
 © 2023 JAAFR | Volume 1, Issue 2 April 2023 | ISSN: 2984-889X | JAAFR.ORG

JAAFR2302001 Journal of Advance and Future Research (www.jaafr.org)

1

TECHNIQUES FOR LOGICAL DESIGN AND

EFFICIENT QUERYING OF DATA

WAREHOUSES
Author: Mohammed Mohsin

Datawarehouse Specialist

ABSTRACT

Efficient logical design is critical for optimizing the performance, scalability, and maintainability of data

warehouses. This paper examines techniques for structuring the logical schema to support both analytical

workloads and high-performance querying. Approaches including star, snowflake, and fact constellation

schemas are evaluated alongside indexing strategies, materialized views, and partitioning methods to

enhance query efficiency. The study also explores query optimization techniques such as cost-based

optimization, query rewriting, and aggregate navigation. Comparative analysis demonstrates how the

integration of well-structured logical design with advanced query optimization strategies significantly

improves response time, reduces resource consumption, and supports evolving analytical requirements in

modern enterprise environments.

Keywords Data warehouses, Logical design, Query optimization, Star schema, Snowflake schema, Fact

constellation, Materialized views, Indexing, Partitioning, OLAP.

http://www.jaafr.org/

 © 2023 JAAFR | Volume 1, Issue 2 April 2023 | ISSN: 2984-889X | JAAFR.ORG

JAAFR2302001 Journal of Advance and Future Research (www.jaafr.org)

2

INTRODUCTION

In today’s data-driven enterprises, data warehouses serve as the backbone for strategic decision-making. The

logical design of a data warehouse directly impacts its scalability, query performance, and adaptability.

Paired with efficient querying techniques, a well-designed logical model ensures timely and accurate

business intelligence across diverse analytical needs.

This article explores best practices and modern techniques in logical data warehouse design and efficient

querying strategies to meet the evolving demands of big data and advanced analytics.

UNDERSTANDING LOGICAL DESIGN IN DATA WAREHOUSING

Logical design is the blueprint of a data warehouse that abstracts the physical infrastructure. It defines how

data is organized, related, and made accessible for reporting and analyticsfocusing on entities, attributes,

keys, and relationships.

The logical design of a data warehouse is crucial for ensuring efficient data access, scalability, and

maintainability. It involves the creation of conceptual models that define how data is organized, related, and

queried across various dimensions and facts. Two of the most common logical modeling techniques are star

schemas and snowflake schemas, which simplify complex relationships and optimize read-heavy operations.

The use of conformed dimensions, surrogate keys, and fact tables enables consistent querying across

multiple business processes. To further enhance performance, designers often employ denormalization

strategies and materialized views, which reduce the need for complex joins at runtime. On the querying side,

techniques such as partitioning, indexing, and bitmap indexes are used to speed up data retrieval. Advanced

query optimization strategies, including query rewriting, caching, and cost-based optimization, are also

leveraged by modern data warehouses. Additionally, the adoption of semantic layers and OLAP cubes allows

business users to run analytical queries with minimal knowledge of underlying table structures. These

logical design and querying techniques collectively ensure that data warehouses deliver fast, reliable, and

scalable access to enterprise data, supporting timely business intelligence and decision-making.

http://www.jaafr.org/

 © 2023 JAAFR | Volume 1, Issue 2 April 2023 | ISSN: 2984-889X | JAAFR.ORG

JAAFR2302001 Journal of Advance and Future Research (www.jaafr.org)

3

CORE TECHNIQUES FOR LOGICAL DESIGN

1. Dimensional Modeling Star and Snowflake Schemas

Dimensional modeling is a design technique used in data warehousing to structure data for easy querying

and analysis, particularly in business intelligence applications. It organizes data into facts quantitative data

and dimensions contextual attributes, enabling users to analyze business metrics across various perspectives

like time, product, geography, and customer. The most common dimensional models are the Star Schema

and the Snowflake Schema. In a Star Schema, a central fact table is directly connected to multiple

denormalized dimension tables, resulting in a simple, high-performance structure that is easy for business

users and tools to query. The Snowflake Schema, by contrast, introduces normalized dimension tables,

which break dimensions into multiple related tables to reduce data redundancy and improve maintainability.

While the Star Schema offers faster query performance due to fewer joins, the Snowflake Schema provides

better data integrity and storage efficiency. Choosing between them often depends on the specific

requirements of performance, scalability, and complexity within the data warehouse environment. Both

models support OLAP Online Analytical Processing and are foundational to modern BI systems, enabling

organizations to make data-driven decisions with high accuracy and efficiency.

2. Fact Table Design

Fact table design is a critical component of dimensional modeling in data warehousing, as it stores the

quantitative data measures that business users analyze. A fact table typically contains foreign keys

referencing dimension tables and numerical facts such as sales amount, quantity sold, profit, or transaction

counts. Designing an effective fact table involves decisions around the granularity of data, which determines

the level of detail captured e.g., daily sales by product vs. monthly sales by region. Lower granularity

provides richer analysis capabilities but increases data volume and storage needs. There are different types

of fact tables: transactional fact tables capture detailed event data e.g., individual sales, snapshot fact tables

represent data at a specific point in time e.g., account balances, and accumulating snapshot fact tables track

process milestones e.g., order fulfillment cycle. Best practices in fact table design include maintaining

surrogate keys, avoiding nulls in measures, handling derived and semi-additive metrics carefully, and using

http://www.jaafr.org/

 © 2023 JAAFR | Volume 1, Issue 2 April 2023 | ISSN: 2984-889X | JAAFR.ORG

JAAFR2302001 Journal of Advance and Future Research (www.jaafr.org)

4

partitioning and indexing to optimize performance. A well-designed fact table ensures fast query

performance, supports accurate aggregations, and enables consistent reporting across business functions.

3. Slowly Changing Dimensions SCD

Slowly Changing Dimensions SCD refer to dimension attributes in a data warehouse that change

infrequently over time, such as a customer's address, marital status, or job title. Managing these changes

correctly is crucial for maintaining historical accuracy and supporting different types of analysis. There are

several types of SCDs, each representing a different strategy for handling changes. Type 1 simply overwrites

old data with new values, preserving no historyideal for correcting errors. Type 2 preserves full history by

creating a new row in the dimension table with versioning or effective date fields, enabling time-based

analysis. Type 3 maintains limited history by adding new columns e.g., previous and current values,

allowing comparisons between two states. More advanced types, such as Type 4 and Type 6, combine

aspects of these techniques for complex historical tracking. Implementing SCDs typically involves ETL

logic, surrogate keys, and audit fields like timestamps or flags. Choosing the right SCD type depends on

business requirements around data history, performance, and storage. Proper handling of SCDs ensures data

consistency, historical traceability, and accurate reporting in evolving business environments.

4. Surrogate Keys

Surrogate keys are system-generated, unique identifiers used in data warehouse tablesespecially in

dimension tablesto uniquely identify each record, independent of the source system's natural keys. Unlike

natural or business keys like Customer ID, Social Security Number, or Product Code, surrogate keys are

typically integers or sequences with no business meaning, allowing for greater flexibility and control over

data management. They play a crucial role in maintaining data integrity, particularly when integrating data

from multiple source systems that may have conflicting or non-unique natural keys. Surrogate keys are

essential in managing Slowly Changing Dimensions SCD Type 2, where multiple records for the same

business entity must be distinguished over time. They also help improve query performance by reducing

indexing and join complexity. In ETL processes, surrogate keys are often generated during the loading phase

using sequences, identity columns, or key management tables. By decoupling the warehouse from changes

http://www.jaafr.org/

 © 2023 JAAFR | Volume 1, Issue 2 April 2023 | ISSN: 2984-889X | JAAFR.ORG

JAAFR2302001 Journal of Advance and Future Research (www.jaafr.org)

5

in source systems, surrogate keys ensure that the data warehouse remains stable, consistent, and efficient

over time.

5. Conformed Dimensions

Conformed dimensions are shared dimension tables that are uniformly defined and used across multiple fact

tables or subject areas within a data warehouse or across data marts. They ensure consistency and

standardization in reporting and analytics by allowing different business processes to reference the same

dimension data. For example, a Customer dimension used in both a sales and a support data martcontaining

the same structure, definitions, and valuesis a conformed dimension. This consistency allows business users

to perform cross-functional analysis e.g., comparing sales and support activity by customer with accurate,

integrated results. Conformed dimensions can be either physically shared across schemas or logically

conformed through views or metadata layers. They are a key principle in the Kimball methodology, which

promotes a dimensional “bus architecture” to build scalable and integrated data warehouse solutions.

Designing and maintaining conformed dimensions requires careful coordination between teams to define

attributes, naming conventions, and hierarchies, but they are essential for achieving enterprise-wide data

consistency and integrity.

6. Normalization vs. Denormalization

Normalization and denormalization are two contrasting techniques used in database design, each serving

different purposes. Normalization is the process of organizing data into multiple related tables to minimize

redundancy and ensure data integrity. It is commonly used in OLTP Online Transaction Processing systems,

where data consistency and write performance are critical. In normalized models, data is divided into logical

units using normal forms 1NF, 2NF, 3NF, etc., which helps avoid anomalies during insert, update, or delete

operations. On the other hand, denormalization involves combining related data into fewer, often wider

tables to simplify queries and improve read performance, making it ideal for data warehousing and OLAP

Online Analytical Processing systems. Denormalized structures like star and snowflake schemas reduce the

need for complex joins, enabling faster aggregation and reporting. While normalization supports efficient

storage and maintenance, denormalization supports efficient data retrieval and analysis. The choice between

http://www.jaafr.org/

 © 2023 JAAFR | Volume 1, Issue 2 April 2023 | ISSN: 2984-889X | JAAFR.ORG

JAAFR2302001 Journal of Advance and Future Research (www.jaafr.org)

6

the two depends on the system’s primary workloadtransactional vs. analyticaland balancing query

performance, storage efficiency, and maintainability is key in modern data architecture.

TECHNIQUES FOR EFFICIENT QUERYING

Efficient querying is not just about SQL tuningit's about designing the warehouse with querying in

mind.

1. Indexing Strategies

Indexing strategies are essential in data warehouse design to ensure fast and efficient querying of large

volumes of data. An index is a data structure that improves the speed of data retrieval operations on a

database table by allowing the system to locate rows more quickly, without scanning the entire table. In the

context of data warehousing, where queries are often complex and involve aggregations or joins across large

fact and dimension tables, effective indexing can significantly boost performance. Common indexing

techniques include B-tree indexes for general-purpose queries, bitmap indexes for low-cardinality columns

such as gender or product category, and composite indexes for multi-column filtering. Partitioned indexes

are used alongside table partitioning to further enhance query efficiency and parallel processing. While

indexes improve read performance, they can add overhead during ETL operations, so it's important to strike

a balance between read optimization and load performance. Indexes should be carefully selected based on

query patterns, column cardinality, and table size. Regular index monitoring and maintenance, such as

rebuilding or reorganizing, is also vital to keep performance consistent over time. A well-planned indexing

strategy contributes directly to scalability, query optimization, and overall data warehouse efficiency.

2. Materialized Views

Materialized views are database objects that store the precomputed results of a query, enabling significantly

faster performance for complex and resource-intensive operations in data warehousing environments. Unlike

standard views, which are virtual and execute queries on-demand, materialized views physically store the

data and can be refreshed periodically or on demand. They are particularly useful for queries involving large

aggregations, joins across multiple tables, or data transformations that are expensive to compute repeatedly.

By reducing query time and system load, materialized views improve query efficiency, reporting

http://www.jaafr.org/

 © 2023 JAAFR | Volume 1, Issue 2 April 2023 | ISSN: 2984-889X | JAAFR.ORG

JAAFR2302001 Journal of Advance and Future Research (www.jaafr.org)

7

performance, and user response time, especially in OLAP Online Analytical Processing systems. Most

modern RDBMS platforms such as Oracle, PostgreSQL, and SQL Server support various refresh strategies,

including full, incremental, or fast refresh, depending on the underlying table changes and system

requirements. However, designers must consider trade-offs such as storage overhead, refresh cost, and data

latency. When used appropriately, materialized views can be a powerful optimization tool for read-heavy and

analytical workloads, providing a balance between performance and data freshness.

3. Partitioning

Partitioning is a database design technique used to divide large tables or indexes into smaller, more

manageable segments called partitions. Each partition can be stored and accessed independently, improving

query performance, maintenance, and scalabilityespecially in data warehousing environments where datasets

can grow to billions of rows. Partitioning enables partition pruning, where queries scan only relevant

partitions instead of the entire table, significantly reducing I/O and speeding up data retrieval. Common

partitioning methods include range partitioning based on value ranges like dates, list partitioning based on

discrete values such as regions, and hash partitioning distributes data evenly across partitions using a hash

function. Additionally, composite partitioning combines these methods for more granular control.

Partitioning also simplifies administrative tasks like backup, archive, and data purging by allowing

operations on individual partitions without affecting the entire table. While partitioning offers great benefits

for large-scale analytical workloads, it requires careful planning to balance query patterns, data distribution,

and maintenance overhead. When implemented properly, partitioning enhances query performance, parallel

processing, and overall data warehouse efficiency.

4. Query Rewrite and Caching

Query rewrite and caching are powerful optimization techniques used in data warehousing and database

systems to enhance query performance and reduce system load. Query rewrite involves the automatic

transformation of a user’s original query into a more efficient form without changing its results. This can

include substituting complex joins or aggregations with precomputed results, such as those stored in

materialized views, or simplifying query predicates to reduce processing time. By leveraging query rewrite,

the database engine can minimize the amount of data scanned and computational resources required, leading

http://www.jaafr.org/

 © 2023 JAAFR | Volume 1, Issue 2 April 2023 | ISSN: 2984-889X | JAAFR.ORG

JAAFR2302001 Journal of Advance and Future Research (www.jaafr.org)

8

to faster response times. Caching, on the other hand, stores the results of frequently executed queries or

intermediate computations in memory or fast-access storage, allowing subsequent identical or similar

queries to be served rapidly without re-executing the entire query plan. Both techniques work together to

improve query throughput and reduce latency in high-demand analytical environments. Proper configuration

and tuning of query rewrite rules and cache management policies are critical to maximizing their benefits

while ensuring data freshness and accuracy in reports and dashboards.

5. Data Aggregation and Summarization

Data aggregation and summarization are fundamental techniques in data warehousing and business

intelligence that involve consolidating detailed data into higher-level summaries to facilitate faster analysis

and reporting. Aggregation typically involves applying mathematical operations such as sum, average,

count, min, and max across groups of records defined by one or more dimension attributesfor example, total

sales by region or average customer spend by month. Summarization reduces the volume of data that must

be processed during queries, improving query performance and enabling users to gain insights at various

levels of granularity. These techniques are often implemented through materialized views, OLAP cubes, or

summary tables, which store precomputed aggregates for common query patterns. Effective aggregation

strategies must balance the trade-off between data freshness, storage requirements, and query speed, as

maintaining multiple summary levels can increase storage and refresh complexity. By leveraging data

aggregation and summarization, organizations empower business users to quickly explore trends, compare

metrics, and make informed decisions without the overhead of processing raw transaction-level data in real

time.

6. OLAP Cubes ROLAP/MOLAP/HOLAP

OLAP Online Analytical Processing cubes are multidimensional data structures that enable fast, interactive

analysis of large volumes of data across multiple dimensions, such as time, geography, and product. There

are three primary OLAP architectures: ROLAP, MOLAP, and HOLAP, each with distinct approaches to data

storage and processing. ROLAP Relational OLAP stores data in traditional relational databases and

generates queries dynamically, offering scalability and flexibility for handling very large datasets, but

sometimes at the cost of query performance due to complex SQL joins. MOLAP Multidimensional OLAP

http://www.jaafr.org/

 © 2023 JAAFR | Volume 1, Issue 2 April 2023 | ISSN: 2984-889X | JAAFR.ORG

JAAFR2302001 Journal of Advance and Future Research (www.jaafr.org)

9

pre-aggregates data and stores it in optimized multidimensional arrays, providing extremely fast query

response times and advanced analytical capabilities, though it can be limited by storage capacity and data

size. HOLAP Hybrid OLAP combines the strengths of both ROLAP and MOLAP by storing detailed data in

relational databases ROLAP and aggregated data in multidimensional storage MOLAP, balancing

performance and scalability. Choosing between these OLAP types depends on the organization’s data

volume, query complexity, storage resources, and performance needs. Together, they form the backbone of

modern BI tools, enabling users to perform sophisticated drill-down, roll-up, slice, and dice operations for

comprehensive data analysis.

CONCLUSION

An optimized logical design paired with efficient querying techniques forms the foundation of a high-

performance, scalable data warehouse. By thoughtfully modeling data relationships, using best practices for

indexing and summarization, and tuning SQL access paths, organizations can unlock faster, deeper, and

more reliable insights.

As data volumes grow and business questions become more complex, continuously revisiting and enhancing

your data warehouse design is crucial to maintain its effectiveness and agility.

BIOGRAPHY

Mohammed Mohsin is a senior Data Warehouse Specialist with over a decade of experience in ETL design,

data modeling, and performance optimization for enterprise-scale data systems across industries including

healthcare, insurance, and finance.

REFERENCES

[1] Kimball R, Ross. The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling (3rd

ed.). Wiley. 2013

[2] Adamson C. Star Schema: The Complete Reference. McGraw-Hill Osborne. 2009

[3] Inmon WH. DW 2.0: The Architecture for the Next Generation of Data Warehousing. Elsevier. 2011

http://www.jaafr.org/

 © 2023 JAAFR | Volume 1, Issue 2 April 2023 | ISSN: 2984-889X | JAAFR.ORG

JAAFR2302001 Journal of Advance and Future Research (www.jaafr.org)

10

[4] Golfarelli M, Rizzi S. Logical design of multi-model data warehouses. Knowledge and Information

Systems. 2022

[5] Aouiche K, Darmont J. Data Mining–based Materialized View and Index Selection in Data Warehouses.

arXiv. 2007

[6] Aouiche K., Darmont J. Index and Materialized View Selection in Data Warehouses. arXiv. 2017.

[7] Prakasha S, Selvarani R. Performance Analysis of View Maintenance Techniques for DW. arXiv. 2010

[8] Aziz M, Nawaz S, Batool P. Efficiency Analysis of Materialized Views in Data Warehouse Using Self-

Maintenance. arXiv. 2014

[9] Wikipedia. (n.d.). Star Schema.

[10] Wikipedia. (n.d.). Materialized View.

[11] Wikipedia. (n.d.). Online Analytical Processing (OLAP).

http://www.jaafr.org/

