80 0.74 0.70 0.74 0.60
MICC F2000 0.90 0.90 0.72 0.90 0.90 0.76

Image
splicing

CASIA 1.0 0.70 0.72 0.66 0.70 0.75 0.63
COLUMBIA 0.90 0.95 0.79 0.90 0.92 0.77
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0.9 0.9
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Figure 21: Comparison of AP, AP0.5, and AP0.75 for copy move using backbone networks ResNet-101 and MobileNet V1.
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the case of identification and detection of copymove forgery,
precision values of the proposed model and the existing
model without the Sobel filter specified in the literature [35]
are equal but the number of parameters of the proposed
model is comparatively less.

Figure 23 shows sample outputs of copy move, splicing
forgery detection, and forged percentage of the image. )e
results show that the bounding box surrounds the object
along with class (forged). It also gives a forged percentage of
a region in an image and an accuracy percentage of copy
move and splicing forgery detection.

8. Conclusion

)is work presents a lightweight model, Mask R-CNN
with MobileNet V1, for detecting and identifying copy
move and image splicing [72] forgeries. We have used

standard datasets such as COVERAGE, CASIA 2.0, MICC
F220, MICC F600, MICC F2000, COLUMBIA, and CASIA
1.0 to evaluate the proposed model for copy move and
image splicing forgeries. )e proposed model outper-
forms ResNet-101 and achieves an F1-score of 70% on the
MICC F600 dataset for copy move and 64% on CASIA 1.0
for image splicing. It also achieves average precision of
90% on MICC F2000 and COVERAGE for copy move and
90% for image splicing on the COLUMBIA dataset. )e
overall configuration was computationally more efficient
than ResNet-101 [39]. According to experiments, the
proposed approach effectively balanced efficiency and
computational costs as compared to ResNet-101 [39]. It
also provides the forged percentage of a region in an
image. In the future, we are planning to extend this work
for multiple image splicing and comparison of results with
GAN-based architecture.
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Figure 22: Comparison of F1-score, precision, and recall for image splicing using backbone networks ResNet-101 and MobileNet V1.
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Figure 23: Result of copy move and image splicing.
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Abbreviations

DL: Deep learning
CV: Computer vision
CNN: Convolutional neural network
FCN: Fully convolutional network
SVM: Support vector machine
RPN: Region proposal network
ROIs: Regions of interest
Mask
R-CNN:

Mask regional convolutional neural network

DSCLs: Depthwise separable convolution layers
bbox: Bounding box
NMS: Non-max suppression
IOU: Intersection over union.
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sets—https://lci.micc.unifi.it/labd/2015/01/copy-move-forgery-
detection-and-localization/; COVERAGE—https://github.com/
wenbihan/coverage; COLUMBIA—https://www.ee.columbia.
edu/ln/dvmm/downloads/AuthSplicedDataSet/AuthSpliced
DataSet.htm; and MISD—https://doi.org/10.5281/zenodo.
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