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Abstract

We study the restricted inverse optimal value problem on linear program-

ming under weighted l1 norm (RIOVLP1). Given a linear programming

problem LP c : min{cx|Ax = b, x ≥ 0} with a feasible solution x0 and a

value K, we aim to adjust the vector c to c̄ such that x0 becomes an optimal

solution of the problem LP c̄ whose objective value c̄x
0 equals K. The objec-

tive is to minimize the distance ∥c̄− c∥1 =
∑n

j=1 dj |c̄j − cj | under weighted
l1 norm. Firstly, we formulate the problem (RIOVLP1) as a linear pro-

gramming problem by dual theories. Secondly, we construct a sub-problem

(Dz), which has the same form as LPc, of the dual (RIOVLP1) problem

corresponding to a given value z. Thirdly, when the coefficient matrix A

is unimodular, we design a binary search algorithm to calculate the critical

value z∗ corresponding to an optimal solution of the problem (RIOVLP1).

Finally, we solve the (RIOV ) problems on Hitchcock and shortest path prob-

lem, respectively, in O(TMCF logmax{dmax, x0max, n}) time, where we solve

a sub-problem (Dz) by minimum cost flow in TMCF time in each iteration.

The values dmax, x
0
max are the maximum values of d and x0, respectively.
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1. Introduction

Since Burton and Toint (1992) first studied the inverse shortest path

problem, many researchers have considered different inverse combinatorial

optimization problems such as inverse spanning tree problem, inverse short-

est path problem, inverse minimum cost flow problem, inverse minimum cut

problem, inverse maximum matching problem. The inverse combinatorial

optimization problems have broad applications which can be found in Mo-

hajerin Esfahani et al. (2018), Heuberger (2004), Ahuja and Orlin (2001)

and Burton and Toint (1992).

Let LP c be a standard linear programming (LP) problem,

min cx

(LPc) s.t. Ax = b, (1.1)

x ≥ 0.

where A is an m × n matrix and m < n, cT and x are n × 1 vectors and b

is an m× 1 vector.

As some combinatorial optimization problems can be described as LP

problems, Zhang and Liu (1996) first studied the inverse LP problem under

unit l1 norm (ILPu1). Let x0 be a given feasible solution of the problem

(LP). The aim of problem (ILPu1) is to minimize the modification ∥c̄− c∥
under unit l1 norm such that x0 becomes an optimal solution of the modi-

fied problem (LP c̄). They transformed the problem (ILPu1) into another LP

problem and extended their results to the inverse bounded LP problem with

a bounded variable constraint l ≤ x ≤ u. Furthermore, they applied their

research methods to the inverse minimum cost flow problem and inverse as-

signment problem under unit l1 norm. Zhang and Liu (1999) continued to

consider a special case of problem (ILPu1) in which the given feasible solu-

tion x0 and one optimal solution of the original LP problem are 0-1 vectors.

They gave a method based on dual theories for solving this special case and

applied the method to the inverse shortest path problem and inverse assign-
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ment problem under unit l1 norm. Huang and Liu (1999) also studied the

inverse bounded LP problem and applied their results to the inverse mini-

mum weight perfect k-matching problem on bipartite graphs under unit l1

norm. Ahuja and Orlin (2001) studied the inverse canonical LP problem

(ICLP1) under weighted l1 norm. They transformed the problem (ICLP1)

into an LP problem and transformed the inverse shortest path problem, in-

verse minimum cut problem, inverse minimum cost flow problem and inverse

assignment problem under weighted l1 norm into some minimum cost flow

problems. Chan and Kaw (2020) concentrated on imputing unspecified con-

straint coefficient matrix A and a cost vector for a given linear optimization

problem. Ghobadi and Mahmoudzadeh (2021) inferred the feasible region

of LP problem that would render the given solutions feasible while making

some optimal for the given cost function.

Ahmed and Guan (2005) studied the inverse optimal value problem

(IOVLP) on LP. Given a desired optimal objective value K, and a set C

of feasible cost vectors in an (LP), determine a cost vector c̄ ∈ C such that

the optimal objective value of the new problem LP c̄ is closest to the desired

value K. They proved the problem (IOVLP) is NP-hard. Lv et al. (2008)

and Lv et al. (2010) studied this problem under more general conditions

using a nonlinear bilevel programming approach.

In this paper, we will study the restricted inverse optimal value problem

(RIOVLP1) on LP under weighted l1 norm. Similar to the classical (ILP)

problem, its objective is to minimize the modification ∥c̄−c∥ under weighted

l1 norm. Different to the classical (ILP) problem, in (RIOVLP1) we not only

require that the given feasible solution x0 becomes an optimal solution of

the problem (LP c̄) but also require that the optimal objective value c̄x0

equals the given value K. There are two main differences compared the

problem (RIOVLP1) with (IOVLP). One difference is on the optimization

objectives. The problem (RIOVLP1) aims to minimize the distance ∥c̄− c∥,
while the problem (IOVLP) tries to minimize |c̄x∗ −K| among c̄ ∈ C. The

other difference is on the constraint conditions. In (RIOVLP1) we impose

a constraint on the optimal value c̄x0, which is equal to the given value K,

while in (IOVLP), there is no cadidate solution for consideration.
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Some restricted inverse optimal value problems on combinatorial opti-

mization structures have been studied. Jia et al. (2023), Zhang et al. (2021),

Wang et al. (2021) and Zhang et al. (2020) considered the restricted inverse

optimal value problems on minimum spanning tree under different norms

and proposed combinatorial algorithms in polynomial time. Zhang et al.

(2023) studied the restricted inverse optimal value problem of shortest path

on trees and devised an O(n2) algorithm under weighted l1 norm and an

O(n) algorithm under unit l1 norm. Zhang and Cai (1998) considered a

more general restricted inverse optimal value problem under weighted l1

norm on minimum cut which requires a set of cuts (not a cut) to become

minimum cuts to make their objective value within a certain range ( not

equal to a given value). Cui and Hochbaum (2010) showed the restricted in-

verse optimal value problem on shortest path for general graphs is NP-hard

when a collection of source-sink pairs with prescribed distances is given.

This paper is organized as follows. In section 2, we first formulate the

problem (RIOVLP1) as an LP problem by the dual theories. Then we ana-

lyze some properties of a sub-problem (Dz) of the dual (RIOVLP1) problem

with respect to a given value z. In section 3, we design a binary search algo-

rithm to calculate the critical value z∗ corresponding to an optimal solution

of the problem (RIOVLP1) by solving a sub-problem in each iteration. In

section 4, we apply the above methods to the restricted inverse optimal value

problems on Hitchcock and shortest path problem, respectively. Finally, we

give some conclusions and further research in section 5.

2. Properties of the problem (RIOVLP1)

In this section, we study the restricted inverse optimal value problem on

linear programming under weighted l1 norm. We first formulated the prob-

lem as an LP problem, then analyze some properties of its sub-problems.

2.1. The mathematical model of the problem (RIOVLP1)

Let x0 be a given feasible solution, F0 = {x ∈ Rn|Ax = b, x ≥ 0} be the

feasible region of the problem (LP) and K be a given real number. We aim
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to adjust the vector c to c̄ such that x0 becomes an optimal solution under c̄

whose objective value c̄x0 equals K. Given a 1×n positive vector d > 0, the

problem (RIOVLP1) under weighted l1 norm can be formulated as follows.

min
n∑
j=1

dj |c̄j − cj |

(RIOVLP1) s.t. min
x∈F0

c̄x = K, (2.1)

c̄x0 = K. (2.2)

It follows from the constraint (2.1) that the problem (RIOVLP1) is not

an LP problem. Fortunately, we can turn it into an LP problem by dual

theories of LP. Next, we will explain the process in details.

Let us associate a dual variable π ∈ Rm with the constraint (1.1). Then

the dual problem of (LP c̄) can be stated as follows.

max πb

(DLPc̄) s.t. πA ≤ c̄. (2.3)

Let J = {j|x0j = 0}, J̄ = {j|x0j > 0} and Aj be the j-th column of A.

Theorem 1. If (π∗, c̄∗) is an optimal solution of the problem below,

min
n∑
j=1

dj |c̄j − cj |

(RIOVLP1
1) s.t. πAj ≤ c̄j , j ∈ J, (2.4)

πAj = c̄j , j ∈ J̄ , (2.5)

c̄x0 = K. (2.6)

then c̄∗ is an optimal solution of the problem (RIOVLP1).

Proof. Let F and F1 be the feasible regions of the problems (RIOVLP1)
and (RIOVLP1

1), respectively. Notice that the constraints (2.1)-(2.2) mean
that x0 is an optimal solution of the problem (LP c̄), which holds if and
only if its dual problem (DLP c̄) has a feasible solution π which satisfies the
complementary slackness conditions x0j (c̄j−πAj) = 0 for any j ∈ J∪J̄ .
Suppose c̄ ∈ F , then there exists π satisfying the constraints (2.4)-(2.5).
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Hence, we have (π, c̄) ∈ F1. On the other hand, suppose (π∗, c̄∗) ∈ F1 is
an optimal solution of the problem (RIOVLP1

1), then (π∗, c̄∗) satisfies the
constraints (2.4)-(2.6), which renders that c̄∗ satisfies the constraint (2.1)-
(2.2). Hence, we have c̄∗ ∈ F . Furthermore, c̄∗ is an optimal solution of
the problem (RIOVLP1), since the two problems have the same optimal
objective value. □

Let c̄j = cj + αj − βj , where αj , βj are the increment and decrement

of cj , respectively. We claim that at least one of αj and βj is 0 based on

the property of weighted l1 norm for any j ∈ J ∪ J̄ . Thus, the problem

(RIOVLP1
1) can be turned into the model below.

min
∑
j∈J∪J̄

dj(αj + βj)

(RIOVLP2
1) s.t. πAj ≤ cj + αj − βj , j ∈ J, (2.7)

πAj = cj + αj − βj , j ∈ J̄ , (2.8)∑
j∈J̄

(cj + αj − βj)x
0
j = K, (2.9)

αj ≥ 0, j ∈ J ∪ J̄ , (2.10)

βj ≥ 0, j ∈ J ∪ J̄ . (2.11)

Associate a dual variable yj with the constraints (2.7) and (2.8), and a dual

variable z with the constraint (2.9). Then we can get its dual problem below.

max
∑
j∈J∪J̄

cjyj +
(
K −

∑
j∈J̄

cjx
0
j

)
z

(DRIOVLP1) s.t. Ay = 0, (2.12)

−yj ≤ dj , j ∈ J, (2.13)

−yj + x0jz ≤ dj , j ∈ J̄ , (2.14)

yj ≤ dj , j ∈ J, (2.15)

yj − x0jz ≤ dj , j ∈ J̄ , (2.16)

yj ≤ 0, j ∈ J. (2.17)

Delete the item (K−
∑

j∈J̄ cjx
0
j )z from the objective function of the problem
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(DRIOVLP1), we get a sub-problem (Dz) below.

ψ(z) := max
∑
j∈J∪J̄

cjyj

(Dz) s.t. Ay = 0, (2.18)

−yj ≤ dj , j ∈ J, (2.19)

−yj + x0jz ≤ dj , j ∈ J̄ , (2.20)

yj ≤ dj , j ∈ J, (2.21)

yj − x0jz ≤ dj , j ∈ J̄ , (2.22)

yj ≤ 0, j ∈ J. (2.23)

Associate the dual variable π̄ with the constraint (2.18), ᾱj with the con-

straints (2.19 and 2.20), β̄j with the constraints (2.21) and (2.22). If we treat

z as a constant, then the dual problem of (Dz) can be stated as follows.

ϕ(z) := min
∑
j∈J∪J̄

dj(ᾱj + β̄j) + z
∑
j∈J̄

(β̄j − ᾱj)x
0
j

(P z) s.t. π̄Aj − ᾱj + β̄j ≤ cj , j ∈ J, (2.24)

π̄Aj − ᾱj + β̄j = cj , j ∈ J̄ , (2.25)

ᾱj ≥ 0, j ∈ J ∪ J̄ , (2.26)

β̄j ≥ 0, j ∈ J ∪ J̄ . (2.27)

Notice that the problem (P z) can be regarded as a Lagrange relaxation of

(RIOVLP2
1) by introducing a Lagrange multiplier z to the constraint (2.9).

Furthermore, let y = x0 − y̆, then the problem (Dz) can be turned into

the following form.

min
∑
j∈J∪J̄

cj y̆j −
∑
j∈J̄

cjx
0
j

(D̆z) s.t. Ay̆ = b, (2.28)

0 ≤ y̆j ≤ dj , j ∈ J, (2.29)

(1− z)x0j − dj ≤ y̆j ≤ (1− z)x0j + dj , j ∈ J̄ . (2.30)
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It is obvious that the problem (D̆z) has the same objective function as (LP)

in (1.1) by deleting the constant −
∑

j∈J̄ cjx
0
j . As for the feasible region,

they have the same constraint condition Ay̆ = b. But they have different

upper and lower bounds of the variables for a given z. Hence, it provides us

a way to solve (D̆z) similar to the original problem (LP).

2.2. Properties of the function ψ(z)

Let FDz be the feasible region of the problem (Dz) for a given z ∈ R.
Next, we will discuss some properties of the feasible region FDz and objective

function ψ(z) for a given z ∈ R.

(P1) For a given z ∈ R, if FDz ̸= ∅, then the problem (Dz) has an optimal

solution and |ψ(z)| < +∞. It follows from −dj ≤ yj ≤ 0 for any j ∈ J

and x0jz−dj ≤ yj ≤ x0jz+dj for any j ∈ J̄ by constraints (2.19)-(2.23).

(P2) For any z ∈ [maxj∈J̄
−dj
x0j
,minj∈J̄

dj
x0j
], we have y = 0 ∈ FDz ̸= ∅ and

|ψ(z)| < +∞.

Theorem 2. Suppose z1 < z2 and |ψ(z1)|, |ψ(z2)| < +∞, then the function
ψ(z) has the following properties for any z ∈ [z1, z2].

(1) |ψ(z)| < +∞.
(2) ψ(z) is a continuous and piecewise function of z.
(3) ψ(z) is a concave function of z.

Proof. We first claim that the assumption |ψ(z1)|, |ψ(z2)| < +∞ for z1 <
z2 must hold due to property (P2). (1) Suppose ỹ and ȳ are the optimal
solutions of the problems (Dz1) and (Dz2) with objective values ψ(z1) and
ψ(z2), respectively. Let z = λz1 + (1 − λ)z2, where 0 ≤ λ ≤ 1. Next,
we will prove λỹ + (1 − λ)ȳ is a feasible solution of the problem (Dz). It
follows from Aỹ = 0 and Aȳ = 0 that A(λỹ + (1 − λ)ȳ) = 0 holds. It
follows from −ỹj ≤ dj and −ȳj ≤ dj that −(λỹj + (1 − λ)ȳj) ≤ dj holds
for any j ∈ J . Hence, the constraint (2.19) holds. In a similar way, the
constraints (2.21) and (2.23) hold. It follows from −ỹj ≤ dj − x0jz1 and

−ȳj ≤ dj−x0jz2 that −(λỹj+(1−λ)ȳj) ≤ λ(dj−x0jz1)+(1−λ)(dj−x0jz2) =
dj − x0j (λz1 + (1 − λ)z2) = dj − x0jz for any j ∈ J̄ . Hence, the constraint
(2.20) holds. In a similar way, the constraint (2.22) holds. Therefore, we
have FDz ̸= ∅ and |ψ(z)| < +∞ for any z ∈ [z1, z2] by property (P1).
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(2) We first claim that ψ(z) = ϕ(z) for any z ∈ [z1, z2] based on the
strong duality of linear programming. Furthermore, the problem (P z) has
an optimal solution (π̄z, ᾱz, β̄z) since its dual problem (Dz) is feasible and
bounded for any z ∈ [z1, z2] by (1). Therefore, there exists an optimal
solution (π̄z, ᾱz, β̄z) satisfying |π̄zi |, |ᾱzj |, |β̄zj | ≤M for any z ∈ [z1, z2], where
M = n!cmax with cmax = maxj=1,··· ,n |cj | is a large positive number by
Lemma 2.1 in Papadimitriou and Steiglitz (1998). Hence, if we add a set of
constraints: |π̄i| ≤ M , |ᾱj | ≤ M and |β̄j | ≤ M to the problem (P z), then
the optimal solution of problem (P z) will be unchanged. It renders that the
feasible region of (P z) becomes a bounded closed convex set. Hence, ϕ(z),
as well as ψ(z), is a continuous and piecewise function of z for z ∈ [z1, z2].

(3) Suppose zl < zr and zl, zr ∈ [z1, z2]. Let (π̄∗, ᾱ∗, β̄∗) be an optimal
solution of the problem (P z), where z = kzl + (1 − k)zr and 0 ≤ k ≤ 1.
Then we have

ϕ(z) = ϕ(kzl + (1− k)zr)

=
∑
j∈J∪J̄

dj(ᾱ
∗
j + β̄∗j ) + (kzl + (1− k)zr)

∑
j∈J̄

(β̄∗j − ᾱ∗
j )x

0
j

= k

( ∑
j∈J∪J̄

dj(ᾱ
∗
j + β̄∗j ) + zl

∑
j∈J̄

(β̄∗j − ᾱ∗
j )x

0
j

)

+ (1− k)

( ∑
j∈J∪J̄

dj(ᾱ
∗
j + β̄∗j ) + zr

∑
j∈J̄

(β̄∗j − ᾱ∗
j )x

0
j

)
≥ kϕ(zl) + (1− k)ϕ(zr).

Hence, ϕ(z), as well as ψ(z), is a concave function of z. □

Now we claim that the feasible region FDz may be empty for a given

z ∈ R. Next we present an example to illustrate it. Let A = [Em, Em]

and z0 = 2dmax

x0min
, where Em is an identity matrix, x0min = minj∈J̄ x

0
j and

dmax = maxj∈J∪J̄ dj . Then x0jz − dj ≥ x0jz − dmax > x0j
2dmax

x0min
− dmax ≥

2dmax − dmax = dmax for any j ∈ J̄ when z > z0. Therefore, we have

dmax < x0jz−dj ≤ yj ≤ x0jz+dj for any j ∈ J̄ . Consider the i-th constraint

in (2.18), we have yi + yi+m = 0. If i ∈ J̄ or i+m ∈ J̄ , then this constraint

can not hold since −dj ≤ yj ≤ 0 for any j ∈ J and yj > dmax for any j ∈ J̄ .

Unfortunately, this case must exist since J̄ ̸= ∅. Hence, FDz may be an

empty set for a given z > 0. In a similar way, FDz may be an empty set for
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a given z < 0. In these cases, ψ(z) is undefined.

Theorem 3. (1) If z1 < 0 and FDz1 = ∅, then FDz = ∅ for any z ≤ z1.
(2) If z2 > 0 and FDz2 = ∅, then FDz = ∅ for any z ≥ z2.

Proof. (1) Suppose there exists z0 < z1 satisfying FDz0 ̸= ∅. Then we have
FDz ̸= ∅ for any z ∈ [z0, 0] by Theorem 2, which contradicts that FDz1 = ∅.
Hence, the conclusion holds. In a similar way, (2) holds. □

For simplicity of discussion, we turn the problem (Dz) into a standard

LP problem by the following steps. (i) It follows from the constraint (2.23)

and dj > 0 that (2.21) can be omitted. (ii) Add relaxation variables ξj

to the constraints (2.19) and (2.20). (iii) Add relaxation variables ηj to

the constraints (2.22) and (2.23). (iv) Replace non-constrained variables

yj by two non-negative variables ẏj and ÿj . Then we get its maximization

standard LP problem below.

ψ(z) := max
∑
j∈J∪J̄

cj(ẏj − ÿj)

(Dz
s) s.t. Aẏ −Aÿ = 0, (2.31)

−ẏj + ÿj + ξj = dj , j ∈ J, (2.32)

−ẏj + ÿj + ξj = dj − x0jz, j ∈ J̄ , (2.33)

ẏj − ÿj + ηj = 0, j ∈ J, (2.34)

ẏj − ÿj + ηj = dj + x0jz, j ∈ J̄ , (2.35)

ẏ, ÿ, ξ, η ≥ 0. (2.36)

Let Ā, b̄z, c̄ and X̄ be the coefficient matrix, right-hand vector, cost co-

efficient vector and all variables of the problem (Dz
s), respectively. For

the convenience of further discussion, we assume J = {1, 2, · · · , k} and

J̄ = {k + 1, · · · , n}, where 0 ≤ k ≤ n− 1. Then we have

Ā =

 A −A 0 0

−En En En 0

En −En 0 En


m̄×n̄

, (2.37)
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c̄ = (c,−c,0,0), b̄z = (0, dJ , dJ̄ − zx0
J̄
,0, dJ̄ + zx0

J̄
)T , X̄T = (ẏ, ÿ, ξ, η),

where m̄ = 2n+m, n̄ = 4n and x0
J̄
is a row vector here. The corresponding

standard LP model can be formulated below.

ψ(z) := max c̄X̄

(Dz
s) s.t. ĀX̄ = b̄z,

X̄ ≥ 0.

Next we need to clarify the maximum value zl and minimum value zr sat-

isfying the property (1) and (2) in Theorem 3, respectively. For convenience,

we call them left and right break points, respectively.

Definition 1. A value zl < 0 is called the left break point of ψ(z), if
FDz = ∅ for any z < zl and FDz ̸= ∅ for any z ∈ [zl, 0]. A value zr > 0
is called the right break point of ψ(z), if FDz = ∅ for any z > zr and
FDz ̸= ∅ for any z ∈ [0, zr].

Theorem 4. (1) If there is a value z1 < 0 satisfying FDz1 = ∅, then there
exists a left break point zl. (2) If there is a value z2 > 0 satisfying FDz2 = ∅,
then there exists a right break point zr. (3) For any z ≥ zl and z ≤ zr,
|ψ(z)| < +∞.

Proof. (1) Note that FDz ̸= ∅ for any z ∈ [maxj∈J̄
−dj
x0j
,minj∈J̄

dj
x0j
] by

property (P2). Hence, we can assume that there exists z0 < 0 satisfying
FDz0 ̸= ∅. Let B be the optimal basis corresponding to the problem (Dz0

s ).
Consider the i-th basic variable: X̄z0

i = B−1
i b̄z0 = kiz0 + gi, where B

−1
i is

the i-th row of the inverse matrix B−1 and ki, gi are constants. Therefore,
when the optimal basis B changes to a non-optimal basis as z0 decreases,
there must be a non-negative basic variable that changes to a negative value.
Suppose zl is such a value. Then we have FDzl ̸= ∅. Furthermore, it follows
from property (1) in Theorem 2 that FDz ̸= ∅ for any z ∈ [zl, 0]. Hence, zl
is the left break point. The property (2) holds similarly. (3) This property
holds due to (1) and (2). □

Based on the previous discussions, we claim that there are four cases

of the left and right break points in the function ψ(z) as shown in Figure

1, where zl and zr represent the left and right break points, respectively.
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Figure 1: Four cases of left and right break points in the function ψ(z).
(a) zl, zr exist; (b) zr exists; (c) zl exists; (d) no zl, zr.

Notice that ψ(z) is a continuous piecewise linear function, we introduce the

following definition.

Definition 2. Let (zi, ψ(zi)) be an intersection point of two adjacent lines.
We call zi a turning coordinate.

3. Solve the problem (RIOVLP1) when A is unimodular

In this section, we solve the problem (RIOVLP1) when A is a unimodular

coefficient matrix. Firstly we analyze some properties of turning coordinates.

Secondly, we present an important theorem to determine the critical value

z∗ in an optimal solution (y∗, z∗) of the problem (DRIOVLP1). Thirdly, we

calculate the slope kz of a piece of segment in ψ(z) for a given z which is

not a turning coordinate. Then we present two algorithms to calculate the

left and right break points zl and zr. Finally, we propose an algorithm to

solve the problem (RIOVLP1).

Assumption 1. The coefficient matrix A is unimodular.

Assumption 2. The given feasible solution x0 and the weight vector d are
integral.

12



3.1. Properties of turning coordinates

To describe the form of left and right break points, as well as turning

points, we present the following lemma.

Lemma 1. Suppose Assumptions 1 and 2 hold. If zi is a turning coordinate,
then zi is in the form of ς

σ , where ς, σ are integers and |σ| ≤ 2|J̄ |x0max,
|ς| ≤ (n+ |J̄ |)dmax, x0max = maxj∈J̄ x

0
j .

Proof. It follows from Assumption 1 that the coefficient matrix Ā defined
as in (2.37) of the problem (Dz

s) is also a unimodular matrix. For a given
z ∈ R, if FDz ̸= ∅, then there exists an optimal basis matrix B of the
problem (Dz

s). Hence, the elements b−ij ∈ {0, 1,−1} for the inverse matrix

B−1 = (b−ij). Specifically, let b
1
ij , b

2
ij , b

3
ij be the elements of B−1

i corresponding

to j in (2.32), (2.33) and (2.35), respectively. Let X̄z
i be the i-th basic

variable corresponding to B. Then we have

X̄z
i = B−1

i b̄z

=
∑
j∈J

b1ijdj +
∑
j∈J̄

b2ij(dj − x0jz) +
∑
j∈J̄

b3ij(dj + x0jz)

=
∑
j∈J

b1ijdj +
∑
j∈J̄

(b2ijdj + b3ijdj) + z
∑
j∈J̄

x0j (b
3
ij − b2ij).

With the variation of z, the optimal basis matrix B of the problem (Dz
s)

will change at a value in the form of z =
∑

j∈J b
1
ijdj+

∑
j∈J̄ (b

2
ijdj+b

3
ijdj)∑

j∈J̄ x
0
j (b

2
ij−b3ij)

as in the

proof of Theorem 4. It is easy to know |
∑

j∈J b
1
ijdj +

∑
j∈J̄(b

2
ijdj + b

3
ijdj)| ≤

(n+ |J̄ |)dmax is an integer. Furthermore, |
∑

j∈J̄ x
0
j (b

2
ij − b3ij)| ≤ 2|J̄ |x0max is

also an integer. As a conclusion, the lemma holds. □

Corollary 1. Suppose zi, zj are two turning coordinates, then |zi − zj | ≥
1

(2|J̄ |x0max)2
.

Proof. Suppose zi =
ςi
σi

and zj =
ςj
σj
, then ςi, ςj , σi, σj ∈ Z and |σi|, |σj | ≤

2|J̄ |x0max. Hence,∣∣∣∣ ςiσi − ςj
σj

∣∣∣∣ = ∣∣∣∣ ςiσj − ςjσi
σiσj

∣∣∣∣ ≥ |ςiσj − ςjσi|
(2|J̄ |x0max)2

≥ 1

(2|J̄ |x0max)2
.

This completes the proof. □
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Let TC = { ςσ |ς, σ ∈ Z, |σ| ≤ 2|J̄ |x0max, |ς| ≤ (n + |J̄ |)dmax}, then a

turning coordinate must in TC, but the opposite is not true.

It follows from Lemma 1 that the optimal basis of the problem (Dz0
s )

keeps unchanged in its ϵ-neighborhood for a given value z0 /∈ TC and ϵ > 0.

It renders that the optimal solution (π̄∗, ᾱ∗, β̄∗) of the problem (P z0) keeps

unchanged for z ∈ [z0 − ϵ, z0 + ϵ]. Therefore, the slope of ψ(z) is kz =∑
j∈J̄(β̄

∗
j − ᾱ∗

j )x
0
j for z ∈ [z0 − ϵ, z0 + ϵ].

Corollary 2. For a given value z0 /∈ TC, if FDz0 ̸= ∅ and B is an optimal
basis of the problem (Dz0

s ), then there must exist ϵ > 0 satisfying that B is
also an optimal basis of the problem (Dz

s) for any z ∈ [z0 − ϵ, z0 + ϵ].

3.2. Solve the dual inverse problem (DRIOVLP1)

For the convenience of following discussion, we give the definition below.

Definition 3. Suppose (y∗, z∗) is an optimal solution of the problem (DRIO
VLP1), then we call z∗ a critical value.

If we can determine a critical value z∗, then we can solve the sub-

problem (Dz∗) and obtain its optimal solution y∗, which renders an optimal

solution (y∗, z∗) of the problem (DRIOVLP1). Hence, the main issue now is

how to determine z∗. To do so, we need to determine two critical consecutive

segments in the piecewise linear function ψ(z), whose slopes k1, k2 satisfy

k2 < cJ̄x
0
J̄
−K ≤ k1. Notice that there is only one slope of a linear function

for the left and right break points and there are cases that the left and

right break points do not exist as shown in Figure 1. We first introduce the

minimum and maximum turning coordinates z and z̄ to substitute the the

left and right break points. Then define the right slope of ψ(z) (if exists) as

k+z and the left slope of ψ(z) (if exists) as k−z .

Next, we propose an optimality condition to determine z∗ at each of the

four cases. Figure 2 shows the values z, z̄ and z∗ in each case, where the

red line represents the line with the slope δ = cJ̄x
0
J̄
−K in each subcases.

Theorem 5. Suppose (ẑ, ψ(ẑ)) is an intersection point of two consecutive
segments in the piecewise linear function ψ(z).

(1) Suppose FDz = ∅ for any z ∈ (−∞, z) ∪ (z̄,+∞). Then

14



Figure 2: The values z, z̄ and z∗ in each case of Theorem 5.

(1.1) If k−z̄ ≥ δ, then z∗ = z̄ is the critical value.
(1.2) If k+z < δ, then z∗ = z is the critical value.

(1.3) If k+ẑ < δ ≤ k−ẑ , then z
∗ = ẑ is the critical value.

(2) Suppose FDz ̸= ∅ for any z ∈ (−∞, z) and FDz = ∅ for any z ∈
(z̄,+∞). Then

(2.1) If k−z̄ ≥ δ, then z∗ = z̄ is the critical value.
(2.2) If k−z < δ, then the problem (RIOVLP1) is infeasible.

(2.3) If k+ẑ < δ ≤ k−ẑ , then z
∗ = ẑ is the critical value.

(3) Suppose FDz = ∅ for any z ∈ (−∞, z) and FDz ̸= ∅ for any z ∈
(z̄,+∞). Then

(3.1) If k+z̄ > δ, then the problem (RIOVLP1) is infeasible.
(3.2) If k+z ≤ δ, then z∗ = z is the critical value.

(3.3) If k+ẑ ≤ δ < k−ẑ , then z
∗ = ẑ is the critical value.

(4) Suppose FDz ̸= ∅ for any z ∈ (−∞, z) ∪ (z̄,+∞). Then
(4.1) If k+z̄ > δ, then the problem (RIOVLP1) is infeasible.
(4.2) If k−z < δ, then the problem (RIOVLP1) is infeasible.

(4.3) If k+ẑ ≤ δ ≤ k−ẑ , then z
∗ = ẑ is the critical value.

Proof. (1) (1.1) Suppose (ỹ, z̃) and ȳ are optimal solutions of the prob-

lems (DRIOVLP1) and (Dz̄), respectively. It is easy to know that z̃ ≤ z̄. If

15



z̃ < z̄, then ∑
j∈J∪J̄

cj ỹj + (K −
∑
j∈J̄

cjx
0
j )z̃ = cỹ − δz̃

≤ ψ(z̃)− δz̃

≤ k−z̄ (z̃ − z̄) + ψ(z̄)− δz̃, (ψ(z) is concave by Theorem 2.)

= ψ(z̄)− δz̄ + (z̃ − z̄)(−δ + k−z̄ )

≤ ψ(z̄)− δz̄

= cȳ − δz̄.

Hence, (ȳ, z̄) is also an optimal solution of the problem (DRIOVLP1) if

the equalities always hold in the above three inequalities. Otherwise, it

contradicts the optimality of (ỹ, z̃).

(1.2) Suppose (ỹ, z̃) and y are optimal solutions of (DRIOVLP1) and

(Dz), respectively. It is easy to know that z̃ ≥ z. If z̃ > z, then

cỹ − δz̃

≤ ψ(z̃)− δz̃

≤ k+z (z̃ − z) + ψ(z)− δz̃, (ψ(z) is concave by Theorem 2.)

= ψ(z)− δz + (z̃ − z)(−δ + k+z )

< ψ(z)− δz

= cy − δz.

which contradicts that (ỹ, z̃) is an optimal solution of (DRIOVLP1).

(1.3) Suppose (ỹ, z̃) and ŷ are optimal solutions of (DRIOVLP1) and
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(Dẑ), respectively. We will discuss it in two situations. (i) If z̃ > ẑ, then

cỹ − δz̃

≤ ψ(z̃)− δz̃

≤ k+ẑ (z̃ − ẑ) + ψ(ẑ)− δz̃, (ψ(z) is concave by Theorem 2.)

= ψ(ẑ)− δẑ + (z̃ − ẑ)(−δ + k+ẑ )

< ψ(ẑ)− δẑ

= cŷ − δẑ.

which contradicts that (ỹ, z̃) is an optimal solution of the problem (DRI-

OVLP1).

(ii) If z̃ < ẑ, then

cỹ − δz̃

≤ ψ(z̃)− δz̃

≤ k−ẑ (z̃ − ẑ) + ψ(ẑ)− δz̃, (ψ(z) is concave by Theorem 2.)

= ψ(ẑ)− δẑ + (z̃ − ẑ)(−δ + k−ẑ )

≤ ψ(ẑ)− δẑ

= cŷ − δẑ.

Then (ŷ, ẑ) is also an optimal solution of problem (DRIOVLP1) if the equal-

ities always hold in the above three inequalities. Otherwise, it contradicts

the optimality of (ỹ, z̃).

Notice that one and only one case holds due to the concavity of ψ(z).

In a similar way, we can show that (2),(3) and (4) hold. □

3.3. Calculate the slope kz for a given z /∈ TC

In this subsection, we focus on addressing the following two questions.

For a given z ∈ R, (Q1) if FDz ̸= ∅, then how to determine whether z is

a turning coordinate of an intersection point (z, ψ(z)) of two consecutive

segments in ψ(z)? (Q2) if z /∈ TC and FDz ̸= ∅, then how to calculate the

slope kz and obtain the left and right turning coordinates closest to z? To
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solve these problems, we make the assumption below.

Assumption 3. There is an algorithm Az not only to determine whether
FDz is an empty set for a given z ∈ R but also to solve the problem (Dz) or
(Dz

s) or (D̆z) and calculate ψ(z) when FDz ̸= ∅.

Let ∆ = 1
(2|J̄ |x0max)

2 . To answer the question (Q1), the following lemma

is clearly valid.

Lemma 2. Suppose Assumption 3 holds and FDz ̸= ∅. Let z1 = z−∆
2 , z2 =

z − ∆
4 , z3 = z + ∆

4 ,z4 = z + ∆
2 , kz,z1 = ψ(z)−ψ(z1)

z−z1 ,kz,z2 = ψ(z)−ψ(z2)
z−z2 ,kz,z3 =

ψ(z)−ψ(z3)
z−z3 and kz,z4 = ψ(z)−ψ(z4)

z−z4 . If kz,z1 = kz,z2, kz,z3 = kz,z4 and kz,z2 ̸=
kz,z3, then z is a turning coordinate of an intersection point (z, ψ(z)) of two
consecutive segments in the function ψ(z).

Next, we concentrate on (Q2) calculating the slope kz for a given z /∈ TC

and FDz ̸= ∅. It seems straightforward to calculate kz =
ψ(z+ϵ)−ψ(z)

ϵ , where ϵ

is a very small positive real number. However, it is a dilemma to determine

ϵ such that (z, z + ϵ) does not contain a turning coordinate. Hence, we

calculate kz by duality theory of LP. We can obtain an optimal solution

(π̄∗, ᾱ∗, β̄∗) of the problem (P z) based on an optimal solution y∗ of the

problem (Dz). Therefore, we have kz =
∑

j∈J̄(β̄
∗
j − ᾱ∗

j )x
0
j by Corollary 2.

If FDz0 ̸= ∅ and z0 /∈ TC, then we will discuss how to calculate the left

and right turning coordinates closest to z0 in detail. First, we choose z1 ∈ R
satisfying the conditions (C1), (C2) or (C1), (C3) below.

(C1) z1 ̸= z0 and z1 /∈ TC. (C2) If z1 < z0, then [z1, z0] ∩ TC = ∅. (C3)
If z1 > z0, then [z0, z1] ∩ TC = ∅.

Suppose y0, y1 are the optimal solutions of problems (Dz0) and (Dz1),

respectively and zl0, z
r
0 are the left and right turning coordinates closest

to z0, respectively. Let kj =
y0j−y1j
z0−z1 and yzj = kj(z − z0) + y0j , j ∈ J ∪ J̄ .

Notice that (Dz
s) has the same optimal basis for any z ∈ [zl0, z

r
0]. Therefore,

yz is the optimal solution of the problem (Dz) for any z ∈ [zl0, z
r
0] if and

only if yz satisfies the constraints (2.19)-(2.23), which can be formulated as

−dj ≤ yzj ≤ 0 for j ∈ J and x0jz − dj ≤ yzj ≤ x0jz + dj for j ∈ J̄ . Therefore,

we have the following properties. 1) if j ∈ J and kj > 0, then
kjz0−dj−y0j

kj
≤
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z ≤ kjz0−y0j
kj

. 2) if j ∈ J and kj < 0, then
kjz0−y0j

kj
≤ z ≤ kjz0−dj−y0j

kj
. 3)

if j ∈ J̄ and kj > x0j , then
kjz0−dj−y0j

kj−x0j
≤ z ≤ kjz0+dj−y0j

kj−x0j
. 4) if j ∈ J̄ and

kj < x0j , then
kjz0+dj−y0j

kj−x0j
≤ z ≤ kjz0−dj−y0j

kj−x0j
. Let z10 = max

j∈J,kj>0

kjz0−dj−y0j
kj

,

z20 = max
j∈J,kj<0

kjz0−y0j
kj

, z30 = max
j∈J̄ ,kj>x0j

kjz0−dj−y0j
kj−x0j

, z40 = max
j∈J̄ ,kj<x0j

kjz0+dj−y0j
kj−x0j

,

z50 = min
j∈J,kj>0

kjz0−y0j
kj

, z60 = min
j∈J,kj<0

kjz0−dj−y0j
kj

, z70 = min
j∈J̄ ,kj>x0j

kjz0+dj−y0j
kj−x0j

and

z80 = min
j∈J̄ ,kj<x0j

kjz0−dj−y0j
kj−x0j

. Hence, we have

zl0 = max{z10 , z20 , z30 , z40}, zr0 = min{z50 , z60 , z70 , z80}. (3.38)

Based on the above analysis, we have the following lemma.

Lemma 3. Let kj =
y0j−y1j
z0−z1 and yzj = kj(z − z0) + y0j , j ∈ J ∪ J̄ . Then yz

is the optimal solution of the problem (Dz) for any z ∈ [zl0, z
r
0], where z

l
0, z

r
0

are defined as in (3.38).

3.4. Calculate the left and right break points zl and zr

In this subsection, we present two algorithms LBP and RBP to calcu-

late the left and right break points zl and zr (if exist), respectively. As they

are similar, we only discuss the main idea to calculate zl in detail.

Firstly, we check the existence of the left break point zl. Initialize zl :=

−(n+ |J̄ |)dmax−1 and z̄l := 0. If FDzl ̸= ∅, then the left break point zl dose

not exist. Otherwise, we can use a binary search method to determine an

interval [zl, z̄l] which satisfies z̄l−zl < ∆
2 and FDzl = ∅, FDz̄l ̸= ∅. Secondly,

let z0 = z̄l and z1 = z0 +
∆
2 , then we have FDz1 ̸= ∅ and z0, z1 satisfy the

conditions (C1) and (C3) in subsection 3.3. Finally, calculate the optimal

solutions y0, y1 of the problems (Dz0) and (Dz1). Then we can get zl = zl0
by (3.38).

Algorithm 1 zl=LBP(A, b, c, d, x0,K).

Input: The coefficient matrix A, the vectors b, c, d, x0 and a value K.

Output: The left break point zl.
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1: Let zl := −(n+ |J̄ |)dmax − 1, z̄l := 0 and ∆ := 1
(2|J̄ |x0max)

2 .

2: if FDzl ̸= ∅ then

3: return zl := −∞.

4: else

5: while z̄l − zl ≥ ∆
2 do

6: Let z :=
zl+z̄l

2 .

7: if FDz ̸= ∅ then

8: z̄l := z.

9: else

10: zl := z.

11: end if

12: end while

13: Let z1 := z̄l +
∆
2 , z0 := z̄l and y

0, y1 be the optimal solutions of the

problems (Dz0) and (Dz1), respectively.

14: return zl := zl0 by (3.38).

15: end if

Next, we give the algorithm below to calculate zr similar to algorithm 1.

Algorithm 2 zr=RBP(A, b, c, d, x0,K).

Input: The coefficient matrix A, the vectors b, c, d, x0 and a value K.

Output: The right break point zr.

1: Let z̄r := (n+ |J̄ |)dmax + 1, zr := 0 and ∆ := 1
(2|J̄ |x0max)

2 .

2: if FDz̄r ̸= ∅ then

3: return zr := +∞.

4: else

5: while z̄r − zr ≥ ∆
2 do

6: Let z :=
zr+z̄r

2 .

7: if FDz ̸= ∅ then

8: zr := z.

9: else

10: z̄r := z.

11: end if

12: end while
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13: Let z1 := zr − ∆
2 , z0 := zr and y0, y1 be the optimal solutions of the

problems (Dz0) and (Dz1), respectively.

14: return zr := zr0 by (3.38).

15: end if

3.5. An algorithm to solve the inverse problem (RIOVLP1)

In this subsection, we design an algorithm for the problem (RIOVLP1).

Based on the previous analysis, the problem (RIOVLP1) can be solved as

long as the critical value z∗ is determined.

Now we describe the main idea to calculated z∗. Firstly, calculate the

left and right break points zl, zr by Algorithms 1 and 2. If k+zl ≤ δ, then

z∗ := zl is the critical value by Case (3.2) in Theorem 5. Similarly, if

k−zr ≥ δ, then z∗ := zr is the critical value by Case (1.1) in Theorem 5.

Initialize τ̄0 := (n+ |J̄ |)dmax + 1 and τ0 = −τ̄0. If kτ0 < δ or kτ̄0 > δ, then

the problem (RIOVLP1) is infeasible. Now it comes to the case that the

problem (RIOVLP1) is feasible and zl or zr is not the critical value, then we

can determine an interval [τκ, τ̄κ] including z
∗ by a binary search method

which satisfies k−τ̄κ < δ ≤ k+τκ . In the κ-th iteration of the binary search

method, if the current value zκ is a turning coordinate and k+zκ ≤ δ ≤ k−zκ ,

then z∗ = zκ is the critical value by Case (4.3) in Theorem 5. Otherwise,

the binary search method terminates when the length of |τ̄κ − τκ| < ∆. In

this case, there is only one turning coordinate in the interval [τκ, τ̄κ], which

is just the critical value.

Next, we discuss the following questions. (Q1) If z /∈ TC and FDz ̸= ∅,
then how to calculate the slope kz of ψ(z). (Q2) If z is the left break point,

then how to calculate the right slope k+z of ψ(z). (Q3) If z is the right

break point, then how to calculate the left slope k−z of ψ(z). To answer the

question (Q1), let yz be the optimal solution of the problem (Dz). Calculate

the optimal solution (π̄z, ᾱz, β̄z) of the problem (P z) by duality theory of

LP. Hence, we have kz :=
∑

j∈J̄(β̄
z
j − ᾱzj )x

0
j . For the question (Q2), let

z′ := z + ∆
2 , then z

′ /∈ TC and FDz′ ̸= ∅. Hence, we have k+z := kz′ , where

kz′ can be calculated similar to the question (Q1). As for the question (Q3),

let z′ := z − ∆
2 , then z′ /∈ TC and FDz′ ̸= ∅. Hence, we have k−z := kz′ ,
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where kz′ can be calculated similar to the question (Q1). For convenience,

we give an algorithm to calculate kz, k
+
z or k−z .

Algorithm 3 kz=Slope(zl, zr, z).

Input: The left and right break points zl, zr and a value z.

Output: The slope kz of ψ(z).

1: if z = zl then

2: Let z′ := z + ∆
2 .

3: else if z = zr then

4: Let z′ := z − ∆
2 .

5: else

6: Let z′ := z.

7: end if

8: Let yz
′
be the optimal solution of the problem (Dz′). Calculate the

optimal solution (π̄z
′
, ᾱz

′
, β̄z

′
) of the problem (P z

′
) by duality theory of

LP.

9: return kz :=
∑

j∈J̄(β̄
z′
j − ᾱz

′
j )x

0
j .

Next, we give Algorithm 4 to solve the problem (RIOVLP1).

Algorithm 4 c∗=RIOVLP(A, b, c, d, x0,K).

Input: The coefficient matrix A, the vectors b, c, d, x0 and a value K.

Output: An optimal solution c∗ of the problem (RIOVLP1).

1: Calculate zl :=LBP(A, b, c, d, x0,K) and zr :=RBP(A, b, c, d, x0,K).

2: Initialize ∆ := 1
(2|J̄ |x0max)

2 , δ := cJ̄x
0
J̄
−K, z∗ := +∞ and κ := 0.

3: if zl = −∞ then

4: Let τ0 := −(n+ |J̄ |)dmax − 1 and kτ0 :=Slope(zl, zr, τ0).

5: if kτ0 < δ then

6: The problem (RIOVLP1) is infeasible and stop.

7: end if

8: else

9: Let τ0 := zl and k
+
τ0

:=Slope(zl, zr, τ0).

10: if k+τ0 ≤ δ then

11: Let z∗ := zl.

12: end if
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13: end if

14: if zr = +∞ then

15: Let τ̄0 := (n+ |J̄ |)dmax + 1 and kτ̄0 :=Slope(zl, zr, τ̄0).

16: if kτ̄0 > δ then

17: The problem (RIOVLP1) is infeasible and stop.

18: end if

19: else

20: Let τ̄0 := zr and k
−
τ̄0 :=Slope(zl, zr, τ̄0).

21: if k−τ̄0 ≥ δ then

22: Let z∗ := zr.

23: end if

24: end if

25: while τ̄κ − τκ ≥ ∆ and z∗ = +∞ do

26: Let zκ :=
τ̄κ+τκ

2 , z1κ := zκ − ∆
2 , z

2
κ := zκ − ∆

4 , z
3
κ := zκ + ∆

4 and

z4κ := zκ +
∆
2 .

27: Let k1κ := ψ(zκ)−ψ(z1κ)
zκ−z1κ

, k2κ := ψ(zκ)−ψ(z2κ)
zκ−z2κ

, k3κ := ψ(zκ)−ψ(z3κ)
zκ−z3κ

and k4κ :=

ψ(zκ)−ψ(z4κ)
zκ−z4κ

.

28: if k1κ = k2κ and k3κ = k4κ and k2κ ̸= k3κ then

29: if k4κ ≥ δ then

30: Update τκ+1 := z4κ and τ̄κ+1 := τ̄κ.

31: else if k1κ < δ then

32: Update τ̄κ+1 := z1κ and τκ+1 := τκ.

33: else

34: Update z∗ := zκ.

35: end if

36: else

37: Let kzκ :=Slope(zl, zr, zκ).

38: if kzκ ≥ δ then

39: Update τκ+1 := zκ and τ̄κ+1 := τ̄κ.

40: else

41: Update τ̄κ+1 := zκ and τκ+1 := τκ.

42: end if
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43: end if

44: Update κ := κ+ 1.

45: end while

46: if z∗ = +∞ then

47: Let kτκ :=Slope(zl, zr, τκ) and kτ̄κ :=Slope(zl, zr, τ̄
κ).

48: Calculate z∗ :=
ψ(τ̄κ)−ψ(τκ)−kτ̄κ τ̄κ+kτκτκ

kτκ−kτ̄κ
.

49: end if

50: Let y∗ be the optimal solution of the problem (Dz∗). Then (y∗, z∗) be

the optimal solution of the problem (DRIOVLP1).

51: Calculate the optimal solution (π∗, α∗, β∗) of the problem (RIOVLP2
1)

by duality theory of LP.

52: return c∗ := c+ α∗ − β∗.

For convenience, we define L = max{dmax, x0max, n}. Then we can get

the time complexity of Algorithm 4.

Theorem 6. Algorithm 4 can solve the problem (RIOVLP1) by solving the
problem (Dz) O(logL) times at most.

Proof. The correctness of Algorithm 4 can be obtained by the main idea
of the algorithm and Theorem 5. Now we analyze the time complexity.
The main computation is in Line 1 and the while loop in Lines 25-45,
which are all performed by a binary search method until the length of
|τ̄κ − τκ| < ∆. We only need to calculate the number of iterations in the
while loop. The initial interval length is |τ̄0 − τ0| = 2(n+ |J̄ |)dmax + 2 and
the interval length will be reduced by at least half in each iteration of a
binary search method. Suppose there are t iterations in the while loop in
the worst case. Then we have

(
2(n + |J̄ |)dmax + 2

)
(12)

t < ∆ = 1
(2|J̄ |x0max)

2 ,

which means t > 2 log(2|J̄ |x0max) + log
(
2(n + |J̄ |)dmax + 2

)
. Hence, we

have t = ⌈2 log(2|J̄ |x0max) + log
(
2(n + J̄)dmax + 2

)
⌉ ≤ ⌈2 log(2|J̄ |x0max) +

log 3(n + J̄)dmax⌉=O(logmax{dmax, x0max, n}) = O(logL). Notice that the
Algorithm 4 needs to calculate the problem (Dz) at most five times in each
iteration. Therefore, the conclusion holds. □

4. Applications to the Hitchcock and Shortest Path problems

In this section, we apply the previous research methods to the restricted

inverse optimal value problems on Hitchcock and shortest path problem
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under weighted l1 norm, respectively.

As these two problems can finally be transformed into a minimum cost

flow (MCF ) problem, we first introduce the problem (MCF ) in Ahuja and

Orlin (1993).

Let G(V,E, c, u) be a directed network with a cost cij > 0 and a capacity

uij > 0 associated with every arc (i, j) ∈ E. We associate with each node

i ∈ V a supply b(i) > 0 or a demand b(i) < 0. Suppose
∑

i∈V b(i) = 0, then

the problem (MCF ) can be stated as follows.

min
∑

(i,j)∈E

cijxij

(MCF) s.t.
∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = b(i), i ∈ V,

0 ≤ xij ≤ uij , (i, j) ∈ E.

So far, the best strong polynomial time complexity for solving the prob-

lem (MCF ) is O(|E| log |V |(|E|+ |V | log |V |)) presented by Orlin (1993).

4.1. The restricted inverse optimal value problem on Hitchcock problem un-

der weighted l1 norm

In this subsection, we study the restricted inverse optimal value problem

(RIOVHC 1) on Hitchcock problem under weighted l1 norm.

The Hitchcock problem can be described as follows. We have m sources

of some commodity, each with a supply of ai > 0 units, i = 1, · · · ,m, and

n terminals, each with a demand of bj > 0 units, j = 1, · · · , n. Suppose∑m
i=1 ai =

∑n
j=1 bj . There is a unit cost cij > 0 of sending the commodity

from source i to terminal j. We aim to satisfy the demands at minimum
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cost. Hence, the Hitchcock problem (HC ) can be stated as follows.

min

m∑
i=1

n∑
j=1

cijxij

(HC) s.t.

n∑
j=1

xij = ai, i = 1, · · · ,m,

m∑
i=1

xij = bj , j = 1, · · · , n,

xij ≥ 0.

Let A and c be the coefficient matrix and cost vector of the problem

(HC ), respectively. The problem (RIOVHC 1) can be described as follows.

Given a feasible solution x0 of the problem (HC ), a weight vector d > 0 and

a real number K, we aim to adjust the cost vector c to c̄ under weighted l1

norm such that x0 becomes an optimal solution of the problem (HC ) under

c̄ and c̄x0 equals K.

Note that A is a unimodular matrix. Suppose Assumption 2 holds. Let

J = {(i, j)|x0ij = 0} and J̄ = {(i, j)|x0ij > 0}. Therefore, if we can solve

the following problem (HC-D̆z), then the problem (RIOVHC 1) can also be

solved by Algorithm 4.

min
∑

(i,j)∈J∪J̄

cijxij −
∑

(i,j)∈J̄

cijx
0
ij

(HC-D̆z) s.t.
n∑
j=1

xij = ai, i = 1, · · · ,m,

m∑
i=1

xij = bj , j = 1, · · · , n,

0 ≤ xij ≤ dij , (i, j) ∈ J,

(1− z)x0ij − dij ≤ xij ≤ (1− z)x0ij + dij , (i, j) ∈ J̄ .

Let x′ij = xij for any (i, j) ∈ J , x′ij = xij + dij − (1 − z)x0ij for any

(i, j) ∈ J̄ , a′i = ai −
∑

j:(i,j)∈J̄
(
(1 − z)x0ij − dij

)
, i = 1, . . . , n and b′j =
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bj −
∑

i:(i,j)∈J̄
(
(1− z)x0ij − dij

)
, j = 1, . . . , n. Hence, the problem (HC-D̆z)

can be turned into the following form.

min
∑

(i,j)∈J∪J̄

cijx
′
ij −

∑
(i,j)∈J̄

cij(dij + zx0ij)

(HC-D̆z) s.t.
∑

j:(i,j)∈J∪J̄

x′ij = a′i, i = 1, · · · ,m,

∑
i:(i,j)∈J∪J̄

x′ij = b′j , j = 1, · · · , n,

0 ≤ x′ij ≤ dij , (i, j) ∈ J,

0 ≤ x′ij ≤ 2dij , (i, j) ∈ J̄ .

Obviously, we have
∑m

i=1 a
′
i =

∑n
j=1 b

′
j since

∑m
i=1 ai =

∑n
j=1 bj . Further-

more, if there exists a′i < 0 or b′j < 0, then the problem (HC-D̆z) is infeasible.

Otherwise, the problem (HC-D̆z) is a Hitchcock problem with upper bound

constraints, which can be transformed into an (MCF ) problem. Therefore,

we can obtain the time complexity of the problem (RIOVHC 1).

Theorem 7. The restricted inverse optimal value problem (RIOVHC1) on
Hitchcock problem under weighted l1 norm can be solved by Algorithm 4 in
O
(
(m log n(m+ n log n)) logL

)
time.

Next, we present an example to execute Algorithm 4 for the problem

(RIOVHC 1).

Example 1. Let v1, v2 be the sources of some commodity with a supply

of a1 := 8, a2 := 12 units, and three terminals v3, v4, v5 with a demand of

b1 := 5, b2 := 4, b3 := 11 units. There is a unit cost cij > 0 of sending the

commodity from source i to terminal j as shown in Figure 3. Let x0 :=

(3, 2, 3, 2, 2, 8) be a feasible transportation strategy. Let d := (6, 4, 2, 5, 4, 3)

and K := 50. We aim to adjust the vector c to c̄ under weighted l1 norm

such that x0 becomes an optimal transportation strategy whose cost is just

K under c̄.

(1) Calculate J := ∅, J̄ := {1, 2, 3, 4, 5, 6}, dmax := 6, x0max := 8, ∆ :=
1

(2|J̄ |x0max)
2 := 1

9216 and δ := cJ̄x
0
J̄
−K := −6. (2) Calculate zl := − 5

11 and

zr := 5
11 by Algorithms 1 and 2. (3) Let τ0 := zl and τ̄0 := zr. Calculate
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Figure 3: An example of the problem (RIOVHC 1).

k+τ0 := 32 and k−τ̄0 := −17. Therefore, the critical vale z∗ is located in

the interval [τ0, τ̄0] since k
+
τ0

≥ δ > k−τ̄0 . We divide the interval [τ0, τ̄0] by

a binary search method. Let z0 :=
τ0+τ̄0

2 := 0. Calculate z10 := − 1
18432 ,

z20 := − 1
36864 , z

3
0 := 1

36864 , z
4
0 := 1

18432 , and k
1
0 := k20 := −4, k30 := k40 := −8.

Hence, z0 is a turning coordinate. Notice that k
4
0 < δ := −6 ≤ k10. Therefore,

z0 is the critical value and the optimal solution of the problem (RIOVHC 1)

is c∗ := (5,3.5, 1,5,3.5, 1) as shown in Figure 3. Furthermore, we can draw

the graph of function ψ(z) by enumerating z in the interval [zl, zr] as shown

in Figure 4, where the green dots represent the turning coordinates and the

red dot is the critical value.

4.2. The restricted inverse optimal value problem on shortest path problem

under weighted l1 norm

In this subsection, we study the restricted inverse optimal value problem

on shortest path problem under weighted l1 norm (RIOVSP1).

Let G = (V,E, c) be a directed network, where V , E and c denote the

node set, the edge set and the edge cost vector, respectively. Let nodes s and

t denote two specified nodes. Suppose the network G does not contain any

negative cost cycle, then the s − t shortest path problem can be described
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Figure 4: The graph of function ψ(z) in Example 1.

as follows.

min
∑

(i,j)∈E

cijxij

(SP) s.t.
∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = 1, i = s,

∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = 0, i /∈ {s, t},

∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = −1, i = t,

xij ≥ 0, (i, j) ∈ E.

The problem (RIOVSP1) can be described as follows. Let P 0 be a

given s− t path and x0 be the corresponding 0-1 vector whose component 1

indicating the edges on P 0. Let d > 0 be the weight vector and K be a real

number. We aim to adjust the cost vector c to c̄ under weighted l1 norm

such that x0 becomes a shortest path whose cost equals K on new network

G = (V,E, c̄).

Obviously, the coefficient matrix of the problem (SP) is unimodular.
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Suppose Assumption 2 holds. Let J = {(i, j)|x0ij = 0} and J̄ = {(i, j)|x0ij =
1}. Then the problem (RIOVSP1) can also be solved by Algorithm 4 as

long as the following problem (SP-D̆z) can be solved.

min
∑

(i,j)∈E

cijxij −
∑

(i,j)∈J̄

cij

(SP -D̆z) s.t.
∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = 1, i = s,

∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = 0, i /∈ {s, t},

∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = −1, i = t,

0 ≤ xij ≤ dij , (i, j) ∈ J,

1− z − dij ≤ xij ≤ 1− z + dij , (i, j) ∈ J̄ .

Let x′ij = xij for any (i, j) ∈ J and x′ij = xij − 1 + z + dij for any

(i, j) ∈ J̄ . For convenience, we assume P 0 = j0(s), j1, . . . , jk, jk+1(t). Let

b′(i) = 1− (1− z− dij1) for i = s, b′(i) = −(1− z− dijh+1
)+ (1− z− djh−1i)

for i = jh and 1 ≤ h ≤ k, and b′(i) = −1 + (1− z − djki) for i = t.

Hence, the problem (SP-D̆z) can be turned into following form.

min
∑

(i,j)∈E

cijx
′
ij −

∑
(i,j)∈J̄

cij(z + dij)

(SP -D̆z) s.t.
∑

j:(i,j)∈E

x′ij −
∑

j:(j,i)∈E

x′ji = b′(i), i = s,

∑
j:(i,j)∈E

x′ij −
∑

j:(j,i)∈E

x′ji = b′(i), i = jh, h = 1, . . . , k,

∑
j:(i,j)∈E

x′ij −
∑

j:(j,i)∈E

x′ji = 0, i /∈ V (P 0),

∑
j:(i,j)∈E

x′ij −
∑

j:(j,i)∈E

x′ji = b′(i), i = t,

0 ≤ x′ij ≤ dij , (i, j) ∈ J,

0 ≤ x′ij ≤ 2dij , (i, j) ∈ J̄ .
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Notice that for each edge (jh, jh+1) ∈ P0 (h = 0, 1, · · · , k), there is one

item −(1−z−djhjh+1
) for i = jh and one item +(1−z−djhjh+1

) for i = jh+1

in b′(i). Then we have
∑

i∈V b
′(i) =

∑
i∈V (P 0) b

′(i) = 0. Hence, for a given

z ∈ R, the problem (SP-D̆z) can be transformed into an (MCF ) problem.

Therefore, we can obtain the time complexity of the problem (RIOVSP1).

Theorem 8. The restricted inverse optimal value problem (RIOVSP1) on
shortest path under weighted l1 norm can be solved by Algorithm 4 in O

(
(m log

n(m + n log n)) logmax{dmax, n}
)
time. Furthermore, the time complexity

can be reduced to O
(
(m log n(m+n log n)) log n

)
under unit l1 norm, where

dmax = 1.

Next, we present an example to execute Algorithm 4 for the problem

(RIOVSP1).

Example 2. Let G(V,E, c) be a directed weighted graph as shown

in Figure 5, P 0 := {e2, e6, e10} (the read edges) be a given s − t path,

c := (2, 3, 7, 8, 5, 6, 4, 9, 1, 10), d := (10, 3, 8, 2, 5, 1, 4, 9, 7, 6) and K := 18.

We aim to adjust the vector c to c̄ under weighted l1 norm such that P 0

becomes a shortest s− t path whose length is just K under c̄.

Figure 5: An example of the problem (RIOVSP1).

(1) Calculate J := {1, 3, 4, 5, 7, 8, 9}, J̄ := {2, 6, 10}, dmax := 10, x0max :=

1, ∆ := 1
(2|J̄ |x0max)

2 := 1
36 and δ := cJ̄x

0
J̄
−K := 1. (2) Calculate zl := −1 and
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zr := 12 by Algorithms 1 and 2. (3) Let τ0 := zl and τ̄0 := zr. Calculate

k+τ0 := 11 and k−τ̄0 := −13. Therefore, the critical vale z∗ is located in

the interval [τ0, τ̄0] since k
+
τ0

≥ δ > k−τ̄0 . We divide the interval [τ0, τ̄0] by a

binary search method. Let z0 :=
τ0+τ̄0

2 := 11
2 . Calculate z

1
0 := 395

72 , z
2
0 := 791

144 ,

z30 := 793
144 , z

4
0 := 397

72 , and k10 := k20 := k30 := k40 := 11. Hence, z0 is not a

turning coordinate. Calculate kz0 := 11. Hence, kz0 ≥ δ and τ1 := z0 :=
11
2 ,

τ̄1 := τ̄0 := 12. We continue to divide the interval [τ1, τ̄1] by a binary search

method. After nine iterations, we get the final interval [τ9, τ̄9] := [3063512 ,
769
128 ].

(4) Calculate kτ̄9 := 0, kτ9 := 11, ψ(τ̄9) := 77 and ψ(τ9) :=
13902
181 . Hence,

z∗ :=
ψ(τ̄9)−ψ(τ9)−kτ̄9 τ̄9+kτ9τ9

kτ9−kτ̄9
:= 6. Therefore, the optimal solution of the

problem (RIOVSP1) is c∗ := (2, 3, 7, 8, 5,5, 4, 9,11, 10) as shown in Figure

5. Furthermore, we can draw the graph of function ψ(z) by enumerating z

in the interval [zl, zr] as shown in Figure 6, where the green circles represent

the turning coordinates and the red dot is the critical value.

Figure 6: The graph of function ψ(z) in Example 2.

5. Conclusions and further research

In this paper, we mainly study the restricted inverse optimal value prob-

lem on (LP) under weighted l1 norm. Firstly, we construct the mathe-

32



matical model of the problem (RIOVLP1) by the dual theories, which is a

linear programming problem. Secondly, we introduce a sub-problem (Dz)

of the dual inverse problem (DRIOVLP1) with respect to a given value z

which only changes the upper and lower bounds of the variables compared

to the original (LP) problem. Thirdly, we design a binary search algorithm

to calculate the critical value z∗ corresponding the optimal solution (y∗, z∗)

of the dual problem (DRIOVLP1). In each iteration, we need to solve a

sub-problem problem (Dz), which can be generally solved by an algorithm

for the the original (LP) problem. Finally, we can obtain an optimal solu-

tion of the inverse problem (RIOVLP1) by complementary slackness of LP.

The time complexity is O(T z logL), where L = max{dmax, x0max, n} and T z

is the time complexity to solve the sub-problem (Dz). Finally, we apply

the research methods to some restricted inverse optimal value problems on

Hitchcock and shortest path problems, where the sub-problem (Dz) can be

transformed into minimum cost flow problems.

We do not consider the bound constraints on the adjustment amount

in this paper, which may render some elements of the adjusted vector c̄

too small or too large. In the future, we will study the bounded restricted

inverse optimal value problem on LP under weighted l1 norm and other

norms. Furthermore, if the original LP problem is not standard, then we will

consider whether our research results can be used to solve the corresponding

inverse optimal value problem.
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