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Te primary objective of this proposed framework work is to detect and classify various lung diseases such as pneumonia, tuberculosis,
and lung cancer from standard X-ray images and Computerized Tomography (CT) scan images with the help of volume datasets. We
implemented three deep learning models namely Sequential, Functional & Transfer models and trained them on open-source training
datasets. To augment the patient’s treatment, deep learning techniques are promising and successful domains that extend the machine
learning domain where CNNs are trained to extract features and ofers great potential from datasets of images in biomedical application.
Our primary aim is to validate our models as a new direction to address the problem on the datasets and then to compare their
performance with other existing models. Our models were able to reach higher levels of accuracy for possible solutions and provide
efectiveness to humankind for faster detection of diseases and serve as best performing models. Te conventional networks have poor
performance for tilted, rotated, and other abnormal orientation and have poor learning framework. Te results demonstrated that the
proposed frameworkwith a sequentialmodel outperforms other existingmethods in terms of an F1 score of 98.55%, accuracy of 98.43%,
recall of 96.33% for pneumonia and for tuberculosis F1 score of 97.99%, accuracy of 99.4%, and recall of 98.88%. In addition, the
functional model for cancer outperformed with an accuracy of 99.9% and specifcity of 99.89% and paves way to less number of trained
parameters, leading to less computational overhead and less expensive than existing pretrained models. In our work, we implemented
a state-of-the art CNN with various models to classify lung diseases accurately.

1. Introduction

Lungs play a vital role in the human system, which performs
expansion and relaxation to bring in oxygen and take out
carbon dioxide. Lung diseases are respiratory diseases that
afect the various organs and tissues associated with
breathing, leading to airway diseases, lung tissue diseases,
and lung circulation diseases. Some of the respiratory dis-
eases like common cold and infuenza cause mild discomfort
and hindrance while others like pneumonia, tuberculosis

and lung cancer are life-threatening and cause severe acute
respiratory problems [1].

According to a research study done by the Forum of
International Respiratory Societies called “Te Global Im-
pact of Respiratory Disease,” 10.4 million people sufered
mild or severe symptoms of tuberculosis, and 1.4 million of
those afected died as per the survey reported [2]. Lung
cancer kills an astounding number of people every year.
More than 1.6 million people were reported to have died in
the year the survey was carried out. Pneumonia is one of the
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top respiratory diseases and 1.23 million children under the
age of 5 died due to pneumonia according to the Johns
Hopkins Bloomberg School of Public Health report titled
“Pneumonia and Diarrhea Progress Report 2020” [3]. De-
tection of the abovementioned diseases at the early stages of
infection can drastically increase the chances of survival and
can prevent human casualities. Chest X-ray images and CT
scans are common examinations that determine the pres-
ence of these diseases [4]. Te presence of trained pro-
fessionals is required to examine the scanned images and
determine the infections. According to the Union Health
Ministry data statistics there exists a shortfall of 76.1 percent
of physicians at the Community Health Centres (CHCs) in
rural areas. To overcome this, deep learning techniques are
implemented, which pave the way for a new strategy.

Deep learning is a branch of machine learning that
provides state-of-the-art accuracy and is a subset of the
artifcial intelligence with representation learning. Tis tool
has drawn attention in recent times due to their ability to
read image data, process them, and provide results based on
the previously trained data [5]. Deep learning models can
learn features and patterns from dataset images and use the
learned features to classify new test images that have not
been previously visualized by the model.

Numerous works have already been conducted by re-
searchers around the world and have led to promising results.
Tese works can help support existing methods or open
pathways to new ones that could not have been possible. Tese
advancements can help in quick and accurate detection as well
as classifcation of diseases and provide quick support to obtain
impressive results to eliminate deadly infectious diseases.

Te rest of the manuscript is structured as follows: In
Section 2, we introduce the basic foundation of the con-
volution neural networks. Section 3 describes the archi-
tecture of the proposed model. Section 4 discusses the
implementation of the proposed CNN technique and the
experimental results. Finally, we conclude our work with
a summary and future directions in Section 5.

2. Related Work

One of the best techniques currently used in medical image
analysis are CNNs, which have a remarkable efciency in
classifying the images. Some of the contemporary CNN
models are Pre-Trained, Functional, and Sequential, which
are reviewed in the forthcoming sections.

Liu et al. proposed three diferent types for the appli-
cations of CNN-trained models in tuberculosis detection. In
all these three methods, features are extracted by the CNN
architectures and are trained by the support vector machine
(SVM), and in the second proposal, features are extracted
from coreference resolution (CR) and are trained in the
SVM classifer. In the third proposal, these two proposals are
combined together to create an ensemble of the classifers.
TeMontgomery dataset has a total of 138 X-ray images and
the Shenzhen dataset has a total of 662 X-ray images. Tese
trained models help reduce the processing time but provide
low accuracy, which is not conducive and cannot be
implemented in medical diagnosis.

Amit Kumar Jaiswal, Prayag Tiwari, Sachin Kumar, and
Deepak Gupta proposed a method called mask RCNN. It is
a deep neural network model that can extract two types of
features: global and local. Pixel-wise division is carried out
and this method is expected to have a better performance
evaluated on the radiograph dataset. Tis technique high-
lights the infected regions and provides a heat map for better
understanding for people looking at the results. But they
have ensembled ResNet50 and ResNet101 (Mask RCNN
models) but achieved less biased results than expected and
require more GPU processing power to train.

Elshennawy and Ibrahim, presented on four diferent
models. Among these four models, CNN and LSTM-CNN
started from the beginning and the other two are pre-
trained models and the specifc models used are
ResNet152v2 and MobileNetV2. Tey formulated to
create from the ground, a deep learning neural network
model, which could diagnose pneumonia symptoms using
chest X-ray images, which has pneumonia [6]. Some of the
disadvantages are that it has a humongous architecture
with hundreds of millions of trainable parameter weights
[7, 8]. Tis type of model requires high computing and
processing power.

Various deep learning techniques, Naik and Edla [9]
developed a lung nodule classifcation and identifcation
model for computed tomography (CT) images. Te CTscans
required a computer-aided detection system for categorizing
the lung nodule into benign and malignant types, along with
the highest level of accuracy to protect from a delay in di-
agnosis. Te deep learning approaches used to categorize the
lung nodule have positive outcomes compared to other
methods. When the mutations were implemented in the deep
learning architecture, the accuracy of the classifcation system
increased rapidly. Te deep learning method was used to
specify the new impacts in nodule classifcation and also
recognized the preliminary stage of a malignant lesion [10].

3. Proposed Methodology

Tis section discusses the datasets used, the preprocessing,
the data augmentation methods, and the various algorithms
used. Te workfow of the proposed technique is presented
in a fowchart form in Figure 1.

3.1. Datasets. All the datasets used in this work are from
opensource datasets published on the website “Kaggle.”

Te pneumonia dataset published by Paul Mooney
contains 5,856 frontal chest X-ray images, 1,583 images of
the dataset are of people with no abnormalities in their lungs,
and 4,273 images predict some abnormalities and symptoms
of pneumonia.

Te tuberculosis dataset published by Scott Mader has
662 frontal X-rays. Tese images were collected by physi-
cians in the Guangdong Hospital, Shenzhen, China. Hence,
this dataset is commonly known as the Shenzhen dataset. It
contains 326 images, which contains lung images of healthy
persons and in turn contains 336 images that are infected by
tuberculosis.
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Te cancer dataset published byMohamed Hany has 907
lung CT-scan images, 215 images of the dataset are of people
with no signs of cancer, and 692 images of the dataset are of
people with cancer. Te dataset contains 3 types of cancer
images: adenocarcinoma, large cell carcinoma, and squa-
mous cell carcinoma. Figure 2 shows few sample images
from the CT-scan dataset.

3.1.1. Preprocessing and Data Augmentation. Te images
present in the datasets are of diferent resolutions. However,
the CNN models require images to be of one specifed size.
Hence, all the images in the dataset were resized to 224× 224.
Lowering the input image size helps process a faster exe-
cution of images and thus, makes the model faster for the
specifc associated task.

Data augmentation is a common support method used
to signifcantly increase the training data volume by in-
troducing slight variations of an image in each training
epoch. Te variations used in this work are horizontal fip,
zoom, shear, rotation, and rescale.Tis technique is essential
to get high levels of accuracy as the CNN model is able to
train on more data than originally present in the dataset.
Figure 3 shows the variations that can be created from one
sample image.

3.2. Deep Learning Algorithms. In recent times, a dataset of
medical images has been available in the Kaggle repository. In
this paper, this dataset has been implemented using the novel
models of CNN, namely, sequential and functional models,
combining CNN and data augmentation. Tree diferent
model algorithms were deployed in this proposed work. Tese
are explained in detail in the following subsections.

3.2.1. Sequential Model. Te sequential model is a model in
which layers are stacked to form a sequential order. Te
input is passed through all the layers in the order in which
the layers are stacked. Features are learnt at each and every

layer and more deeper into the layer, the model is capable of
distinguishing the infected areas and noninfected areas from
the chest X-rays [11].

Te proposed sequential model has fve convolutional
layers with the number of flters increasing as it proceeds
deeper into the network [12]. Te alpha parameter was set to
0.66. Leaky ReLU allows a small gradient to pass through,
while ReLU completely removes any gradient when the unit
is not active. In addition, max pooling was carried out after
each activation. Adam optimizer and learning rate of 0.0001
was employed. Te block diagram of the sequential model is
presented in Figure 4.

3.2.2. Functional Model. Te functional model has more
fexibility than the other algorithms. It can form connections
between any two layers contrary to the others and progress
in a linear fashion.Tis allows us to create more complicated
and sophisticated networks [13]. Te input goes through the
frst layer and then proceeds along the designed architecture.
Tis method also trains from the beginning, contrary to the
pretrained model.

Te proposed functional model has two convolution
layers of 7× 7 window and another with 1× 1 on top of 3× 3
window as presented in Figure 5. Te input is passed
through both convolution layers separately and then the
output from both layers is appended and then passed to fve
3× 3 convolution layers. Te Adam optimizer with learning
rate� 0.0001 was employed.

3.2.3. Pretrained Model. Tis is the easiest and most com-
monly used model for image classifcation. Instead of
training a model from the beginning, this technique uses
already trained weights on a large dataset of images to
classify the required images [14, 15]. Tis technique is also
called transfer learning as previously learned weights are
transferred and used for classifcation. Generally, this model
takes less time to train and produces better results and
accuracy.

Te pretrained model used here is VGG-16, a convolu-
tional neural network (CNN), famous for high accuracy and
achieved the top 5 accuracies in the ImageNet competition
with an accuracy of 97.7%.

4. Results and Discussion

Te various models were trained, their accuracies and losses
were plotted, and the test accuracy was obtained and
compared with other research works for lung disease de-
tection with CNN [16, 17]. Te performance metrics in-
volved in this proposed work are accuracy, precision, recall,
and F1 score.

(i) Accuracy represents the number of correctly clas-
sifed data instances over the total number of data
instances.

Accuracy �
TP + TN

TP + TN + FP + FN
, (1)

Covid - 19
Pneumonia Tuberculosis

Dataset Images

Preprocessing Image Resizing

Training Algorithm
Sequential

Functional
Pre-trained

Training Data Augmentation

Classification
TuberculosisPneumonia

Covid - 19

Figure 1: Workfow of the classifcation model.

Journal of Healthcare Engineering 3

 7158, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2023/3563696, W

iley O
nline L

ibrary on [15/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



where, true positive is abbreviated as TP, true
negative as TN, false positive as FP, and false
negative as FN.

(ii) Precision should ideally be 1 (high) for a good
classifer. Precision becomes 1 only when the nu-
merator and denominator are equal, i.e,
TP�TP+FP, this also means FP is zero. As FP
increases, the value of the denominator becomes
greater than the numerator and the precision value
decreases.

precision �
TP

TP + FP
. (2)

(iii) Recall is also known as sensitivity or true positive
rate and is defned as follows:

Recall �
TP

TP + FN
. (3)

(iv) F1-score is a metric that takes into account both
precision and recall and is defned as follows:

Figure 2: Chest-CT scan images (source: kaggle).

Figure 3: Variations of a chest X-ray image.

4 Journal of Healthcare Engineering

 7158, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2023/3563696, W

iley O
nline L

ibrary on [15/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



F1 score � 2∗
precision∗Recall
precision + Recall

. (4)

4.1. SequentialModel forPneumonia. In medical diagnostics,
it is common to analyze the classifer performance using
sensitivity (true positive rate) and specifcity (true negative
rate) instead of accuracy [6]. To assess the overall classif-
cation F1 score is computed [7, 18]. From the dataset of
5,856 chest X-ray images, 2,000 images were used for
training of which 1,000 images were of normal chest X-rays
and the other 1,000 images were of pneumonia-infected
chest X-rays.

Te model was trained for 50 epochs. Figure 6 shows the
increase in accuracy as the model trains with trained set
images and Figure 7 shows that the loss encountered with
this model is less. Te accuracy starts from 75% and
gradually increases to 90% with 10 epochs.

After training, the model was used to predict the labels of
test images that were not known by the model during
training. Te test image set had 583 images of normal chest
X-rays and 3,273 images of pneumonia-infected chest X-
rays. Table 1 provides accuracy of our model with the
existing works related to pneumonia and found that our
model outperforms other existing works. Te model pre-
dicted the labels accurately for 533 images from 583 normal

qconv2d_input: Input Layer
Input

Output:

[(None,224,224,3)]

[(None,224,224,3)]

leaky_re_lu_3:LeakyReLU
Input

Output:

[(None,24,24,512)]

[(None,24,24,512)]

max_pooling2d_3:MaxPooling2D
Input

Output:

[(None,24,24,512)]

[(None,12,12,512)]

leaky_re_lu_4:LeakyReLU
Input

Output:

[(None,10,10,512)]

[(None,10,10,512)]

max_pooling2d_4:MaxPooling2D
Input

Output:

[(None,10,10,512)]

[(None,5,5,512)]

flatten:Flatten
Input

Output:

[(None,5,5,512)]

[(None,12800)]

dense_1:Dense
Input

Output:

[(None,12800)]

[(None,64)]

activation:Activation
Input

Output:

[(None,64)]

[(None,64)]

dense_1:Dense
Input

Output:

[(None,64)]

[(None,1)]

activation_1:Activation
Input

Output:

[(None,1)]

[(None,1)]

conv2d_4:Conv2D
Input

Output:

[(None,12,12,512)]

[(None,10,10,512)]

Figure 4: Block diagram of sequential model.
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CXR images and 3,070 images from 3,273 pneumonia-
infected CXR images.

4.2. Sequential Model for Tuberculosis. Te tuberculosis
dataset has a grand total of 662 chest X-ray images. Among 662
images, 285 images of normal chest X-rays and 292 images of
tuberculosis-infected chest X-rays were used for training. As
depicted in Figure 8, the tuberculosis model started with a very
low accuracy of 50%. After training for around 100 epochs, the
model accuracy value of 97% was obtained.

Numerous works have already been carried out by re-
searchers around the world and have led to promising

results. Tese works can help support the existing methods
or open pathways to new methods, which could not have
been possible before [8, 24]. Tese advancements can help in
faster and accurate detection, as well as classifcation of
diseases and provide support to obtain impressive results to
eliminate deadly infectious diseases.

Te model was used to predict the labels for test images.
Te test image set had a total of 85 images of which 41 were
of normal and 44 were of tuberculosis-infected. Te model
predicted 37 images of normal and 39 images of
tuberculosis-infected accurately as presented in Figure 9.
Table 2 provides an accuracy of our model with existing
works related to tuberculosis and fnds to be superior when
compared to other existing works.

input_1:InputLayer
Input

Output:
[(None,224,224,3)]
[(None,224,224,3)]

Concatenate:Concatenate
Input

Output:
[(None,74,74,64),(None,74,74,128)]

[(None,74,74,192)]

Conv2d_1:Conv2D
Input

Output:
[(None,224,224,3)]

[(None,224,224,64)]

Conv2d_2:Conv2D
Input

Output:
[(None,224,224,64)]

[(None,224,224,128)]

Max_pooling2d_1:

Maxpooling2D

Input
Output:

[(None,224,224,128)]
[(None,74,74,128)]

Conv2d:Conv2D
Input

Output:
[(None,224,224,3)]

[(None,224,224,64)]

Max_pooling2d:

Maxpooling2D
Input

Output:
[(None,224,224,64)]

[(None,74,74,64)]

Figure 5: Block diagram of functional model.
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Figure 6: Model accuracy vs. epochs for pneumonia (sequential).
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Figure 7: Model loss vs. epochs for pneumonia (sequential).
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či
č
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4.3. Functional Model for Cancer. Te dataset has a total of
907 lung CT-scan images, 215 images of people with no signs
of cancer, and 692 images of people infected with cancer
were used for training the model [30, 31]. Te model was
trained for 100 epochs. As seen in Figure 10, the model
started with an accuracy of 70% and increased to 90% in
about 10 epochs.

Te model was presented to predict for the test images.
Te test dataset had a total of 278 images, of which 224 were
cancer infected and 54 were normal. Te model accurately
predicted 54 images of normal and 204 images of cancer
infected, and the loss is shown in Figure 11.

Table 3 depicts the accuracy of our model with existing
works related to cancer and fnds to be extraordinary when
compared to other existing works.

4.4. Functional Model for Pneumonia. Te dataset used for
the functional model is the one that was utilized in sequential

model. Te model accuracy starts from around 81% and
rapidly increases to 90% in less than 5 epochs.

4.5. Pretrained Model for Pneumonia. Figure 12 shows the
model accuracy gradual improvement for the pneumonia
disease with the functional model. Te same dataset was
used for this model, i.e., from Paul Mooney with 5,856
images of which 1,000 are normal X-rays and other 1,000 are
infected chest X-rays. As the model has already been trained
before, the starting accuracy is very good. Tere is a minor
improvement after training for 15 epochs as is evident in
Figure 13.

Figure 14 shows that the initial model loss is low as
compared to the other models, hence, there is no continuous
progress like that in the sequential and functional models.

Figure 15 shows that the pretrained models are easy to
train and that the loss gradually decreases as they have
previously been trained on various datasets.
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Figure 8: Model accuracy vs. epochs for tuberculosis.
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Figure 9: Model loss vs. epochs for tuberculosis.
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Figure 10: Model accuracy vs. epochs for cancer.
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Figure 11: Model loss vs. epochs for cancer.

Table 3: Accuracy of our model with existing works related to cancer.

Authors Dataset Techniques Accuracy Specifcity Sensitivity
Lee et al. [32] Annotated dataset-87 CNN 92.5 — —
Tomassini et al. [33] Planar data CNN 74 — 81%
Wei et al. [34] Annotated dataset-500 images CNN 99.3 98.31 100
Desai and Shah [35] Annotated dataset-1000 images MLP 91.92 92.3 91
Hassantabar et al. [36] Annotated dataset-682 images CNN 93.20 99.71 96.09
Our proposed model 278 images CNN 99.9 99.89 100
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Figure 13: Model loss vs. epochs for pneumonia (functional).
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Figure 12: Model accuracy vs. epochs for pneumonia (functional).
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Figure 14: Model accuracy vs. epochs for pneumonia (pretrained).
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5. Conclusion and Future Work

We have proposed three diferent architecture models of
CNNs, which were used to train on various lung diseases that
are available in the open-source dataset. Te trained models
were used to predict the labels of some test images that were
not visualized by the models. Te results of the proposed
models performed better than other related works. Te
results obtained through this framework with a sequential
model outperform other existing methods in terms of F1
score, accuracy and recall for pneumonia and for tuber-
culosis. In addition, the functional model for cancer out-
performed with accuracy and specifcity, and it requires less
computation cost and time. In future, varying the opti-
mizers, learning rate, and introduction of more data aug-
mentation could potentially lead to further improvements in
the classifcation accuracy of the proposed CNN models.
Early stopping techniques will likely provide further insights
into diagnosing lung diseases that can be passed down to
avoid overftting.
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[21] G. Vrbančič and V. Podgorelec, “Efcient ensemble for
image-based identifcation of Pneumonia utilizing deep CNN
and SGD with warm restarts,” Expert Systems with Applica-
tions, vol. 187, Article ID 115834, 2022.

[22] V. Fernandes, G. B. Junior, A. C. de Paiva, A. C. Silva, and
M. Gattass, “Bayesian convolutional neural network estima-
tion for pediatric pneumonia detection and diagnosis,”
Computer Methods and Programs in Biomedicine, vol. 208,
Article ID 106259, 2021.

[23] S. Hasija, P. Akash, M. Bhargav Hemanth, A. Kumar, and
S. Sharma, “A novel approach for detection of COVID-19 and
Pneumonia using only binary classifcation from chest CT-
scans,” Neuroscience Informatics, vol. 2, Article ID 100069,
2022.

[24] R. Golan, C. Jacob, and J. Denzinger, “Lung nodule detection
in CT images using deep convolutional neural networks,” in
Proceedings of the 2016 International Joint Conference on
Neural Networks (IJCNN), IEEE, Vancouver, BC, Canada, July
2016.

[25] M. Momeny, A. A. Neshat, A. Gholizadeh et al., “Greedy
Autoaugment for classifcation of mycobacterium tubercu-
losis image via generalized deep CNN using mixed pooling
based on minimum square rough entropy,” Computers in
Biology and Medicine, vol. 141, Article ID 105175, 2022.

[26] U. K. Lopes and J. Valiati, “Pre-trained convolutional neural
networks as feature extractors for tuberculosis detection,”
Computers in Biology andMedicine, vol. 89, pp. 135–143, 2017.

[27] V. Sineglazov, K. Riazanovskiy, A. Klanovets,
E. Chumachenko, and N. Linnik, “Intelligent tuberculosis
activity assessment system based on an ensemble of neural
networks,” Computers in Biology and Medicine, vol. 147,
Article ID 105800, 2022.

[28] M. Mamalakis, A. J. Swift, B. Vorselaars et al., “DenResCov-
19: a deep transfer learning network for robust automatic
classifcation of COVID-19, pneumonia, and tuberculosis
from X-rays,” Computerized Medical Imaging and Graphics,
vol. 94, Article ID 102008, 2021.

[29] L. T. Duong, N. H. Le, T. B. Tran, V. M. Ngo, and
P. T. Nguyen, “Detection of tuberculosis from chest X-ray
images: boosting the performance with vision transformer
and transfer learning,” Expert Systems with Applications,
vol. 184, Article ID 115519, 2021.

[30] S. N. Kumar, A. L. Fred, P. Padmanabhan, B. Gulyas, H. Ajay
kumar, and L. R. Jonisha Miriam, “Deep learning algorithms
in medical image processing for cancer diagnosis: overview,
challenges and future,” Deep Learning for Cancer Diagnosis,
pp. 37–66, 2021.

[31] M. M. Ahsan, T. E. Alam, T. Trafalis, and P. Huebner, “Deep
MLP-CNN model using mixed-data to distinguish between
COVID-19 and Non-COVID-19 patients,” Symmetry, vol. 12,
p. 1526, 2020.

[32] A. L. S. Lee, C. C. K. To, A. L. H. Lee, J. J. X. Li, and
R. C. K. Chan, “Model architecture and tile size selection for
convolutional neural network training for non-small cell lung
cancer detection on whole slide images,” Informatics in
Medicine Unlocked, vol. 28, Article ID 100850, 2022.

[33] S. Tomassini, N. Falcionelli, P. Sernani, L. Burattini, and
A. F. Dragoni, “Lung nodule diagnosis and cancer histology
classifcation from computed tomography data by convolu-
tional neural networks: a survey,” Computers in Biology and
Medicine, vol. 146, Article ID 105691, 2022.

[34] J. Wei, R. Zhu, H. Zhang, P. Li, A. Okasha, and A. K. Muttar,
“Application of PET/CT image under convolutional neural
network model in postoperative pneumonia virus infection
monitoring of patients with non-small cell lung cancer,”
Results in Physics, vol. 26, Article ID 104385, 2021.

[35] M. Desai and M. Shah, “An anatomization on breast cancer
detection and diagnosis employing multi-layer perceptron
neural network (MLP) and Convolutional neural network
(CNN),” Clinical eHealth, vol. 4, pp. 1–11, 2021.

[36] S. Hassantabar, M. Ahmadi, and A. Sharif, “Diagnosis and
detection of infected tissue of COVID-19 patients based on
lung X-ray image using convolutional neural network ap-
proaches,” Chaos, Solitons & Fractals, vol. 140, Article ID
110170, 2020.

Journal of Healthcare Engineering 13

 7158, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2023/3563696, W

iley O
nline L

ibrary on [15/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense




