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C-tests are general measures of first or second language proficiency (Raatz & Klein-

Braley, 1981) and have been successfully developed for various languages (Norris, 

2018). C-tests are widely used in research (for example, in studies on language 

proficiency of bilinguals; Hulstijn, 2012) and educational practice (Grotjahn, 2019) 

such as placement (Eckes, 2011; Mozgalina & Ryshina-Pankova, 2015), or remedial 

teaching (Linnemann & Wilbert, 2010). 
C-tests were suggested as improvements over cloze tests (Klein-Braley, 1997). 

While in a cloze test every nth word is deleted in a single passage  a C-test consists of 

several passages in which starting from the second word of the second sentence the 

second half of every second or sometimes every third word is deleted (Grotjahn, 2016). 

Subjects have to restore the deleted parts and the score on a passage is based on the 

number of gaps correctly reconstructed. A C-test battery usually contains four to six 
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passages, each with 25 or 20 gaps. C-tests are mostly conceived of as more or less pure 

power tests (Fadaeipour & Zohoorian, 2017), and, therefore, rather generous time limits 

are set for the whole test.  

A C-test in which the time limit of the individual passages is fixed during 

administration, such that test-takers have to work under time pressure has been referred 

to by Grotjahn (2010) as a speeded C-test (S-C-test). S-C-tests assess the ability to 

quickly process language under time pressure, which is considered an important 

component of the construct of language ability (Alderson, 2005). Moreover, highly 

speeded S-C-tests (1 to 2 minutes per passage) allow assessing ability differences even 

at the highest proficiency levels (Grotjahn, 2010; Wockenfuß & Raatz, 2014). 

Item Response Theory Modeling of C-tests 
In principle, each gap in a C-test could be considered as an item. However, this 

results in a massive increase in the number of item parameters to be estimated and, as 

the gaps are nested in texts, conditional independence could be violated. Conditional 

independence is a basic assumption of all IRT and Rasch models and the violation of 

this assumption results in biased parameter estimates and spuriously high reliability 

coefficients (Sireci, Thissen, & Wainer, 1991). In addition, when C-test texts are 

presented under speeded conditions examinees usually will not reach the gaps towards 

the end of the passages which makes treating gaps as individual items problematic 

(Heckman, Tiffin, & Snow, 1967).  

Given these problems, researchers have most often employed the item bundle 

approach (Rosenbaum, 1988). In this modeling strategy, the scores on the gaps are 

aggregated as passage scores (testlets or super items) and then entered into Rasch model 

analysis (Eckes & Baghaei, 2015). That is, each passage is considered as a polytomous 

item with 20-25 ordered categories and an ordinal Rasch model like the rating scale 

model (RSM; Andrich, 1978) or the partial credit model (PCM; Masters, 1982) is 

applied.  

One drawback of these models for scaling C-tests is that they have many 

parameters to be estimated and thus require large sample sizes which are not always 

available. According to Eckes (2011), 10 observations per response category (i.e., the 

number of solved gaps) are required for stable estimation of PCM parameters. This can 

easily result in sample size requirements of 500 or more depending on the number of 

gaps in each passage, the number of passages, and the mapping of person proficiency 

and item difficulty (see Eckes, 2011). For example, with six C-test items with 25 gaps a 

minimum sample size of 260 would be required, but only when assuming that 

participants are uniformly distributed across all possible passage scores ranging from 0 

to 25 for each of the six items. However, no examinee is likely to fill all the gaps in a 

passage within the allotted time in S-C-tests. This leaves many high passage scores 

unobserved or with very few observations and, as a consequence, leads to biased person 

parameter estimates and misleading estimation accuracy (Li, 2013).  

Furthermore, the RSM assumes similar rating scale structure and equal distances 

between the categories of the rating scale for all the items. This is a very strong and 

unrealistic assumption regarding S-C-tests especially when unequal time limits are set 

for each passage. Finally, item difficulty parameters in RSM and PCM are only general 

item main effects and the time limits for the items are not taken into consideration. If 

the time limit for an easy text is short and its total raw score is smaller than the total raw 

score for a difficult text with a longer time limit, the easier texts will turn out to have a 

higher difficulty parameter. In essence, applying RSM and PCM to rather small sample 
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sizes is problematic. Furthermore, these models do not allow disentangling the effect of 

time limits from item difficulty. 

A flexible count data approach for speeded C-tests. In addition to the Rasch 

model for dichotomous data, Rasch (1960) proposed a model for count data known as the 

Rasch Poisson Counts Model (RPCM; e.g., Baghaei & Doebler, 2018). One restriction of 

this model is that conditional on person ability and item parameter, mean and variance 

are equal. This strong model assumption of equidispersion makes the model less useful 

than other members of the Rasch model family. While subsequent methodological 

advances somewhat widened the applicability of the RPCM (Hung, 2012), only recently 

Authors (2019) showed how the original RPCM can be generalized into the Conway 

Maxwell Poisson Counts Model (CMPCM). The CMPCM is of similar flexibility as 

many linear latent trait models, as the mean is not directly related to the error variance. 

In the RPCM and CMPCM the expected value μji of the score of person j on item i is 

modeled as a function of person ability θj and item easiness parameter βi (i.e., larger 

values leading to higher scores on average): 

μji = exp(𝛽𝑖 + 𝜃𝑗). 
 The CMPCM generalizes the RPCM by including item-specific dispersion 

parameters νi, which determine the variance of the item residuals. It is convenient to 

report item dispersion on a log-scale, i.e., we use τi = ln(1/νi). This has the advantage 

that values of τi > 0 indicate more variance than the Poisson distribution 

(overdispersion) and τi < 0 stand for less variance (underdispersion). An even more 

parsimonious model is obtained when all dispersion parameters are set equal, τi = τ for 

all i, which is called the CMPCM with global dispersion. Furthermore, in the CMPCM, 

the time limits can be included as an offset for the item easiness. Hence item easiness 

parameters can be interpreted as average scores per time unit (e.g., minutes): The 

expected number of hits or errors made by a person of average ability per unit of time is 

given by the easiness parameter. If the τi are fixed to zero the RPCM is obtained, hence 

the CMPCM generalizes the RPCM. The person parameter θj is assumed to be a 

Gaussian latent variable, with variance 𝜎𝜃
2 estimated freely. Moreover, the CMPCM, as 

compared to RSM and PCM, is a model with fewer parameters (two parameters per 

item and a latent ability variance) and can be estimated with small sample sizes 

(Authors, 2019). 

The Present Research 
C-tests are commonly modeled with ordinal item response theory models, which 

has several drawbacks as discussed above. Therefore, in the present study count data 

models are used for the scaling of a speeded C-test (S-C-test) and the results are 

compared with ordinal models. In addition, based on the count data models, an 

informative multiple group modeling approach analogous to measurement invariance 

(MI) testing in linear models (e.g., Vandenberg & Lance, 2000) is described, which 

takes a priori known differences in language proficiency into account (i.e., native 

speakers vs. second language learners). Generally speaking, the objective is to test 

whether the latent scales in both proficiency groups are one and the same, so that a 

latent ability of, say, 0.2 has the same interpretation regardless of group membership. 

 Towards this purpose, a series of model comparisons is performed within the 

CMPCM framework. First, a test is needed to decide whether the RPCM, CMPCM with 

global dispersion, or the CMPCM with item-specific dispersion fits best in the groups. 

Then, the chosen model needs to be estimated as a multiple group model with group-

specific item easiness, item dispersion, latent variable variance, mimicking the 

configural invariance model (Vandenberg & Lance, 2000). Then, a strong invariance 
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model can be formulated by constraining item easiness parameters to be equal across 

groups and estimating the latent mean difference. If this model holds, the latent scales 

of both groups are the same. Next, the strong invariance model can be further restricted 

by also constraining the dispersion parameters to be equal across groups which implies 

strict invariance (i.e., equal error variance and the same local reliability). These models 

are then compared with likelihood ratio tests.1To address the issues above the following 

research questions were formulated: 

1. Does the CMPCM fit the data?  

2. Which count data model fits the data best (RPCM, CMPCM with global 

dispersion or CMPCM with item-specific dispersion)?  

3. Do the count data models fit better than the RSM and PCM?  

4. To what extent are person parameter estimates from the count data models and 

ordinal IRT models correlated?  
 

Method 
Participants 
 The data were collected within two research projects and consist of 271 

participants (Grotjahn, Schlak, & Aguado, 2010; Heine, 2017). Participants with 

missing data for age of onset (n = 14) had to be discarded from analysis.2 This resulted 

in a sample of 257 participants from four different populations (see Heine, 2017): a) 

monolingual German natives, b) early bilinguals (onset age ≤ 3), c) late starters (onset 

age ≥ 16), and d) young starters (4 ≤ onset age < 16). Monolinguals and early bilinguals 

formed a native speaker group and late and young starters formed a second language 

learner group for analyses. In addition, we identified one multivariate outlier by means 

of the Mahalanobis distance as suggested by Tabachnick and Fidell (2007). This 

participant was discarded from analyses. Sample sizes and some pertinent 

characteristics of the participants are shown in Table 1. 

Instrument 
The S-C-test analyzed in this study was originally developed by Grotjahn et al. 

(2010) in the context of a research project on the effects of age on ultimate attainment in 

second language acquisition and was intended to differentiate among extremely 

competent second language learners of German. The S-C-test contained six passages, 

each containing 25 blanks, with text specific time limits ranging from 65 to 115 

seconds. A more detailed description of the process of test development and the 

rationale for setting the time limits can be found in Grotjahn et al. (2010). Grotjahn et 

al. (2010) and Heine (2017) also reported excellent reliability estimates from .96 (n = 

37) to .99 (n = 269). Moreover, Grotjahn et al. (2010) found a correlation of .63 (p < 

.001) with the subjects’ self-evaluation of their German language competence, and 

Heine (2017) reported positive correlations between the present S-C-test and motivation 

to learn German as a foreign language, usage of German in everyday life, and prior 

participation in German language lessons (rs ranged from .26 to .33; all ps < .019). 

Analytic Strategy 
 Ordinal models (RSM and PCM) were estimated with the R package mirt 

(Chalmers, 2012). We employed mirt because it is one of the few packages that allow 

estimating ability parameters by means of the maximum a posteriori (MAP) estimator 

(e.g., De Boeck et al., 2011). This estimator was required for the purpose of comparison 

because glmmTMB (Brooks et al., 2017), the package for CMPCM estimation,  also 

uses MAP for ability parameter estimation. Using the same ability estimator for all 

models ensured that comparing models in terms of absolute fit by means of covariate-
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adjusted frequency plots (CAFPs; Holling, Böhning, Böhning, & Forman, 2016), 

correlations between ability estimates, and empirical reliability were not affected by 

different choices of ability estimators. Here, a CAFP indicates good fit, if the model 

implied total score distribution is close to its empirical counterpart. In contrast to fit 

indices, CAFPs do not boil the fit down to one number, but deviations from fit can be 

detected for each potential score. The data and analysis script are available in the Open 

Science Framework: 

https://osf.io/gbtd3/?view_only=8acb0468c24949dba3a63a9b953ae204 

Results 

Comparison of Count Data Models with Ordinal Models 
First, the RSM, PCM, RPCM, and CMPCMs were compared in terms of 

absolute fit by means of a CAFP. Figure 1 shows that the more flexible ordinal models 

fit better towards the upper tail close to the maximum possible score of 25. Apparently, 

the data suffer from a slight ceiling effect in the group of native speakers and the ordinal 

models were better in accounting for this. Figure 1 further illustrates that the RPCM 

with its assumption of equidispersion was too inflexible to account for the observed 

counts. The CMPCMs provided much better fit to the data as compared to the RPCM 

(further supported by a likelihood ratio test and information criteria results; see Table 

4). Another slight improvement of model fit at the upper tail was observed when 

dispersion was modeled at the item level as compared to the CMPCM with global 

dispersion (also further supported by likelihood ratio test and AIC results; see Table 4), 

while the BIC prefers the simpler CMPCM with global dispersion. One way to interpret 

the discrepancy of AIC and BIC is that the model with global dispersion might have 

greater explanatory power, while the item level dispersion CMPCM could provide 

better predictions (Vrieze, 2012). As their mean structures (Table 4) and the resulting 

reliability estimates (see below) are virtually identical, the discrepancy might be 

insubstantial. The fit of the CMPCMs was much closer to the fit of the ordinal variables 

and in light of fewer parameters in the CMPCMs, we conclude that these models 

displayed decent fit to the data in comparison with the RSM and PCM. 

The parameter estimates of the count data models are depicted in Table 4 (item 

descriptive statistics are shown in Table 3). The item easiness parameters were 

comparable across RPCM and the CMPCMs. Importantly, the easiness parameters are 

interpretable independent of the allotted time to work on a text (the item time limits are 

shown in Table 3). Item 2 appeared to be the easiest item, whereas Item 6 was estimated 

to be hardest. In addition, the latent ability variance was slightly higher for the 

CMPCMs as compared to the RPCM. Both CMPCMs highlighted the presence of 

underdispersion in the data. When dispersion was modeled at the item level, Item 2 

exhibited the highest degree of underdispersion, whereas Item 6 was closest to a value 

of zero (but still displaying a moderate level of underdispersion). 

Subsequently, ability estimates from the RSM, PCM, RPCM, and CMPCMs 

were correlated to assess whether the order of participants was comparable across 

models (see Table 2). All correlations between ability estimates were > .95 which 

highlights that from a practical point of view the same latent variable was 

operationalized regardless of model choice (Larwin & Milton, 2012). In addition, 

empirical reliability estimates were quite comparable across the models and generally 

excellent (all Rel(θ) > .942). In particular, reliability estimates were the same (when 

rounded to three decimals) for both ordinal models (Rel(θ) = .961) and the CMPCM 

models (Rel(θ) = .969) clearly performed on par with these estimates. The slightly lower 

https://osf.io/gbtd3/?view_only=8acb0468c24949dba3a63a9b953ae204
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reliability of the RPCM as compared to the CMPCM models was due to the 

underdispersion in the data that is not taken into account by the RPCM (Authors, 2019). 

Moreover, we compared how the person specific standard errors of the ability 

estimators behaved, i.e., we compared conditional reliability estimates. Conditional 

reliabilities are depicted in Figure 2 as a function of the models and ranked ability 

estimates (to ensure comparability). Notably, the standard errors (SEs) differ between 

ordinal and count data models. That is, for ordinal models the SE depends on the 

distance of average test easiness parameters and person ability (i.e. SE is lowest when 

ability and test easiness match). Hence, persons with very low or very high ability have 

lower conditional reliability when the average test easiness matches average ability. In 

such situations an inverted U-shape for conditional reliability as a function of ability is 

implied and is clearly indicated for RSM and PCM in Figure 2. Otherwise, empirical 

reliability with the count data models was found to be increasing with the ability 

estimates which was expected for the RPCM (Graßhoff, Holling, & Schwabe, 2018), 

but similarly was found for the CMPCMs. Moreover, CMPCMs can model 

underdispersion in the data. Thus, these models were more informative and yielded 

better reliability estimates as compared to the RPCM. 

With the RPCM as an exception, conditional reliability for the lowest ability 

estimates was found to be very close to .90 for all other models which implies excellent 

reliability (see Figure 2). Only from the lowest ranks towards the middle of the ability 

ranks, conditional reliability was slightly higher for the ordinal models as compared to 

the CMPCMs. From the middle of the ability ranks to the highest level, conditional 

reliability increased further and was slightly higher for the CMPCMs as compared to the 

ordinal models, whereas the ordinal models dropped drastically from rank 200 onwards 

(see Figure 2). The latter observation further implied the largest differences in terms of 

conditional reliability between the CMPCMs and the ordinal models at the upper tail of 

the ability distributions. 

MI Testing for Native Speakers vs. Second Language Learners 
First, a configural model was chosen in both groups separately. In both groups 

the CMPCM with global dispersion fitted better to the data as compared to the RPCM 

(native speakers: Δχ2(1) = 209.199, p < .001; second language learners: Δχ2(1) = 

53.528, p < .001). Next, the CMPCM with item-specific dispersion fitted better to the 

data as compared to the CMPCM with global dispersion in both groups (native 

speakers: Δχ2(5) = 34.770, p < .001; second language learners: Δχ2(5) = 19.917, p = 

.001). These results were further supported by group-specific CAFPs which are shown 

in Figure 3. Analogous to Δχ2 testing, the differences between the models were more 

pronounced in the native speaker group (right plot in Figure 3) as compared to the 

second language learner group (left plot in Figure 3). It is evident from Figure 3 that all 

count data models fit much better to the data of the second language learner group as 

compared to the native speaker group in which a slight ceiling effect is likely to 

deteriorate model fit. The best fit of the CMPCM with item-specific dispersion in both 

groups was driven by underdispersion (range of estimates across both groups: -1.81 to -

0.08). 

Then, the CMPCM with item-specific dispersion was fit with group-specific 

item easiness, item dispersion, latent variable variance, and the latent mean unmodeled. 

This model was compared to a strong invariance model in which item-easiness 

parameters were constrained to be equal across groups and the latent mean difference 

was estimated. The strong invariance model deteriorated model fit as compared to the 

configural invariance model (Δχ2(5) = 22.932, p < .001). A more thorough investigation 
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of item×group interaction revealed that two items differed (Item 4 and Item 6; see 

Figure 5) in terms of their deviation from unweighted average item easiness (i.e., effect 

coding for items was used) between native speakers even when p-values were adjusted 

for multiple testing (see Figure 5). Thus, we concluded that configural invariance is 

defensible, but no stricter levels of MI could be achieved (however, for illustration 

purposes a dispersion invariant model was also fitted and depicted in Figure 4). 

The configural invariant model included effect coded item parameters (i.e., the 

intercept represents the unweighted average easiness across items and item coefficients 

represent the difference to the intercept). The item×group interaction was also included 

and, thus, an overall difference in average item easiness between native speakers and 

second language learners and also differences in item coefficients between groups were 

estimated. The overall estimate indicated that the number of gaps solved for a one-

minute text would reduce by a factor of 0.485 (95%-CI: [0.441, 0.534]) for the second 

language learner group as compared to the native speaker group (i.e., roughly the 

expected number correct per text should be halved for second language learners as 

compared to native speakers).  

Discussion 
Psychometric modeling of C-tests in general is often based on ordinal IRT 

models and, thereby, the application of overly complex models and violations of model 

assumptions are generally tolerated. In the present study, we suggested a shift from 

common practice in C-test psychometric modeling towards flexible count data 

alternatives. Hence, we have applied these models to S-C-tests which are exemplary of 

C-tests and are further advantageous in terms of construct coverage and the assessment 

of individual differences at higher proficiency levels as compared to untimed C-tests. It 

was found that the CMPCM with item-specific or global dispersion is flexible enough to 

compete with RSM and PCM. The CMPCM fits comparably well in terms of absolute 

fit, ordering of persons’ ability estimates, and average measurement precision. 

We have further illustrated the feasibility of more complex analyses within the 

CMPCM framework by testing MI of a German S-C-test across groups of native 

speakers and second language learners. Given that C-tests are considered to be measures 

of general language proficiency that can be applied to diverse groups (e.g., 

monolinguals, early bilinguals, late or early second language learners), a test of MI  is 

essential to establish psychometric quality (Baghaei, Bensch, & Ziegler, 2016). In this 

vein, we found that S-C-tests satisfy configural MI which is essential for construct 

validity. The findings are partially in line with previous research on MI of C-Tests. 

Baghaei (2010) examined the stability of Rasch model item parameters across low and 

high ability examinees. Findings showed that item parameters were relatively stable. 

Reichert, Brunner, and Martin (2014) examined the MI of a French and a German C-test 

across students speaking German/ Luxembourgish and those speaking Romance 

languages. Multi-group confirmatory factor analysis established configural invariance. 

However, as it was the case in the current study, metric and scalar invariance could not 

be supported. They issue some warning on the use of C-tests in high stakes testing.  

Indeed, invariant C-tests across groups are essential when we want to compare 

them with respect to language proficiency without confounding proficiency differences 

by group-dependent properties (e.g., differential item functioning). Since RSM and 

PCM (the latter in particular) have a lot more parameters as compared to the CMPCM 

(i.e., parameters are essentially estimated twice in MI testing). As a consequence, 

standard errors of many model parameters are potentially smaller. Studies planning to 
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use CMPCMs, for the purpose of MI testing, can hence plan with lower sample sizes. 

Thus, the CMPCM is expected to aid the development of invariant (S-)C-tests, but we 

caution that statistical planning should be backed up by simulations.. 

Limitations 

 In the present study, we examined the fit of a German C-test to CMPCM. Future 

studies should examine the applicability of count data IRT models to C-tests in other 

languages.  

 In addition, we observed a ceiling effect for the sample of native speakers. Thus, 

discriminating participants at the highest level of language proficiency was not possible. 

The observations capped at the maximum passage scores are, statistically speaking, 

right-censored. If the passages had been longer and contained further blanks, the ceiling 

effects could have been avoided. Further methodological research is needed, so that 

right-censoring can be accounted for by the CMPCM.  

In the present study, we only demonstrated configural invariance for the S-C-

test. However, our approach to invariance testing has been strict in the sense that only 

chi-squared difference tests have been studied, in contrast to established methods for 

structural equation models a significant test is informed by also calculating the 

difference in comparative fit index (ΔCFI; Cheung & Rensvold, 2002). However, 

further research will have to propose an analogous effect size for count data IRT 

models, so that strong invariance is not to be entirely discarded. 

Conclusion 

Item response theory is commonly used for the analysis and scaling of large-scale tests 

including the Program for International Student Assessment (PISA) and the National 

Assessment of Educational Progress (OECD, 2017). It is also used for modelling the 

TOEFL (Test of English as a Foreign Language; see www.ets.org/toefl) and the Testdaf 

(Test of German as a Foreign Language; see www.testdaf.de). Furthermore, IRT is 

frequently used to provide validity evidence for new psychoeducational tests (Baghaei 

& Tabatabaee-Yazdi, 2016).The current study demonstrated that the CMPCM provides 

a viable approach for the scaling of S-C-tests (and most likely C-tests in general). 

http://www.testdaf.de/
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Footnotes 

 
1A model of weak invariance cannot be formulated for the outlined count data models 

because discrimination parameters are not included in the models. 

 

2Please see the OSF repository (LINK) for a check of the missing data pattern  that 

justifies this exclusion strategy.
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Table 1. 

Description of the participants. 

 Native speakers Second language learners 

N 

Sex 

129 127 

# of females 105 93 

# of males 24 34 

Age at testing   

# of missings 0 2 

M 25.12 28.55 

SD 6.23 6.67 

Min 15 16 

Max 48 59 

 

  

Formatted: English (United States)

Formatted: English (United States)
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Table 2 

Correlations of ability estimates and reliability estimates. 

  1 2 3 4 5 

RSM 1 .961     

PCM 2 .999 .961    

RPCM 3 .976 .967 .943   

CMPCM with 

global dispersion 
4 .973 .965 1.00 .969  

CMPCM with item-

specific dispersion 

5 .972 .963 .999 .999 .969 

Notes. N = 256. All ps < .001 for all correlations. Estimates of empirical reliability are 

depicted on the diagonal (Brown & Croudace, 2015). 
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Table 3 

Item descriptive statistics. 

 M SD rit Timelimit 

(seconds) 

timelimit (minutes) 

Item 

1 

15 6.4 .90 100 1.67 

Item 

2 

17 6.9 .92 85 1.42 

Item 

3 

16 7.1 .93 80 1.33 

Item 

4 

15 6.4 .89 115 1.92 

Item 

5 

14 6.2 .90 65 1.08 

Item 

6 

14 6.8 .91 85 1.42 

Notes. N = 256; rit = item-scale correlation with part-whole correction; timelimit = time on task in seconds resp. minutes – the logarithm of 

these times (in minutes) was used as an offset in the RPCM and both CMPCMs. 
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Table 4 

Item descriptive statistics and model estimation results for RPCM and CMPCMs.  

 RPCM CMPCM with global dispersion CMPCM with item-specific dispersion 

 Fixed effects   

 β (𝑆𝐸𝛽) β (𝑆𝐸𝛽) β (𝑆𝐸𝛽) 

Item 1 2.092 (0.036)*** 2.087 (0.035)*** 2.089 (0.035)*** 

Item 2 2.374 (0.035)*** 2.369 (0.035)*** 2.371 (0.034)*** 

Item 3 2.363 (0.036)*** 2.358 (0.035)*** 2.360 (0.035)*** 

Item 4 1.981 (0.036)*** 1.976 (0.035)*** 1.978 (0.035)*** 

Item 5 2.466 (0.036)*** 2.461 (0.035)*** 2.463 (0.034)*** 

Item 6 2.170 (0.036)*** 2.166 (0.035)*** 2.167 (0.036)*** 

 Random effect   

𝜎𝜃
2 0.259 0.275 0.270 

 Dispersion   

 τ τ (𝑆𝐸𝜏) τ (𝑆𝐸𝜏) 

Global 0 -0.658 (0.040)*** - 

Item 1 - - -0.692 (0.104)*** 

Item 2 - - -0.996 (0.115)*** 

Item 3 - - -0.656 (0.103)*** 

Item 4 - - -0.601 (0.103)*** 

Item 5 - - -0.804 (0.105)*** 

Item 6 - - -0.314 (0.098)*** 

Model comparison    

Δχ2(df) - 214.911 (1)*** 22.374 (5)*** 

AIC 8566.674 8353.763 8341.388 

BIC 8604.033 8396.458 8410.768 
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Notes. N = 256;The logarithm of the time on task in minutes (see Table 3) was used as an offset in the RPCM and both CMPCMs; τ = 

dispersion parameter (τ < 0 indicates underdispersion; τ = 0 indicates equidispersion; and τ > 0 indicates overdispersion). CMPCM with global 

dispersion is compared with RPCM and CMPCM with item-specific dispersion is compared with CMPCM with global dispersion. Δχ2 = 

likelihood ratio statistic; AIC = Akaike’s Information Criterion; BIC = Bayesian Information Criterion. Lower values of information criteria 

imply better model fit. *p < .05; **p < .01; ***p < .001.
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Figure 1. Covariate-adjusted frequency plot for the RSM, PCM, RPCM, CMPCM with global dispersion (CMPCM-G), and CMPCM with 

item-specific dispersion (CMPCM). Model-implied counts are depicted by black or gray lines and they should be as close as possible to the 

observed frequency counts to indicate model fit (Holling et al., 2016).
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Figure 2. Conditional reliability estimates (y-axis) as a function of ranked ability 

estimates (x-axis) for RSM, PCM, RPCM, CMPCM with global dispersion (CMPCM-

G), and CMPCM with item-specific dispersion (CMPCM).
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Figure 3. Covariate-adjusted frequency plot for the RPCM, CMPCM with global dispersion (CMPCM-G), and CMPCM with item-specific 

dispersion (CMPCM). Model-implied counts are depicted by black or gray lines and they should be as close as possible to the observed 

frequency counts to indicate model fit (Holling et al., 2016). Left: CAFPs for native speakers. Right: CAFPs for second language learners. 
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Figure 4. Covariate-adjusted frequency plot for the configural invariant model, the strong invariant model, the strict invariance model, and the 

CMPCM with item-specific dispersion ignoring language level groups. Model-implied counts are depicted by black or gray lines and they 

should be as close as possible to the observed frequency counts to indicate model fit (Holling et al., 2016).
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Figure 5. For each item the difference to the average easiness in each of the groups is 

plotted (centered for both groups). 95% confidence ellipses are plotted around the item 

parameters: If they cover the reference line, parameters do not significantly differ across 

groups. 
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