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Abstract

We study the restricted inverse optimal value problem on linear program-
ming under weighted /; norm (RIOVLP1). Given a linear programming
problem LP. : min{cz|Az = b,z > 0} with a feasible solution 2 and a
value K, we aim to adjust the vector c to ¢ such that 2° becomes an optimal
solution of the problem LP; whose objective value éz° equals K. The objec-
tive is to minimize the distance [|¢ — c[|1 = > 7_; d;|¢; — ¢;| under weighted
l; norm. Firstly, we formulate the problem (RIOVLP;) as a linear pro-
gramming problem by dual theories. Secondly, we construct a sub-problem
(D?), which has the same form as LP., of the dual (RIOVLP;) problem
corresponding to a given value z. Thirdly, when the coefficient matrix A
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1. Introduction

Since |Burton and Toint| (1992) first studied the inverse shortest path
problem, many researchers have considered different inverse combinatorial
optimization problems such as inverse spanning tree problem, inverse short-
est path problem, inverse minimum cost flow problem, inverse minimum cut
problem, inverse maximum matching problem. The inverse combinatorial
optimization problems have broad applications which can be found in [Mo-
hajerin Esfahani et al. (2018)), Heuberger| (2004), |Ahuja and Orlin| (2001)
and Burton and Toint| (1992).

Let LP. be a standard linear programming (LP) problem,

min cx
(LP.) st. Az =, (1.1)
x> 0.

where A is an m x n matrix and m < n, ¢! and z are n x 1 vectors and b
is an m x 1 vector.

As some combinatorial optimization problems can be described as LP
problems, Zhang and Liul (1996) first studied the inverse LP problem under
unit {3 norm (ILP,;). Let 20 be a given feasible solution of the problem
(LP). The aim of problem (ILP,;) is to minimize the modification ||¢ — ||
under unit {; norm such that 2% becomes an optimal solution of the modi-
fied problem (LPz). They transformed the problem (ILP,;) into another LP
problem and extended their results to the inverse bounded LP problem with
a bounded variable constraint [ < x < w. Furthermore, they applied their
research methods to the inverse minimum cost flow problem and inverse as-
signment problem under unit /; norm. [Zhang and Liul (1999)) continued to
consider a special case of problem (ILP,;) in which the given feasible solu-
tion 2° and one optimal solution of the original LP problem are 0-1 vectors.
They gave a method based on dual theories for solving this special case and

applied the method to the inverse shortest path problem and inverse assign-



ment problem under unit /; norm. Huang and Liu (1999) also studied the
inverse bounded LP problem and applied their results to the inverse mini-
mum weight perfect k-matching problem on bipartite graphs under unit Iy
norm. Ahuja and Orlin (2001) studied the inverse canonical LP problem
(ICLP1) under weighted I; norm. They transformed the problem (ICLP;)
into an LP problem and transformed the inverse shortest path problem, in-
verse minimum cut problem, inverse minimum cost flow problem and inverse
assignment problem under weighted [; norm into some minimum cost flow
problems. |(Chan and Kaw| (2020) concentrated on imputing unspecified con-
straint coefficient matrix A and a cost vector for a given linear optimization
problem. |Ghobadi and Mahmoudzadeh! (2021) inferred the feasible region
of LP problem that would render the given solutions feasible while making
some optimal for the given cost function.

Ahmed and Guan| (2005) studied the inverse optimal value problem
(IOVLP) on LP. Given a desired optimal objective value K, and a set C
of feasible cost vectors in an (LP), determine a cost vector ¢ € C such that
the optimal objective value of the new problem LP; is closest to the desired
value K. They proved the problem (IOVLP) is NP-hard. |Lv et al.|(2008)
and Lv et al. (2010) studied this problem under more general conditions
using a nonlinear bilevel programming approach.

In this paper, we will study the restricted inverse optimal value problem
(RIOVLP1) on LP under weighted /3 norm. Similar to the classical (ILP)
problem, its objective is to minimize the modification ||¢— c|| under weighted
[1 norm. Different to the classical (ILP) problem, in (RIOVLP1) we not only
require that the given feasible solution z° becomes an optimal solution of
the problem (LPz) but also require that the optimal objective value ez
equals the given value K. There are two main differences compared the
problem (RIOVLP;) with (IOVLP). One difference is on the optimization
objectives. The problem (RIOVLP) aims to minimize the distance ||¢ —c||,
while the problem (IOVLP) tries to minimize |cz* — K| among ¢ € C. The
other difference is on the constraint conditions. In (RIOVLP;) we impose
a constraint on the optimal value ¢z, which is equal to the given value K,

while in (IOVLP), there is no cadidate solution for consideration.



Some restricted inverse optimal value problems on combinatorial opti-
mization structures have been studied. |Jia et al.| (2023),|Zhang et al.| (2021)),
Wang et al.|(2021) and [Zhang et al.| (2020) considered the restricted inverse
optimal value problems on minimum spanning tree under different norms
and proposed combinatorial algorithms in polynomial time. Zhang et al.
(2023) studied the restricted inverse optimal value problem of shortest path
on trees and devised an O(n?) algorithm under weighted /; norm and an
O(n) algorithm under unit /; norm. |[Zhang and Cail (1998) considered a
more general restricted inverse optimal value problem under weighted [y
norm on minimum cut which requires a set of cuts (not a cut) to become
minimum cuts to make their objective value within a certain range ( not
equal to a given value). |Cui and Hochbaum) (2010 showed the restricted in-
verse optimal value problem on shortest path for general graphs is NP-hard
when a collection of source-sink pairs with prescribed distances is given.

This paper is organized as follows. In section [2, we first formulate the
problem (RIOVLP1) as an LP problem by the dual theories. Then we ana-
lyze some properties of a sub-problem (D?) of the dual (RIOVLP1) problem
with respect to a given value z. In section |3 we design a binary search algo-
rithm to calculate the critical value z* corresponding to an optimal solution
of the problem (RIOVLP;) by solving a sub-problem in each iteration. In
section[4] we apply the above methods to the restricted inverse optimal value
problems on Hitchcock and shortest path problem, respectively. Finally, we

give some conclusions and further research in section

2. Properties of the problem (RIOVLP;)

In this section, we study the restricted inverse optimal value problem on
linear programming under weighted /1 norm. We first formulated the prob-

lem as an LP problem, then analyze some properties of its sub-problems.

2.1. The mathematical model of the problem (RIOVLP;)
Let 2° be a given feasible solution, Fy = {z € R"|Az = b,z > 0} be the

feasible region of the problem (LP) and K be a given real number. We aim



to adjust the vector ¢ to ¢ such that 2¥ becomes an optimal solution under ¢
whose objective value ¢x? equals K. Given a 1 x n positive vector d > 0, the

problem (RIOVLP;) under weighted /3 norm can be formulated as follows.

n
min Zdj|5j — Cj|
=1

(RIOVLP;) st. mincr =K, (2.1)
zeFo
e’ = K. (2.2)

It follows from the constraint that the problem (RIOVLP) is not
an LP problem. Fortunately, we can turn it into an LP problem by dual
theories of LP. Next, we will explain the process in details.

Let us associate a dual variable m € R™ with the constraint . Then
the dual problem of (LPz) can be stated as follows.

max b

(DLP;) st. mA<ec (2.3)
Let J = {j|x? =0}, J = {j|x? > 0} and Aj be the j-th column of A.

Theorem 1. If (7*,¢*) is an optimal solution of the problem below,

n
min Zdj|6j —Cj|
j=1

(RIOVLP}) s.t.  mA; <¢j,j € J, (2.4)
7TA]' = Ej,j S j,
e’ = K.

then ¢* is an optimal solution of the problem (RIOVLP;).

PROOF. Let F and F; be the feasible regions of the problems (RIOVLP;)
and (RIOVLPY), respectively. Notice that the constraints — mean
that 2% is an optimal solution of the problem (LP;), which holds if and
only if its dual problem (DLP;) has a feasible solution 7w which satisfies the
complementary slackness conditions x?(éj —7mA;) =0forany j € JU J.

Suppose ¢ € F, then there exists 7 satisfying the constraints (2.4))-(2.5)).



Hence, we have (m,¢) € F1. On the other hand, suppose (7*,¢*) € Fy is
an optimal solution of the problem (RIOVLP1), then (7*,¢*) satisfies the
constraints —, which renders that ¢* satisfies the constraint —
(2.2). Hence, we have ¢* € F. Furthermore, ¢* is an optimal solution of
the problem (RIOVLP;), since the two problems have the same optimal
objective value. O

Let ¢; = ¢j + oj — B;, where «j, 8; are the increment and decrement
of ¢j, respectively. We claim that at least one of o; and 3; is 0 based on
the property of weighted Iy norm for any j € J U .J. Thus, the problem
(RIOVLP}) can be turned into the model below.

min Z di(oj + By)

jeJug

(RIOVLP}) s.t.  7wAj <cj+aj—fB4,j€J, (2.7)
TrAj:cj+aj—Bj,j€j, (2.8)
> (¢j+a;—Bj)al =K, (2.9)
jeJ
a;>0,5€JUJ, (2.10)
B;>0,j€JUJ. (2.11)

Associate a dual variable y; with the constraints (2.7) and (2.8]), and a dual
variable z with the constraint (2.9)). Then we can get its dual problem below.

max Z cjyj + (K - chwg)z

jeJud jeJ
(DRIOVLPl) s.t. Ay =0, 2.12
—y; <dj,j € J, 2.13

2.14
2.15
2.16
2.17

—yj+ a2 < dj,j e,
yj <dj,j €J,
yj—argzgdj,jej,

(2.12)
(2.13)
(2.14)
(2.15)
(2.16)
(2.17)

y; < 0,5 €J.

Delete the item (K —3 . cj:c?)z from the objective function of the problem



(DRIOVLP,), we get a sub-problem (D?) below.

P(z) == max Z Cjyj

jeJug

(D*)  st. Ay =0, (2.18)
—y; < dj,j € J, (2.19)
—yj + m?z <dj,jel, (2.20)
y; <dj,j€J, (2.21)
yj — a3z < dj,j e, (2.22)
y; < 0,5 € J. (2.23)

Associate the dual variable 7 with the constraint (2.18)), &; with the con-
straints (2.19and[2.20), 3; with the constraints (2.21]) and (2.22)). If we treat

z as a constant, then the dual problem of (D?) can be stated as follows.

¢(z) = min > dj(a;+B)) +2 ) (8 — ay)af

jeJuJ jeJ

(P*) st 7Aj—a;+Bj<cj,j€J, (2.24)
TAj —a;+ B =c¢j,j € J, (2.25)
a; >0,7€JUJ, (2.26)
B;>0,je€JUl. (2.27)

Notice that the problem (P?) can be regarded as a Lagrange relaxation of
(RIOVLP?) by introducing a Lagrange multiplier z to the constraint (2.9).
Furthermore, let y = 2 — ¢/, then the problem (D?) can be turned into

the following form.

i E . — § 0
min Cilj Cjx;

jeJud jeJ
(D) st.  Ay=b, (2.28)
0<g;<djje, (2.29)

(1—2)a) —d; <9 < (1—2)a) +dj,j€J.  (2.30)



It is obvious that the problem (D?) has the same objective function as (LP)
in 1) by deleting the constant — jeg cj:cg. As for the feasible region,
they have the same constraint condition Ay = b. But they have different
upper and lower bounds of the variables for a given z. Hence, it provides us

a way to solve (D?) similar to the original problem (LP).

2.2. Properties of the function 1(z)
Let Fp- be the feasible region of the problem (D7) for a given z € R.

Next, we will discuss some properties of the feasible region Fp- and objective

function ¢ (z) for a given z € R.

(P1) For a given z € R, if Fp= # (), then the problem (D?) has an optimal
solution and [¢(z)| < +o0. It follows from —d; < y; <0 for any j € J

and :c?z—dj <y; < x9z+dj for any j € J by constraints 1}1)

(P2) For any z € [max; j_—dj,minjej %], we have y = 0 € Fp- # () and

1€ & ;
[(2)| < +o0.

<. O

Theorem 2. Suppose z1 < z2 and |(z1)], | (22)| < +o0, then the function
¥(z) has the following properties for any z € [z1, zo].

(1) [6(2)] < +o0.

(2) Y¥(z) is a continuous and piecewise function of z.

(3) ¥(z) is a concave function of z.

PRrROOF. We first claim that the assumption [1(z1)], [1(22)] < +o0o for 21 <
z9 must hold due to property (P2). (1) Suppose g and g are the optimal
solutions of the problems (D) and (D??) with objective values 1 (z1) and
¥ (z2), respectively. Let z = Az + (1 — A)z2, where 0 < A < 1. Next,
we will prove Ay 4+ (1 — \)g is a feasible solution of the problem (D?). It
follows from Ay = 0 and Ay = 0 that A(Ag + (1 — A\)y) = 0 holds. It
follows from —g; < d; and —y; < d; that —(Ag; + (1 — \)g;) < d; holds
for any j € J. Hence, the constraint holds. In a similar way, the
constraints (2.21f) and hold. It follows from —g; < d; — a:?zl and
—j < dj =z that —(Ag; + (1= N)g;) < Mdj —2jz1) + (1= N)(d; —2522) =
d; — :E?()\Zl + (1= XN)z) =d; — ZL‘?Z for any j € J. Hence, the constraint
holds. In a similar way, the constraint holds. Therefore, we

have Fp= # () and |¢(2)| < 400 for any 2z € [z1, 29] by property (P1).




(2) We first claim that ¢(z) = ¢(z) for any z € [z1, 23] based on the
strong duality of linear programming. Furthermore, the problem (P?) has
an optimal solution (7%, &%, 3%) since its dual problem (D?) is feasible and
bounded for any z € [21,22] by (1). Therefore, there exists an optimal
solution (7%, &%, 3°) satisfying |77, |az], |BJ2] < M for any z € [21, 22|, where
M = nlepmee with cpee = maxj—i . ,|cj| is a large positive number by
Lemma 2.1 in [Papadimitriou and Steiglitz (1998). Hence, if we add a set of
constraints: |7;| < M, |a;| < M and |B;] < M to the problem (P?), then
the optimal solution of problem (P?) will be unchanged. It renders that the
feasible region of (P*) becomes a bounded closed convex set. Hence, ¢(z),
as well as 9(z), is a continuous and piecewise function of z for z € [z1, 29].

(3) Suppose z; < 2, and z, 2z, € [21,22]. Let (7*,a*, %) be an optimal
solution of the problem (P?), where z = kz; + (1 — k)z, and 0 < k < 1.
Then we have

8(2) = oka + (1 - )z)
= Y dia B+ (ka+ (L= k=) (B - )l

> ko(z) + (L= k)p(z).

Hence, ¢(z), as well as 1(z), is a concave function of z. O

Now we claim that the feasible region Fp- may be empty for a given
z € R. Next we present an example to illustrate it. Let A = [E,,, Ey]

and zg = ZdeM’ where E,, is an identity matrix, z¥

— 3 -0
: min, = MiNjc ;x5 and
min

Admaz = maxjejujdj. Then ac?z —dj > x?z — dmaz > x?% — dmaz >
2d ez — dmar = dmaz for any 7 € J when z > z5. Therefore, we have
Amaz < x?z —dj <y; < w?z +d; for any j € J. Consider the i-th constraint
in , we have y; + Yi+m = 0. If 1 € J or i +m € J, then this constraint
can not hold since —d; < y; <0 for any j € J and y; > dinaq for any j € J.
Unfortunately, this case must exist since J # (. Hence, Fp- may be an

empty set for a given z > 0. In a similar way, Fp- may be an empty set for



a given z < 0. In these cases, 1(z) is undefined.

Theorem 3. (1) If z1 <0 and Fp=1 =0, then Fp= =0 for any z < z;.
(2) If z2 > 0 and Fp= =0, then Fp= =0 for any z > 2.

PROOF. (1) Suppose there exists zgp < z1 satisfying Fp=o # (). Then we have
Fp= # 0 for any 2z € [29,0] by Theorem [2| which contradicts that Fp= = 0.
Hence, the conclusion holds. In a similar way, (2) holds. O

For simplicity of discussion, we turn the problem (D?) into a standard
LP problem by the following steps. (i) It follows from the constraint
and d; > 0 that can be omitted. (ii) Add relaxation variables §;
to the constraints and . (iii) Add relaxation variables 7; to

the constraints (2.22)) and (2.23)). (iv) Replace non-constrained variables

y; by two non-negative variables y; and gj;. Then we get its maximization

standard LP problem below.

P(z) = max > el — i)
jeJug
(D7) st Ag— Aj=0,

S

2.31
2.32
2.33
2.34
2.35
2.36

—y; +4; +& =dj,j € J,
—gi+ i+ & =dj —adzj € J,
Yi —yj+nj =0,5€J,

gj — g+ =dj+ajzj e,

(2.31)
(2.32)
(2.33)
(2.34)
(2.35)
(2.36)

v,4,§,m > 0.

Let A, b*, ¢ and X be the coefficient matrix, right-hand vector, cost co-
efficient vector and all variables of the problem (D?), respectively. For
the convenience of further discussion, we assume J = {1,2,--- k} and
J={k+1,---,n}, where 0 < k <n — 1. Then we have

A -4 0 o0
A=|-E, E, E, 0 , (2.37)
E, -E, 0 E,

10



c = (Cv _07070)7 b = (OvdJadj - Z.Z'%,O,dj + Zx?j)T, XT = (3]7?}75777)7
where m = 2n + m,n = 4n and m(} is a row vector here. The corresponding

standard LP model can be formulated below.

P(2) ;== max eX

X =0,
>

—
)
[ IR
~
n
-+
B

)

Next we need to clarify the maximum value z; and minimum value z, sat-
isfying the property (1) and (2) in Theorem [3] respectively. For convenience,
we call them left and right break points, respectively.

Definition 1. A walue z < 0 is called the left break point of {(z), if
Fp= =0 for any z < z and Fp= # O for any z € [2,0]. A value z, > 0
is called the right break point of V(z), if Fp= = 0 for any z > 2 and
Fp= # 0 for any z € [0, 2,].

Theorem 4. (1) If there is a value z1 < 0 satisfying Fp=1 = (), then there
exists a left break point z;. (2) If there is a value zo > 0 satisfying Fp= = 0,
then there exists a right break point z.. (3) For any z > z; and z < z,
(2)] < +oc.

PROOF. (1) Note that Fp- # () for any 2 € [max;c; ;—?,minjej Z—f)] by
property (P2). Hence, we can assume that there exists ;0 <0 satisjfying
Fp=0 # (0. Let B be the optimal basis corresponding to the problem (D).
Consider the i-th basic variable: )_(fo = Bi_lgzo = k;2z0 + gi, where Bi_1 is
the i-th row of the inverse matrix B~' and k;, ¢; are constants. Therefore,
when the optimal basis B changes to a non-optimal basis as zy decreases,
there must be a non-negative basic variable that changes to a negative value.
Suppose z; is such a value. Then we have Fp= # (). Furthermore, it follows
from property (1) in Theorem [2| that Fp- # ) for any z € [z, 0]. Hence, z
is the left break point. The property (2) holds similarly. (3) This property
holds due to (1) and (2). O

Based on the previous discussions, we claim that there are four cases
of the left and right break points in the function (z) as shown in Figure
where z; and z,. represent the left and right break points, respectively.

11



¥(@) V(@)
(@)

(b)
N
" Y(2) “ V(Z)
/N O\V

Figure 1: Four cases of left and right break points in the function ¥ (z).
(a) z1, zr exist; (b) zr exists; (¢) z; exists; (d) no zi, zr.

Notice that 9 (z) is a continuous piecewise linear function, we introduce the

following definition.

Definition 2. Let (z;,v(z;)) be an intersection point of two adjacent lines.
We call z; a turning coordinate.

3. Solve the problem (RIOVLP,) when A is unimodular

In this section, we solve the problem (RIOVLP;) when A is a unimodular
coefficient matrix. Firstly we analyze some properties of turning coordinates.
Secondly, we present an important theorem to determine the critical value
z* in an optimal solution (y*, z*) of the problem (DRIOVLP;). Thirdly, we
calculate the slope k, of a piece of segment in v (z) for a given z which is
not a turning coordinate. Then we present two algorithms to calculate the
left and right break points z; and z,. Finally, we propose an algorithm to
solve the problem (RIOVLP;).

Assumption 1. The coefficient matriz A is unimodular.

Assumption 2. The given feasible solution z° and the weight vector d are
integral.

12



3.1. Properties of turning coordinates

To describe the form of left and right break points, as well as turning

points, we present the following lemma.

Lemma 1. Suppose Assumptions[] and[q hold. If z; is a turning coordinate,
then z; is in the form of %, where ¢, are integers and |o| < 21.J |29
ls] < (n 4+ dmaz, 200 = max; y a:?.

mazx’

PROOF. It follows from Assumption [1] that the coefficient matrix A defined
as in of the problem (D?) is also a unimodular matrix. For a given
z € R, if Fp- # (), then there exists an optimal basis matrix B of the
problem (Dz). Hence, the elements b;; € {0,1,—1} for the inverse matrix

pemﬁcally, let b, b2, b3 be the elements of B, ! corresponding

'L’ 157 Vij
to j in and , respectively. Let XZ be the i-th basic

variable correspondlng to B. Then we have

X7 = B
= ) bidi+ > b(d; - a92) + Y b¥(d; + x)z)
JjeJ jeJ jeJ
= ) bidi+ > (bhd; + bdy) + 2> (b,
JjeJ jeJ jeJ

With the variation of z, the optimal basis matrix B of the problem (D?)
E jeJ z]d +Z]€J( dj+b§)jdj)
de.] (b7 b3)
proof of Theorem It is easy to know |deJ d; ‘1‘2361(52 d; +b3 dj)| <

(n 4+ |J|)dmae is an integer. Furthermore, | deJ j(bQ )\ < 2‘J|:L'ma$
also an integer. As a conclusion, the lemma holds. (|

as in the

will change at a value in the form of z =

Corollary 1. Suppose z;, z; are two turning coordinates, then |z; — zj| >

(2] ]

mam)

PROOF. Suppose z; = 2= and z; = %, then ¢;,<;,04,05 € Z and |oy|, |oj| <
i J

2|J)20,,.- Hence,
Si S| |sioi —sioi| o lsioj — ol 1
o 0j oioj | 7 @) T 21T |200,)
This completes the proof. O

13



Let TC = {&|s,0 € Z,|o| < 2[J|2d 00 ls| < (n+ |J|)dmaz}, then a
turning coordinate must in 7'C', but the opposite is not true.

It follows from Lemma [l| that the optimal basis of the problem (DZ°)
keeps unchanged in its e-neighborhood for a given value zg ¢ T'C' and € > 0.
It renders that the optimal solution (7*,&*, 3*) of the problem (P?) keeps
unchanged for z € [z — €, 20 + €]. Therefore, the slope of ¥(z) is k, =
Zjej(ﬁ_; — o‘z;)xg for z € [20 — €, 20 + €.

Corollary 2. For a given value zy ¢ TC, if Fp=o # 0 and B is an optimal
basis of the problem (DZ°), then there must exist € > 0 satisfying that B is
also an optimal basis of the problem (DZ) for any z € [zo — €, 2o + €].

3.2. Solve the dual inverse problem (DRIOVLP;)

For the convenience of following discussion, we give the definition below.

Definition 3. Suppose (y*,z*) is an optimal solution of the problem (DRIO
VLP; ), then we call z* a critical value.

If we can determine a critical value z*, then we can solve the sub-
problem (D?") and obtain its optimal solution y*, which renders an optimal
solution (y*, z*) of the problem (DRIOVLP;). Hence, the main issue now is
how to determine z*. To do so, we need to determine two critical consecutive

segments in the piecewise linear function v (z), whose slopes ki, ko satisfy
0
J
for the left and right break points and there are cases that the left and

ko < cjxs — K < k1. Notice that there is only one slope of a linear function
right break points do not exist as shown in Figure [l We first introduce the
minimum and maximum turning coordinates z and Z to substitute the the
left and right break points. Then define the right slope of ¢(z) (if exists) as
kI and the left slope of (z) (if exists) as k; .

Next, we propose an optimality condition to determine z* at each of the
four cases. Figure [2] shows the values z, Z and z* in each case, where the

red line represents the line with the slope § = ¢ jx(} — K in each subcases.

Theorem 5. Suppose (2,1(2)) is an intersection point of two consecutive
segments in the piecewise linear function (z).
(1) Suppose Fp= =0 for any z € (—o0,2) U (2,4+00). Then

14



(1-2)Z*.E/ 13270 \Z*(I.I)Z / T 23)2°]0 iZ'(2.

Figure 2: The values z, Z and z* in each case of Theorem

(1.1) If k; > 0, then z* = Z is the critical value.

(1.2) If kI < 4, then z* = z is the critical value.

(1.3) If k+ <d <k, then z* = % is the critical value.

Suppose Fp= 75 Q) for any z € (—o00,z) and Fp- = 0 for any z €

). Then

(2.1) If k7 > 0, then z* = Z is the critical value.

(2.2) If k7 < 9, then the problem (RIOVLP;) is infeasible.

(2.3) If k‘+ <d <k, then z* = 2 is the critical value.
Suppose Fp= = Q) for any z € (—o0,2) and Fp= # O for any z €
). Then

1) If kI > 6, then the problem (RIOVLP; ) is infeasible.

2) If kI < 6, then z* = 2z is the critical value.

3) If /’4:;r < <k, then z* = 2 is the critical value.

Suppose Fp= # 0 for any z € (—o00,z) U (2, +00). Then

4.1) If kI > 6, then the problem (RIOVLP; ) is infeasible.

4.2) If k7 < 6, then the problem (RIOVLP;) is infeasible.

4.3) If kj <0 <k, , then z* = £ is the critical value.

Proof. (1) (1.1) Suppose (7, Z) and y are optimal solutions of the prob-
lems (DRIOVLP) and (D?), respectively. It is easy to know that z < z. If

15



Z < z, then

Z ¢y + (K — chw?)é =cy— 90z

jeJul JjedJ
< P(z) -6z
< k3 (2—2)+9Y(z) — 0z, (¢(2) is concave by Theorem )
= Y(z) -2+ (Z—-2)(—0+k3)
< Y(z) -9z
= cy—90z.

Hence, (y,Z) is also an optimal solution of the problem (DRIOVLP;) if
the equalities always hold in the above three inequalities. Otherwise, it
contradicts the optimality of (7, 2).

(1.2) Suppose (7, 2) and y are optimal solutions of (DRIOVLP;) and
(D%), respectively. It is easy to know that Z > z. If Z > z, then

cy — 0%
< P(F) -6z
< kF(Z—2)+4(2) — 6%, (¥(2) is concave by Theorem )
= Y(2) —0z+ (Z—2)(-6+ k)
< P(z) - oz
= cy— o0z

which contradicts that (g, Z) is an optimal solution of (DRIOVLP;).
(1.3) Suppose (7,2) and ¢ are optimal solutions of (DRIOVLP;) and
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(D?), respectively. We will discuss it in two situations. (i) If Z > 2, then

cy — 0z
< P(F) -6z
< kf(Z-2)+4(2) =0z, (¥(2) is concave by Theorem )
= (&) — 62+ (2—2)(—0+ k)
< Y(&) -4z
= cj—062

which contradicts that (g, Z) is an optimal solution of the problem (DRI-
OVLP)).
(ii) If Z < 2, then

cy — 0%
< P(F) -6z
<k (2—2)+9(2) =62, (¥(2) is concave by Theorem )
= YP(E)-02+(Z—-2)(—0+k,)
< (&) - oz
= cj—02

Then (7, 2) is also an optimal solution of problem (DRIOVLP) if the equal-
ities always hold in the above three inequalities. Otherwise, it contradicts
the optimality of (7, 2).
Notice that one and only one case holds due to the concavity of ¥(z).
In a similar way, we can show that (2),(3) and (4) hold. O

3.8. Calculate the slope k, for a given z ¢ TC

In this subsection, we focus on addressing the following two questions.
For a given z € R, (Q1) if Fp- # 0, then how to determine whether z is
a turning coordinate of an intersection point (z,%(z)) of two consecutive
segments in ¢¥(z)? (Q2) if z ¢ TC and Fp- # ), then how to calculate the

slope k, and obtain the left and right turning coordinates closest to z7? To
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solve these problems, we make the assumption below.

Assumption 3. There is an algorithm A, not only to determine whether
Fp= is an empty set for a given z € R but also to solve the problem (D?) or
(D?) or (D?) and calculate ¥ (z) when Fp= # .

Let A = W. To answer the question (Q1), the following lemma

is clearly valid.

Lemma 2. Suppose Assumption@ holds and Fp= # (0. Let z1 = z—%, 2o =

= %7 z3 =z + %:Z4 =z+ %7 kz,zl - %ﬁwl);kz,zg = %Z;(Zﬂ;kz,zg, =
W) gk, = YY)k =k Ky = ke, and k.,

zZ—2z3 Z—Zz4
k. ., then z is a turning coordinate of an intersection point (z,1¢(z)) of two

consecutive segments in the function 1(z).

Next, we concentrate on (Q2) calculating the slope k, for a given z ¢ TC

711’(”6)71&(2), where €

and Fp= # (. It seems straightforward to calculate k, =
is a very small positive real number. However, it is a dilemma to determine
e such that (z,z + €) does not contain a turning coordinate. Hence, we
calculate k, by duality theory of LP. We can obtain an optimal solution
(7*,a&*, B*) of the problem (P?) based on an optimal solution y* of the
problem (D). Therefore, we have k, =} j(BJ* — Ev;f)x? by Corollary

If Fp=o # 0 and 29 ¢ T'C, then we will discuss how to calculate the left
and right turning coordinates closest to zg in detail. First, we choose z; € R
satisfying the conditions (C1), (C2) or (C1), (C3) below.

(C1) 21 # zp and 21 ¢ TC. (C2) If 21 < 20, then [z1,20] NTC = (. (C3)
If 21 > 29, then [20,21] NTC = 0.

Suppose y°, y!' are the optimal solutions of problems (D) and (D),
respectively and zé, 2y are the left and right turning coordinates closest
to zg, respectively. Let k; = Zg:gi and y7 = kj(z — 20) + y?, jeJuld.
Notice that (D?) has the same optimal basis for any 2z € [2{, z5]. Therefore,
y* is the optimal solution of the problem (D?) for any z € [2), 28] if and
only if y* satisfies the constraints —, which can be formulated as
—dj <y; <0for j € Jand x(;z —dj <y; < l’?Z +dj for j € J. Therefore,

z

kjzo—d; 7y;-) <

we have the following properties. 1) if j € J and k; > 0, then

J
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k; . k;zo—y? kjzo—d;—y°
2 < BT 9y irj e Jand k; < 0, then YU <, < MThTi g
J J

J

z0—dj—yY kjz0+d;—y°? e =
if j € J and k; >x then4< < 2L 4)if j € J and
kj— kj—ax;
kjzo+d;j—y? kz d ) kjzo—dj—y°?
k; < 29, then Jgijoyj <z< 27]0%. Let 2 = max %_Jy],
J i i jEJk;>0 j
i Z0—Y ki:zo—d k'z0+d~fy0
Zp =  Inax Jk..J,Zg: ma. ]k._JO 7ZE4): m Jk ]Ojv
JjEJkj<0 J j€J kj>xf i j€T kj<z? 3T
0
. 0—Y; . kjzo—dj—y . kizo+d;—y
zp= min 5 0= min “— 7 = min o and
j€Jk;>0 J jeJk; <0 J jeJ,kj>a:J0 7T
. kjzo—d;—y?
8= min kf” Hence, we have
jeJ kj<ad ]
1 _ 1.2 .3 4 r__ s .5 6 .7 .8
2o = max{zg, 25, 20, %0}, 20 = min{zg, 29, 20, 20 }- (3.38)

Based on the above analysis, we have the following lemma.

SOyl
Lemma 3. Letk:j:ZO i and y; = k(z—zo)—i-y],jEJUJ Theny

21
is the optimal solution of the problem (D?) for any z € [}, 23], where 2}, 25

are defined as in .

3.4. Calculate the left and right break points z; and z,

In this subsection, we present two algorithms LBP and RBP to calcu-
late the left and right break points z; and z, (if exist), respectively. As they
are similar, we only discuss the main idea to calculate z; in detail.

Firstly, we check the existence of the left break point z;. Initialize z; :=
—(n+|J])dmaz — 1 and 2z := 0. If Fpz # (), then the left break point z; dose
not exist. Otherwise, we can use a binary search method to determine an
interval [z;, Z;] which satisfies z; — z; < % and Fpz = 0, Fpz # 0. Secondly,
let zo = z; and 21 = 29 + %, then we have Fp=1 # () and 2q, 21 satisfy the
conditions (C1) and (C3) in subsection Finally, calculate the optimal

solutions y°, 4! of the problems (D) and (D*). Then we can get z = z}

by (59,

Algorithm 1 z=LBP(A,b,c,d,2°, K).

Input: The coefficient matrix A, the vectors b, ¢, d, z° and a value K.
Output: The left break point z;.
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1 Let 2 := —(n+ |J)dimaz — 1, 2 3= 0 and A := z=——

T 2[206)?
2: if Fpz # () then
3:  return z; := —o0.
4: else
5 while z; — z; > % do
6 Let z := #
7: if Fp- # () then
8 Z] = Z.
9 else
10: 2= Z.
11: end if

12:  end while
13:  Let 21 :==Z1 + %, 20 := 7 and 3", y' be the optimal solutions of the
problems (D?*) and (D*'), respectively.

14: return z;:= z(l) by |D

15: end if

Next, we give the algorithm below to calculate z, similar to algorithm [I]

Algorithm 2 z,=RBP(A,b,c,d,2°, K).

Input: The coefficient matrix A, the vectors b, ¢,d, z° and a value K.
Output: The right break point z,.
1: Let z, := (n + |J|)dmaz + 1, 2, :== 0 and A := m.
2: if Fpz # () then
3:  return z,:= 4o0.
else
while z, — 2, > £ do
Let z := #
if Fp- # () then
2y = 2.

else
10: Zri=2z.
11: end if
12:  end while
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13: Let 2y := 2, — 20 = 2, and 3°,y! be the optimal solutions of the

A
25
problems (D?*) and (D?'), respectively.

14:  return z, := z; by (3.38).

15: end if

3.5. An algorithm to solve the inverse problem (RIOVLP;)

In this subsection, we design an algorithm for the problem (RIOVLP;).
Based on the previous analysis, the problem (RIOVLP;) can be solved as
long as the critical value z* is determined.

Now we describe the main idea to calculated z*. Firstly, calculate the
left and right break points 2,z by Algorithms [1] and 2| If k3 < 4, then
z* = z is the critical value by Case (3.2) in Theorem [5| Similarly, if
k. > 6, then 2* := 2, is the critical value by Case (1.1) in Theorem
Initialize 7o := (n + |J|)dmae + 1 and 7o = —7o. If k;, < 6 or kg, > 6, then
the problem (RIOVLP;) is infeasible. Now it comes to the case that the
problem (RIOVLP) is feasible and z; or z, is not the critical value, then we
can determine an interval [r,,7,] including z* by a binary search method
which satisfies k2 < ¢ < k‘;. In the k-th iteration of the binary search
method, if the current value z, is a turning coordinate and k;: <0<k,
then z* = z, is the critical value by Case (4.3) in Theorem [5| Otherwise,
the binary search method terminates when the length of |7, — 7| < A. In
this case, there is only one turning coordinate in the interval [z, 7], which
is just the critical value.

Next, we discuss the following questions. (Q1) If z ¢ T'C and Fp- # 0,
then how to calculate the slope k, of ¥(z). (Q2) If z is the left break point,
then how to calculate the right slope k of ¥(z). (Q3) If 2 is the right
break point, then how to calculate the left slope k7 of ¢(z). To answer the
question (Q1), let y* be the optimal solution of the problem (D?). Calculate
the optimal solution (7%, &%, %) of the problem (P?) by duality theory of
LP. Hence, we have k, := Zjej(B; - dj)a:?. For the question (Q2), let
2 i=z+ %, then 2/ ¢ TC and Fj,., # 0. Hence, we have kI := k./, where
k. can be calculated similar to the question (Q1). As for the question (Q3),
let 2/ == z — %, then 2’ ¢ TC and Fj.. # (. Hence, we have k; = k.,
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where k., can be calculated similar to the question (Q1). For convenience,

we give an algorithm to calculate k,, k" or k.

Algorithm 3 k,=Slope(z, 2,, z).

Input: The left and right break points z;, 2, and a value z.
Output: The slope k, of ¢(z).

if z = z; then
Let 2/ := 2+ %.

. else if z = z, then

Let 2/ =2 — %.
else

Let 2/ := 2.

: end if
. Let y* be the optimal solution of the problem (Dz/). Calculate the

optimal solution (7%,a* , %) of the problem (P#) by duality theory of
LP.

: return k, := ngj(ﬁj, - Cyjz-/)x?.

Next, we give Algorithm 4] to solve the problem (RIOVLP1).

Algorithm 4 ¢*=RIOVLP(A,b,c,d, 2", K).

Input: The coefficient matrix A, the vectors b, ¢, d, z° and a value K.
Output: An optimal solution ¢* of the problem (RIOVLP;).

1:
2:
3:
4:

10:
11:
12:

Calculate z :=LBP(A,b,c,d,2°, K) and z, :=RBP(A, b, c,d,2°, K).
Initialize A := m, 0= ij(} — K, z¥ := 400 and k := 0.
if z; = —o0 then

Let 7o := —(n + |J|)dmaz — 1 and kr, :=Slope(z, z, ;).
if k;, < ¢ then

The problem (RIOVLP,) is infeasible and stop.
end if

else
Let 7 := 2; and k;o :=Slope(z, 2, Tg)-
if £k <4 then
To

Let z* := 7.

end if
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13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27:

28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

end if
if z, = 4+oco then

Let 70 := (n + |J|)dmaz + 1 and k=, :==Slope(z, 2, 7).

if k-, > ¢ then

The problem (RIOVLP,) is infeasible and stop.

end if

else

Let 7o := 2, and kz :=Slope(z, 2, To).
if k7, > 0 then

Let z* := z,.

end if
end if
while 7, — 7, > A and z* = 400 do
Let z, = MTI”, zl =z, — %, 22 =z, —

4 . A
ZH.—ZH—F?. ,

Let kil im SCm=v) g2 wl-uGD) g

2—2Lk : 2k—22

P(z)—(21)
Zn—zt

if k! = k2 and k2 = k? and k2 # k2 then
if k! > 0 then
Update 7, := 2z and Toq1 = Ts.
else if k. < § then
Update 741 := 2} and 7, == T,
else
Update z* := z.
end if
else
Let k., :=Slope(z, 2, zx)-
if k,, > 6 then
Update 7,1 := 2, and Ty = Tx.
else
Update Toq1 := 2 and 7, := 7.
end if
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43:  end if

44:  Update k := Kk + 1.

45: end while

46: if 2" = +o00 then

47:  Let k;_:=Slope(z, 2;,7,) and ks, :=Slope(z, 2, T").

48:  Calculate z* := w(ﬁ)_w%i)__ﬁ?%ﬁrklﬁz“.

49: end if h ’

50: Let y* be the optimal solution of the problem (D?"). Then (y*,z*) be
the optimal solution of the problem (DRIOVLP;).

51: Calculate the optimal solution (7*,a*, 8*) of the problem (RIOVLP?)
by duality theory of LP.

52: return c¢* :=c+ a* — [*.

K

: _ 0
For convenience, we define £ = max{dmaz, Ty,q5,7}. Then we can get

the time complexity of Algorithm

Theorem 6. Algorithm[{| can solve the problem (RIOVLP;) by solving the
problem (D*) O(log L) times at most.

PrROOF. The correctness of Algorithm [4] can be obtained by the main idea
of the algorithm and Theorem Now we analyze the time complexity.
The main computation is in Line 1 and the while loop in Lines 25-45,
which are all performed by a binary search method until the length of
|7 — 7,.] < A. We only need to calculate the number of iterations in the
while loop. The initial interval length is |7y — 7| = 2(n + |J|)dmaz + 2 and
the interval length will be reduced by at least half in each iteration of a
binary search method. Suppose there are t iterations in the while loop in
the worst case. Then we have (2(n + |J|)dpas +2)(3)" < A = mv
which means ¢ > 2log(2|J]z%,,.) + log (2(n + |J|)dmaz + 2). Hence, we
have t = [2log(2|J|2Y,,,) + log (2(n + J)dmas + 2)] < [2log(2]J]20,,.) +
log 3(n + J)dymaz ] =0(log max{dmax,xgmx,n}) (log L). Notice that the
Algorithm [4| needs to calculate the problem (D?) at most five times in each
iteration. Therefore, the conclusion holds. Il

4. Applications to the Hitchcock and Shortest Path problems

In this section, we apply the previous research methods to the restricted

inverse optimal value problems on Hitchcock and shortest path problem
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under weighted [; norm, respectively.

As these two problems can finally be transformed into a minimum cost
flow (MCF) problem, we first introduce the problem (MCF') in Ahuja and
Orlin| (1993).

Let G(V, E, ¢, u) be a directed network with a cost ¢;; > 0 and a capacity
u;; > 0 associated with every arc (i,j) € E. We associate with each node
i € V asupply b(i) > 0 or a demand b(i) < 0. Suppose > ;i b(i) = 0, then
the problem (MCF') can be stated as follows.

min E CijTij

(i,9)eE
(MCF) s.t. Z Tij — Z Tj; = b(l),Z ev,
j:(4,5)EE j:(ji)eE

0 <z < wij, (4,5) € E.

So far, the best strong polynomial time complexity for solving the prob-
lem (MCF) is O(|E|log |V|(|E| + |V |log |V|)) presented by |Orlin| (1993).

4.1. The restricted inverse optimal value problem on Hitchcock problem un-

der weighted 11 norm

In this subsection, we study the restricted inverse optimal value problem
(RIOVHC1) on Hitchcock problem under weighted /1 norm.

The Hitchcock problem can be described as follows. We have m sources
of some commodity, each with a supply of a; > 0 units, ¢ = 1,--- ;m, and
n terminals, each with a demand of b; > 0 units, j = 1,--- ,n. Suppose
>ty ai =5y bj. There is a unit cost ¢;; > 0 of sending the commodity

from source ¢ to terminal j. We aim to satisfy the demands at minimum
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cost. Hence, the Hitchcock problem (HC') can be stated as follows.

m n
min E E CijLij

i=1 j=1

n
(HQ s.t. Zmij:ai,izl,---,m,
7=1

m
=1

Tij > 0.

Let A and ¢ be the coefficient matrix and cost vector of the problem
(HC), respectively. The problem (RIOVHC) can be described as follows.
Given a feasible solution x° of the problem (HC), a weight vector d > 0 and
a real number K, we aim to adjust the cost vector ¢ to ¢ under weighted Iy
norm such that 2% becomes an optimal solution of the problem (HC) under
¢ and ¢z equals K.

Note that A is a unimodular matrix. Suppose Assumption [2| holds. Let
J = {(i,j)|x?j =0} and J = {(i,j)|x?j > 0}. Therefore, if we can solve
the following problem (HC-D?), then the problem (RIOVHC1) can also be
solved by Algorithm [4]

min Cij:L’ij — cij:cl-j

(i,5)eJuT (i,5)eJ

n
(HC_EZ) S't' inj:a’i7/i:17'.')m7
j=1

m

Zij = b]7] - 17 y 1,
=1

(1 — Z)I'?] — dz'j < Tij < (1 — Z)I'?] + dz'j, (’L,]) eJ.

Let x;; = xi; for any (i,7) € J, j; =z + diy — (1 — z):v% for any
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bj = X (i e (1- z)x?j —dij), j=1,...,n. Hence, the problem (HC-D?)

can be turned into the following form.

. / 0
min g CijTi; — E cij(dij + 22;5)

(i,j)eJud (i,9)eJ
(HC-D?) s.t. S oalj=dii=1,,m,
g:(4,9)eJUT
Z J?,/U:b;,]:l,,n,
i:(i,5)€JUT

0< l’éj < Qdij, (’L,j) S j

Obviously, we have 31" aj = 377 by since > ") a; = >0 bj. Further-
more, if there exists a; < 0 or b; < 0, then the problem (H C-D?) is infeasible.
Otherwise, the problem (HC-D?) is a Hitchcock problem with upper bound
constraints, which can be transformed into an (MCF') problem. Therefore,

we can obtain the time complexity of the problem (RIOVHC}).

Theorem 7. The restricted inverse optimal value problem (RIOVHC}) on
Hitchcock problem under weighted Iy norm can be solved by Algorithm [ in
O((mlogn(m+ nlogn))log L) time.

Next, we present an example to execute Algorithm [4] for the problem
(RIOVHC).

Example 1. Let v1, vo be the sources of some commodity with a supply
of a; := 8,a9 := 12 units, and three terminals vs, v4, vs with a demand of
by := 5,by := 4,b3 := 11 units. There is a unit cost ¢;; > 0 of sending the
commodity from source i to terminal j as shown in Figure Let 2V :=
(3,2,3,2,2,8) be a feasible transportation strategy. Let d := (6,4,2,5,4,3)
and K := 50. We aim to adjust the vector ¢ to ¢ under weighted /; norm

such that z° becomes an optimal transportation strategy whose cost is just

K under .
(1) Calculate J := 0, J := {1,2,3,4,5,6}, dnaz = 6, 20, := 8, A :=
m = 5576 and 4 = CJ:E(} — K = —6. (2) Calculate z := — and

PARE 1—51 by Algorithms (1| and (3) Let 7 := 2 and 7y := z,. Calculate
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decrease 0.5
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Figure 3: An example of the problem (RIOVHCY).

k;ro := 32 and k7, := —17. Therefore, the critical vale 2* is located in
the interval [, To] since k;o >0 > k. _We divide the interval |7, 7] by
a binary search method. Let zy := w = 0. Calculate zé = —T}tw,
2 ._ 1 3. _1 4. 1 1._1.2._ 3._ 14 ._

25 = —agsenr 20 ‘= 38861 20 ‘= 1aamay and kg = kg = —4, ky = kg = 8.
Hence, z( is a turning coordinate. Notice that ké <d:=-6< ké. Therefore,

2o is the critical value and the optimal solution of the problem (RIOVHC")
is ¢* :=(5,3.5,1,5,3.5,1) as shown in Figure Furthermore, we can draw
the graph of function v (z) by enumerating z in the interval [z, z,] as shown
in Figure |4, where the green dots represent the turning coordinates and the

red dot is the critical value.

4.2. The restricted inverse optimal value problem on shortest path problem

under weighted [, norm

In this subsection, we study the restricted inverse optimal value problem
on shortest path problem under weighted /3 norm (RIOVSP;).

Let G = (V, E,c) be a directed network, where V, E and ¢ denote the
node set, the edge set and the edge cost vector, respectively. Let nodes s and
t denote two specified nodes. Suppose the network GG does not contain any

negative cost cycle, then the s — ¢t shortest path problem can be described
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Figure 4: The graph of function ¢(z) in Example 1.

as follows.
min Z CijTij
(i,j)eE
(SP) s.t. Z Tij — Z xj; =1,1=s,
Ji(i.4)EE J:(Ji)er
Z Tij — Z xj; =0,1¢ {s,t},
Ji(i,4)eE J:(gi)eE
Z L5 — Z iji:—l,i:t,
Ji(i.4)EE J:(ji)eE

ri; > 0,(4,7) € E.

The problem (RIOVSP;) can be described as follows. Let P° be a
given s —t path and 2 be the corresponding 0-1 vector whose component 1
indicating the edges on P°. Let d > 0 be the weight vector and K be a real
number. We aim to adjust the cost vector ¢ to ¢ under weighted l; norm
such that 2% becomes a shortest path whose cost equals K on new network
G=(V,E,¢).

Obviously, the coefficient matrix of the problem (SP) is unimodular.
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Suppose Assumption [2[ holds. Let J = {(z’,j)|x?j =0} and J = {(i,j)]a:gj =
1}. Then the problem (RIOVSP;) can also be solved by Algorithm [4] as
long as the following problem (SP—lv)Z) can be solved.

min E Cij.TUZ'j — E Cij

(i,J)€E (i,5)e]
(SP-D?) s.t. Z Tij — Z xj = 1,i=s,
J:(i.5)€E J:(G)EE
Z $ij — Z $j7; = O,i §é {S,t},
J:(@.5)€E J:(Ji)EE
Z Tij — Z T, = —1,1=1,
j:(i.5)€E J:(dier

0 <uayj <dij,(i,7) € J,

1—z—dij <z <1—z+d,(i,5) € J.

Let zj; = w;; for any (i,j) € J and x;; = x;; — 1 + 2 + d;; for any
(i,§) € J. For convenience, we assume P° = jo(s), j1, ..., ji, jrs1(t). Let
V(i)=1-(1—-z—dy,) fori=s0(i)=—(1—-2—dy,,,)+(1—2—dj, i)
for i =j, and 1 <h <k, and /(i) = =1+ (1 — z — d;;) for i =1t.

Hence, the problem (SP-D?) can be turned into following form.

min Z cijx;j— Z cij(z—&—dij)

(i.9)€E (i,5)eT
(SP-DF)sit 30 ay— 3 ahi=Vl)i=s
J:(ig)er j:(Gi)eE
Z Tij — Z ahy = V(1)1 =jn,h=1,...,k,
J:(i.j)er j:(ji)EE
S oahi— Y ahi=0igv(PY),
Ji(ig)eE 5:GA)EE
> oal— Y, w=V)i=t,
VHOISD) j:(Gi)eE

0 <af; < dyj, (4,7) € J,
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Notice that for each edge (jp,jn+1) € Po (h =0,1,--- k), there is one
item —(1—z—d,,j,,,) for i = j, and one item +(1—2—dj,;,.,) for i = jui1
in §'(). Then we have }7;c\ b'(i) = > ey (poy V(i) = 0. Hence, for a given
z € R, the problem (SP-D?) can be transformed into an (MCF') problem.
Therefore, we can obtain the time complexity of the problem (RIOVSP;).

Theorem 8. The restricted inverse optimal value problem (RIOVSP;) on
shortest path under weighted l; norm can be solved by Algorithm in O((m log
n(m + nlogn))log max{dmax,n}) time. Furthermore, the time complexity
can be reduced to O((mlogn(m+nlogn))logn) under unit l; norm, where
dma:p =1.

Next, we present an example to execute Algorithm [ for the problem
(RIOVSP,).

Example 2. Let G(V,E,c) be a directed weighted graph as shown
in Figure [5, P := {e2,eq,e10} (the read edges) be a given s — t path,
c:= (2,3,7,8,5,6,4,9,1,10), d := (10,3,8,2,5,1,4,9,7,6) and K := 18.
We aim to adjust the vector ¢ to & under weighted I; norm such that P°

becomes a shortest s — ¢ path whose length is just K under c.

Vs

decrease 1

ez, 4
U1 U,

Figure 5: An example of the problem (RIOVSP1).

(1) Calculate J := {1,3,4,5,7,8,9}, J := {2,6,10}, dpaz := 10, 20, =

1, A= m = g and § := CJm(}—K :=1. (2) Calculate z; := —1 and
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zr := 12 by Algorithms [I| and [2| (3) Let 7, := 2 and 7 := z,. Calculate
k‘;o := 11 and k7 := —13. Therefore, the critical vale z* is located in

the interval [, To] since k:;ro > 6 > kz,. We divide the interval [rg, 7] by a

: . Zot70 ._ 11 1._3% ,2._ 791
binary search method. Let 2z := =05— = 5. Calculate z; := 23, 25 = {4,
3. 793 4 ._ 397 1. 7.2 . 13 ._ 14 ._ :
25 = 111s 20 ‘= T, and kg = ki := kj := ky := 11. Hence, 29 is not a
turning coordinate. Calculate k, := 11. Hence, k,, > § and 7, := 2 := %,

71 := Tp := 12. We continue to divide the interval [r;,71] by a binary search

method. After nine iterations, we get the final interval [rg, 7o) := [2253, 109,

4) Calculate k-, := 0, k,. =11 7o) := 77 and ¢(19) := 3292 Hence

( 9 )y Mg ’ 9 181 ’

= w(m)_w(?):’zfﬁkng := 6. Therefore, the optimal solution of the
9 9

problem (RIOVSP;) is ¢* := (2,3,7,8,5,5,4,9,11,10) as shown in Figure

Furthermore, we can draw the graph of function ¢(z) by enumerating z

z

in the interval [2;, z,] as shown in Figure [6] where the green circles represent

the turning coordinates and the red dot is the critical value.

80

70

Figure 6: The graph of function ¢(z) in Example 2.

5. Conclusions and further research

In this paper, we mainly study the restricted inverse optimal value prob-

lem on (LP) under weighted I; norm. Firstly, we construct the mathe-
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matical model of the problem (RIOVLP;) by the dual theories, which is a
linear programming problem. Secondly, we introduce a sub-problem (D?)
of the dual inverse problem (DRIOVLP;) with respect to a given value z
which only changes the upper and lower bounds of the variables compared
to the original (LP) problem. Thirdly, we design a binary search algorithm
to calculate the critical value z* corresponding the optimal solution (y*, z*)
of the dual problem (DRIOVLP;). In each iteration, we need to solve a
sub-problem problem (D?), which can be generally solved by an algorithm
for the the original (LP) problem. Finally, we can obtain an optimal solu-
tion of the inverse problem (RIOVLP1) by complementary slackness of LP.
The time complexity is O(T7log £), where £ = max{dmaz, Toyqz, 7} and T?
is the time complexity to solve the sub-problem (D?). Finally, we apply
the research methods to some restricted inverse optimal value problems on
Hitchcock and shortest path problems, where the sub-problem (D?) can be
transformed into minimum cost flow problems.

We do not consider the bound constraints on the adjustment amount
in this paper, which may render some elements of the adjusted vector ¢
too small or too large. In the future, we will study the bounded restricted
inverse optimal value problem on LP under weighted [; norm and other
norms. Furthermore, if the original LP problem is not standard, then we will
consider whether our research results can be used to solve the corresponding

inverse optimal value problem.
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