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Abstract

We introduce graph-clustering quality measures based on compar-
isons of global, intra- and inter-cluster densities, an accompanying sta-
tistical significance test and a step-by-step routine for clustering qual-
ity assessment. Our work is centered on the idea that well clustered
graphs will display a mean intra-cluster density that is higher than
global density and mean inter-cluster density. We do not rely on any
generative model for the null model graph. Our measures are shown
to meet the axioms of a good clustering quality function. They have
an intuitive graph-theoretic interpretation, a formal statistical inter-
pretation and can be tested for significance. Empirical tests also show
they are more responsive to graph structure, less likely to breakdown
during numerical implementation and less sensitive to uncertainty in
connectivity than the commonly used measures.
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1 Introduction

While there are many graph clustering ! algorithms in the literature (e.g.,
[38, 12, 13, 45, 3, 37]), measuring their performance, assessing the quality of
the clusters they identify, remains an open problem [28, 27, 31, 2, 36, 50, 26,
21,9, 11, 4, 49, 24, 40]. In fact, it’s been stated in a very recent publication
that “in the literature, there is no universally accepted metric for evaluating
the performance of community detection algorithms” [40].

Graph clustering is the process of assigning common labels to vertices
that are considered similar, vertices that should belong to a common set
(cluster). It is a form of unsupervised learning, where one typically cannot
count on labeled data to assess results. For example, Reichardt and Born-
holdt correctly assert that “(...) running a clustering algorithm over a set
of randomly generated data points will always produce clusters which, how-
ever, have little meaning” [44] . For this reason, our only quality measure is
a thorough examination of the graph’s and resulting clusters’ connectivity
patterns.

In this article, we present new (algorithm-independent) clustering per-
formance measures to assess the strength of the clustering returned by any
algorithm. Our measures can also provide comparisons of several cluster-
ing algorithms on a given graph. Through this presentation, we also offer
our own definition of clustering quality and techniques to test its statistical
significance.

Our measures are based on comparisons of global, intra- and inter-cluster
densities. Our null model does not rely on any generative model for the
graph, unlike modularity which uses the configuration model as a null. Also,
unlike the context-dependent approach presented by Creusefond et al. [9],
we propose a general purpose quality measure based on graph and subgraph
density, well known graph characteristics, and formal statistical testing.

We begin with a review of two of the most common clustering perfor-
mance measures, modularity and conductance. We empirically demonstrate
how these measures may be drowned out by graph structure and lack sen-
sitivity to it. We also demonstrate how our test of clustering quality based
on our two statistical measures of graph structure is more robust, easier to
interpret and consistent with the axioms of good clustering.

We restrict our attention to undirected unweighted and weighted graphs
with positive edge weights. The graphs we consider also have no self-loops

!Note on vocabulary: Although there are subtle differences between the concepts of
graph clustering and community detection, we use the two interchangeably.



(a) Well Clustered Graph (b) Improperly Clustered Graph

Figure 1: Examples of Good and Bad Clustering

or multiple edges. It is important to emphasize that we are not trying to
identify clusters and their constituent vertices, in this article. The work
in this article focuses exclusively on assessing the quality of the clusters
identified by a clustering algorithm. For example, we want an objective
measure that allows us to conclude the algorithm that clustered the graph
in Figure la performed well, while the algorithm that clustered the graph
in Figure 1b performed poorly and did not partition the graph adequately.

2 Commonly Used Performance Measures, Qual-
ity Functions

The term “clustering quality function” of Van Laarhoven and Marchiori [26]
is often used to designate clustering performance measures. These authors
use the term “quality function” to describe a function that takes in a graph
G and a set of node clusters C' = {c1, ca, ...} and returns a real number, the
quality measure. All the measures discussed in this article fit this descrip-
tion.

In this section, we describe the two most frequently used clustering qual-
ity functions, modularity and conductance. These functions are not only
used to assess clustering quality but are also often used as objective func-
tions in optimization-based clustering techniques (e.g., [5, 46]).

2.1 Modularity

Modularity (@) is by far the most popular measure of clustering performance
[38, 8, 6, 14, 31, 23, 41, 42]. Originally introduced by Newman and Girvan in



2004 [38], it has since been extensively used both as a performance measure
and objective function to be maximized (e.g., [38, 10, 3, 37]). In this section,
we present modularity (@) as shown in Clauset et al. [8]. Modularity is
defined as
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Here, m = |E| is the total number of edges in the graph, k is the number
of clusters, A, 4, is the element at the intersection of the v-th row and w-th
column of the adjacency matrix, A,  is the entire v-th row of the adjacency
matrix, I is a vector of ones of appropriate dimension, §(z,y) is the Kroe-
necker delta function and ¢, is the cluster in which vertex v is clustered by
the algorithm. Expanding our expression above using the graph’s adjacency
matrix, we get
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Modularity always lies on the interval [—1,1] [6]. Values greater than 0.3
typically indicate a significant clustering [8].

In closing, it should be noted that modularity’s biggest weakness is that
it suffers from resolution limit. This weakness is well documented in the lit-
erature. For example, Fortunato and Bathélemy [15] devote an entire article
to this topic. These authors describe how any clustering quality function
that is defined as a sum of qualities of individual clusters, where terms from
smaller clusters are dominated by terms from larger clusters, suffers from
resolution limit. Because the smaller clusters’ contribution to the sum is
dominated by the larger clusters’, the final result is also dominated and
does not always reflect structure accurately. Indeed, in Equation (1) we see
how larger clusters dominate the outer summation. Modularity also suffers



from many other degeneracies, as described by Good et al. [17] among oth-
ers. Additionally, Fortunato showed the difficulty of conducting statistical
tests on modularity, due to the challenge of identifying its true distribution
[14]. Finally, we note that Van Laarhoven and Marchiori have demonstrated
modularity fails to meet some of the axioms of a good clustering quality
function, namely locality and monotonicity [26].

2.2 Conductance

Conductance (¢, ®) is another popular clustering performance measure [32,
31, 50, 46, 9]. It is also used by some authors as an objective to be minimized
(e.g., [22, 46]). In this article, we use the definition presented by Spielman
and Teng [46]. At the individual cluster level, conductance is defined as

8(01)
min (d(¢;),d(V \ ¢))

P(ci) =
While at the graph level, it is defined as

P(G) = nrgn o(c) .

Here, O(c;) is the number of edges joining vertices in cluster ¢; to vertices
outside ¢;, d(c;) is the sum of vertex degrees within ¢; and d(V \ ¢;) the
sum of vertex degrees on the graph, outside ¢;. A low conductance indicates
strongly connected clusters.

3 A Definition of Good Clustering and New Clus-
tering Performance Measures

We now present our statistical performance measures, the Kappas. Before
we begin, we introduce our own definition of good clustering. The Kappas
are rooted in this definition. Our performance measures are based on a
comparison of global, inter- and intra-cluster densities. We argue that the
difference between these quantities is a measure of clustering strength.

3.1 A Definition of Clustering Quality

In accordance with every other definition of a good clustering, we expect that
an efficient clustering algorithm will label vertices such that intra-cluster
connectivity is greater than global and inter-cluster connectivity (e.g., [14,
41, 42]) (if the graph does indeed have a clustered structure). We expect that



nodes with the same label will have more common connections to each other
than to ones with different labels. Alternately, we expect mostly uniform
connectivity between vertices in the case of improperly clustered graphs. In
summary, we expect that clustered vertices will form dense subgraphs within
a sparser graph, when they are properly labeled.

In step with these expectations, to gain a macroscopic view of the entire
graph, we set up our average case benchmarks. We posit that a good cluster-
ing will group vertices so they form clusters whose vertices are more strongly
connected to each other than to vertices belonging to different clusters, on
average. To gauge the strength of clustering, we rely on graph theory and
statistics. We compare mean intra-cluster density, the graph’s overall den-
sity and mean inter-cluster density. These quantities are defined below, in
Section 3.2.

We postulate that a good clustering must meet two necessary condi-
tions. Together, these necessary conditions form a sufficient condition for
a clustering to be of good quality, on average. First, a good clustering
should be characterized by a mean intra-cluster density that is higher than
the graph’s global density. Global density should, in turn, also be higher
than mean inter-cluster density. Meeting this set of inequalities is the first
necessary condition.

The second necessary condition, also an inequality, is that mean intra-
cluster density must be significantly greater than mean-inter cluster density.
This last inequality automatically holds numerically, whenever the first nec-
essary condition is met. However, this second necessary condition is a con-
dition on statistical significance. We want the difference between these two
mean densities, a quantity we call v, to be non-trivial, statistically signifi-
cant.

The idea of using mean “intra-connectivity” and mean “inter-connectivity”
to measure clustering strength was initially presented by Mancoridis et al.
[33], although their definitions were not based on simple strict graph den-
sity. These authors’ goal was to find optimal partitions of software system
components and their model was based on directed graphs with self-loops.
Later, Kannan et al. [22] used global inter-cluster density as an indicator
of poor clustering, to be minimized along with conductance. Fortunato [14]
then introduced the idea of using inter- and intra-cluster densities and com-
paring them to global density as a measure of the clustering strength of
single clusters. We extend these ideas to gain a macroscopic view of the
entire graph’s cluster labeling, using the standard definition of density.

While they are inspired by Mancoridis et al. and by Fortunato’s follow-
up on those ideas, our measures are tailored to undirected graphs and pro-



vide a macroscopic view. Unlike the measures proposed by Mancoridis et
al., they correspond to standard definitions for simple graphs and can be
generalized to weighted graphs as well. Unlike the measures proposed by
Fortunato, they offer a graph level, not cluster level, picture.

In the case of unweighted graphs, our measures are bounded within the
interval [0,1]. In the case of weighted graphs, they become proportional
to edge weight. High values denote densely connected graphs, clusters or
cluster pairs and vice-versa. Also, because we take means over the entire
graph, our measures provide a graph-wide picture, have statistical meaning
and can easily be subjected to hypothesis testing. For these reasons, our
measures are also more meaningful and more solidly grounded in graph and
statistical theories than either conductance or modularity.

The well established and widely used measures of clustering strength,
modularity and conductance, measure intra-cluster connectivity strength.
Instead, we measure the strength of intra- and inter-cluster connectivity
relative to each other and to the overall graph’s connectivity. In doing
so, we tailor our definition of and conclusions on the quality of clustering
to the specific graph structure being analyzed. For example, in a moder-
ately densely connected graph we expect clusters to be even more strongly
connected. Meanwhile, moderately strong inter-cluster connections can be
consistent with a good partition, as long as it remains weaker than intra-
cluster connectivity. Conversely, in a sparsely connected graph, moderately
strong inter-cluster connectivity is a symptom of a poor clustering.

Our claim regarding inter- and intra-cluster densities is empirically val-
idated by the simulations of our null hypothesis, shown in Section 4.1.
Through those simulations, we empirically confirm our hypothesis that in a
random clustering of a graph, arguably the poorest of non-trivial clusterings,
the difference between mean intra-cluster and mean inter-cluster densities
is approximately zero.

3.2 The Kappas, Measures of Density

We define Kappa (K) as the graph’s overall connectivity measure, mean
Kappa intra-cluster (Kintra) as the measure of intra-cluster connectivity
and mean Kappa inter-cluster (Kinter) as the measure of inter-cluster con-
nectivity. These quantities are the graph’s global density, mean intra-cluster
density and mean inter-cluster density, respectively. Here, we extend For-
tunato’s idea of examining inter- and intra-cluster density to determine the
strength of a clustering [14], but with a focus on average-case subgraphs,
not individual clusters. As mentioned in the previous section, we expect



that under a good clustering the inequalities Rinter < K < Kjptrg will
hold. These inequalities are similar to those formulated by Fortunato [14],
but they are formulated at a graph-wide scale, on the basis of graph-wide
average-cases. Our model also allows these inequalities to be formulated as
statistical hypothesis tests, as will be shown later.

Below, we present the formulation for our clustering measures, for an
unweighted undirected graph, but they easily generalize to weighted graphs
as well. For weighted graphs, when edge weights are proportional to con-
nection strength, our measures are computed by replacing the cardinality of
edge sets (edge counts) with the sums of the corresponding edge weights (all
edge weights or intra-/inter-cluster weights). However, it should be noted
that densities in the weighted case are no longer contained within the inter-
val [0, 1], although they remain non-negative (since we only consider positive
edge weights).

In our formulation, we use the following variables. The set of all clusters
is C = {c1,...,ce}, with |C| = £, the total number of vertices in the graph
is |V| = N, the total number of vertices in cluster ¢ is n;, the set of all
edges on the graph is £ = {e1,...,en}, where |E| = m. Finally, E;; is
the set of edges connecting a vertex in cluster ¢ to a vertex in cluster j, and
|Eij| = mij;. As a special case, note that Ej; is the set of edges within cluster
i, and my; is the number of edges connecting vertices within cluster i.

Using standard definitions, we take the ratio of the edge counts (or sum
of weights) over the maximum possible number of edges given the number
of vertices. For mean intra- and inter-cluster connectivity, we compute the
ratio for each cluster or pair of clusters and take their mean as a graph-wide
measure.

We compute the graph’s connections ratio, global density, as

E|

K= .
0.5x N(N —1)

This quantity is the ratio of the total number of edges over the number of
edges in a complete graph with the same number of vertices. In the case of
an unweighted graph, the closer K is to 1, the closer the graph is to being
a complete graph. Conversely, the closer K is to 0, the closer the graph is
to being a set of disconnected vertices.

For a graph clustered into £ clusters, we also define the mean intra-cluster



connections ratio, mean intra cluster density, as
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The mean intra-cluster connections ratio is the mean ratio of the number
of edges within each cluster over the maximum number of edges that could
possibly connect the vertices within each cluster. Each term in the sum-
mation, denoted as k;, represents each cluster’s internal density, the density
of the induced subgraph formed by its vertices and the edges connecting
them. It is a measure of how closely each cluster is to being a clique. In
the unweighted case, each k; always lies on the interval [0, 1], with a value
of 0 indicating a cluster is just a set of disconnected vertices and a value of
1 indicating that a cluster is a clique. At the aggregate level, Kjjt;5 is the
sample mean of the individual terms x; and also lies in the interval [0, 1].
Values close to 0 indicate poorly connected clusters on average, while values
closer to 1 indicate densely connected clusters on average.

Finally, we define the mean inter-cluster connections ratio, mean inter-
cluster density, as

Kinter = O5X€ _1 Z Z Kij
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The mean inter-cluster connections ratio is the mean ratio of the num-
ber of edges joining vertices in a pair of clusters (c¢;, c;) where ¢; and c; are
distinct clusters, over the total number of edges that could possibly con-
nect each pair of vertices across the cluster pair (¢;,¢;). Each term in the
double summation is the density of the induced bipartite graph formed by
the vertices in each cluster pair, when we ignore the edges that join ver-
tices within each cluster and only consider edges between vertices of either



clusters of the pair. It is a measure of how close two clusters i and j are
from a biclique, when considering only edges that have endpoints in either
cluster. Here again, in the unweighted case these terms also lie in the in-
terval [0, 1]. A value of 0 indicates no connection between a pair of clusters
and a value of 1 indicates the pair of clusters forms a biclique, when we
ignore the intra-cluster edges. At the aggregate level, Kinter is the sample
mean of the individual k;; and also lies in the interval [0,1]. Values close
to 0 indicate low inter-cluster connections, on average, a desirable feature
indicating strong cluster partitions. On the other hand, values closer to 1
indicate improperly partitioned clusters, on average.

3.2.1 Limitations:

Our inter- and intra-cluster measures are means and are therefore sensitive
to outliers. For example, a few very dense clusters in an otherwise poorly
clustered graph or very sparse clusters in an otherwise well clustered graph
may render intra-cluster density uninformative. Mean inter-cluster density
can also be affected in a similar way by outliers. A small number of densely
inter-connected cluster pairs in an otherwise well clustered graph or a small
number of sparsely inter-connected ones in an otherwise poorly clustered
graph may also render mean inter-cluster density uninformative.

Our inter- and intra-cluster measures are also unweighted means, which
implies they are unaffected by cluster or cluster pair sizes. This immunity to
cluster sizes is a deliberate design feature. It makes our measures immune
to resolution-limit, a common shortcoming of clustering quality functions.
A more detailed discussion of this phenomenon can be found in Section 5.

Nevertheless, precautions should be taken with conclusions in cases where
cluster or cluster pair sizes are very heterogenous. For example, an algo-
rithm may cluster a few small clusters very well and lump the remaining
vertices into one or a few large sparsely connected clusters, which would
result in a high mean intra-cluster density, even if the graph is arguably
poorly clustered.

Fortunately, in most cases, we expect that an inaccurately inflated mean
intra-cluster density will also result in a high mean inter-cluster density.
Likewise, we expect that an inaccurately low mean inter-cluster density will
also result in a low mean intra-cluster density. However, as with any other
analysis based on means, the sample should also be carefully examined. In
this specific case, particular attention should be paid to individual cluster
and cluster pair sizes and to the individual x;, x;; being averaged.

It should also be mentioned that in cases where the connectivity patterns
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Figure 2: Well-Clustered Graph

of the clusters are very noisy (high variance), the median of the inter-/intra-
cluster densities can be used in lieu of the mean. This substitution can
produce more robust measures of inter- and intra-cluster connectivity. Un-
fortunately, it also makes interpretation and significance testing less obvious.

3.2.2 Illustrative Example:

In the previous section, we define a well clustered graph as one where the
inequalities Kinter <K < Kintra hold. We illustrate this definition using
Figure 2, which contains what is arguably a well labelled (clustered) graph
with two clusters. If we compute the mean inter- and intra-cluster densities
and compare them to the graph’s global density, we see the inequalities
described in Section 3.2 hold:

1
~(1+0.83) = 0.92

intra — 2
_ 1 1
Kinter = <0.5><2><1> ix3 008
9
K = Gsxixe =048
= Kinter <K< Kintra
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3.3 Statistical Interpretation of the Kappas and Clustering
Quality

One of the appealing features of our Kappas lies in their statistical definition.
The statistical definition provides a means to formally interpret them, assess
their significance and compare their differences. Such comparisons and tests
are problematic with many currently used quality measures. For example,
in the case of modularity, these problems were identified by both Fortunato
[14] and Traag et al. [47].

In the unweighted graph case, densities can be modeled and interpreted
as Bernoulli probabilities. Under this Bernoulli model, the number of trials
is the maximum number of possible edges, while the number of successes
is the actual number of edges. The empirical estimate of the unconditional
probability of connection between any two vertices on the graph is given by
the graph’s global density, K. Meanwhile, the conditional probability of a
connection, given both nodes are in cluster i, is given by its internal density,
k;. The conditional probability of connection, given one node is in cluster i
and the other in cluster j, is given by their inter-cluster density, ;;. In each
case, the quantities K, x; and k;; are the ratios of the observed number of
edges over the maximum possible number of edges.

The cluster and cluster pair conditional probabilities of connection can
also be generalized to obtain graph level values. This generalization provides
probabilities of connection for all pairs of vertices within clusters or across
cluster pairs. To obtain graph-wide estimates of these conditional probabil-
ities, we take their means over all clusters or cluster pairs. Their means,
Kinter and I_(intra correspond to the graph level Bernoulli probabilities of
two vertices sharing an edge, within clusters or across cluster pairs.

In the weighted case, these empirical estimates of connection probability
become the mean edge weights. The quantities K, Kintra and Kinter a
the empirical estimate of edge weights connecting two nodes anywhere on
the graph, within or between clusters.

At this point, it must be mentioned that in estimating edge probabilities
or weight means, our model assumes all clusters are equally likely. We
do not weight our estimates by cluster or cluster pair size deliberately, to
avoid resolution-limit. As mentioned earlier, a more detailed discussion of
resolution-limit is provided in Section 5.

By exploiting the statistical interpretation of our clustering measures,
we can offer a statistical description of good clustering. We posit that a
good clustering will partition the graph such that the probability there ex-
ists an edge (e;;) between two arbitrary nodes ¢ and j is lower than the

re
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probability a connection exists if these nodes are in the same cluster (i.e., if
¢; = ¢;) and higher than when they belong to different clusters (i.e., ¢; # ¢;).
Mathematically, we expect the following inequalities to hold in cases where
the clustering returned by an algorithm is of good quality (l’3 denotes the
empirical estimate of the probablities):

P [eijle; # ¢j) < Pleyj) < Plegjlei = ¢j] .

In the case of a weighted graph, these empirical probability estimates become
empirical estimates of the expected values of edge weights between arbitrary
vertices, vertices within and vertices in different clusters. Consequently, we
expect the following inequalities to hold (E denotes the empirical estimate
of the expected values):

Eleijle; # ¢5] < Eleij] < Eleijlei = ¢].

To better illustrate the intuition behind them, we use our statistical
interpretation to examine our inequalities in the context of the following
three base-case examples: an algorithm which lumps all vertices into one
single cluster, an algorithm which assigns each vertex to its own cluster and
an algorithm which randomly assigns vertices to k clusters. Together, these
examples form the set of the worst possible degenerate clusterings.

3.3.1 All Vertices Into One Single Cluster

Of all three poor clustering base-cases, this case is the only one where intra-
cluster density is greater than inter-cluster density. Because there is only
one cluster, we have the following equalities and inequality:

I:(inter = P(ejjlci #¢j) =0
K = P(eij|ci = Cj) = P(eij) =K
# K > K;

intra
= Kintra inter -
In this case, inter-cluster density is equal to zero, by definition. As a re-
sult, intra-cluster density is automatically greater than inter-cluster density
(Kiptra > Kinter), if there is at least one edge. Nevertheless, intra-cluster
density is not higher than the global density (Kj 1., # K). Our inequalities
test does indeed detect the degenerate clustering, since the first necessary
condition is not met.

Generally, lumping all vertices into one cluster is a symptom of a poor

clustering algorithm. However, there are instances where a graph may not
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be clusterable. It may not be formed by clusters, sets of dense subgraphs
contained within a wider sparser graph. In such cases, assigning all its
vertices to the same cluster is arguably the best possible clustering. For
example, the best clustering for the vertices of a complete graph is to assign
the same label to all of them.

The single-cluster clustering is a limiting case for our characterization of
good-clustering, because it may inaccurately classify proper clusterings as
being of bad quality. Fortunately, however, it is a rare occurrence. Neverthe-
less, the single-cluster clustering must be treated as a special case and clus-
tering quality must be assessed by other means. In particular, the graph’s
global density, which is equal to intra-cluster density, in this case, remains
a valid measure of clustering quality. Global density provides a measure to
trivially judge the quality of clustering in the single-cluster case. Arguably,
a graph whose vertices are all clustered into one cluster is well clustered only
if its global density is very high. It is poorly clustered otherwise.

3.3.2 Single-vertex Clusters

A clustering where each vertex is assigned to its own cluster is another base-
case degeneracy (in cases where the graph has at least one edge). While it
can trivially be identified by a simple examination of the clustering algo-
rithm’s labeling, our first necessary condition does not hold. The poor-
quality clustering is correctly identified and the following relations hold:

=0< K = I_{i

K intra nter -

3.3.3 Random Cluster Assignment

This degenerate clustering is not easily detectable by a simple examination
of clustering results, unlike the previous two instances. In fact, when the
number of vertices is large, this degeneracy is impossible to identify trivially.
Fortunately, however, this is a case where our first necessary condition fails.
The poor clustering is identified by these equalities:

= P(eijlci # cj) = Pleij) = K

K

_inter
Kintra = Pleijlei = ¢j) = Pleij) = K
= Kintra =K = Kinter :

Because it is not possible to trivially identify this degeneracy, we consider
it as the canonical example of a bad clustering. For this reason, we use the
random cluster labeling as our null model and as a null hypothesis for our
statistical tests, which are described in the next section.
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3.4 Link to K-means

K-means is one of the most widely used clustering algorithms. It applies
to situations where covariates are quantitative and the Euclidian distance
separating them is known [19]. Squared Euclidian distances are then used as
dissimilarity measures between covariates. K-means is an iterative algorithm
that groups covariates into clusters such that intra-cluster dissimilarity (dis-
tance) is minimized. Resulting clusters are formed by grouping covariates
according to their similarity.

In the case of graphs, we typically do not have the benefit of inter vertex
distances. We use density of connections as a measure of similarity. Under
our definition of clustering quality, clusters are formed by vertices that are
more similar to each other than to vertices in other clusters. Arguably,
our definition corresponds to the rationale behind the K-means algorithm.
An equivalent average-case relationship between intra cluster, inter cluster
and global distances between covariates is expected to hold in instances of
successful K-means clusterings. In such cases, it is naturally expected that
the mean distances between covariates within clusters will be smaller than
between covariates belonging to different clusters. In the case of a successful
K-means clustering, we expect the following inequalities to hold:

Dintra <D< Dinter :

In these inequalities, Djytrq, D, Dinter denote the mean Euclidian distances
between covariates within the same cluster, between any two covariates re-
gardless of their cluster and between covariates belonging to different clus-
ters. We note that in the case of K-means the inequalities are reversed, since
the quantities being compared are dissimilarities.

3.5 A Complete Clustering Quality Assessment Routine

Our quality assessment routine consists of two steps, the verification of each
of our two necessary conditions whose combined fulfillment forms a sufficient
(average case) condition. In order to conclude on the quality of a clustering,
we must verify that our first set of inequalities holds. In the event they do,
we must also ensure they hold at a statistically significant level.

The first step consists of the computation of global, inter- and intra-
cluster densities and their comparison through our first necessary condition

inequalities test. In this first step, we verify that the inequalities Kj o <
K < Kjptrg hold. We verify that mean intra-cluster density is higher than

global density and that global density is also higher than mean inter-cluster
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density. These inequalities form the foundations of our statistical (average
case) definition of good clustering.

Once it has been established that our first set of necessary conditions
have been met, we test the statistical significance of the inequality K intra >
Kipter © 7 = Kiptra—Kinter > 0, sample size permitting. This second step
consists of a statistical significance test of the difference between intra- and
inter-cluster densities, which we call v. A detailed description of statistical

significance tests is provided in the next section.

e Clustering Quality Assessment Routine:

— Use clustering algorithm labels to compute the Kappas

— Numerically verify that the inequalities I_(i < K < Kj

hold (first necessary condition)

nter ntra
— If they don’t and if the number of clusters is greater than one,
conclude the algorithm has poorly clustered the graph

— If they don’t and if the number of clusters is one, use global
density to assess clustering quality

— If they do hold and if the number of clusters is sufficiently large,
perform statistical test to verify significance (second necessary
condition) of the difference

Y = Kintra — Kinter

If testing more than one algorithm that meet all benchmarks
above, compare p-values to find best algorithm

In closing, we note that in many cases a simple examination of the inequali-
ties in the first necessary condition, along with some domain expertise may
be sufficient to draw conclusions on clustering quality.

4 Hypothesis Testing

As mentioned earlier, because our measures of clustering are also graph
statistics, we can push our analysis further and verify our second necessary
condition, which is described in Section 3. Through this test, we ensure
the difference between intra- and inter-cluster densities is statistically sig-
nificant. Of course, we could also test the significance of the difference
between intra-cluster and global densities and between global density and

16



intra-cluster density. However, these multiple tests would be redundant and
would complicate the testing process. After all, according to all definitions
of good clustering, the benchmark is that intra-cluster connectivity (density)
be greater than inter-cluster connectivity (density).

The stochasticity which makes hypothesis testing possible stems from
the fact each clustering is one sample of an unobserved distribution of ver-
tex labelings. Each graph’s clustering, as returned by one particular clus-
tering algorithm, can be understood as being one sample drawn from this
unobserved distribution of all possible clusterings into the same number of
clusters as those identified by the algorithm (or set by external parame-
ter) for the graph under study. The quantities, Kintra and Kinter are the
corresponding sample means of intra- and inter-cluster densities.

To formally confirm statistical significance, we use a modified version of
the standard Student’s t-test, which is described in Section 4.2. It must be
emphasized that because our performance measures are sample estimates
of a mean, we do not face the problem of assigning them a distribution.
This clear statistical definition is in contrast to the difficulty of assigning
a distribution to modularity. Such difficulty renders formal statistical tests
of its significance non-informative, as highlighted by Fortunato in 2010 [14].
Our Kappas are assumed to be distributed about their true value according
to a Gaussian distribution, on the basis of the Central Limit Theorem, when
sample size (number of clusters) is sufficiently large. Our computational
experiments also reveal they remain Gaussian even for smaller sample sizes.

Here, we streamline our statistical test. In our previous article [35], we
conducted two separate tests. We formulated two null hypotheses, I_(intra =
K and Kj,er = K, to avoid the effects of a possible correlation between
Kiptra and Kipiep (K is a graph constant, not the result of a clustering).
However, since our ultimate goal is to formally compare intra- and inter-
cluster densities, we adapt the standard t-test to overcome any possible
correlation and allow for a direct comparison of these graph statistics. This
new test verifies that a clustering meets the second necessary condition for
being classified as a good clustering. If it does meet this condition, we expect
the inequalities Kintra > Ki to hold at a reasonable significance level
(e.g., « = 0.95).

Our test can also be used when comparing two or more algorithms’
performances on a given graph. In such cases, in order to conclude algorithm
‘a’ is better than algorithms ‘b’, ’¢’,(...), we should observe better (smaller)
p-values, p, < pp < pe < (...). Although this procedure is not a formal
statistical test, it is a valid and easily applicable heuristic.

Finally, let us note that our statistical definition also allows for uncer-

nter
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tainty in the connectivity data, another open problem which was identified
by Holder et al. in 2016 [20]. Unlike modularity and conductance, our
measures are defined as statistical measurements with associated standard
errors, not deterministic quantities.

4.1 Null Hypothesis

Under the null hypothesis, the algorithm is assumed to offer a random as-
signment of nodes to clusters. When nodes are randomly assigned cluster
labels, we expect no significant difference between Kintra and Rinterv a
described in Section 3.3.

Here, we note that our null hypothesis does not rely on any generative
model for the graph, unlike modularity which uses the configuration model
as a null model. In fact, in our approach, the graph is not random, but is
fixed. Instead, under the null hypothesis, the clusters are random.

Our significance test is an assessment of the statistical significance of
the quality of a clustering returned by an algorithm. We argue that in the
case of a good clustering, the gap between intra- and inter-cluster densities
should be statistically significant (test 1). We also use the p-values of this
test to heuristically compare the quality of the clusterings of a specific graph
returned by two or more algorithms, as mentioned earlier (test 2).

S

Test 1
Ho:  Kiptra = Kipter © 7 = Kj =0

>0

ntra — “inter

Hao:  Kiptra > Kinter © 7 = Kintra — Kinter

Test 2 (heuristic, two algorithm comparistion)
ok e 0 52 2(2)
Ho Kintra - Kinter - Kintra N Kinter

Ho: 1>

Smn=7=0

4.2 Test Statistics

To test the hypotheses in the previous section, we compute the following
test statistics, one for assessing the significance of 7 (stat test 1) and one for
comparing the quality of the clusterings as labeled by two or more clustering
algorithms (stat test 2).

e Stat Test 1:



e Stat Test 2 (heuristic):

— Compute t, and ¢, the significance tests (test 1, here above) for
algorithms ‘e’ and ‘b’ on a given graph

— Obtain the respective p-values, p, and py

— If po — pp > 0, conclude algorithm ‘b’ returned a better, more
statistically significant, clustering

— Note this is a heuristic decision tool, not a formal statistical test

The modification we make to the t-test lies in the computation of the
standard error (s.e.) and in the degrees of freedom of the t statistic. In the
classic t-test, the t statistic for Test 1 would be computed as follows.

t = L
Sy
2 2
5. — Sintra + Sinter
7 |C 0.5 x |C] x (|C] —1)
1 IC] )
5 _
Sintra — Z (Ri - Kintra)
¢l -1 i=1
1 C]|C] )
2 _ K.
Sinter — 05 x |C| x (|C]—1)—1 Z Z (“U Klnter)
i=1 j=i+1

Instead, we use Monte-Carlo simulation to compute the t-statistic di-
rectly. The steps in this computation are described below:

1.

Randomly label nodes as belonging to one of the |C| clusters identified
by the algorithm (null hypothesis)

Compute v = K; K

intra — Kinter> under the null hypothesis

Repeat r > 30 times and compute the variance Var(7)

. Use s.e. = \/Var(y)

Degrees of freedom for the test are given by the number of simulation
runs, 7, minus one, d.f. = (r — 1)

In addition to sidestepping the issue of possible dependencies between

K

intra

and K;

inter» the main feature of our modified t-test is that it remains

computable even in cases where the standard error cannot be estimated by
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applying the usual scaling to the variance of the results. For example, in
cases where the graph is disconnected, the variance s? (and standard error)
of Kinter may be hard, even impossible, to estimate accurately. By using
Monte-Carlo simulation to estimate standard error, we are able to overcome
the obstacles posed by such situations.

Of course, we could also apply the Monte-Carlo method to obtain p-
values directly, without using t-statistics and the Student distribution. Pro-
ceeding in this way would not only circumvent any possible dependencies
but would also be independent of any distributional assumptions on the null
hypothesis. Unfortunately, such a procedure would also be very computa-
tionally demanding and could render testing infeasible. Fortunately, as we
show in the next section, the Gaussian distribution offers a very good model
of our null hypothesis, even when sample sizes (number of clusters) are small

(N < 30).

4.3 Empirical Examination of the Null Distribution

Under our null hypothesis, our canonical example of poor clustering, the
difference v = Kintra — Rinter has an expected value of zero. It is also
approximately Gaussian. Indeed, under the null, cluster labels are assigned
to vertices randomly. In this case, the cluster label of a vertex is independent
of its connections to other vertices. The symmetry of the distribution of ~y
stems from the fact it is a difference of two sample means.

To empirically validate our statements about the distribution of ~ un-
der the null, we simulate random node labelings on two different synthetic
graphs. The first graph is an Erdés-Rényi (ER) graph of 1,000 vertices and
edge probability of % The second is a connected caveman (CC) graph of 10
(quasi-)cliques of 100 vertices. Each (quasi-)clique has one edge re-assigned
so it connects to one vertex in another cluster. These graphs were chosen,
because they lie at either end of the spectrum of structured-unstructured
graphs. We then simulate a random vertex labeling of 12 and 24 clusters,
repeat r times and compute the means and standard deviations of 7. To
complete our comparisons, we examine the sample statistics of our simulated
data and its empirical distribution. We also superimpose its percentiles over
the percentiles of a Gaussian distribution with the same mean and standard
deviation. The results are shown in Table 1, Figures 3 and 4.

The histograms in Figure 3 reveal that v is roughly symmetrically dis-
tributed about its mean of zero, even with a small number of runs. That
symmetry becomes more apparent as the number of runs increases. The
numerical results in Table 1 confirm its mean is always roughy equal to zero
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Figure 3: Null Distributions of v, Number of Runs and Number of Clusters
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Table 1: Mean and Std Dev of v Under the Null

Graph || Num Runs | Num Clusters | Mean gamma | Std gamma
ER1000 35 12 -0.0005 0.0023
ER1000 100 12 -0.0001 0.0026
ER1000 1000 12 0.0000 0.0025
ER1000 35 24 0.0010 0.0030
ER1000 100 24 0.0001 0.0035
ER1000 1000 24 0.0001 0.0034
CC1000 35 12 -0.0002 0.0016
CC1000 100 12 0.0001 0.0015
CC1000 1000 12 0.0000 0.0015
CC1000 35 24 -0.0004 0.0024
CC1000 100 24 0.0001 0.0023
CC1000 1000 24 -0.0001 0.0022
Mean 0.0000 0.0024

and standard deviation also roughly equal to zero. More importantly, our
results also confirm the empirical percentiles of simulated v and those of
a Gaussian with the same mean and standard deviation approximately co-
incide, especially when the number of runs is large. This coincidence can
be seen in Figure 4, where the percentiles of v converge towards theoretical
Gaussian percentiles, as the number of runs increases. It should be noted
that cases where the histograms appear skewed are due to the relatively
small number of runs with respect to the number of clusters.

In summary, our node labelling simulations reveal that even a very small
number of runs (e.g., 35 runs) can offer a very accurate estimate of the
standard deviation under the null, of the standard error of our modified
t-statistic. They also confirm that under the null v has an expected value of
zero. However, the most interesting result is that under the null v remains
approximately Gaussian, even in instances where the cluster number is small
(12 and 24) and well below the usual sample size required to invoke the
Central Limit Theorem (N > 30).

4.4 Scalability of the Modified t-test

With the mass of large datasets that are now commonly studied, it is impor-
tant to consider the scalability of any clustering performance measurement
technique. Indeed, any test that cannot be applied to larger graphs is not
suited to the emerging area of complex networks. However, because of the

23



stability of the null and its Gaussian distribution, our performance variables
and associated test statistics are indeed applicable to such data sets.

In particular, the stability of the standard distribution of the null eases
the estimation of our t-statistic’s standard error, since its computation
doesn’t require a large number of simulation runs. More importantly, it
also allows us to use a modified t-statistic to estimate p-values, instead of
resorting to costly direct empirical Monte-Carlo estimation. Additionally,
it should be noted that computing Kintra and Kinter can be obtained by
computing each cluster’s internal density and each cluster pairs’ common
density separately. Breaking up computations in such a way allows for easy
parallelization.

5 Axioms for a Good Clustering Quality Function

In this section, we review the axioms that define a good clustering quality
function and describe how our Kappas meet these axioms. Multiple authors
have presented axioms defining a good clustering quality function [25, 1,
26, 24]. Although these publications use different terminology, their axioms
share common features and are rooted in the seminal work of Kleinberg [25].

We combine the recent work of Van Laarhoven and Marchiori [26] and
the more recent work of Kehagias and Pitsoulis [24] to draw a list of axioms
defining the desirable properties of a clustering quality function for graphs.
Our combined list of axioms contains ten axioms which characterize a good
clustering quality function.

5.1 Axioms of Van Laarhoven and Marchiori

Most of the axioms that a good clustering quality function must meet are
presented by Van Laarhoven and Marchiori [26] and are listed below. In
their work, these authors also prove modularity fails to meet two of these
axioms, locality and monotonicity.

1. Permutation Invariance: Clustering quality should not depend on
specific labels. Instead, it should depend on global labeling structure.
( “isomorphism invariance” in Kehagias and Pitsoulis [24])

2. Scale Invariance: Clustering quality should remain unaffected when
edge weights are scaled uniformly. Mathematically, this means that for
a graph G, any clusterings (Cj;, C;), constant o > 0 and given quality
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function Q(G, C), the following equivalence holds:
QG C)) < Q(G,C)) & Q(aG,Ci) < Q(aG, Cy).

While this axiom appears to apply mostly to weighted graphs, the
idea behind it can be generalized to unweighted graphs. In the case
of unweighted graphs, this axiom can be understood as meaning the
equivalence above must hold when edge probabilities are uniformly
scaled.

3. Richness: Given a finite set of vertices V' it is possible to re-arrange
edges (or edge weights) to obtain an optimal partition.

4. Monotonicity and Consistent Improvement: A “consistent im-
provement” means an increase in edge density (edge probability) within
clusters or a decrease in inter-cluster edge density (edge probability)
should not decrease the quality function.

5. Locality:

(a) Although Ackerman and Ben-David [1] have also defined locality
in a very similar manner, we prefer the definition of Van Laarho-
even and Marchiori [26].

(b) The latter is more flexible and does not rely on the assumption
the number of clusters is known in advance. After all, when we
are evaluating the performance of an algorithm, we do not want to
impose a fixed number of clusters. First, in most cases, we don’t
know this number. Second, we also want to assess the validity
of the number of clusters fed into or identified by the clustering
algorithm under examination.

(c) We use the definition that follows: “(...) the contribution of a
single cluster to the total quality should only depend on nodes
in the neighborhood of that cluster (...) On the other hand, a
quality function that is written as a sum over clusters, where
each summand depends only on properties of nodes and edges in
one cluster and not on global properties, is local.” [26].

6. Continuity: Here, the authors say “A quality function Q is contin-
uous if a small change in the graph leads to a small change in the
quality.” Essentially, this property ensures quality functions remain
robust to noise in the graph structure.
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7.

5.2

Resolution-limit Free: The partition remains optimal for any in-
duced subgraph of the optimal partition. It was described as “the
limitations in detecting small community structures in a large net-
work”, by McSweeney et al. [34]. In essence, a resolution-limit free
quality function’s output is not disproportionately influenced by larger
clusters to a point where the effect of smaller clusters is washed away
and hidden.

Additional Axioms from Kehagias and Pitsoulis

Many of the axioms of Kehagias and Pitsoulis [24] are similar to those of Van
Laarhoven and Marchiori [26]. In this section, we include some additional
ones which are specific to the work of Kehagias and Pitsoulis.

7.

5.3

Perfectness: “(...) is based on the intuition that a union of disjoint
complete graphs should exhibit perfect community structure”

Connectivity: “(...) is based on the intuition that a minimum re-
quirement for a cluster to be classified as a community is that the
associated induced subgraph should be connected”

Complementarity: Let () be a uniformly scaled quality function on
the interval [0,1] and G¢ the complement graph of G, then if @ is
complementary, the following holds

Q(G,C)=1-Q(GC).

Axioms of Good Clustering Applied to the Kappas and
Its Accompanying Tests

In this section, we apply the axioms of a good clustering quality function to
our Kappas and their significance test. We describe how they meet all ten
axioms we just listed.

1.

Permutation Invariance: Cluster labels are only used to aggregate
edge and vertex counts. A label permutation, swapping all node cluster
labels between an arbitrary number of pairs of clusters, does not affect
edge or vertex counts. Therefore, our estimates of intra- or inter-
cluster density or the graph’s global density remain unaffected.

. Scale Invariance: In the context of our tests, scale invariance must

hold on two levels. Not only must the relative differences in the Kap-
pas remain unaffected by the scaling, but the test statistics must also
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remain unaffected. A multiplication of edge probabilities or weights by
a constant a > 0 does not affect the relative differences in the Kappas,
the t-test statistics and their degrees of freedom. Consequently, the
conclusions of our tests are also unaffected. A full proof of this state-
ment is trivial but lengthy. Essentially, it is based on the fact that our
Kappas are non-negative numbers and the fact standard error scales
linearly. Therefore, a multiplication by a non-zero positive constant
does not affect the inequalities:

c aa _ oc
S-& —s —.
d ab ad

SallS]

. Richness: This property means that the optimum is an achievable
quantity. It is obvious that increasing intra-cluster density or decreas-
ing inter-cluster density improves our test statistics’ value and implies
an improvement of clustering. In other words, the better the cluster-
ing, the greater the gap between global, intra- and inter-cluster density,
the higher the t-statistic and the lower the p-value. For example, if we
increase intra-cluster density and decrease inter-cluster density suffi-
ciently, intra-cluster density will eventually reach its maximum value
of one (case of unweighted graphs), while inter-cluster will reach its
minimum value of zero (also unweighted graph case). Their differ-
ence, the quantity v, will also reach its maximum value of one. The
significancel test statistics will also reach their optima (i.e., minimum
p-value), if we modify densities sufficiently.

. Monotonicity and Consistent Improvement: This property is a
consequence of the previous one.

. Locality: Our quality measurement quantities are means. They are
sums over clusters or cluster pairs scaled by a constant. Each summand
depends exclusively on its cluster or cluster pair. Our tests meet this
property by definition: “(..) a quality function that is written as a
sum over clusters, where each summand depends only on properties of
nodes and edges in one cluster and not on global properties, is local.”
[26].

. Continuity: Continuity is a property of the mean, which provides a
smoothed summary of a data set. A small improvement in clustering
cannot result in a large fluctuation in the inter- or intra-cluster means,
by construction. For example, a higher intra-cluster density within
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one or a few clusters cannot have a drastic effect on our graph-wide
quantities.

. Perfectness: The union of disjoint complete graphs would indeed
have perfect scores. In such a case, each cluster’s intra-cluster density
would be equal to one and all inter-cluster densities would be qual to
zero, by definition.

- 1 - 1
K; =) 1=1>K>K; = 0=0
intra IC]| \Z;/ mter = 5« iCl(C] - 1) Z
|CIx1

Both necessary conditions would be met. The inequalities between
global, intra- and inter-cluster densities would hold and ~ would reach
its maximum value. The statistical test would classify the resulting
as significantly different from zero with a p-value approaching 0:

(1-0)

S.€.

t =

, with s.e 0

. Connectivity: A set of disjoint vertices v; would have internal density

ki =0< K, Klnter

and would not meet our test for being a valid cluster. Such a set would
trivially be classified as degenerate.

. Complementarity: Both our test statistics have number of edges in
their numerators.
- | Ei] o — Bl
’ 0.5 x nz(nz — 1)’ K n;n;
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10.

Let ¢, j¢ be the complement of the bi-clique formed by clusters 4, j,
|Eij| = my; be the number of edges with one end in each cluster, n; be
the number of nodes in cluster 7 and the total number of cluster-cluster
pairs be denoted as N = 0.5 x |C| (|C| — 1).

|E/LCJC|
Hicjc = —_—
nmj
L Rl L
nin; ning
N N
1 1
N Z A-ry) ] = « N*AZ Kij
4,j=1+1 i,j=1+1
N
1 K O
= 1_N E: Kij = 1 inter
i,j=1+1

Resolution-limit Free: If our first necessary condition (set of in-
equalities) is met, Kjtor < K < Kjptrq, then we also expect E(k;;) <
K < E(kr;) for all clusters ¢ and cluster pairs 7, j. If our second nec-

essary condition is met and we reject the null that Kintra = Kipter>

then the corresponding null on subset statistics, K SO cesy , will
; intra inter
tend to be rejected as well.

More concretely, it is important to note that neither K intra 00T Kipter
are affected by individual cluster size relative to network size. They do
not suffer from the resolution limit observed in modularity [15, 23, 11,
16]. Very large (very small) clusters do not influence their values more
than smaller (larger) ones, as with modularity. All terms in the sums
are scaled by the total number of possible edges within each cluster or
pair of clusters, which ensures they remain within the same order of
magnitude regardless of size. In the case of unweighted graphs, they
always lie on the [0, 1] interval. In the weighted case, they are always
proportional to edge weight. This feature makes these measures robust
to large “mega-clusters” that are often observed in real-world networks
and to the problematic tendency of clustering algorithms to lump all
vertices together in a few very large clusters [16, 39]. (Naturally, K is
a graph-wide measure that remains completely unaffected by cluster
labelings and individual cluster sizes.)
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6 Computational Experiments

To empirically compare each competing performance measure’s accuracy
and responsiveness to various graph structures and cluster labelings, we
subject them to a number of numerical stress test scenarios. We use sim-
ulated graphs and cluster labels. The full experimental set-up of our tests
and scenario details are described in the next section.

Overall, our goal is to test the accuracy and robustness of our clustering
measures and compare their behavior to that of the two main clustering
measures in the literature, modularity and conductance. Simulation is used
to generate test scenarios where the clustering structure is known in advance
and can be modified easily. These test scenarios are then used to examine
and compare the sensitivities of the Kappas, modularity and conductance.
Our scenarios include a number of contrived instances, but these are useful
to stress test our metrics through extreme degenerate examples and compare
their behavior to those of the more established measures.

The overarching logic guiding our tests is that a good measure of inter-
or intra- cluster connectivity should accurately reflect the simulated graph’s
structures. We expect measures of intra-cluster connectivity, f(intra and
modularity to increase in step with the simulated graph’s intra-cluster con-
nectivity levels, by definition. Meanwhile we expect conductance to display
the inverse behavior. We also expect Kinter to follow the fluctuations of
inter-cluster connectivity, by construction.

It should also be mentioned that some authors have used so-called “ground-
truth” data sets, as benchmarks for clustering algorithm performance (e.g.,
[51, 36, 50]). These are data sets where the nodes’ cluster memberships
are known in advance. Our approach is more general, since it is data set
independent. Arguably, the fact that an algorithm anecdotally provided
accurate clustering on one labeled instance is no guarantee it will perform
equally well on another (likely unlabeled) instance. In addition, our exper-
iments provide us with an understanding of each measure’s sensitivity and
response to graph structure.

6.1 Experimental Set-up and Results

We experiment with variations in edge probability, both within and between
clusters. Here, we slightly modify the procedure to generate inter-cluster
edges. In our previous article [35], we varied the proportion of vertices
inside and outside each cluster that shared an edge. Here, we vary edge
probabilities.
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Our data generation process consists of modifying intra-cluster and inter-
cluster edge probabilities of a planted partition model [14] and generating
graphs with clusters of varying sizes. We begin with increases in intra-cluster
connectivity in steps of 25%, while maintaining inter-cluster edge probabil-
ity at 0%. For example, in the second column of Table 2, approximately 25%
of all possible edges within a cluster are added, but nodes only have con-
nections to other nodes within their assigned cluster. Each cluster remains
a connected component disconnected from the rest of the graph.

We conduct these tests with unweighted graphs, but also repeat them
with weighted ones. While there are no formal and universally accepted
definitions of weighted stochastic block models or planted partition models,
we generate data that is consistent with the logic of the planted partition
model. In the weighted case, the intra-cluster edge probability also corre-
sponds to edge weight. For example, when edge probability is 25%, edge
weight is also set to 0.25. All edge weights are between 0 and 1.

We then examine the effect of inter-cluster connectivity on each measure.
We begin with no inter-cluster connectivity and then increase it in steps
of 25%. We increase edge probability between nodes in different clusters
in steps of 25%, while keeping intra-cluster connectivity at 0%. In other
words, clusters are just sets of non-adjacent vertices. In these scenarios,
we imagine an algorithm, a very poorly performing one, that groups non-
adjacent vertices into clusters with different levels of inter-connection to
other clusters but with an intra-cluster connectivity that remains constant
at 0%. Here again, we also repeat our tests on weighted graphs, with edge
weights corresponding to the inter-cluster connectivity percentage. Results
are shown in Table 3.

We acknowledge these synthetic networks are unrealistic. Our goal is
not to study common network structures. Our goal is to examine the effects
of drastic degenerate structures on our quality measures and compare them
to the effects on the competing measures.

Finally, in order to assess our measures’ robustness, we repeat all the
tests described above, but with the introduction of noise in the connectivity
patterns. Noise is introduced in the form of 100% intra-(inter-) cluster
connectivity (edge probability). Results are shown in Table 4 and Table 5.

6.2 Interpretation of Empirical Comparisons

As shown in Section 6.1, our Kappas behave exactly as expected, even when
subjected to noise. In all instances where the labeling of clusters reflects a

good partition, the inequalities f(i > K > K; hold and they do not

ntra inter
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Table 2: Varying Intra-Cluster Connectivity, No Noise from Inter-Cluster

Connectivity
Pct Inter = 0, Pct Intra varies
Pct Intra || 0 |25 |50 75 100
UNWEIGHTED
N || 10,048 | 9,725 | 10,374 | 9,490 9,700
|C| || 200 200 200 200 200
|E| || O 77,043 | 173,221 | 224,723 | 313,955
K || 0.0000 | 0.0016 | 0.0032 | 0.0050 | 0.0067
—f(intra 0.0000 | 0.2640 | 0.4995 | 0.7523 | 0.9900
K;pter || 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
® || nan 0.0000 | 0.0000 | 0.0000 | 0.0000
Q || nan 0.9908 | 0.9911 | 0.9906 | 0.9907
WEIGHTED
N || 10,048 | 9,725 | 10,374 | 9,490 9,700
|C| || 200 200 200 200 200
|E| || 0 19,261 | 86,611 | 168,542 | 313,955
K || 0.0000 | 0.0004 | 0.0016 | 0.0037 | 0.0067
Kintra 0.0000 | 0.0660 | 0.2497 | 0.5642 | 0.9900
Kinter 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
® || nan 0.0000 | 0.0000 | 0.0000 | 0.0000
Q || nan 0.9908 | 0.9911 | 0.9906 | 0.9907
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Table 3: Varying Inter-Cluster Connectivity, No Noise from Intra-Cluster

Connectivity
Pct Intra = 0, Pct Inter varies
Pct Inter || 0 | 25 | 50 | 75 | 100
UNWEIGHTED
N || 10,048 | 10,048 10,048 10,048 10,048
|C| || 200 200 200 200 200
|E| || 0 12,210,800 | 24,864,800 | 37,291,600 | 50,142,500
K || 0.0000 | 0.2419 0.4926 0.7388 0.9934
Kintra 0.0000 | 0.0000 0.0000 0.0000 0.0000
Kipter || 0.0000 | 0.2366 0.4907 0.7336 1.0000
® || nan 1.0000 1.0000 1.0000 1.0000
Q || nan -0.0067 -0.0067 -0.0067 -0.0067
WEIGHTED
N || 10,048 | 10,048 10,048 10,048 10,048
|C| || 200 200 200 200 200
|E| || 0 3,052,700 | 12,432,400 | 27,968,700 | 50,142,500
K || 0.0000 | 0.0605 0.2463 0.5541 0.9934
Rintra 0.0000 | 0.0000 0.0000 0.0000 0.0000
Kipter || 0-0000 | 0.0592 0.2454 0.5502 1.0000
® || nan 1.0000 1.0000 1.0000 1.0000
Q || nan -0.0067 -0.0067 -0.0067 -0.0067
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Table 4: Varying Intra-Cluster Connectivity, with Noise from Inter-Cluster

Connectivity
Pct Inter = 100, Pct Intra varies
Pct Intra || 0 | 25 | 50 75 | 100
UNWEIGHTED
N || 10,048 9,725 10,374 9,490 9,700
|C| || 200 200 200 200 200
|E| || 50,142,500 | 47,052,100 | 53,631,600 | 44,950,500 | 47,040,200
K || 0.9934 0.9951 0.9968 0.9983 1.0000
Kintra 0.0000 0.2640 0.4995 0.7523 0.9900
Kipter || 1.0000 1.0000 1.0000 1.0000 1.0000
® (| 1.0000 0.9974 0.9952 0.9922 0.9899
Q || -0.0067 -0.0050 -0.0033 -0.0018 -0.0001
WEIGHTED
N || 10,048 9,725 10,374 9,490 9,700
|C| || 200 200 200 200 200
|E| || 50,142,500 | 46,994,300 | 53,545,000 | 44,894,300 | 47,040,200
K || 0.9934 0.9939 0.9952 0.9971 1.0000
Kintra 0.0000 0.0660 0.2497 0.5642 0.9900
Kipter || 1-0000 1.0000 1.0000 1.0000 1.0000
® (| 1.0000 0.9994 0.9976 0.9941 0.9899
Q || -0.0067 -0.0062 -0.0049 -0.0030 -0.0001
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Table 5: Varying Inter-Cluster Connectivity, with Noise from Intra-Cluster

Connectivity
Pct Intra = 100, Pct Inter varies
Pct Inter || 0 | 25 | 50 | 75 | 100
UNWEIGHTED
N || 9,700 9,700 9,700 9,700 9,700
|C| || 200 200 200 200 200
|E| || 313,955 | 11,612,400 | 23,403,200 | 34,964,100 | 47,040,200
K || 0.0067 | 0.2469 0.4975 0.7433 1.0000
Kintra 0.9900 | 0.9900 0.9900 0.9900 0.9900
K;pter || 0.0000 | 0.2294 0.4842 0.7271 1.0000
® || 0.0000 | 0.9595 0.9798 0.9864 0.9899
Q || 0.9907 | 0.0202 0.0066 0.0022 -0.0001
WEIGHTED
N || 9,700 9,700 9,700 9,700 9,700
|C| || 200 200 200 200 200
|E| || 313,955 | 3,138,570 | 11,858,600 | 26,301,500 | 47,040,200
K || 0.0067 | 0.0667 0.2521 0.5591 1.0000
Kintra 0.9900 | 0.9900 0.9900 0.9900 0.9900
Kinter 0.0000 | 0.0574 0.2421 0.5453 1.0000
® || 0.0000 | 0.8556 0.9603 0.9820 0.9899
Q || 0.9907 | 0.0930 0.0196 0.0051 -0.0001
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hold in instances where the partition reflects poor clustering. For example,
in Table 4, all instances are cases of poor clustering. Similarly, in Table 5,
instances where the percentage of inter-cluster connectivity is below 75% are
examples of good clustering. Decimal mismatches with the expected edge
probabilities are due to rounding in the sampling procedure. In contrast, we
note modularity and conductance display very counterintuitive behaviors.

The case of modularity is of particular interest, given it is the most widely
used clustering quality measure. To illustrate the breakdown of modularity
observed in Tables 2-5, we use a hypothetical example of an unweighted
graph with k clusters all containing the same number of vertices (Jv;| = v, Vi)
and with equal inter- and intra-cluster edge probability for all individual
clusters and cluster pairs.

6.2.1 Case 1 (Table 2), varying intra-cluster edge probability,
with inter-cluster edge probability of zero:

In this case, inter-cluster edge probability is zero and intra-cluster edge
probability is denoted by p (> 0). In this case, modularity is approximated
as

2

€ii — a;

——
qi

k
1=

1
~ kx [ell—aﬂ .

If p = 0, modularity is undefined, because m = 0. If we let p > 0, since

we have only intra-cluster edges, a constant edge probability and number of

vertices for all clusters, all e; and all a; are not only equal within a given
cluster. They also take on the same approximate value, across all clusters:

1
€ = a; = 7X2X|EZ’Z" VieC
2m
|Eii| ~ p><0.5><v><(v—1)w% VieC
k
> IEql = m.
i=1
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As soon as p increases to any non-zero value, modularity reaches its maxi-
mum and remains unaffected by variations in connectivity, as shown here.

oo [L2m 1w
2m k  4m? k2
1
1- e 1 (if k is large)

Q

Q

Q

6.2.2 Case 2 (Table 3), varying inter-cluster edge probability,
intra-cluster edge probability of zero:

Here, since there are no intra-cluster edges, we have e;; = 0 for each cluster .
Since the inter-cluster probability is uniform across all cluster pairs (p) and
intra-cluster edge probability is zero, the approximate number of connections
(edge stubs) originating from each clusteris s; ~ (p x v x (k — 1) x v) ~ 22,
The approximate number of stubs is equal to the probability of inter-cluster
edge multiplied by the total number of possible inter-cluster connections
originating in cluster ¢ and connecting to vertices in all other remaining
(k — 1) clusters. Here, we note there are v vertices in each cluster ¢ and
(k — 1)v vertices in the remaining clusters. Summed over the graph, it
corresponds to two times the number of inter-cluster edges originating in
each cluster:

k
5;=2m, s; & .
k
i=1

Modularity with no intra-cluster edges but a probability of inter-cluster edge
p then becomes approximately:

1
Q ~ kx 0—4m2(p><v><(k:—1)><v)2}
r 2
1
~ kX 2 pxvx(k—1)xwv

%

b oL () Z L
a4m? \ k ok
~ 0 (if k is large) .

Here again, modularity remains fixed, this time around zero, and unaffected
by connectivity patterns.
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6.2.3 Case 3 (Table 4), varying intra-cluster edge probability,
inter-cluster edge probability of 1:

In Table 4, we begin our experiment with an intra-cluster edge probability
of zero. This situation takes us back to the hypothetical example described
in Case 2. In that example, modularity was approximately equal to zero.
Increasing intra-cluster edge probability has only a very minor effect on
modularity because there are far more inter-cluster edges than intra-cluster
ones. At each step, the denominator, number of edges, goes up minimally as
the number of intra-cluster edges increases. The numerator also increases,
but it remains smaller than the denominator. For example, increasing intra-
cluster edge probability from zero to some p (> 0) results in the changes
below. In this example, m is the number of edges when intra-cluster edge
probability is zero.
o pxux(v—1)
S 2m4pxoux(v—1)
W2 (2Tm+p><v><(v—1))2 o~
@m+pxvx@w—1)% °
pxux(v—172<2m

~

SE

€ii

€c— €, =¢€ ~0
kxe~D0

As a result, modularity only increases in a trivial manner and remains at a
value of approximately zero.

6.2.4 Case 4 (Table 5), varying inter-cluster edge probability,
intra-cluster edge probability of 1:

In Table 5, modularity begins at a value approximately equal to one. This
graph structure is the same as the last example in Table 2, where intra-
cluster edge probability is equal to one and inter-cluster edge probability is
equal to zero.

When inter-cluster edge probability increases to p > 0, the numerator in
the e;; remain constant, since intra-cluster edge probability is one. However
the denominator increases dramatically and decreases the e;; very drastically.
Let m denote the number of edges with inter-cluster edge probability of zero.
When inter-cluster edge probability increases to p > 0, the number of edges
becomes

|E:m+k><<;><p><v><[(k:—1)><v]>.
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In this case, each cluster adds % X pxvx(k—1)x v edges. This increase
in the number of edges causes e;; to collapse, as soon as p > 0.

B vx(v—1) N

Tom+ (kxpxuvx[(k—1)xu])

€ij

Because,

vXx(v—1)<2m+ (kxpxvx|[k—1)xu])

Meanwhile, when inter-cluster edge probability increases to p > 0, a? in-
creases slightly.
s [vx(w—=1)4+pxvx(k—1)xuv]?

@i = 5 = €(2 €ii)
2Cm+Ekxpxvx(k—1)xu]

6.2.5 Link to Axioms

The axioms listed in Section 5, which define the properties of good clustering
quality functions, may offer some clues to interpret modularity’s counter-
intuitive results (Tables 2-5). While modularity does not violate the axioms
of richness, monotonicity and consistent improvement and perfectness, it
only barely meets them. It also appears to violate continuity, in our exper-
iments.

Richness essentially means the optimum must be achievable through a
re-arrangement of edges. Although not defined as such, we would also ex-
pect that a “rich” function’s minimum also be achievable, in routine cases,
not just extremely rare degenerate trivial cases. However, the minimum for
modularity, @@ = —%, is only achievable in very rare degenerate and triv-
ially identifiable cases. This fact is documented by Brandes et al. [6]. Van
Mieghen et al. also corroborate this claim about the lower bound, when
they state “In conclusion, the modularity of any graph is never smaller
than —% , and this minimum is obtained for the complete bipartite graph”
[48]. Empirically, this weak realization of richness can be seen in all cases
where intra-cluster edge probability is zero. Arguably, a good quality func-
tion should be at its minimum, when intra-cluster edge probability is zero.
Unfortunately, in all of our tests, modularity never reaches its minimum,
regardless of how poor the clustering. These cases can be seen in the first
column of Table 2 where modularity (Q) is undefined, in Table 3 where Q is
either undefined or roughly equal to zero and in the first column of Table 4.
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Once again, while it does not violate the axiom of monotonicity and
consistent improvement modularity only meets it weakly. Monotonicity and
consistent improvement mean that an increase in edge density within clus-
ters or decrease in inter-cluster edge density should not decrease the quality
function. While modularity does not decrease with improvements in cluster-
ing, it rapidly meets its maximum after trivial improvements and then fails
to accurately reflect any further improvements. This inconsistent behavior
can be seen in Table 2 and Table 4 where modularity meets its maximum of
one, with an intra-cluster edge probability of 25% and then fails to reflect
any additional increase in intra-cluster edge probability.

Continuity is an axiom that is clearly violated by modularity. According
to Van Laarhoven and Marchiori, “A quality function Q is continuous if a
small change in the graph leads to a small change in the quality”. However,
as mentioned previously, modularity spikes from a value of zero to its max-
imum of one, after only a modest improvement in clustering, an increase of
25% intra-cluster edge probability.

Perfectness is another axiom that is only barely met by modularity.
While a set of disjoint complete graphs does indeed get a “perfect” modu-
larity score, the reverse is not true. We would expect a “perfect” clustering
quality function to reach its minimum when clustered vertices form a com-
plete k-partite graph (where & > 2). Unfortunately, modularity does not
reach its minimum in such cases. In our experiments, modularity of such
poorly clustered graphs is shown in the fifth column of Table 3 and the first
column of Table 4.

7 Illustrative Example: Comparing Clustering Qual-
ity of the Louvain and Asynchronous Label Prop-
agation Algorithms

To illustrate the application of each step of our work, we test the Lou-
vain [5] and the Asynchronous Label Propagation (ALP) [43] algorithms,
as implemented in the Networkx library’s [18] “Communities” module. We
use these algorithms to cluster the SNAP “email-Eu-core network” graph
[30, 52], which we converted into an undirected graph with no self-loops
(EUC).
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Table 6: Key Characteristics of the Graph and Simulations of the Null
Hypotheses

Graph | Num Vertices | Num Edges | Num Clusters | Num Runs | Mean v | Std ~
EUC 1,005 16,064 20 35 -0.0001 | 0.0013
EUC 1,005 16,064 27 35 -0.0002 | 0.0014

To obtain standard errors and to verify our claims about the null distri-
bution in small sample (number of clusters) cases, once more, we simulate
35 instances of random cluster assignments. The number of clusters used to
simulate the null distribution is the same as the number of clusters identified
by each of the two clustering algorithms. Sample statistics of the null and
graph characteristics are shown in Table 6. Corresponding histograms are
shown in Figure 5. Full statistical test results are shown in Table 7.
Table 7: Clustering Results: Test Statistics
Algorithm | Num Clusters Kintra K inter K ~y t-stat | df | p-value
ALP 20 0.0017 | 0.0000 | 0.0318 | 0.0017 | 1.3077 |34 | =~0.1
Louvain 27 0.0513 | 0.0011 | 0.0318 | 0.0502 | 35.8571 | 34 | =~ 0.0

15
15
10
10

s 5

0
=0.010 =0.005 0.000 0.005 0.010

(a) EUC, 35 runs, 20 clust (b) EUC, 35 runs, 27 clust

0l
=0.010 —=0.005 0.000 0.005 0.010

Figure 5: Null Distributions of v, EUC Graph

7.1 Analysis

In the case of the Louvain algorithm, we begin by observing that the in-

equalities Kintra > K > Kinter hold numerically. To pursue our analysis
with the second necessary condition, we first verify that the null distribution

is centered at zero and roughly symmetric. We then compute our statistical
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test and observe the hypothesis that I_(intra = _inter is rejected. We con-
clude the clustering returned by the Louvain algorithm is of good quality
and statistically significant.

Meanwhile, for the ALP algorithm, we see that the inequalities K. intra >
K > Rinter do not hold numerically. In fact, mean intra-cluster density is
lower than global density, [_{intra < K. Our analysis could end here, with a
conclusion that the ALP algorithm offers a very poor clustering.

Notwithstanding this violation of our first necessary condition, we pursue
our analysis for illustration purpose. Our significance test reveals the null
hypothesis that Kintra _inter is not rejected, at a confidence level of
approximately 0.1. For these reasons, we conclude the clustering returned
by the ALP algorithm is of poor quality.

Finally, although it is unnecessary in this specific case, we apply our

two-algorithm heuristic test. We examine the difference

PALP — PLouvain = 0.10 (> 0)

and obtain further evidence the Louvain algorithm identifies more meaning-
ful clusters than the ALP algorithm.

The case of the ALP algorithm also illustrates the value of the standard
error estimation technique in our modified t-test. The ALP algorithm lumps
986 of the 1,005 vertices into one single cluster. All remaining clusters, 19 of
them are isolated vertices which have no edges connecting them to the rest of
the graph. In this specific case, the standard error for the mean inter-cluster
density, Kinter’ can only be computed through our Monte-Carlo technique.
Because there are no inter-cluster edges in this clustering, the standard
deviation for inter-cluster density cannot be estimated. Consequently it
would be impossible to compute the standard error for Kinter in the usual
way. Fortunately, our modified t-test allows us to overcome this obstacle

and compute a t-statistic and p-value.

8 Conclusion

We described a new set of statistically-rooted clustering quality measures
that allow formal clustering quality assessments and comparisons of clus-
tering algorithm performances. Our measures are shown to be more robust
than the commonly used modularity and conductance. In particular, our
measures appear to be more responsive to cluster labeling and less sensitive
to sample size and breakdowns during numerical stress testing. We also
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adapted Student’s two-sample t-test to circumvent any possible correlation
and degeneracies.

Future work will be focused on developing quality measures for cluster-
ings with overlapping clusters. Overlapping clusters offer a more realistic
model of most real-world networks. Unfortunately, quality measures to eval-
uate algorithms that identify overlapping clusters are sparse and a thorough
examination is still required. Some authors have extended modularity to
overlapping cluster quality measurements (e.g., [29, 7]). However, a thor-
ough evaluation of it is still required. It is highly likely that the overlap-
ping cluster extension suffers from many of the same shortcomings as its
non-overlapping parent measure, including not meeting the axioms defining
good clustering functions.
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