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A B S T R A C T

The COVID-19 pandemic wreaks havoc on healthcare systems all across the world. In pandemic scenarios
like COVID-19, the applicability of diagnostic modalities is crucial in medical diagnosis, where non-invasive
ultrasound imaging has the potential to be a useful biomarker. This research develops a computer-assisted intel-
ligent methodology for ultrasound lung image classification by utilizing a fuzzy pooling-based convolutional
neural network FP-CNN with underlying evidence of particular decisions. The fuzzy-pooling method finds
better representative features for ultrasound image classification. The FPCNN model categorizes ultrasound
images into one of three classes: covid, disease-free (normal), and pneumonia. Explanations of diagnostic
decisions are crucial to ensure the fairness of an intelligent system. This research has used Shapley Additive
Explanation (SHAP) to explain the prediction of the FP-CNN models. The prediction of the black-box model
is illustrated using the SHAP explanation of the intermediate layers of the black-box model. To determine the
most effective model, we have tested different state-of-the-art convolutional neural network architectures with
various training strategies, including fine-tuned models, single-layer fuzzy pooling models, and fuzzy pooling
at all pooling layers. Among different architectures, the Xception model with all pooling layers having fuzzy
pooling achieves the best classification results of 97.2% accuracy. We hope our proposed method will be
helpful for the clinical diagnosis of covid-19 from lung ultrasound (LUS) images.
1. Introduction

COVID-19 is a contagious illness occurred by the SARS-CoV-2 virus.
This disease has triggered a pandemic worldwide from the year 2019 to
2022. Still, in 2023, the disease shows its strength by infecting people
and causing deaths. Worldwide statistics show that till June 3, 2022,
the disease has caused an overall 528,816,317 infections and 6,294,969
deaths. Fig. 1 shows these infectious cases region-wise [1].

The majority of the patients infected by the SARS-CoV-2 virus
observe soft to endurable respiratory sickness and eventually recover
it without taking any exceptional treatment. Although many patients
demonstrate severe conditions and require special medical treatment,
the ones with old age and other critical diseases are most susceptible
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to this case. However, anybody may get infected by COVID-19 at any
age and get critically ill or pass away. COVID-19 may spread by an
affected person’s tiny fluid particles from the nose or mouth. The ideal
way to mitigate and confine the transmission of this disease is to
identify the infected people and maintain social distance from them [2].
So, identifying COVID-19-infected people is an integral approach for
mitigating the spread of the SARS-CoV-2 virus. Currently, reverse tran-
scription polymerase chain reaction (RT-PCR) and antibody tests utilize
most commonly for COVID-19 patient identification. These techniques
require human interaction directly in some way to complete the action.
Being an infectious disease, human interaction during testing is always
a risky task. Moreover, RT-PCR and antibody tests cannot provide
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Fig. 1. The region-wise situation of COVID-19 cases. (Till June 23, 2022).
100% accuracy and setting up RT-PCR requires high cost [3,4]. There-
fore, building up an automatic, secure, and cost-effective COVID-19
diagnosis scheme is a significant concern in health research.

In recent years, medical imaging-based AI methods like deep learn-
ing (DL) and machine learning (ML) techniques have been used in the
health sector to build up automatic, secure, and cost-effective diagnosis
schemes for many diseases such as tuberculosis, brain tumor, cancer,
and others. For instance, authors in [5,6] have developed different
DL-based strategies to identify tuberculosis from chest X-ray images.
Studies including [7–9], the researchers present diverse, intelligent
methods based on ML and DL to detect brain tumors from MRI images.
These methods can automatically recognize any MRI image containing
a tumor or other neurodegenerative diseases. Image segmentation-
based methods have been playing a significant role in medical image
processing by segmenting abnormal regions from images. Researchers
in their studies [10–12] have proposed several segmentation methods
for medical images of different types of disease diagnosis. Moreover,
the following studies [13,14] have presented several DL-based methods
to identify the different types of cancer from medical images. These
methods can recognize a particular type of cancer from a specific med-
ical image. So, such medical imaging-based artificial intelligence (AI)
methods can be an effective solution to form the automatic and reliable
COVID-19 scheme than the conventional RT-PCR and antibody tests.
From this concern, researchers have generated and proposed several
methods to detect COVID-19 from chest X-rays and CT scan images. For
example, in studies including [15–19], the researchers present different
methods based on ML and DL to identify COVID-19 patients from a
chest X-rays image. From any input chest X-rays image, these methods
can predict COVID-19 infection automatically. The researchers of these
studies [20–22] have developed several automatic systems to predict
a COVID-19-infected patient from a CT scan image. These ML and DL-
based intelligent methods can detect any COVID-19 patient without the
help of a medical expert [23,24]. Although many researchers use CT
scans and X-ray images to build AI-based COVID-19 detection models,
CT scans and X-ray possesses radiation exposure [25,26]. Consequently,
ultrasound imaging has no radiation exposure and is the most cost-
effective compared to X-ray and CT scans [27–30]. So, an ultrasound
imaging-based intelligent method can be a feasible solution to generate
reliable and automatic COVID-19 detection, which inspired to develop
the research aim of this study, i.e., to develop an automated COVID-19
recognition system from ultrasound images.

This study uses a fuzzy-based pooling layer to construct a COVID-19
diagnosis approach from ultrasound images, and explainable AI (XAI)
is used to explain the models’ predictions. The SHAP library’s gradient
explainer is utilized to explain the predictions. We have experimented
with five state-of-the-art CNN architectures and modified the pooling
layers of the architectures with fuzzy pooling. In summary, our research
has made significant contributions in the following areas:
2

• An intelligent fuzzy pooling-based convolution neural network for
lung disease diagnosis methodology using lung ultrasound (LUS)
images.

• The comparative analysis of different strategies, including with-
out fuzzy pooling, single layer fuzzy pooling and all internal pool-
ing layers using fuzzy pooling-based convolution neural network
architectures.

• A thorough investigation of the reasons for models’ predictions
using explainable AI (XAI).

The rest of the paper consists of five ordered sections, e.g., Section 2
consists of the previous works on COVID-19 diagnosis using LUS im-
ages. Section 3 contains the proposed work’s detailed techniques. The
analysis and discussion of our study’s findings are included in Section 4.
The proposed method’s performance metrics have also been compared
to several existing research studies in that section. The discussion of
our proposed method is in Section 5. Finally, Section 6 concludes the
research and discusses future directions.

2. Related works

The prime concern of this research is to make a computerized auto-
matic COVID-19 detection system from ultrasound images. To realize
the current circumstance of this research, several existing research
has been investigated and presented here. Diaz-Escobar et al. [31]
developed a DL model, namely POCOVID-net, by modifying the VGG16
CNN architecture and including POCOVID-net they evaluated four
other DL models, namely InceptionV3, Xception, VGG19, and ResNet50
to identify COVID-19 from lung ultrasound images (LUS) [32]. All
of these models were evaluated in LUS images with three cases: (1)
Detection of COVID-19, Pneumonia, and Healthy patient; (2) Detection
of COVID-19 and Pneumonia patient; (3) Detection of COVID-19 and
non-COVID19 patient. For these first, second, and third cases, the
best accuracy gained were 89.1%, 94.1%, and 91.5%, respectively, by
InceptionV3, POCOVID-net, and InceptionV3 models, respectively. All
of these experiments were examined on a single LUS image dataset,
which was substantially small-scale as mentioned by the authors as the
core limitation of their work.

Born et al. [33] provided the first publicly available LUS dataset for
COVID-19, namely the POCUS dataset. This dataset has drawn a signif-
icant focus of many researchers subsequently for building LUS imaging-
based COVID-19 diagnosis systems. Besides providing the POCUS
dataset, the authors also proposed a DL model developed by mod-
ifying the VGG16 CNN architecture, where the best accuracy that
was achieved by this model was 89%. Later POCOVID-net was uti-
lized by researchers of a study [31] to develop the LUS image-based
COVID-19 diagnosis scheme. Muhammad and Hossain [34] developed
a multilayer feature fusion-based CNN model to recognize COVID-
19, Pneumonia, and Healthy patient from LUS images [35–38]. Their
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proposed CNN model had five convolutional blocks where each block
consisted of convolution connectors, and features were fused from these
five blocks. The evaluation and experiment of their research showed
that their CNN model provided better accuracy because of feature
fusion. They also compared their CNN model with two well-recognized
CNN techniques, namely ResNet50 and SqueezeNet, and found that
their model was the best of these two models. The best accuracy of their
model was 92.5%, whereas SqueezeNet, ResNet50, and their method
without fusion gained 84.4%, 90.0%, and 86.6%, respectively. Barros
et al. [39] suggested a hybrid DL model by combining CNN with
Long short-term memory (LSTM) for recognizing COVID-19 from LUS
images. They optimized the parameters of their proposed CNN-LSTM
model by utilizing the Optuna framework. Different CNN models were
evaluated for their hybrid CNN-LSTM model, and based on the outcome
Xception model was selected to provide the best result of 93% accuracy.

To recognize COVID-19 by screening LUS images, Hou et al. [40]
developed an interpretable subspace approximation model with an
adjusted bias (Saab) multilayer network. This model was mainly de-
signed to overcome the issue of iterative back-propagation of different
intelligent networks like CNN. The authors claimed that the model
was compatible with the portable device since the model did not
require the large iterative back-propagation process, and gained an
overall accuracy score of 96% for screening COVID-19 LUS images of
A-line, B-line, and consolidation. Bhosale and Patnaik [41] developed
an IoT-based DL mechanism to diagnose COVID-19 from chest X-rays.
A lightweight DL model was developed in this research to execute
through Raspberry Pi. The proposed research was able to recognize 7
lung diseases with 99.28% accuracy. To diagnose COVID-19 through
IoT-empowered devices, Patnaik et al. [42] and Pal et al. [43] presented
a customized DL model from a chest X-ray image. This model was
capable of distinguishing between Pneumonia, COVID-19, and Normal
patient, with an overall accuracy of 94.95%. Moreover, in their re-
search [44], Bhosale and Patnaik presented a brief overview of the
DL-based COVID-19 diagnosis, including challenges, opportunities, and
applications of the DL mechanism for imaging-based COVID-19 diag-
nosis. The research could provide assistance while planning to design
COVID-19 diagnosis research using imaging and the DL model. A study
called PulDi-COVID developed a CNN technique to diagnose nine types
of lung diseases, including COVID-19, from chest X-ray images [45]
via an ensemble of different CNN models, and achieved an accuracy
of 99.70%. Bhosale et al. presented a DenseNet169-based technique
to classify nine categories of lung diseases, including COVID-19 [46],
and diagnosed all of these diseases with an overall accuracy of 99.4%.
Moreover, Bhosale et al. presented a capsule CNN and GNN-based
approach to the diagnosis of COVID-19 and two other lung diseases
from noth CT scan and LUS images with an overall accuracy of 99.2%
and 97.26% for CT scans and LUS images, respectively. In study [47],
authors developed a DL mechanism for the diagnosis of COVID-19 from
ECG images that attained an accuracy of 93.5% accuracy to classify car-
diac and COVID-19 disease. Qi et al. proposed a segmentation method
for COVID-19 X-ray images using a 2-dimensional histogram and 2D
Kapur’s entropy with nonlocal mean strategy [48]. Han et al. proposed
a method by utilizing the Rosenbrock and diffusion mechanisms-based
multilevel thresholding for COVID-19 chest X-ray segmentation [49].

All the above-mentioned methods discussed in this section, utilized
common pooling techniques, namely max-pooling, min-pooling, and
average-pooling. Note, these pooling techniques possess limitations to
handle uncertainties that are generated during the convolution opera-
tion from the input layer to the hidden layers feature maps [50]. To
overcome this limitation, here, in this research, we introduced a fuzzy
pooling layer. Another limitation of existing methods was that they lack
model explainability or performance explanation. To overcome this
issue, in this research, we have introduced an explainable AI approach,
namely XAI. Gunning et al. [51] and Doran et al. [52] mentioned
eXplainable Artificial Intelligence (XAI) as a set of actions and processes
that assures end users to trust and perceive the outcomes produced by
3

AI algorithms.
Table 1
Data distribution of train, test, and validation set (number of subjects with a number
of images/frames).

Subject label Train dataset Validation dataset Test dataset

Covid 23(934) 4(176) 6(243)
Pneumonia 24(989) 5(187) 8(259)
Normal 23(1002) 5(243) 6(272)

3. Methodology

This section explains the components of the suggested technique to
diagnose lung infections such as COVID-19 using LUS images. Fig. 2
depicts a block schematic of the developed technique. The classification
method is preceded by the image enhancement step, for which this
study utilizes the isotropic diffusion for filtering, and then enhances
the contrast of filtered images using the Contrast Limited Adaptive His-
togram Equalization (CLAHE) method. Then, we trained our proposed
fuzzy-pooling-based Xception network with enhanced images. The de-
signed fuzzy-pooling-based CNN architecture works on the enhanced
images to extract representative features for classification. Next, we
have explained the outputs of black-box CNN models using the Gradient
Explainer of the SHAP library.

3.1. Dataset description

The dataset is a collection of 166 LUS candidates of covid, bacterial
pneumonia, and normal patients [33,53]. There are 134 short videos
and 32 images of covid, pneumonia, and disease-free LUS images.
The dataset is a collection of ultrasounds from multiple sources from
different regions around the globe. In lung ultrasound collection, linear
probe is more applicable, however, curved probes are widely used as ul-
trasound probes. The dataset contains images of both linear and curved
probes, and the presence of both types of images helps to train the
more robust model. The dataset is annotated by doctors and confirmed
by performing RT-PCR tests for covid diagnosis [33]. This research
only used bacterial pneumonia images from the dataset of [33]. The
data of subjects are then divided into three groups using stratified ran-
dom distribution: training (70%), testing (20%), and validation (10%).
The stratified distribution maintains the original data distribution into
sampling distributions. Table 1 shows the detailed information for the
three sets described above. Next, the videos have been separated into
image frames. Fig. 3 shows a few samples of ultrasound images from
the training dataset. The dataset contains a total of 1353 COVID-19
images, 1435 disease-free images, and 1517 pneumonia images. Herein,
we have used covid as shorthand for COVID-19 in this manuscript.

3.2. Image enhancement

Image enhancement is an effective processing step of our method.
Noises, particularly speckle noise, are very common in ultrasound
imaging. This research has applied image enhancement operations to
reduce the artifacts. To enhance images, this work utilized contrast
enhancement and spatial filtering techniques. We have applied Perona–
Malik non-linear isotropic diffusion method as spatial filtering to reduce
noises [54]. The spatial filtering technique avoids blurring and localiza-
tion, which is critical for preserving image content such as edges. The
filtering method usages the Eq. (1) where |∇𝑢|2 is the likelihood. Eq. (2)
determines the diffusivity of the locations.

𝜕𝑡(𝑢) = 𝑑𝑖𝑣(𝑔( |∇𝑢|2) ∇𝑢) (1)

The diffusivities of the locations using

𝑔(𝑠2 ) = 1∕(1 + (𝑠∕𝜆)2 ), where (𝜆 > 0) (2)

Contrast enhancement also has a significant role in image pre-
processing tasks. However, immense change, in contrast, may remove
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Fig. 2. The block diagram of the proposed method.

Fig. 3. Samples of covid, pneumonia, and disease-free (normal) images from the training dataset.
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important features of an image. Our study has used Contrast Limited
Adaptive Histogram Equalization (CLAHE) to enhance the contrast of
the filtered images [55]. The CLAHE method operates on small spatial
locations to perform contrast enhancement instead of the full image
and interpolates the results of small spatial locations.

3.3. Fuzzy pooled convolutional neural network

The Convolution Neural Network (CNN) performs many operations
to extract intuitive aspects from data to classify it. A CNN network
can be broadly separated into two primary segments namely the con-
volution segment and the neural network segment. The convolution
segment of the CNN itself may contain different forms of operations,
such as convolution, activation, and pooling. The pooling operation is
one of the most significant computations performed by CNN models.
The pooling operation reduces the dimensions in height and width of
the input feature map. The pooling processes that conduct the reduc-
tion operation include max-pooling, min-pooling, and average-pooling.
Here in this study, we have made use of an efficient fuzzy-based pooling
operation.

3.3.1. Fuzzy pooling
This study has utilized the fuzzy pooling operation in state-of-the-

art CNN architectures. Fuzzy-based pooling method works in two steps
as designed in [56]. In the first phase, the crisp value of the input
is supplied to a fuzzy membership function. The fuzzified values are
then reformed into crisp values using defuzzification. The inputs of
a pooling layer are feature map that contains values within a range.
In linguistic terms, those values can be classified as small, medium,
or large. The feature maps that the pooling layer takes as input are
the outputs of a convolution layer. The convolution layer performs
convolution operations, and then the result goes through an activation
function, specifically Rectified Linear Unit (ReLU). ReLU always gives
non-negative values as output, which formulates the pooling layer’s
input feature map as a collection of non-negative values. The con-
version of those non-negative values of the feature map into fuzzy
values starts through the fuzzy membership functions. The value of
𝑟𝑚𝑎𝑥 = 6 for the membership functions. This study uses three type-

fuzzy membership functions (𝑚𝑓𝑣, where v = 1, 2, 3) to transform
uzzification as illustrated in Fig. 4. The function definitions are in Eqs.
3) to (5).
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here 𝑎 = 𝑟𝑚𝑎𝑥
4 , 𝑚 = 𝑟𝑚𝑎𝑥

2 and 𝑏 = 𝑚 + 𝑎.
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where 𝑟 = 𝑟𝑚𝑎𝑥
2 and 𝑞 = 𝑟 + 𝑟𝑚𝑎𝑥

4 .
This study performs fuzzification on the feature map and gets three
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uzzified versions of the feature map. Then we take patches of size
𝑘×𝑘 from each fuzzified feature map (FFM) and aggregate the values of
each patch, where k is a hyperparameter of the model. The aggregated
value of each patch (𝑠𝑍𝜋𝑣 ) is the score of that patch to qualify for the
verall membership of the patch (𝑝𝑍 ). Considering all the values of the
𝑠𝑍𝜋𝑣 ), a new value is selected for that patch (Eq. (6)). Eq. (7) selects the
atches with high certainty. Fig. 5 illustrates the fuzzification steps of
he pooling method. The fuzzification stage ends with this selection.

𝑍
𝜋𝑣

=
𝑘
∑

𝑖=1

𝑘
∑

𝑗=1
𝜋𝑍
𝑣𝑖,𝑗

(6)

𝜋′ = {𝜋′𝑍
𝑣 = 𝜋𝑍

𝑣 |𝑣 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑠𝑍𝜋𝑣 ), 𝑍 = 1, 2, 3,… , 𝑧} (7)

The defuzzification stage reduces the dimensionality of patches.
Here, in this study, we have used different defuzzification methods
and found Center of Gravity (COG) as an effective technique Eq. (8).
Fig. 6 visualizes the defuzzification of fuzzified values to crisp value
representation for each patch. The network architecture of our method
is — shown in Fig. 7.

𝑝′𝑍 =

∑𝑘
𝑖=1

∑𝑘
𝑗=1(𝜋

′𝑍
𝑖,𝑗 .𝑝

𝑍
𝑖,𝑗 )

∑𝑘
𝑖=1

∑𝑘
𝑗=1 𝜋

′𝑍
𝑖,𝑗

(8)

where 𝑝′ = {𝑝′𝑍 |𝑍 = 1, 2, 3,… , 𝑧}.

3.3.2. FP-CNN Architecture
This study tested five cutting-edge network designs, notably VGG16,

VGG19, ResNet34, ResNet101, and Xception. We tested three distinct
training procedures for classification. Section 4 displays the results of
the examined models on various techniques. On performance metrics,
the examined findings reveal that the Xception design with all internal
pooling layers and fuzzy-based pooling is preferable. Fig. 7 presents
the network architecture of our research. The global average pooling
layer of the Xception architecture is not replaced by the fuzzy pooling
layer in the architecture. We have altered all the internal max-pooling
layers with fuzzy-based pooling layers. The fuzzy-pooling-based Xcep-
tion model has 20,867,624 parameters in total among them 54,528
are non-trainable. VGG16 and VGG19 models have 15.5 million and
20.8 million trainable parameters. The ResNet34 model had 22.09
million parameters with 17,024 non-trainable parameters. ResNet101
had 45 million parameters and however, the model having 19 million
trainable parameters gave the best results. All the models had two dense
layers having 1024 and 256 neurons and a replaced global pooling
layer before the first dense layer. We have used ReLU as an activation
function for internal layers and softmax in the output layer. The kernel
size of filters was 3×3 and stride was 2×2. The output layer (3 neurons)
is connected with the global average pooling layer. Number of filters for
all the layers entry flow (32, 64, 128, 128, 256, 256, 728, 728), middle
flow (all layers had 728 filters), and exit flow (728, 1024, 1536, 2048)
filters.

3.4. Explaining model prediction

The application of deep learning technology has grown tremen-
dously over the decade. DL methods set new benchmarks for numerous
tasks. Medical image analysis and disease diagnosis are substantial
fields DL methods have been applied with a magical performance.
However, the black-box approach of DL models hinders the flourishing
of its practical implications. The undesirable biased DL models may fail
in critical scenarios. For example, medical diagnosis requires shreds of
evidence of why the model takes a particular decision. Thus, we need
interpretable and explainable models to understand the reasons for its
findings [57]. This study has worked with the eXplainable Artificial
Intelligence (XAI) to explain the decision-making of the FP-CNN model.

Here, in this research, we have used the SHaply Additive exPla-
nations (SHAP) to explain the decisions of the black box FP-CNN
model [58]. SHAP is a post hoc XAI method that uses feature relevance
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Fig. 4. The fuzzification of features map using three membership functions.

Fig. 5. The fuzzy pooling at each patch of size 𝑘 × 𝑘.
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Fig. 6. The defuzzification of fuzzy values into crisp value.
Fig. 7. The proposed FP-CNN architecture.
to provide an explanation. This study has utilized the gradient-based
explanations to explain the effect of intermediate layers of the FP-
CNN model on the predictions. The gradient explainer of SHAP uses
the expected gradient technique to compute the integrated gradients
over one or more paths between two valid inputs. SHAP computes the
Shapley value of features by calculating the marginal contribution of
features (𝜙𝑗 ). Eq. (9) computes the marginal contribution where 𝑓 (𝑥𝑚+𝑗 )
denotes the contribution of features with feature j and 𝑓 (𝑥𝑚−𝑗 ) defines
the contribution of features without feature j.

𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, 𝜙𝑚
𝑗 = 𝑓 (𝑥𝑚+𝑗 ) − 𝑓 (𝑥𝑚−𝑗 ) (9)

Shapley value of a feature is the average overall combinations (𝜙𝑗 (𝑥))
for an example 𝑥 (Eq. (10)).

𝜙𝑗 (𝑥) =
1
𝑀

𝑀
∑

𝑚=1
𝜙𝑚
𝑗 (10)

This study uses the SHAP library of [58] for explaining the outputs
of the CNN model using a gradient explainer. The library provides the
framework for explaining predictions of deep learning models. We have
used the gradient explainer tool of the SHAP library to explain the deep
learning models.

4. Performance analysis

This section contains the results of our research. The models are im-
plemented in Python 3.7 on CPU - Core i7, RAM - 16 GB, GPU - Nvidia
RTX 2070 Super Windows machine. The method was evaluated using
7

multiple performance metrics, specifically accuracy, recall, precision,
specificity, Matthews correlation coefficient, and Cohen’s kappa. We
have implemented the network architecture in ‘tensorflow-2.0’ using
Python as a language in jupyter notebook. Training the Xception model
with fuzzy-pooling layers takes approximately 325 min and testing
a single image takes 1.24 s. We have used ‘visualkeras’ library to
draw the network architecture [59]. To compare our proposed strategy,
we analyzed the performance of various models, including VGG16,
VGG19, ResNet34, ResNet101, and Xception. The studies were carried
out in three ways as described previously: fine-tuned models, single-
layer fuzzy pooling on the architecture, and fine-tuning models by
replacing all internal pooling layers with fuzzy pooling layers. We
calculated the Matthews correlation coefficient for a single class and an
overall test dataset. The single-class Matthews correlation coefficient
is mentioned as the MCC score and for the entire test dataset, the
Matthews correlation coefficient is abbreviated as the MCC score.

4.1. Performance metrics of fine-tuned models

The experiments modified the output layers of the SOTA architec-
tures of the five models. The models have used the pre-trained weight of
the ‘ImageNet’ dataset as the initial weight of fine-tuning with a meagre
learning rate of 1e−4. The training process continued until there was no
improvement in the validation accuracy of the model for five epochs.
Figs. 8 to 10 presents the performance of five fine-tuned models on each
class of images. Fig. 8 shows the metrics of classification models on
covid data. The ResNet101 and Xception had better results than other
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Fig. 8. Performance of different fine-tuned classifiers on covid data from the test dataset.
Fig. 9. Results of different fine-tuned classifiers on disease-free images from the test dataset.
models in identifying covid. The ResNet101 model achieved the best
specificity, whereas Xception had the best recall and MCC score.

Fig. 9 shows the outcomes of fine-tuning models for disease-free
ultrasound images. The precision, MCC, and FDR had the best values
for the Xception net on disease-free images. The VGG16 had the least
scores on each metric of disease-free images. The specificity scores of
the classifiers were very close for each model. The metrics on pneumo-
nia data are shown in Fig. 10. On pneumonia images, classifiers had the
lowest MCC score. In every metric, the Xception model outperformed
its competitors.

Fig. 11 shows the overall performance metrics of fine-tuned models.
The model’s overall performance was assessed using various criteria,
8

including accuracy, MCC, and Cohen’s kappa. Xception did significantly
better than other classifiers on the test dataset, with an accuracy of
0.931 and 0.896, for MCC and Cohen’s kappa scores, respectively.

4.2. Performance metrics of single layer fuzzy pooled models

The selected models have a different number of pooling layers in
their architecture. Thus, this research experimented with a different
number of fuzzy pooling layers. This subsection presents the signif-
icance of fuzzy pooling by replacing the last pooling layer of each
model with a fuzzy pooling layer. The experimented results are in
Figs. 12 to 14. The outcome of fuzzy pooling was slightly better than
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Fig. 10. Performance of different fine-tuned classifiers on pneumonia data from the test dataset.
Fig. 11. Results of different fine-tuned classifiers on the entire test dataset.
models without fuzzy pooling. Fig. 11 shows the metrics of single-layer
fuzzy pooled (SLFP) models on covid data. Each model achieved better
values compared to the bars in Fig. 8. The Xception model attained
more satisfactory results than other models in all five metrics, with
0.932 precision, 0.936 recall, 0.968 specificities, 0.904 MCC, and 0.068
FDR.

The bars of Fig. 13 present the metrics of SLFP models on normal
data of the test dataset. The metrics were improved compared to
previous metrics in Fig. 9. All the models had significant improvement
in specificity scores, which indicates that models have learned better to
differentiate disease-free samples. Fig. 14 illustrates the performance of
SLFP models on pneumonia data. Here, the Xception model had better
metrics in pneumonia detection. In addition, the models had enhanced
performance scores compared to models without a fuzzy pooling layer.

Fig. 15 presents the performance metrics of SLFP models on the
entire test set. The Xception had the best results in overall metrics with
0.953 accuracy and 0.929 of MCC and Cohen’s kappa score. Compared
to the previous results in Fig. 10, the Xception model increased the
accuracy score by 0.022, the MCC score by 0.033, and Cohen’s kappa
score by 0.033. The highest dispersion was for the VGG16 model, with
a 0.031 increase in accuracy and 0.046 in MCC and Cohen’s kappa. The
slightest improvement in metrics was observed for the VGG19 model.
9

4.3. Performance evaluation of models by replacing all pooling layers using
Fuzzy-based pooling layer

This sub-section discourses the results of the SOTA architectures
having fuzzy-based pooling in all of the pooling layers. We have used
the pre-trained weights of the imagenet dataset to initialize weights of
the network architectures and trained the model with a learning rate
of 1e−4 with an early stopping mechanism. Table 2 shows the clas-
sification metrics of models with fuzzy pooling. There was significant
performance improvement for all the models except ResNet34 on covid
data. The MCC score of ResNet34 was reduced compared to single-layer
fuzzy pooling. Once again Xception model yielded the best results for
covid data classification with better scores than previous bars of Figs. 8
and 12.

Table 3 presents the performances of normal data of the test dataset.
The lowest false diagnosis error rate of disease-free normal data clas-
sification was 0.020 using the Xception model. Compared to other
models, there was a significant improvement in all the metrics for
the VGG16 and VGG19 models. There are more pooling layers in
VGG nets compared to other models that extracted better features for
classification.

Table 4 shows the performance metrics of pneumonia data. We have
again seen similar characteristics of the models for pneumonia data
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Fig. 12. Performance of different single-layer fuzzy classifiers on covid data.
Fig. 13. Performance of different single-layer fuzzy pooling classifiers on disease-free images of the test dataset.
Table 2
Results of all fuzzy pooling layer-based classifiers on covid data.

Precision Recall Specificity MCC FDR

VGG16 0.95349 0.94650 0.95669 0.89361 0.09091
VGG19 0.93117 0.95041 0.96798 0.91337 0.06883
ResNet34 0.89388 0.90123 0.95104 0.85039 0.10612
ResNet101 0.91870 0.93004 0.96234 0.88943 0.08130
Xception 0.96296 0.96296 0.98305 0.94601 0.03704

classification. The lowest MCC score was for the ResNet34 model, while
the MCC score of VGG nets has improved significantly. The least FDR
was observed for the Xception model and the highest one was observed
for the ResNet34 model. Table 5 illustrates the overall performance
10
Table 3
Performance of all fuzzy pooling layer-based classifiers on disease-free images of the
test dataset.

Precision Recall Specificity MCC FDR

VGG16 0.96382 0.93822 0.97670 0.91851 0.04706
VGG19 0.96109 0.95367 0.98054 0.93602 0.03891
ResNet34 0.94163 0.93436 0.97087 0.90699 0.05837
ResNet101 0.95720 0.94981 0.97864 0.93025 0.04280
Xception 0.97701 0.98456 0.98835 0.97106 0.02299

metrics on the comprehensive test dataset. Note, the Xception model
had the highest accuracy of 0.97157, Cohen’s kappa of 0.95733, and
an MCC score of 0.95732.
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Fig. 14. Performance of different single-layer fuzzy pooling classifiers on pneumonia data.
Fig. 15. Results of different single-layer fuzzy pooling classifiers on the test dataset.
Table 4
Results of all fuzzy pooling layer-based classifiers on pneumonia data.

Precision Recall Specificity MCC FDR

VGG16 0.94832 0.91544 0.96614 0.88618 0.06391
VGG19 0.94796 0.93750 0.97206 0.91189 0.05204
ResNet34 0.90074 0.90074 0.94622 0.84695 0.09926
ResNet101 0.94096 0.93750 0.96813 0.90639 0.05904
Xception 0.97407 0.96691 0.98606 0.95459 0.02593

Table 5
Performance of all fuzzy pooling layer-based classifiers on the entire test dataset.

Accuracy MCC Cohen’s kappa score

VGG16 0.93281 0.89934 0.89917
VGG19 0.94695 0.92041 0.92037
ResNet34 0.91214 0.86809 0.86808
ResNet101 0.93927 0.90884 0.90883
Xception 0.97157 0.95733 0.95732
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Analyzing different strategies, we have found the best results were
observed from all layers with the fuzzy pooling-based Xception model.
The Xception model did well in overall performance and single-class
image classification. Fig. 16 depicts the analysis summary for a com-
parative understanding of classification methods. This research also
evaluated the performance of our proposed method using five-fold
cross-validation. The five-fold cross-validation results are illustrated in
Fig. 17. The violin chart of Fig. 17 shows the precision, recall, speci-
ficity, and MCC score of covid, normal, and pneumonia images of each
fold with deviation from the mean. Table 6 presents the comparison of
accuracy with related studies in the literature. Our proposed method
has the highest accuracy among compared recent studies on disease
diagnosis in LUS images.

4.4. Explaining predictions

The gradient explainer of SHAP presents the contribution of each
pixel for the prediction. Fig. 18 depicted the contribution map of
each pixel on prediction. For visualizations, we choose the top two
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Fig. 16. Comparative performance analysis of different models on three strategies.
projected classes. In the visualization, a few pixels play a crucial part
in classification. Different colors indicate pixels’ Shapley values.

5. Discussion

In this study, we utilized a fuzzy pooling-based Xception model for
lung disease diagnosis. We evaluated the performance of our model on
12
a dataset of US images and compared it to the traditional Xception
model with max pooling. Our results showed that the fuzzy pooling-
based Xception model achieved improved performance for pneumonia
and COVID-19 classification. Fuzzy pooling uses multiple membership
functions to create and find the pooled, unlike max-pooling. It is used
to increase the robustness of CNNs by allowing the network to con-
sider multiple pooling options simultaneously. In contrast, traditional
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Fig. 17. Performance of five-fold cross-validation using fuzzy-based pooling layers.
Table 6
Performance comparison of the proposed method with existing works in literature.

Method Dataset Technique Accuracy

Diaz-Escobar et al. [31] COVID-19(1283), Pneumonia(731), Disease-free(1312) InceptionV3 CNN model 89.1%
Born et al. [33] COVID-19(654), Pneumonia(277), Disease-free(172) POCOVID-net 89%
Muhammad and Hossain [34] COVID-19(1673), Pneumonia(1007), Disease-free(951) Multilayer feature fusion-based CNN model 92.5%

Barros et al. [39] COVID-19(69), Pneumonia(50), Disease-free(66) Optuna framework-based parameters optimized
hybrid CNN-LSTM model

93%

Hou et al. [40] B-line(1150), A-line(740), consolidation(910) Saab Subspace network (Proposed fancy DL model) 96%
Bhosale and Patnaik [60] COVID-19 (650), Pneumonia (650), Disease-free (650) GNN and CNN 97.26%
Proposed method COVID-19 (1353), Pneumonia (1517), Disease-free (1435) Fuzzy-pooling based Xception model 97.2%
pooling techniques, such as max pooling, only one pooling option at
a time. Also, fuzzy pooling is more robust against image degradation,
such as noise or poor image quality, by providing a more robust feature
representation.

This study applied image enhancement techniques such as isotropic
diffusion and CLAHE. The isotropic diffusion method ensures improved
image denoising and preserves edges and fine details in the image while
smoothing out noises. This made it easier for feature extractors such
as CNN models to identify the structures and features in ultrasound
images. Also, isotropic diffusion is effective against varying levels of
noise in ultrasound images. The inclusion of CLAHE reduced the halo
artifacts of homogeneous regions of US images and enhanced the con-
trast of the image with improved diagnostic accuracy. The combination
of isotropic diffusion and CLAHE works adaptively on images making
it better suited for US images.

Max pooling is a simple technique that involves taking the max-
imum value from a small region (e.g. 2 × 2 pixels) in the feature
map. This reduces the spatial dimensionality by a factor of 2 while
maintaining the most important features. The complexity of max pool-
ing is 𝑂(𝑁), where 𝑁 is the number of elements in the feature map.
However, fuzzy pooling uses a set of membership functions for pooling
more representative features. The complexity of fuzzy pooling depends
on the number of membership functions. Thus, fuzzy pooling is more
computationally complex than max pooling; however, fuzzy pooling
is robust to image degradation. Thus, we need to choose between
the computational efficiency of max pooling and the performance of
fuzzy pooling. Considering the results of fuzzy pooling compared to
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its computational complexity, it is worth using fuzzy pooling for lung
ultrasound image classification.

Our proposed method has better classification accuracy than ex-
isting state-of-the-art methods for Lung US image classification. The
designed method has utilized the advantages of image enhancement
techniques and the fuzzy pooling method. The proposed method had
improved noise reduction with better feature representation and was
adaptive to different image acquisition techniques with improved ac-
curacy.

6. Conclusion

Ultrasound imaging is a non-invasive imaging modality that can
play a significant role in areas lacking highly advanced medical fa-
cilities. The low cost and availability of ultrasound machines can
be effective for pandemic scenarios. However, ultrasound images are
not primarily used in lung-related diagnoses. This study designed a
diagnostic methodology with evidence of the diagnostic decision for
lung-related diseases (covid and pneumonia) diagnosis. The developed
method of our research performed significantly well in classifying
ultrasound images. The fuzzy pooling layer of the network architec-
ture helped to extract useful features. The comparative analysis of
different state-of-the-art architectures with three modalities of training,
specifically fine-tuned models without fuzzy pooling, single-layer fuzzy
pooling, and all pooling layers with fuzzy pooling, showed the effec-
tiveness of the fuzzy pooling algorithm. The explainable technique of
SHAP illustrated the contribution of each pixel to the predicted output.
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Fig. 18. Pixel-wise Shapley value contribution of top two predictions of the LUS images.
In addition, the developed method achieved better results than existing
state-of-the-art methods. However, one limitation of this research is
that the proposed method has not denoted the severity of the disease
as part of its explainability. In the future, the severity of the diagnosed
disease could be studied to find the stage of the disease for better
meditative care of patients. Our proposed framework could also be
applicable to diagnosing other lung-related diseases using ultrasound
images.
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Appendix A. List of abbreviations

Acronyms
AI Artificial intelligence.
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CLAHE Contrast Limited Adaptive Histogram Equalization.
CNN Convolution Neural Network.
DL Deep learning.
FP-CNN Fuzzy pooling-based convolutional neural network.
IoT Internet of Things.
LUS Lung ultrasound.
ML Machine learning.
ReLU Rectified Linear Unit.
RT-PCR Reverse transcription polymerase chain reaction.
SARS-CoV-2 Severe acute respiratory syndrome coronavirus
SHAP SHapley Additive Explanation.
XAI Explainable AI.

Appendix B. List of performance calculating formulae

𝑖𝑡ℎ 𝑐𝑙𝑎𝑠𝑠 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐶𝑖
=

𝑇𝑃𝐶𝑖

𝑇𝑃𝐶𝑖
+
∑𝑖−1

𝑗=1 𝐹𝑃𝐶𝑗𝐶𝑖
+
∑𝑛

𝑗=𝑖+1 𝐹𝑃𝐶𝑗𝐶𝑖

𝑖𝑡ℎ 𝑐𝑙𝑎𝑠𝑠 𝑅𝑒𝑐𝑎𝑙𝑙, 𝑅𝑒𝑐𝑎𝑙𝑙𝐶𝑖
=

𝑇𝑃𝐶𝑖
∑𝑖−1 ∑𝑛
𝑇𝑃𝐶𝑖

+ 𝑗=1 𝐹𝑁𝐶𝑖𝐶𝑗
+ 𝑗=𝑖+1 𝐹𝑁𝐶𝑖𝐶𝑗
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𝐴

𝑃

𝑖𝑡ℎ 𝑐𝑙𝑎𝑠𝑠 𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦, 𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦𝐶𝑖 =
∑

𝑇𝑁𝐶𝑖
∑

𝑇𝑁𝐶𝑖 +
∑𝑖−1

𝑗=1 𝐹𝑃𝐶𝑗𝐶𝑖 +
∑𝑛

𝑗=𝑖+1 𝐹𝑃𝐶𝑗𝐶𝑖

𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

𝐹𝑎𝑙𝑠𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅), 𝐹𝑃𝑅 = 𝐹𝑃
𝑇𝑁 + 𝐹𝑃

𝑀𝑎𝑡𝑡ℎ𝑒𝑤𝑠 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑀𝐶𝐶),

𝑀𝐶𝐶 = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁
√

(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)
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