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Abstract
Autism Spectrum Disorder (ASD) is a chronic condition characterised by impairments in
social interaction and communication. Early detection of ASD is desired, and there exists
a demand for the development of diagnostic aids to facilitate this. A lightweight Invo-
lutional Neural Network (INN) architecture has been developed to diagnose ASD. The
model follows a simpler architectural design and has less number of parameters than the
state‐of‐the‐art (SOTA) image classification models, requiring lower computational re-
sources. The proposed model is trained to detect ASD from eye‐tracking scanpath (SP),
heatmap (HM), and fixation map (FM) images. Monte Carlo Dropout has been applied to
the model to perform an uncertainty analysis and ensure the effectiveness of the output
provided by the proposed INN model. The model has been trained and evaluated using
two publicly accessible datasets. From the experiment, it is seen that the model has
achieved 98.12% accuracy, 96.83% accuracy, and 97.61% accuracy on SP, FM, and HM,
respectively, which outperforms the current SOTA image classification models and other
existing works conducted on this topic.
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1 | INTRODUCTION

Autism spectrum disorder (ASD), commonly referred to as
autism, is a widespread, highly heritable, diverse neuro-
developmental condition with cognitive underpinnings and
often co‐occuring with other disorders [1]. ASD is a diversified
impairment, and indicating this diversity, the term autism has

been adopted in a variety of forms to designate both a broader
manifestation and a specific diagnosis since its classification as
a subset of pervasive developmental disorders. Autism is
characterised by difficulties with interpersonal interaction and
engagement, sensorial abnormalities, repetitive actions, and
varying degrees of intellectual limitation. Figure 1 depicts the
symptoms of ASD [2]. ASD is one of the most common forms
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of impairment worldwide. The current estimation shows that
one in a hundred children are affected by it globally. ASD has a
frequency of about under 1% globally, although estimates are
higher in high‐income nations [3]. Boys are over four times
more likely to have ASD than girls. During the 2009–2017
research period, about 1 in 6 (17%) children who are aged
3–17 years were diagnosed with a developmental impairment,
as per the report by their parents. Among these conditions
were ASD, attention‐deficit disorder, cerebral palsy, etc. [4].
This estimation is typical, although reported occurrence varies
widely between research studies. However, several rigorous
investigations have revealed noticeably higher numbers. Un-
known is the frequency of ASD in several low and middle‐
income nations.

Currently, there is no treatment for ASD that will result in
a full recovery [5]. Nevertheless, early diagnosis and treatment
can alleviate the situation. Therefore, autistic people require
adequate support and consideration [6]. Due to the complex-
ities, diversity, and uniformity of ASD, medical guidance doc-
uments recommend multidisciplinary teams for ASD diagnosis
[7, 8]. The most sensitive and specific diagnostic tests are
the Autism Diagnostic Observation Schedule (ADOS) and the
Autism Diagnostic Interview‐Revised (ADI‐R) [9]. Despite the
fact that these tools are effective at identifying ASD‐related
behaviours, their ‘diagnostic discrimination and required re-
sources’ have been criticised by numerous users. Specifically,
the use of ADOS and ADI‐R costs a significant amount of
time and can contribute to the premature diagnosis of ASD
[10]. Accessible, efficient, and more effective detection
methods, particularly for children, are an urgent requirement to
resolve these issues. Several biomarkers have gained recogni-
tion for their ability to identify individuals possessing an
elevated risk of being affected by ASD. Prior to the onset of
behavioural symptoms, these biomarkers evaluate genetical
differences, early brain structural and functional connectivity,
visual orientation etc. Using some tools that include functional
magnetic resonance imaging [11, 12], electroencephalography

(EEG) [13, 14], metabolic disorder testing [15, 16], and facial
expression analysis [17, 18], it is possible to diagnose ASD in
early ages. Eye‐tracking has proven its capability as a new tool
in the detection of ASD in recent times [19–21]. Eye‐tracking
(ET) is a method that can be utilised to capture, track, and
analyse the eye movements or absolute point of gaze, which
denotes the location in the visual scene where the eye gaze is
directing attention [22, 23]. The ET technology seeks to utilise
the perceptual aspects of ASD as well as recognise the atypical
visual attention that leads to ASD's clinical manifestations [24].
ET has proven to be a highly effective diagnostic tool due to
the cause that aberrant fixation movements are one of the
defining characteristics of ASD. ET can be translated into
scanpath or saliency maps for the enhancement of visual-
isation. Therefore, ET can be used to identify ASD charac-
teristics and enhance diagnostic precision [25, 26]. Due to the
complexity of the undertaking, artificial intelligence, specifically
Deep Learning (DL), has been incorporated to enhance diag-
nostic accuracy.

Given the importance of the issue, a substantial amount of
research has been conducted over the years on the diagnosis
of ASD. Some social and behavioural symptoms, such as lack
of attention, eye contact, and social interaction, may be more
challenging to recognise in the early stage. Therefore, con-
ventional methods are insufficient for early diagnosis, which
hinders recovery. Due to these differing levels of symptom
severity, the detection is quite complex and requires further
investigation. Machine Learning (ML) and DL incorporated
with ET can play a vital role in bringing a promising solution in
this case.

Much research has been conducted to find the association
of ET with the diagnosis of ASD. Bataineh et al. [27] provided
an eye‐tracking analysis research to assist and develop an un-
derstanding of the visual character and movement of children
with ASD and Typically Developed (TD) while seeing a socially
rich stimulus consisting of social interactions. The researchers
discovered a substantial difference in the viewing patterns and
behaviours of the two groups when presented with a scenario
including human and social interaction components. The
research also demonstrates that a considerable proportion of
autistic individuals had little interest in and time spent focusing
on the face region, as seen by their extensive fixation on non‐
facial areas, which correlates with a lack of interest in socially
important information. Solovyova et al. [28] examined novel
ways for online autism diagnoses and created an algorithm that
can predict the likelihood of ASD based on the child's gaze
activity. Experimental findings supported the notion that ET is
effective for the early identification of eye‐movement charac-
teristics that may serve as ASD indicators. Eraslan et al. [29]
examined if it was feasible to predict autism based on eye‐
movement sequences with sufficient accuracy to be indepen-
dent of individual online sites. The authors discovered that
sequential data analysis yields more consistent findings than
non‐sequential data analysis, which might aid in overcoming
disadvantages in stimulus selection. Mazumdar et al. [30]
researched the early detection of ASD in children. Their
strategy is based on analysing children's visual behaviour when

F I GURE 1 Symptoms shown by a person with autism spectrum
disorder.
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investigating pictures. Based on picture content, fixations, and
centre bias, scanpaths were analysed to derive features capable
of detecting atypical viewing behaviour. Cilia et al. [31]
explored ET as an integrated element of ASD screening on the
basis of typical components of eye gazing. This work con-
tributes to the growing body of research on ET technologies to
facilitate ASD screening. To categorise individuals with ASD,
the suggested technique used ET with visualisation and CNN.
Almourad et al. [32] presented an ET analysis investigation in
order to comprehend the visual behaviour of children with TD
and ASD when watching human face stimuli. In comparison to
children without ASD, a considerable proportion of ASD
participants exhibited little interest in and fixation on the face
region, as shown by significant time spent fixating on non‐
facial locations.

Several research studies have been conducted on the
detection of ASD using ML algorithms. Using a number of ML
approaches, Akter et al. [33] analysed eye‐gazing photos to
diagnose autism. As the scan path pictures obtained by the
ASD and TD groups were almost identical, the k‐means
clustering approach was employed to construct four clusters.
Using Artificial Neural Network (ANN), they achieved 87%
accuracy. Shihab et al. [34] concentrated on evaluating the
dataset of people of various ages with ASD using the PCA
approach. Their primary objective was to adopt PCA to
minimise the dimension of the data and maintain just the
characteristics that give discriminating patterns. In the case of
adults, their classification studies yielded a sensitivity of 78.6%
and a specificity of 82.47%, but for children, the sensitivity was
87.5%, and the specificity was 95.7%. Carette et al. [35] pro-
vided a method for assisting with ASD diagnosis, with a special
emphasis on young infants. The primary concept was to
convert ET scanpaths into a visual presentation; hence,
detection may be handled as an image classification issue.
Experiments included many ML approaches and an ANN.
Using basic ANN, they attained AUC >90% [36]. According to
them, providing a proactive concept of further testing may be
useful to explore a kid exhibiting symptoms of this illness.
Akter et al. [37] proposed an ML‐based approach for early‐
stage detection. Gathering the early detection data of chil-
dren, adults, toddlers and adolescents, they transformed and
applied several ML techniques for classification. Uddin et al.
[38] developed an ML‐based framework considering the ASD
screening dataset for toddlers for the detection of ASD. They
applied the SMOTE method to balance the dataset and applied
several ML techniques among which AdaBoost got the highest
accuracy. A method has been proposed for the identification of
subgroups of ASD by Lin et al [39]. They used ML to analyse
the microarray data to identify groups having similar gene
expression profiles. They achieved the highest accuracy using
RF and SVM. Kanhirakadavath and Chandran [40] evaluated
the use of ET data in the early diagnosis of autism in children
using ML techniques. The authors investigated the efficacy of
several ML approaches to determine the best model for the
detection of ASD using scanpath pictures from ET. The sug-
gested DNN model outperforms conventional ML techniques
with a 97% AUC.

Many researchers have utilised DL and transfer learning for
the detection of ASD. Based on 700 photos and related eye
movement patterns of ASD and TD, Xie et al. [41] constructed
a unique two‐stream DL network for this recognition. Their
proposed model achieved 0.95 accuracy. They defined contri-
butions to categorisation at the level of a single picture and
non‐linear integration of information at this level during
classification. Using ET data, Elbattah et al. [42] suggested a
sequence learning method for identifying autism. Their pri-
mary concept was to portray ET data as textual strings that
present the fixations and saccade patterns. The data was then
categorised using CNN and LSTM to identify ASD and TD.
Mahalakshmi and Praveena [43] suggested a technique for
diagnosing ASD and TD using CNN for the fixation maps of
the respective observer's gaze at a given picture. Their sug-
gested CNN model obtains a validation accuracy of 75.23%.
Wei et al. [44] suggested an image‐level approach to determine
if a scanpath belongs to a kid with ASD or a youngster with
typical development. The seen picture is first encoded using a
visual feature encoder. For classification, an LSTM‐based
model was combined with embedding and dynamic filters.
The data is then utilised to build an ML classifier with an ac-
curacy of 75%. Duan et al. [45] created a database, which
comprises 500 pictures and related ET data. They examined
the performance of five NN‐based saliency estimation tech-
niques with the original and the fine‐tuned models that were
created by them. Fawaz Waseelallah Alsaade and Mohammed
Saeed Alzahrani [46] suggested a technique for identifying
autism based on facial characteristics using a simple online
application utilising a DL algorithm. CNN used transfer
learning and the Flask framework. Pretrained models Xcep-
tion, VGG19, and NASNETMobile were utilised. The dataset
utilised to evaluate these models consists of 2940 face photos
taken from the Kaggle platform. Their Xception model ob-
tained 91% accuracy, followed by VGG19 (80%) and NAS-
NETMobile (78%). The review presents that there are still
various scopes of work and scopes for improvement. We have
found no such work where various types of ET images, such as
scanpath, saliency map, and fixation map, have been combined
to diagnose ASD. In this work, we have addressed the limita-
tions found in the literature.

The main factor on which this research is conducted is that
people with ASD have an uncommon focus pattern, which can
be identified early by analysing images created using ET. Several
types of research have proven that ET, visual attention, and
saliency can be used for the diagnosis of autism and can be an
important biomarker for early detection [47–52]. In the existing
studies, the researchers have worked with only one type of ET
data to diagnose autism, mostly SP or FM or HM images. This
creates a limitation for the model to have the capability of
generalisation. The models used in previous works are mostly
based on CNN techniques, and they have a massive number of
parameters that take a huge number of images to train properly
and require much computational power. These existing ap-
proaches require sophisticated hardware to be executed because
of the numerous parameters they demand. In this study, a
lightweight deep Involutional Neural Network (INN) model
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has been developed to classify people with ASD from TD or
healthy control (HC). The proposed model consists of a small
number of parameters comparatively. The model has been
tested with three different types of ET images to diagnose ASD
from any ET images. The diagnosis procedure can be efficiently
automated using this model. So, the proposed INN model can
be utilised to create an automatic and effective detection system
for ASD. The main contribution of our research is that we have
built a lightweight INN‐based DL model for the diagnosis of
ASD. The model consists of relatively a small number of layers
and parameters; thus, it can be called a lightweight model. Three
different types of ET images have been used to train and
evaluate the model. And finally, we have performed an uncer-
tainty analysis to ensure the certainty of the output and increase
the model's performance. Model validation has been done by
comparing with other state‐of‐the‐art image classification
models and other existing literature.

2 | PROPOSED APPROACH

The proposed approach consists of some key steps. Figure 2
depicts the key steps of the proposed methodology. Firstly, we
have collected a dataset for our work. After that, the data has
been preprocessed. Then, the INN model has been created,
which receives the preprocessed input images. The model has
been trained using the training dataset and then tested using
the test dataset. The performance of the INN model is then
compared with existing works to validate its performance.
Lastly, uncertainty analysis is performed to prove the effec-
tiveness and increase the model performance.

2.1 | Dataset

We have utilised two publicly available datasets for this work
(ASD Dataset 1 [53] and ASD Dataset 2 [54]). These two
datasets have been addressed as Dataset‐1 and Dataset‐2,
respectively, throughout this paper.

2.1.1 | Dataset‐1

This dataset has been created by Carette et al. [53]. One of
their key goals was to identify autism early; therefore, they
restricted the participants' ages to those between 3 and 13 years
old. This dataset consists of 59 samples which include 30 ASD‐
infected children and 29 controls. Among 59 children, 38 were
boys, and 21 were girls. The SMI RED mobile [55] served as
the main equipment for ET investigations. A participant's eye
movement across the screen was represented by coordinates in
the raw ET data. The coordinates were then used to produce
the visualisation. The entire process of data transformation was
implemented in Python. The dataset contains ET Scanpath
(SP) images of ASD and HC persons. Figure 3 shows some
sample SP images from this dataset.

2.1.2 | Dataset‐2

This dataset has been created for the challenge ‘Saliency4ASD’
[56] and made publicly available in Ref. [54]. It comprises 300
natural scene photos and ET data gathered from 14 ASD
patients and 14 HCs. The natural scene photos were used as

F I GURE 2 Workflow of the proposed method. Datasets have been gathered initially. Then, the data has been scaled, and augmentation has been applied.
Next, the involutional neural network model has been constructed and assessed through various experiments. Lastly, uncertainty analysis has been employed to
measure output certainty.
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stimuli. The dataset contains ET data and 300 photos that were
obtained from it. The dataset includes pictures of stimuli,
Fixation Maps (FM), and Heatmaps (HM). Using a Tobii T120
Eye Tracker, they exhibited the images and recorded the par-
ticipants' eye movements. The device's sampling rate was set to
120 Hz, and its practical effective range is between 50 and
80 cm. The participants were 8 years old on average. Figure 4
shows some sample FM images, while Figure 5 shows some
sample HM images from this dataset.

2.2 | Preprocessing

Following data collection, images have been separated into
training, validation, and test dataset while maintaining the
proportion of classes for people with ASD against those
without ASD in random order. The proportions for training,
validation and testing datasets are 80%, 10%, and 10%,
respectively. The images in both datasets have been pre-
processed by boosting the brightness of the images and scaling
to (32 � 32). The brightness of the images has been increased
by 5%–10%. Experiments have shown that the increase in
brightness allows the model to perform better.

We have applied augmentation to produce pictures with
different viewing modifications. Following the process of
augmentation, 2933 additional photos in Dataset‐1 and 2541
additional images in Dataset‐2 were added to the collections.
The Keras package [57] offers an API that is easy to use for
data augmentation that considerably simplifies the augmenta-
tion method. We used three distinct augmentation approaches
in our process: rotation, flipping, and scaling. The Image-
datagenerator technique flips and rotates pictures at random.
The value of scaling has been set to 5%–15%.

2.3 | Proposed involutional neural network

CNN is a special type of DL method created to process image
data in the form of multiple arrays [58, 59]. Convolution seeks
translation equivalence and discovers feature representation

using common kernel weights for each channel. The kernel of
convolution is channel‐specific and spatially agnostic but ne-
glects relevance representation on the channel domain. There-
fore, it cannot mine the connection among channels. Also, in
case of location‐related challenges, the convolution receptive
area makes it difficult to record extended spatial linkages. In
contrast, several DNNs have demonstrated the efficacy of ker-
nels having cross‐channel or inter‐channel repetition, raising the
question about the adaptability of distinct channel convolution
kernels. So, it is worthwhile to examine how to efficiently exploit
the various types of spatial extent and channel domain repre-
sentation information. The spatial extent and channel region
features of involution presented by Duo Li are the inverses of
convolution, which may aid kernels in discovering the connec-
tion among the channels on the channel region to augment the
fundamental feature discovering of the convolution [60]. There
are currently comparatively few studies on involution. The
DNNs for classical image classification continue to utilise
convolution as their essential building block. Li et al. [60]

F I GURE 3 Sample of eye tracking SP images from Dataset‐1. The SP
presents the eye movement of the subject over a time period.

F I GURE 4 Sample of FM images from Dataset‐2. The FM presents
the saliency or focus of the subject on the screen over a time period
through B&W colour. The brightness denotes the amount of time a subject
spends on a particular point.

F I GURE 5 Sample of HM images from Dataset‐2. The HM presents
the saliency or focus of the subject on the screen over a time period
through RGB colour. The time a subject spends on a particular point is
denoted through colour variation. The colour variation is the amount of
time spent on a particular point. Blue denotes a small amount of time, green
denotes a medium amount, and yellow denotes a long amount of time.
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analysed the characteristics of convolution to address the issues
mentioned above. A channel‐independent, location‐specific
"involution kernel" has been proposed by the authors. Owing
to the location‐specific character of the kernel, they argue that
self‐attention falls within the involution technique by design.

The datasets we are working with contain very crucial vi-
sual features. All of the datasets are gaze or ET‐based, which
contains very few long‐range interactions that are very
important for the classification task. These small interactions
are hard to detect with convolution‐based networks.
Involution‐based models are effective when it comes to
adaptively assigning the weights over different locations so as
to prioritise the most impacting graphical aspects in the spatial
region. We first look at the convolution process to properly
derive the concept of involution. For instance, let us take a
tensor X having the shape H, W, and C as the input. We
gathered C convolution kernels having K, K, and C in shapes.
The generated output tensor Y has the shape H,W, and C as a
result of the multiply‐add operation. This operation takes place
between the kernels and the input tensor. The process yields an
output having the forms H, W, and 3, as shown in Figure 6.
The convolution kernel is location‐agnostic, and it is not
dependent on the spatial position of the input. Alternately,
every channel in the derived output is from a unique convo-
lution filter that makes it channel‐specific. The objective is to
build a channel‐neutral and location‐specific operation. It is
challenging to execute these specific features.

We have created every kernel based on defined spatial lo-
cations to address the mentioned problem. This method assists
in the processing of input tensors with varied resolutions. This
process of kernel formation is shown in Figure 7. Here, C
denotes the total number of channel groups, where
K � K � C filters are created. Despite applying only one filter
and passing it to all C input channels, C number of filters are
generated and sent to input channels. There are a total of three
involution layers in our developed model. The design consists
of two involution blocks, each of which has a dropout layer
and a max pooling of (2 � 2). One involution layer with ReLU
as the activation function comprises the first involution block.
Two involution layers have the same activation function in the
second involution block. Next, we flatten the 2‐dimensional
outputs to 1‐dimensional values. The fully connected layer
has 4 dense layers with 256, 96, 64, and 32 nodes. This design

of the model was inspired by the architecture of the VGG‐16
model [61], which has a simpler architectural design. Since the
image size is small and we do not require heavyweight models
and training, we follow this architecture for faster training
speed (complex architecture will take more time to train). Also,
as the model has a comparatively small number of layers and
parameters and has a simpler architecture, it has a reduced
computational complexity. For these reasons, the model is
regarded as a lightweight model. It allowed the model to
achieve good results using a limited computational resource.
Figure 8 illustrates the architecture of the proposed model. The
parameters in each layer and shape of the layers are provided in
Table 1. Figures 9 and 10 show the feature maps generated on
some sample scanpaths and saliency maps, respectively. In each
involution layer, the ReLU activation function was paired with
the Categorical cross‐entropy loss function, and the Adam
optimiser was utilised for optimisation.

3 | IMPLEMENTATION/
EXPERIMENTAL EVALUATION

This section is concerned with assessing the experimental re-
sults obtained by the proposed model. This segment also ad-
dresses the output comparisons on the two datasets we have
used. And lastly, the uncertainty analysis of the proposed
model using Monte Carlo Dropout (MCD) is investigated.

3.1 | Environment

Our proposed INN architecture and mentioned processes are
developed using the Python libraries TensorFlow [62], Keras
[57], Matplotlib [63], and OpenCV [64]. The model has been
trained and evaluated on a GeForce RTX 3070Ti with a per-
formance of 33.2 TeraFLOPS.

3.2 | Experiment

One of the goals of our proposed design is to generate the
required outcome with the fewest number of parameters
possible by keeping the size of the input form to a minimum.

F I GURE 6 Feature extraction from an RGB image using the
convolution process. It shows how convolution works by splitting the
image into several parts.

F I GURE 7 Feature extraction from an RGB image using the
involution process. It shows how involution works without splitting the
image into several parts.
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A system with fewer parameters delivers improved accuracy
and processing speed. The model starts with a 32 � 32 pixel
picture, including three extracted channels. After that, three
INN layers having kernel sizes of (3,3) were employed. In
addition, Max Pooling layers having a (2,2) pool size are used.
In addition, all INN layers consist of strides of 1 by default.
Instead of using Tanh/Sigmoid activation functions, we
adopted the ReLU activation function.

After the transformation of the tensor into a flattened one‐
dimensional tensor, the first 64 nodes of the INN are replaced
by fully connected FC layers. Dropouts are used to prevent
overfitting in the model [65], and Adam is used as the optimiser
function. The learning rate has been set to 0.0001. We have
experimented using different numbers of epochs. The early
stopping value has been set to 5 epochs. For Dataset‐1, the
model achieved optimal accuracy within only 10 epochs. For
Dataset‐2, 35 epochs have been required to obtain optimal ac-
curacy. The batch size has been set to 64. The proposed design is
expected to perform better since the design has fewer param-
eters and hence fewer computation requirements. Table 2 pre-
sents the optimised hyper‐parameter values for this experiment.

3.3 | Result analysis

For result analysis, a variety of performance metrics have been
utilised, including precision, recall, F1‐score, support, accuracy,

TABLE 1 Parameters and shape of layers of the proposed model.

Layer Output shape Parameter

InputLayer [(None, 32,32,3)] 0

Involution ((None, 32,32,3), (32, 32, 9, 1, 1)) 26

ReLU (None, 32,32,3) 0

Max Pooling 2D (None, 32, 32, 3) 0

Dropout (None, 32, 32, 3) 0

Involution ((None, 32,32,3), (32, 32, 9, 1, 1)) 26

ReLU (None, 32,32,3) 0

Involution ((None, 32,32,3), (32, 32, 9, 1, 1)) 26

ReLU (None, 28,28,3) 0

Max Pooling 2D (None, 32, 32, 3) 0

Monte Carlo Dropout (None, 32, 32, 3) 0

Flatten (None, 3072) 0

Dense (None, 256) 786,688

Dropout (None, 256) 0

Dense (None, 96) 246,772

Dropout (None, 96) 0

Dense (None, 64) 6208

Dropout (None, 64) 0

Dense (None, 32) 2080

Monte Carlo Dropout (None, 32) 0

Dense (None, 2) 66

Total parameters 819,792

Trainable parameters 819,786

Non‐trainable parameters 6

F I GURE 9 Feature Map of the model on Dataset‐1. The figure
presents the feature mining procedure of the involution kernel of the model
from SP images.

F I GURE 8 Architecture of the proposed involutional neural network method. The model comprises the Involution layer, Max pooling layer, Dropout, and
Dense layer.
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and ROC AUC score. The formulas for determining these
metrics are shown in Equations (1)–(4), respectively.

Precision¼
TP

TP þ FP
ð1Þ

Recall ¼
TP

TP þ FN
ð2Þ

F1 Score¼
2 ∗ ðPrecision ∗ RecallÞ
Precisionþ Recall

ð3Þ

Accuracy¼
TP þ TN

TP þ FP þ TN þ FN
∗ 100% ð4Þ

In the following equations, TP stands for true positive, TF
presents true negative, FP represents false positive, and FN
stands for false negative predictions. Table 3 displays the
precision, recall, F1‐score, support, and accuracy found in the
experiment.

For training and testing the model, we have used the three
different types of ET images found on the dataset. In Dataset‐
1, there was only one type of ET image (SP). In Dataset‐2, two
different types of ET images (FM and HM) are available. We
have conducted experiments using one type of image at a time,
for example, using SP images for training and testing. The
model achieved 98.12% accuracy, 97.89% precision, 99.03%
recall, 98.55% F1 score, and 99.72% AUC while experimenting
using Dataset‐1 images. The model achieved 96.83% accuracy,
95.43% precision, 96.13% recall, 95.77% F1 score and 99.10%
AUC while experimenting using Dataset‐2 [FM] images. The
model achieved 97.61% accuracy, 95.17% precision, 98.33%
recall, 95.11% F1 score and 96.29% AUC while experimenting
using Dataset‐2 [HM] images.

The graph of achieved accuracy and corresponding loss for
Dataset‐1, Dataset‐2 [FM], and Dataset‐2 [HM] are shown in
Figure 11. We can see from Figure 11 that the model per-
formed well and obtained excellent accuracy in very few
epochs. In the case of Dataset‐1 [SP], we can see from
Figure 11a that the model achieved 98.12% accuracy in only
around 9–10 epochs. After 10 epochs, the accuracy has not
improved much and thus the training process was stopped.
Validation accuracy proves that the model has not been
overfitted. In the case of Dataset‐2 [FM] and Dataset‐2 [HM],
we can see from Figures 11b,c that the training process has
become saturated in around 35 epochs while achieving 96.83%
and 97.13% accuracy, respectively. From the validation curve,
we can be determined that there is no or very little amount of
overfitting. The training has been stopped using the early
stopping method having a value of 5. The method stopped the
training process when there was no improvement in accuracy
in 5 epochs.

3.4 | Impact of data augmentation

Using a sufficiently large and varied dataset is one of the
essential requirements for constructing a viable model. Due to
its unavailability, it is not always possible to acquire a large
dataset. The process of creating new and distinct data by
minimally changing current data is known as data augmenta-
tion. By this method, model resilience and performance may be
enhanced, while overfitting can be avoided [66]. As noted

F I GURE 1 0 Feature Map of the model on Dataset‐2 [FM]. The figure
presents the feature mining procedure of the involution kernel of the model
from FM images.

TABLE 2 Hyper‐parameter values for training the model.

Hyper‐parameter Value

Activation function ReLU

Initial learning rate 0.0001

Optimiser Adam

No of epochs 35

Early stopping 5

Dropout rate 0.3–0.5

Train‐test split 90%–10%

Batch size 64

TABLE 3 Results obtained with proposed involutional neural
network model.

Dataset Accuracy Precision Recall F1 score AUC

1 [SP] 98.12 97.89 99.03 98.55 99.72

2 [FM] 96.83 95.43 96.13 95.77 99.10

2 [HM] 97.61 95.17 98.33 95.11 96.29
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previously, four forms of augmentation, namely rotation,
flipping, scaling, and increasing brightness were done to each
dataset in order to create a robust model. Table 4 presents the
impact of augmentation on the datasets. From the table, we can
see that the augmentation process has a huge impact on the
model. After the implementation of augmentation, the model
accuracy improved by around 10% in each case. Augmentation
has also helped the model to achieve more generalisation.

F I GURE 1 1 The figure presents a graph of Accuracy and Loss per epoch of three different experiments. (a) Presents graph of accuracy (left) and loss
(right) over epoch on Dataset‐1. (b) Presents graph of accuracy (left) and loss (right) over epoch on Dataset‐2 [FM]. (c) Presents graph of accuracy (left) and loss
(right) over epoch on Dataset‐2 [HM].

TABLE 4 Results obtained with proposed method (impact of image
augmentation).

Dataset Before augmentation After augmentation

Dataset‐1 [SP] 95.25 98.12

Dataset‐2 [FM] 93.83 96.83

Dataset‐2 [HM] 95.42 97.61
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3.5 | Comparison with state‐of‐the‐art
image classification models

The proposed model is compared with other existing SOTA
image classification models with respect to different evaluation
metrics. The models we have used for comparison are Vision

Transformer [67], Swin Transformer [68], Compact Convolu-
tional Transformer [69], ConvMixer [70], InceptionV3 [71],
VGG16 [61], VGG19 [61], ResNet50 [72], EfficeintNetB7
[73], MobileNetV2 [74], Xception [75], and DenseNet201 [76].
Table 5 presents the results obtained by the SOTA models for
image classification. The proposed INN model outperforms

TABLE 5 Performance of SOTA image
classification models on Dataset‐1 and
Dataset‐2.

Dataset Model Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Dataset 1 Proposed 98.12 97.89 99.03 98.55

ViT 92 91.75 93.75 92.75

SWT 93.8 92.75 92.75 92.75

CCT 96.74 94.75 94.75 94.75

InceptionV3 68.68 72.56 64.45 68.26

VGG16 83 80.89 84.04 82.43

VGG19 65.84 66.64 66.64 82.43

ResNet50 94.25 94.12 94.12 94.12

EfficientNetB7 59.77 59.74 59.74 59.74

MobileNetV2 59.77 59.9 59.9 59.9

Xception 82.18 82.5 82.18 82.33

DenseNet201 91.95 91.96 92.21 92.08

Dataset 2
[fixation maps]

Proposed 96.83 95.43 96.13 95.77

ViT 86.12 87.65 88.77 88.2

SWT 87.55 88.33 88.33 88.33

CCT 90.23 89.63 89.63 89.63

InceptionV3 68.68 72.56 64.45 68.26

VGG16 87.22 81.55 85.55 83.55

VGG19 65.84 66.64 66.64 82.43

ResNet50 93.8 94.2 94.8 94.5

EfficientNetB7 55.36 58.18 58.18 58.18

MobileNetV2 56.77 55.7 55.9 55.8

Xception 80.18 80.79 79.38 80.07

DenseNet201 90.95 92.76 91.41 92.08

Dataset 2 [heatmaps] Proposed 97.61 95.17 98.33 95.11

ViT 85.76 87.13 85.17 87.3

SWT 87.55 88.33 88.33 87.33

CCT 88.56 89.55 89.76 87.63

InceptionV3 71.66 73.56 70.45 69.26

VGG16 88.22 89.34 85.55 87.55

VGG19 69.84 67.64 68.74 70.43

ResNet50 92.8 92.2 92.8 91.5

EfficientNetB7 58.56 57.18 59.18 58.48

MobileNetV2 62.71 61.71 62.92 62.28

Xception 79.22 80.43 79.18 79.07

DenseNet201 90.45 90.16 91.41 90.08

Note: The bold line indicates the highest value.
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the existing SOTA image classification models in every case,
which can be seen from Table 5. The bold line indicates the
highest value. From Figure 12, we can see that the proposed
models consists of much less number of parameters than the
other models. Thus, the proposed model took less time for
computation in training and testing.

3.6 | Comparison with existing models

The proposed INN model has been compared with existing
models suggested in the detection of ASD with respect to
different evaluation metrics. We have compared our work with
other existing literature where either ASD Dataset‐1 [53] or
ASD Dataset‐2 [54] has been used. Thus, the INN proposed
model has been compared with the models that have been
implemented on Dataset‐1 and Dataset‐2 separately. Table 6
presents the comparison among models implemented on
Dataset‐1, and Table 7 presents a comparison among the
models implemented on Dataset‐2. As the existing literature
utilised FM images for the experiment, the comparison has
been done on FM images only. We have used accuracy and
AUC as the evaluation metrics for comparison. From the
comparisons, it has been found that being a lightweight model,
the proposed model outperforms the existing models.

3.7 | Uncertainty analysis

Often, the dropout strategy is employed to minimise model
complexity and prevent overfitting [65]. During training, a
dropout layer divides the results provided by a node by a
Bernoulli‐distributed binary mask, randomly setting the num-
ber of neurons in the DNN to zero. The trained neural
network that was not dropped is then applied during test time.
Gal and Ghahramani established that dropout during testing is
an approximation of probabilistic Bayesian models in deep
Gaussian processes [92]. MCD measures the deviation of

F I GURE 1 2 Comparison among various SOTA image classification
models in terms of the number of parameters.

TABLE 6 Comparison among different works on Dataset 1.

Reference Model Accuracy AUC

Proposed model Deep INN 98.12 99.72

Carette et al. [53] Logistic regression ‐ 81.95

Carette et al. [35] Single layer artificial neural
network

‐ 92.01

Elbattah et al. [77] k‐means clustering 94.00 ‐

Elbattah et al. [42] Variational autoencoders 70.01 76.10

Akter et al. [33] Clustering and multilayer
perceptron

87.00 79.00

Xie et al. [41] Two stream deep learning
network

95.01 ‐

Gaspar et al. [78] Kernel extreme learning
machine

98.80 ‐

Cilia et al. [31] CNN 71.04 ‐

Mumenin et al. [79] CNN 97.41 99.60

Kanhirakadavath and
Chandran [40]

CNN þ DNN ‐ 97.00

TABLE 7 Comparison among different works using Dataset‐2.

Author Model information Accuracy AUC

Proposed model Deep INN 96.83 99.10

Mazumdar et al. [30] TreeBagger classifier 68.50 ‐

Shi Chen and Qi Zhao [80] CNN þ LSTM 93.00 98.00

Liaqat et al. [81] Modified ResNet50 62.13 64.4

Tao and Shyu [82] CNN‐LSTM 57.90 56.97

Fang et al. [83] Dilated CNN þ LSTM 79.94 79.00

Arru et al. [84] Decision Tree
(TreeBagger)

59.30 59.50

Startsev and Dorr [85] Random forest 63.90 ‐

Tamilarasi and
Shanmugam [86]

CNN 89.20 ‐

Xie et al. [87] Two stream CNN
(VGG‐16)

95.00 ‐

Wu et al. [88] Deep CNN(ResNet) 65.41 ‐

Wei et al. [44] Dynamic Filter þ LSTM 61.48 64.33

Hriti et al. [89] CNN þ ANN 93.00 93.00

Shihab et al. [34] PCA 95.10 ‐

Mahalakshmi and
Praveena [43]

CNN 75.23 ‐

Kang et al. [90] Support vector machine 85.00 ‐

Alsaade and Alzahrani [46] Transfer Learning
(Xception)

91.11 ‐

Ahmed et al. [91] CNN 95.54 ‐
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predictions of the model from their forecast distribution by
sampling T new dropout masks for every forward pass. The set
may then be viewed as samples obtained from the output
distribution, which is valuable for extracting information about
the variability of the output. This knowledge is useful in
decision‐making. In reality, characterising the model's uncer-
tainty may permit distinct treatment of uncertain inputs. The
computational complexity of MCD is proportional to the total
number of forward passes T, which is its primary downside.

Alternately, the forward passes might be executed simulta-
neously which results in a constant running time. In addition, if
the MCD layers are positioned close to the output layer, the
input of the first dropout layer may be preserved in the first
pass so that it can be reused in subsequent runs, therefore
reducing unnecessary computation. Hence, the complexity may
be drastically lowered, allowing it to be used in real‐time ap-
plications. The MCD model estimate is equal to the mean of T
forecasts.

F I GURE 1 3 Graph for (a) accuracy and (b) loss over epochs after using Monte Carlo dropout on Dataset‐1 [SP].
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p∗ ¼
1
T

XT

t¼1
pt ð5Þ

According to the authors in Ref. [92], T = 50 is a safe
option for estimating uncertainty; however, this number must
also be examined in light of MCD's prediction ability. The
MCD may be seen as a specific instance of Deep Ensembles
(training several comparable networks and sampling outputs
from every one of them), which is an additional method to
enhance the performance of DL models and quantify uncer-
tainty. To calculate the distribution of outputs using MCD, we
embedded models with a dropout rate of 50%. We utilised 200
test samples and predict each sample 400 times (MC Sam-
pling). This is necessary for determining the uncertainty
associated with the predicted class‐wise score distribution of
200 test samples. This ensemble accuracy, unlike the standard
accuracy score, is determined by Monte Carlo sampling with
500 sample data.

In the case of Dataset‐1, the model achieved 98.28%
accuracy. After performing MCD, the accuracy improved to
98.33%. The accuracy and loss graph for Dataset‐1 has been
presented in Figure 13a. In the case of Dataset‐2 [FM] and
Dataset‐2 [HM], the accuracy has improved to 97.11% and
97.88%, respectively. The accuracy and loss graph for
Dataset‐2 [FM] and Dataset‐2 [HM] has been presented in
Figures 13b,c, which also shows the improvement in accuracy
and loss.

From the Monte Carlo‐Ensemble accuracies and plots, we
can see that the model is most of the time giving more than
98% for Dataset‐1, 92% for Dataset‐2(FM), and 81% for
Dataset‐2(HM). Figures 14a–c show the distribution of the
Monte Carlo predictions (blue) and prediction of the ensemble
(red) for Dataset‐1, Dataset‐2 [FM], and Dataset‐2 [HM],
respectively. This suggests that our proposed INN model is
reliable.

4 | DISCUSSION

In this work, we have proposed an INN‐based lightweight
robust DL model for ASD diagnosis. The INN model has
been trained and evaluated using four different types of ET
images from two different datasets (ASD Dataset‐1 [53] and
ASD Dataset‐2 [54]). To ensure the effectiveness of the model,
it has been evaluated using several evaluation metrics. From
Table 3, we can see that the model performed well in the case
of all four types of images. In Dataset‐1, the proposed model
achieved 98.12% accuracy using scanpath images. And in
Dataset‐2, the model achieved 96.83%, 97.61%, and 95.23%
accuracy while using a fixation map, heatmap and fixation
point, respectively. It ensures the generalisation capability and
robustness of the model. After that, we investigated the impact
of data augmentation. It is noticeable that after augmentation,
the performance of the model increased significantly. Then, the
model has been compared with the SOTA image classification
models. The proposed model outperformed the SOTA image
classification models by almost a 2% margin in the case of
accuracy. Brief experimental results have been given in Table 5.
After that, the experimental results of the proposed INN
model have been compared with the models from the existing
literature. Table 6 presents the comparison among the works
conducted on Dataset‐1 [53], and Table 6 presents the com-
parison among the works conducted on Dataset‐2 [93].

5 | CONCLUSION

This research presents an automated categorisation approach for
early and accurate diagnosis in order to prevent the horrifying
consequences of ASD. Involutional Neural Network has been
used as the main block for feature extraction from images. The
main reason behind using INN is its channel‐independent and
location‐specific capability, which is able to extract featuresmore

F I GURE 1 4 Distribution of the Monte Carlo prediction (Blue) and ensemble prediction (Red) on (a) Dataset‐1, (b) Dataset‐2 [FM] and (c) Dataset‐2 [HM].
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efficiently. Two publicly available datasets containing four types
of images, namely ET scanpath, fixation maps, and heatmaps,
have been used to train and evaluate the model. We have con-
ducted experiments and evaluated the model on various evalu-
ation metrics. The proposed INN model has outperformed the
existing SOTA image classification models and other existing
research conducted on the used datasets. In Dataset‐1, the
proposed model achieved 98.12% accuracy. In Dataset‐2, it
achieved 96.83%, and 97.61% accuracy using fixation map and
heatmap, respectively. The model has a comparatively low
number of parameters compared to SOTAmodels and a reduced
computational complexity due to its simple architecture. Un-
certainty estimation using MCD ensures the reliability of the
prediction made by the model.
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