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Abstract: The diagnosis of leukemia involves the detection of the abnormal characteristics of blood 
cells by a trained pathologist. Currently, this is done manually by observing the morphological 
characteristics of white blood cells in the microscopic images. Though there are some equipment- 
based and chemical-based tests available, the use and adaptation of the automated computer vision-
based system is still an issue. There are certain software frameworks available in the literature; 
however, they are still not being adopted commercially. So there is a need for an automated and 
software- based framework for the detection of leukemia. In software-based detection, segmentation 
is the first critical stage that outputs the region of interest for further accurate diagnosis. Therefore, 
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this paper explores an efficient and hybrid segmentation that proposes a more efficient and effective 
system for leukemia diagnosis. A very popular publicly available database, the acute lymphoblastic 
leukemia image database (ALL-IDB), is used in this research. First, the images are pre-processed and 
segmentation is done using Multilevel thresholding with Otsu and Kapur methods. To further optimize 
the segmentation performance, the Learning enthusiasm-based teaching-learning-based optimization 
(LebTLBO) algorithm is employed. Different metrics are used for measuring the system performance. 
A comparative analysis of the proposed methodology is done with existing benchmarks methods. The 
proposed approach has proven to be better than earlier techniques with measuring parameters of PSNR 
and Similarity index. The result shows a significant improvement in the performance measures with 
optimizing threshold algorithms and the LebTLBO technique.  

Keywords: leukemia; white blood cells segmentation; LebTLBO; multi-level thresholding; Otsu 
 

1. Introduction  

Leukemia is always considered being a life-scaring disease [1]. It attacks the blood-forming 
capacity of bone marrow [2−4]. Bone marrow generates leukocytes (white blood cells) gradually 
through different stages involving the generation of the blast cells [5]. Due to the development of 
leukemia, these blasts cells in the human blood tend to increase [6]. A higher amount of blasts cells 
and other abnormal cells lead to severe leukemia [7]. The detection is the task of observing the 
morphologies of leukocytes and predicting the type and severity of leukemia [8].  

 

Figure 1. Normal and leukemia cells [9].  

It has four broad types: acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), 
chronic myeloid leukemia (CML) and chronic lymphoblastic leukemia (CLL) [10]. In addition, there 
is the existence of the components like blasts cells (immature leukocytes), Auer rods (a very thin rod 
like structure) in the blood sample of leukemia patients. 

Figure 1 shows the microscopic image of the blood cells having normal and leukemia cells [9]. 
Microscopic analysis is required to detect the presence of leukemia cells [11]. Figure 1 indicates that 
leukemia cells differ morphologically from normal cells. The diagnosis of leukemia involves the 
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detection of these abnormal characteristics of blood cells [12]. The very first and the important step in 
the detection is segmentation [13]. In the microscopic image of a stained blood sample, there are many 
components, including leukocytes-white blood cells, erythrocytes-red blood cells, plasma, and 
parasites [14]. Staining is required for making the blood smear for microscopic analysis [15,16]. 
Segmentation in leukemia detection involves separating leukocytes from the given stained blood 
microscopic image to get the region of interest [17]. The popular segmentation techniques are 
thresholding [18], clustering [19], edge-based segmentation [20], region-based segmentation [21], 
artificial neural network-based segmentation [22], and partial differential equation-based 
segmentation [23]. However, a generalized segmentation methodology involves pre-processing, 
background separation, and the outcome will be the region of interest for further detection purposes [24].  

In the proposed methodology, Otsu and Kapur thresholding are utilized for the segmentation of 
leukocytes. Furthermore, to enhance the thresholding performance, computational time utilization, and 
optimization, the learning enthusiasm-based teaching-learning-based optimization (LebTLBO) is used. 
It has been successfully used in various science and engineering applications in recent years. In the 
traditional teaching-learning-based optimization (TLBO)and most of its variants, all learners have an 
equal chance of learning from others. LebTLBO was inspired by the learner's varied chances of 
acquiring knowledge compared to others, and it incorporated a learning excitement mechanism into 
the basic TLBO [25]. 

This optimization involves the teaching-learning process in the class [26]. In this algorithm, there 
are three phases of working, namely teaching phase, learning phase, and poor student tutoring phase [27]. 
Broadly, in this case, the students with a good desire to take knowledge from their teacher will get 
good grades and alter their positions towards top. Students with less desire will fall to the bottom, and 
will not update their positions towards the top. In addition to this, the poor phase is also present, which 
analyzes the same thing for poor students. Here poor students are those who falls within the lower 10% 
of the whole class. The learning desire of the poor students is also analyzed and their positions are also 
considered to be updated. So this involves the position alteration of good students as well as poor 
students, giving more precise optimization [28]. The same is explained in more depth in Section 3.   

The paper is divided into six different sections. Section 1 presents the introduction. Section 2 talks 
about the related work. Section 3 explores the proposed technique for segmentation with a detailed 
methodology. Different performance metrics are explained in Section 4. Finally, Section 5 contains 
the results and discussion, followed by the conclusion and future scope. 

2. Related work 

There are different segmentation methods employed for the white blood cell separation for the 
detection of leukemia by different researchers including mathematical morphology, fuzzy logic 
approach [29], watershed transform [30], k-means clustering [31], zack algorithm [32], marker 
controlled watershed transform [33], clustering based on stimulating discriminant measures (SDM) [34,35], 
hough transform [36], iterative thresholding with watershed transform [37], edge thresholding, 
triangular thresholding DOST algorithm [38], Otsu’s method [39,40], a conventional neural network 
with laplacian of gaussian (LOG) and coupled edge profile active contours (C-EPAC) [41], sequential 
maximum angle convex cone (SMACC) clustering with iterative) algorithm and iterative self-
organizing data analysis technique algorithm (ISODATA), and local binary pattern (LBP) [39], 
VGG16 segmentation [42]. 
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The methods adopted by researchers are mainly Otsu thresholding which becomes a time-
consuming technique when the number of threshold levels are increased [43] and needs an appropriate 
tuning for proper threshold selections [44,45]. The majority of methods adopting the thresholding 
concept [46−48] employed the binary classification of images, where the image is divided into 
background and foreground only. But the blood microscopic images comprise of 4 to 5 different parts. 
These include leukocyte, erythrocytes, platelets, plasma parasites (due to the cause of some infections). 
The development of leukemia in the human body, causes the generation of immature leukocytes (blasts 
cells), and other morphological component such as Auer rod in the blood. Therefore, the investigation 
comprises of the separation of these 4 to 5 components and detection of the morphological 
abnormalities in the blood cell images. Hence, it is very challenging to adopt binary thresholding 
methods for segmentation purposes.  

Figure 2 shows the different parts in the microscopic image of blood-leukocyte, erythrocyte [49]. 
The blood image can contain plasma and some parasites as well. So, it is very difficult to segment 
the image with binary thresholding. As a result, more than one threshold is required for segmentation 
to separate these various components. Therefore, there is a need to adopt a multi-level thresholding 
technique for blood microscopic images. Artificial intelligence and deep learning-based methods 
will take a significant time for performing the segmentation due to the requirement of more iterations 
for better results. Most times, where deep learning may be adopted, there is a need to use tuned 
hyper-parameters to carry out the segmentation. These tuning always influences the performance of 
the model [50]. 

 

Figure 2. Different parts of microscopic blood image [51]. 

It also deals with the problems of under-fitting and over-fitting. So proper tuning of hypermeters 
is always an important issue in deep learning models. This tuning process is time-consuming and is 
also a resource-consuming task [52,53]. One more problem with deep learning algorithms is the 
requirement of very large datasets for better results [54,55]. As leukemia is cancer and its infected 
patients are comparatively in fewer numbers, it is difficult to get a large number of imaging samples 
for building a larger dataset. On the other hand, traditional image processing algorithms perform well 
with a small number of dataset images. Clustering is one more approach for segmentation that requires 
the user to initialize the cluster priory, which is the drawback of the same [56].  

There are also different issues during image capturing, such as resolution, the contrast which are 
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to be considered when these methods are to be used for segmentation purposes [57]. Otsu is the most 
popular thresholding method of segmentation [58]. Time expensiveness is the major drawback of this 
algorithm; it has very high time consumption [59]. According to Tuba [44] for 10 threshold levels, this 
algorithm requires a time of about 10,000 years with an I-7processor [44]. 

Therefore, the aforementioned issues have motivated the authors to come up with different 
optimization techniques to be adopted for image segmentation purposes. Figure 3 shows the different 
optimization techniques. 

All evolutionary and swarm intelligence-based algorithms are probabilistic, and they all require 
the same set of regulating parameters, such as population size, generation number, elite size, and so 
on. Different algorithms require their algorithm-specific control parameters, in addition to the common 
control parameters as explained in Table 1. 

Table 1. Algorithm specific control parameters. 

Algorithm Control parameters 

GA Mutation probability, crossover probability and the selection operator. 

ABC Number of spectator bees, employed bees, scout bees and limit. 

PSO Inertia weight, social and cognitive parameters. 

Harmony 

search 

Memory consideration rate, pitch adjustment rate and the number of improvisations are all factors in 

the HS algorithm. 

 

Figure 3. Different optimization algorithms used in the literature. 
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Algorithm-specific parameters are generally modified when using optimization algorithms [60]. 
The correct tuning of algorithm-specific parameters is a critical aspect that influences the performance 
of the algorithms discussed above. Incorrect tuning of algorithm-specific parameters either increases 
processing effort or produces the local best solution. Rao et al. [61] recognized this and developed the 
TLBO algorithm, which does not require any algorithm-specific parameters [62]. For the TLBO 
algorithm to work, it only needs a few basic governing parameters, like population size and generation 
number. Among optimization researchers, the TLBO algorithm has acquired widespread popularity [63]. 

From the discussion of the above methods, there is a need for a simple and less time-consuming 
technique for segmentation. Though there are a variety of optimization algorithms, the TLBO and its 
variant learning enthusiastic type prove to be simple and time inexpensive, as explained in the previous 
paragraph. For that reason, LebTLBO is adopted in this work. 

3.  The proposed segmentation approach 

Input microscopic images of the stained blood sample are taken from publicly available 
databases1. The segmentation methodology can be explained as below. Table 2 shows the dataset 
images of ALL-IDB dataset. 

Table 2. ALL-IDB dataset description. 

1) Images loading: The images are taken from the publicly available databases. It consists of 
the microscopic images of stained blood smears of normal and leukemia infected patients. Here, 
ALL-IDB dataset is considered for the study and implementation of the algorithm [64−66]. This 
database has two parts ALL-IDB-1 consisting of 260 images of normal and leukemia patients, and 
ALL-IDB2 has 106 images of normal and leukemia patients. 

2) Pre-processing: The images obtained from the microscope may have certain errors during the 
image capturing. Also, there is a requirement for images to convert in grayscale format for further 
processing. So the database images are gray-scaled for further processing. 

3) Segmentation: The images are parsed in the further stage of segmentation. It involves the 
extraction of the region of interest. For detection of leukemia, white blood cell-leukocytes are the 
region of interest in the blood smear microscopic images, which are to be the outcome of segmentation. 
A broader classification of segmentation methods includes thresholding, edge-based methods, region-
based methods, clustering methods, watershed-based methods, artificial neural network-based 
methods, etc. [67].  

 
1 (Available at https://homes.di.unimi.it/scotti/all/) 

Name Image formats Number of images Color depth Remark 

ALL-IDB-1 JPEG 
109 

(510 lymphoblast) 

24-bit, 

2592 × 1944 
Cancerous 

ALL-IDB-2 JPEG 
260   

(130 lymphoblast) 

24-bit  

257 × 257 
Cancerous 
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Figure 4. Proposed approach for segmentation. 
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Figure 4 shows the proposed approach for segmentation for leukemia detection purposes. 
Out of the different segmentation methods stated earlier in Section 2, thresholding is the most 

simple and easy step towards segmentation for separating foreground and background in an image. It 
is further sub-divided into local and global thresholding [68]. Global thresholding uses an image as a 
whole, while distinguished characteristics of local image areas may be used to choose thresholds of 
the image in local thresholding type. The methods adopted here are Otsu and Kapur multi-level 
thresholding for the problem formulation, optimizing each of them using LebTLBO [26]. Following 
are the different concepts used for segmentation. 

3.1. Multilevel thresholding 

The most important concept utilized here is multi-level thresholding rather than binary 
thresholding because binary threshold divides the image into two major parts-background and 
foreground. In the case of blood microscopic images, there are different components, including plasma, 
leukocyte, erythrocytes, and some other cells like parasites. So for segmentation, there is a need for 
more than one threshold to separate these different components. Hence, multi-level thresholding is 
preferred over binary type. In multi-level thresholding, more than two thresholds are generally used.  

So instead of generating only two regions, as in the case of bi-level thresholding, multi-level 
thresholding generates several regions such as [𝑟ଵ, 𝑟ଶ, 𝑟ଷ, 𝑟ସ, … … . 𝑟௡]cconsidering the thresholding 
values, and this can lead to more accurate results of segmentation. In addition, different threshold 
values, such as 𝑡ℎଵ, 𝑡ℎଶ, 𝑡ℎଷ, 𝑡ℎସ … … ..tc are considered in this case. Equation 1 could further explore 
this.  

𝑟ଵ ← 𝑑(𝑚, 𝑛), if 0 < 𝑑(𝑚, 𝑛) < 𝑡ℎଵ

𝑟ଶ ← 𝑑(𝑚, 𝑛),  if 𝑡ℎଵ < 𝑑(𝑚, 𝑛) < 𝑡ℎଶ

𝑟ଷ ← 𝑑(𝑚, 𝑛),  if 𝑡ℎଶ < 𝑑(𝑚, 𝑛) < 𝑡ℎଷ

𝑟௜ ← 𝑑(𝑚, 𝑛),  if 𝑡ℎ௜ < 𝑑(𝑚, 𝑛) < 𝑡ℎ௜ାଵ

… 𝑟௞ ← 𝑑(𝑚, 𝑛), if 𝑇ℎ௡௘ିଵ < 𝑑(𝑚, 𝑛) < 𝑇ℎ௡௘

                                                 (1) 

where ne are the number of threshold levels.  

3.2. Otsu method 

For multi-level thresholding in the segmentation, Otsu and Kapur-based algorithms are the most 
popular [69]. Otsu comes under the global method of image thresholding [70]. Amongst the different 
thresholding methods, multi-level Otsu is more popular among the researchers [71,72]. Otsu 
maximizes the variances between the classes. The strategy here is to process the image histogram and 
segment the objects by minimizing the thresholds into the different classes. Generally, image 
histograms may contain two clear peaks representing different intensity ranges. The intra-class 
variance, defined as the weighted sum of the variances between the two classes, is minimized by 
finding a threshold, as shown in Eq (2). 

                                                       𝜎ఠ
ଶ (𝑡) = 𝜔଴(𝑡)𝜎଴

ଶ(𝑡) + 𝜔ଵ(𝑡)𝜎ଵ
ଶ(𝑡)                                                         (2) 

Weights ω0 and ω1 are probabilities of different classes, t defines the threshold value, and σ0 and 
σ1 are the class variances. The histogram is used to obtain the class probability, ω0,1 (t) is calculated 



1978 

Mathematical Biosciences and Engineering  Volume 19, Issue 2, 1970−2001. 

from L bits of the histogram. 

                                                                       𝜔଴(𝑡) = ∑  ௧ିଵ
௜ୀ଴ 𝑝(𝑖)                                                                        (3) 

                                                                      𝜔ଵ(𝑡) = ∑  ௅ିଵ
௜ୀ௧ 𝑝(𝑖)                                                                         (4) 

For two classes, minimization of the intra-class variance is the same as maximizing the inter-class 
variance. 

                                                                 𝜎௕
ଶ(𝑡) = 𝜎ଶ − 𝜎ఠ

ଶ (𝑡)                                                                            (5) 

                              = 𝜔଴(𝑡)𝜔ଵ(𝑡)[𝜇଴(𝑡) − 𝜇ଵ(𝑡)]ଶ 

The class means μ0(t), μ1(t) and μT are given by 

                                                                 𝜇଴(𝑡) =
∑  ೟షభ

೟సబ ௣(௜)

ఠబ(௧)
                                                                                    (6) 

                                                               𝜇ଵ(𝑡) =
∑  ಽషభ

೔స೟ ௣(௜)

ఠభ(௧)
                                                                                     (7) 

                                                               𝜇்(𝑡) = ∑  ௅ିଵ
௜ୀ଴ 𝑖𝑝(𝑖)                                                                               (8) 

                            𝑓𝑜𝑇𝑆𝑈 (𝑡ℎ) = 𝜙଴ = 𝑚𝑎𝑥൫𝜎஻
ଶ(𝑡ℎ)൯, 0 ≤ 𝑡ℎ ≤ 𝐿 − 1                                                      (9) 

0 < 𝑡ℎ < 𝐿 − 1, 𝑖 = 1, 2, 3 … . 𝑘 

When the histograms have a bimodal distribution and a deep and abrupt valley between the peaks, 
Otsu performs reasonably well. In the case of smaller object areas, the histogram may not possess 
bimodality. Also, if there is large additive noise, the histogram’s sharp valley will get degraded. Then, 
there may be the segmentation error due to incorrect threshold values. As a result, tiny object size, a 
lower mean difference between background and foreground, significant variations between object and 
background pixels, a considerable quantity of noise, and other factors may limit object segmentation 
performance [73]. 

3.3. Kapur’s method 

Kapur’s method can prove a valuable metric for multi-level segmentation [74]. Kapur [75] 
developed the Kapur's entropy technique in 1985, which maximized the histogram entropy of 
segmented classes to find the best threshold values. This method proves to be effective and feasible 
for image segmentation [76]. Shannon’s entropy function is conceptualized as an inverse proportion 
between the probabilities of occurrence of an event and the information [77]. Higher the probability of 
occurrence of the event exhibits fewer information contents. The entropy presented by Shannon is 
given by the equation, 

                                                                𝐻 = − ∑  ௠
௡ୀଵ 𝑝௞ log(𝑝௞)                                                                    (10) 

where H- Entropy and Pk- the probability of the nth gray level, m-total number of levels in the gray 
image. The probability distribution considered here is between background and foreground in an image. 
The entropy of an image does not consider the spatial distribution of an image. Due to this, the same 
histogram having different images offers the same value of entropy and the threshold [77]. Assuming 
p1, p2, p3…p as the distribution of probability for a gray level image. Mostly, there are two probability 
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distributions to be considered. Eqs (11) and (12) define them as, 

                                                                        𝐴:
௉భ

௉ೞ

௉మ

௉ೞ
⋯ ⋅

௉ೞ

௉ೞ
                                                                                 (11) 

                                                                   𝐵:
௉ೄశభ

ଵି௉ೞ

௉ೞశమ

ଵି௉ೞ
⋯ ⋅

௉೙

ଵି௉ೞ
                                                                          (12) 

H(A) and H(B) gives the entropies associated with A and B in Eqs (13) and (14), respectively, 
The value of ϕs, which gives the sum of H(A) and H(B) has to be maximum, So that maximum 
information will be obtained between background and foreground. 

𝐻(𝐴) = − ∑  ௦
௜ୀଵ

௉೔

௉ೞ
In 

௉೔

௉ೞ

                                                                 = −
ଵ

௉ೞ
∑  ௦

௜ୀଵ 𝑃௜𝐼𝑛𝑃௜ − 𝑃௦𝐼𝑛𝑃௦

                                 = 𝐼𝑛𝑃௦ +
ுೞ

௉ೞ

                                                           (13) 

𝐻(𝐵) = − ෍  

௡

ଵା௦

𝑃௜

1 − 𝑃௦
𝐼𝑛

𝑃௜

1 − 𝑃௦
       

                                                                 = −
ଵ

ଵି௉ೞ
[∑  ௡

௜ୀଵା௦ 𝑃௜ 𝐼𝑛 𝑃௜ − 1 − 𝑃௦ 𝐼𝑛(1 − 𝑃௦)]                         (14) 

= 𝐼𝑛(1 − 𝑃௦)
𝐻௡ − 𝐻௦

1 − 𝑃௦
     

                                                𝜙௦ = 𝐻஺ + 𝐻஻ = 𝐼𝑛𝑃௦ +
ுೞ

௉ೞ
+ 𝐼𝑛(1 − 𝑃௦) +

ு೙ିுೞ

ଵି௉ೞ
                                      (15) 

                                                        𝜙௦ = 𝐼𝑛 𝑃௦(1 − 𝑃௦) +
(ு೙ିுೞ)௉ೞାுೞ(ଵି௉ೞ)

௉ೞ(ଵି௉ೞ)
                                               (16) 

The threshold value is obtained from Eq (16) of ϕs where it is maximum, after considering the 
discrete values of s in the equation. To get the exact distinction between backgrounds and foreground, 
the maximum value of ϕs is considered. Most techniques consisting of the metaheuristic approach for 
optimization follow a similar technique [78], where the fitness function is the entropy to maximize 
output. Multilevel thresholding using the Kapur approach is always superior to the single level to get 
more precise and accurate results, as the image segmentation is considered, as follows by Eq (16) [79]. 
This entropy-based method considers the histogram of a gray level as the base. There will be scattered 
in the optimal threshold as the entropy reaches maximization: 

                                                   𝐻(0) = − ∑  
௧భିଵ
௜ୀ଴

௉೔

௉బ
𝐼𝑛

௉೔

௉బ
, 𝑃଴ = ∑  ௧ିଵ

௜ୀ଴ 𝑃௜                                                     (17) 

                                                  𝐻(1) = − ∑  
௧మିଵ
௜ୀ଴

௉೔

௉భ
𝐼𝑛

௉೔

௉భ
, 𝑃ଵ = ∑  

௧మିଵ
௜ୀ଴ 𝑃௜                                                      (18) 

                                                  𝐻(2) = − ∑  
௧యିଵ
௜ୀ଴

௉೔

௉మ
𝐼𝑛

௉೔

௉మ
, 𝑃ଶ = ∑  

௧యିଵ
௜ୀ଴ 𝑃௜                                                     (19) 

                                               𝐻(𝑗) = − ∑  
௧ೕశభିଵ

௜ୀ௧ೕ

௉೔

௉ೕ
𝐼𝑛

௉೔

௉ೕ
, 𝑃௝ = ∑  

௧ೕశభିଵ

௜ୀ௧ೕ
𝑃௜                                                   (20) 

                                                𝐻(𝑚) = − ∑  ௅ିଵ
௜ୀ௧೘

௉೔

௉೘
𝐼𝑛

௉೔

௉೘
, 𝑃௠ = ∑  ௅ିଵ

௜ୀ௧೘
𝑃௠                                               (21) 
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The objective function is to maximize when selecting the optimal threshold. 

𝑓୩ୟ୮୳୰(𝑡ℎ) = 𝜙௞ = argmax − ∑  ௠
௜ୀଵ 𝐻௜(𝑡ℎ), 0 ≤ 𝑡ℎ ≤ 𝐿 − 1                              (22) 

Optimal threshold values for multiple thresholds are given as: 

𝑓୩ୟ୮୳୰(𝑇𝐻) = 𝑓୩ୟ୮୳୰(𝑡ℎ௜), 𝑖 = 1,2,3 … . , 𝑘                                               (23) 

𝑡ℎ1, 𝑡ℎ2, …are the threshold values combined in a vector TH, I represent a specific class as provided 
in Eq (2). 

3.4. TLBO optimization 

Researchers have developed a variety of optimization algorithms [80]. There are certain popular 
categories of these algorithms. As the image segmentation is considered, some optimization algorithms 
such as genetic algorithm (GA) [81], particle swarm optimization (PSO) [82], ant bee colony (ABC) 
[83], etc. are presented. A newly developed algorithm by [61] is based on the classroom’s teaching-
learning process, TLBO. Some popular variants of these algorithms include basic, modified [84], 
differential learning approach [85], nonlinear inertia weighted approach [86], approach with learning 
experience from others [87], generalized oppositional approach [88], etc. In addition to these variants 
of TLBO, there is a recently developed variant known as LEBTLBO. Singh et al. [26] compared this 
optimization technique with GA, PSO and other popular traditional techniques for segmentation. They 
found that LebTLBO explores the segmentation with greater significance. For the segmentation 
problem of leukemia detection, the same optimization algorithm is adopted along with multi-level 
thresholding as an objective function here. This involved the classroom behavior of the teaching and 
learning process. Therefore, it has two phases- the teaching phase and the learning phase. Simple 
implementation and fast convergence are the main advantages of this algorithm. This basic algorithm 
is applied to many problems related to engineering, such as machining, drilling, ultrasonic machining, 
electrochemical machining, etc. [89], and also for image segmentation purposes [90]. There are certain 
modifications done are TLBO to enhance the search capability for finding the optimum solution. 
Although, as in traditional TLBO, every student is considered to have the same learning potential, 
LebTLBO works with the real-world problem related to enthusiasm for learning. More enthusiastic 
students in the class may also have good concentration and are keen to know the concepts taught to 
them by their teacher. On the contrary, less enthusiastic students may have less concentration towards 
teaching and are generally not open to getting information from teachers. LebTLBO is motivated by 
this kind of real-world teaching mechanism. In this approach, a third phase is introduced, called as “a 
poor phase of tutoring”. Learning enthusiasm is calculated based on the grades of students. Students 
with good grades are considered to have higher learning enthusiasm and the students with less or lower 
grades are considered to have less learning enthusiasm.  

3.4.1. Teacher phase of learning enthusiasm  

Teaching learning is a unique process. The enthusiasm amongst the students towards learning 
defines the students as good students. This enthusiasm leads them to get good marks and also makes 
them interested to get the new knowledge from their teachers. When they gained knowledge from their 
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teacher, they will be able to pursue good marks in their examinations. After getting good grades, their 
positions will be altered and they will achieve good ranks, updating their positions to the top. On the 
other hand, the poor students or the students with less enthusiasm will surely get less marks and will 
not move towards the top positions. This behavior is the basis of teaching phase of the LebTLBO 
algorithm. Figure 5 shows different steps of the teacher phase. In the mathematical manner, it is 
explained as below. 

For this phase to construct, there are two presumptions considered. 
1) The students having decent evaluations are more excited about learning and are more open to 

getting information from the instructor. 
2) The students with fewer evaluations have less energy for learning and are less open to acquiring 

knowledge from their instructor. In this phase, learners’ grades are taken as the base for sorting them 
into the different categories from best to worst. For a maximization problem, an assumption is made 
that, 

𝑓(𝑥ଵ) ≥ 𝑓(𝑥ଶ) ≥ ⋯ . . ≥ 𝑓(𝑋௄)                                                        (24) 

After this, learning enthusiasm values are defined as, 

𝐿𝐸௜ = 𝐿𝐸௠௜௡ + (𝐿𝐸௠௔௫ − 𝐿𝐸௠௜௡)
௄ି௜

௄
                                              (25) 

where, i=1, 2,. . . ., K, where LEmax and LEmin are the maximum and minimum value of enthusiasm 
of learners towards learning from their teacher. Depending upon the value of LEi (learning enthusiasm 
value), students are classified into two categories as-gaining from the instructor or not gaining from 
the instructor. An irregular number is created for the student (xi) as ri ∈ [0, 1]. If ri ≤ LEi, the student 
will gain knowledge from his instructor. In the other case, the student will not be open to learning from 
the educator. When xi gains knowledge from his teacher, his position gets updated, and he gets 
upgraded his knowledge. Depending upon the learner’s desire, whether to learn or not learn from the 
educator, the learner position will be updated with the following Eq (26). 

𝑥௜,௡௘௪
ௗ = 𝑓(𝑥) =

⎩
⎨

⎧
𝑥௜,୭୪ୢ

ௗ + 𝑟𝑎𝑛𝑑ଶ ⋅ ൫𝑥௧௘௔௖ℎ௘௥
ௗ − 𝑇ி ⋅ 𝑥௠௘௔௡

ௗ ൯,        if 𝑟𝑎𝑛𝑑ଵ < 0.5 

𝑥௥ଵ
ௗ + 𝐹.൫𝑥௥ଶ

ௗ + 𝑥௥ଷ
ௗ ൯,                                                     otherwise

                    (26) 

where, 𝑟ଵ, 𝑟ଶ, 𝑟ଷ  are randomly selected integers from {1, 2, 3, … . 𝑁𝑃} , 𝑑 ∈ {1, 2, 3, . . 𝐷} , 
𝑟𝑎𝑛𝑑ଵ 𝑎𝑛𝑑 𝑟𝑎𝑛𝑑ଶ are two random variables distributed uniformly between [0,1], F is a scale factor 
in the range of [0,1]. 
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Figure 5. Teacher phase. 

3.4.2. Learning enthusiasm-based learner phase. 

The basis of this phase is the learners will learn from other learners depending on their desire 
towards learning. Their desire is lesser than the learning enthusiasm, then they will learn from other 
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learners. This means, the learners take the knowledge from other students also instead of the teacher. 
However, the position of the student is updated, only when it gains the knowledge from the teacher. 
Figure 6 shows different steps of the learner phase.  

 

Figure 6. Learner phase. 

The main assumption here is that learners with strong grades have a high level of learning 
excitement and that these learners have a high likelihood of gaining knowledge from their teachers. 
The students are rated from best to worst based on their grades for learning openness. This is based on 
Eq (25). A random number is created for the learner xi using the range of ri ∈ [0, 1]. If ri ≤ LEi, the 
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learner xi will learn from other learners; otherwise, the present learner xi will ignore the learner’s 
knowledge of the learner. However, if current learner xi can obtain knowledge from the teacher, its 
position will be revised, taking into account diversity-enhanced teaching. This is shown in Eq (27), 

𝑥௜,௡௘௪
ௗ = ቊ

𝑥௜,௢௟ௗ
ௗ + 𝑟𝑎𝑛𝑑ଶ ⋅ ൫𝑥௜ − 𝑥௝൯ 𝑖𝑓 𝑓(𝑥௜) ≥ 𝑓൫𝑥௝൯                                                  

𝑥௜,௢௟ௗ
ௗ + 𝑟𝑎𝑛𝑑ଶ ⋅ ൫𝑥௝ − 𝑥௜൯ 𝑖𝑓 𝑓(𝑥௜) ≤ 𝑓൫𝑥௝൯                                         

(27) 

where, rand denotes a uniformly distributed random vector in the range [0,1], f(xi) denotes the 
objective function, and xi, old is the ith learner’s old position. If xi, new is superior to xi, old, xi, new 
will be accepted. Otherwise, there will be no change in xi, old. 

3.4.3. Poor student tutoring phase. 

Poor students are sorted first and then amongst the poor students, the desire of gaining knowledge 
is again considered for categorizing them. The learning desire is considered for updating their grades 
in this case as well. This phase will work same as the learning phase, with a change that, the students 
considered here are below 10% level amongst all the students. This can be explained in the 
mathematical manner and is described in the following paragraph. 

This phase differentiates the LebTLBO algorithm from the basic TLBO. Here, improvement in 
the grades of the poor students is the prime motive. The Poor learners are considered if they fall below 
the 10% level of the whole class. A learner named xT is picked randomly from among the 
impoverished student’s xi, with a rank in the top half of the class. 

The following Equation shows the learning, 

𝑥௜,௡௘௪
ௗ = 𝑥௜,௢௟ௗ

ௗ + 𝑟𝑎𝑛𝑑൫𝑥்
ௗ − 𝑥௜,௢௟ௗ

ௗ ൯                                                              (28) 

where, d =1, 2, . . . .,D. In this phase also, xi, new will be accepted depending upon whether it is better 
than xi, old. Otherwise, it earlier remains unchanged. The flow chart of the same is shown in Figure 7. 
Those who receive good grades are more likely to alter their positions, whereas students who receive 
poor grades are less likely to do so. This strategy is based on the real-time teaching-learning process. 
Therefore, it proves more feasible in its working regarding the position updating of learners. 

3.4.4. Optimizing Otsu and Kapur with LEbTLBO.  

In this approach, Otsu and Kapur methods are given by Eqs (9) and (22), fkapur (TH) and fOTSU 
(TH) are considered as the objective functions for the optimization. Multiple optimal threshold values 
are to be found with the maximization of the objective function. Let thi = (thi1, thi2, . . . ., thik) 
denotes the population vector of ith position of different threshold values-k, where thi(j) ∈ 0, 255. 
Equation (29) gives the initial population of students, 

𝑡ℎ௜(𝑗) = 𝑡ℎ௠௜௡ + 𝑟𝑎𝑛𝑑() ∗ (𝑡ℎ௠௔௫ − 𝑡ℎ௠௜௡)                                         (29) 

where thmin and thmax are the image’s minimum and maximum intensity values, j is the number of 
threshold levels, and a rand is a random number, respectively. Otsu and Kapur's entropy is used to 
calculate each's fitness value. The student with the maximum knowledge gives the best objective 
function for the algorithms. 
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Figure 7. Poor phase. 

For segmentation, the personal laptop is used with 8 GB of RAM and Intel-core I-5 processor. In 
addition, the Python software with version 3.8 is utilized for the same.  

4.  Performance evaluation metrics 

Segmentation is the method for extraction of the region of interest for the given application. The 
first thing to evaluate segmentation performance is to compare the segmented image with the ground 
truth image. In this respect, different measures are identified for the evaluation of the system’s 
performance. These parameters include volume overlapping error [91], dice index [92], relative 
volume difference [92], jaccard index [93], mean-square-error and peak-signal-to-noise-ratio [94]. 
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4.1. Volume overlapping error (VOE) 

For this to evaluate, segmented images and the ground truth masks are considered in their volumes. 
It is given by, 

𝑉𝑂𝐸 =
஺ ௔௡ௗ ஻

஺ ௢௥ ஻
                                                                            (30) 

where, A= ground truth image, B= segmented image 
The volumes of both images are compared and considered to be overlapped on each other. The 

amount of overlap indicates the correct segmentation. The amount of volume which does not overlap 
indicates the error in segmentation. The amount of non-overlapping between two images gives the 
overlapping error. Its value should be lesser to indicate effective segmentation. 

4.2. Relative volume difference (RVD) 

It evaluates the difference between the segmented image and the mask image which is the ground 
truth. It is given by, 

𝑅𝑉𝐷 =
஺ି஻

஻
                                                                              (31) 

where, A = ground truth image, B = segmented image. 
In this performance metric, the ground truth image is subtracted from the segmented image. 

So its value will be lesser when the segmentation is effective. Less or zero value of this parameter 
indicates that, the segmented image and the mask image are exactly similar, showing the correct 
segmentation. 

4.3. Jaccard index 

This accuracy metric will compare the ground truth mask (a mask prepared manually by a medical 
professional, such as a radiologist or a pathologist) against the mask developed using segmentation. 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝐼𝑛𝑑𝑒𝑥 =
஺ ௔௡ௗ ஻

஺ ௢௥ ஻
=

்௉

்௉ାிேାி௉
                                             (32) 

where, TP = true positive, FN = false negative, FP = false positive.  
It is also given in terms of dice score as, 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝐼𝑛𝑑𝑒𝑥 =
஽௜௖௘ ௌ௖௢௥௘

ଶି஽௜௖  ௌ௖௢௥௘
                                                        (33) 

4.4. Dice coefficient 

Jaccard index and the dice coefficient are quite similar. The intersection is counted twice with the 
dice coefficient (TP). It is given by, 

                                                           𝐷𝑖𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 =
ଶ × (஺ ௔௡ௗ ஻)

(஺ ௔௡ௗ ஻) ା (஺ ௢௥ ஻)
                                                           (34) 

Jaccard index and dice coefficients indicates the number of truly segmented images out of the 
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total images. As the expectation of effective segmentation is that, all the images are to be segmented. 
Hence, the value of Jaccard index and dice coefficient should be as large as possible. Its maximum 
value is 1 [95]. 

4.5. Mean square error (MSE) 

It calculates the squared error between the estimator and the estimated average. This parameter 
can analyze the segmentation performance. 

4.6. Peak signal-to-noise ratio (PSNR) 

It is the ratio of the signal with noise that signifies the loss during the segmentation process. It is 
expressed in dB with the following equation, 

                                                              𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔ଵ଴
௣௘௔௞௩௔௟௨௘మ

ெௌா
                                                              (35) 

MSE and PSNR are both used for getting the segmentation performance. MSE gives the error 
between mask image and the segmented image, while PSNR gives the signal-to-noise ratio. MSE value 
should be as low as possible to effective segmentation. MSE should always be lesser to indicate error-
free segmentation. According to Eq (35), with lesser value of MSE, PSNR will lead to a greater value. 
According to the theory, the higher the PSNR, the better the degraded image has been reconstructed 
to match the original image, and the reconstructive algorithm is better.  

4.7 Intersection over union (IoU)  

Intersection over union (IoU) [96] is a type of image segmentation evaluation matrix that 
measures how much the goal ground truth mask overlaps with the prediction output. It is calculated by 
dividing the intersection of target and prediction pixels by the total number of pixels in both masks. 
According to Eq (36), IoU value will approach to high for error-free segmentation.  

  IoU= 
்௔௥௚௘௧ ∩௉௥௘ௗ௜௖௧௜௢௡

்௔௥௚௘௧∪௉௥௘ௗ௜௖௧௜௢௡
                              (36) 

4.8 Structural similarity index (SSIM)  

The perceptual difference between two comparable images is measured using SSIM. The formula 
for calculating the similarity index (SI) is as follows [97]: 

                                                               𝑆𝐼 =
௠ೌ್ଶ௫௬ଶ௠ೌ௠್

௠ೌ௠್௫మା௬మ௠ೌ
మା௠್

మ                                                                       (37) 

where, x and y denote the mean values of images original image image1-K (i, j) and enhanced image 
image2-I (i, j) and ma2, mb2 and mab denotes the variance of image1-K (i, j), image2-I (i, j) and 
covariance of image1-K (i, j) and image2-I (i, j). This index is used to get the structural similarity 
between the ground truth image and the segmented image. Hence, its value should be higher to indicate 
good segmentation. Its maximum value will be 1. 
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4.9. Mean absolute error (MAE) 

It is defined as the difference between the original and improved image [98] and is expressed as 
below,  

                                                   𝑀𝐴𝐸 =
ଵ

௡
∑  ௡

௜ୀ଴ |𝑓௜ − 𝑦௜| =
ଵ

௡
∑  ௡

௜ୀଵ |𝑒௜|                                                       (38) 

where, fi is segmented images and Yi is the mask or ground truth image. This parameter finds the 
difference between the ground truth image and the segmented image. Hence, to show true 
segmentation, its value approach to zero. 

5. Results  

The results are visualized as shown in Figures 8–10. Figure 8a shows the original image of the 
dataset and the orange ring indicates the leukocyte to be segmented. Figure 8b is the mask, also called 
as ground truth image. It is obtained by manually segmenting the original image and the leukocyte is 
annotated by an expert pathologist. The segmentation task involves gray scaling of this original image, 
followed by the multi-level thresholding with Otsu and Kapur methods and then optimizing the 
performance with a popular LebTLBO optimization approach. Figures 9a,b are the segmented 
leukocytes by Kapur approach and optimized Kapur approach. In these Figures, the orange rings and 
the arrows indicate segmentation errors. Figure 10a,b are the outcomes of segmentation with Otsu and 
optimized Otsu approaches. These Figures indicate that optimized Otsu gives better segmentation as 
compared with other approaches in our proposed methodology.  

In addition to the visualized results, different statistical parameters are also considered for the 
analysis of the performance of segmentation with our approach. Figure 11 shows the average results 
obtained as an outcome of segmentation on ALL-IDB dataset images. 

 

Figure 8. a) Database image and b) Mask-Ground truth image. 
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Figure 9. a) Multi-Kapur segmented image. b) Multi-Kapur with LebTLBO segmentation. 

 

Figure 10. a) Multi-Otsu segmented image and b) Multi-Otsu with LebTLBO 
segmentation. 

Jaccard index and dice coefficient are the indicators of the true positives with respect to the total 
images. These two parameters indicate the amount of segmentation. These parameter approach to the 
maximum value to show good segmentation. In our results, as indicated in Figure 11a),d) dice score 
and jaccard index are maximum when optimization is applied with basic Otsu and Kapur methods. 
This justifies the improvement in segmentation with optimized thresholding. Other parameter is VOE 
that gives the error in overlapping of volumes of ground truth image and the segmented image. This 
parameter is expected to have lower value ensuring the good segmentation. As shown in the Figure 11b), 
this error has less value in optimized Kapur approach. In addition to this, other popular error metrics 
are also evaluated for analyzing the segmentation performance. These include RVD, MSE, and MAE. 
As these are the errors in segmentation showing volume difference and mean errors, their value should 
also be lower to indicate good segmentation performance in our result visualization as shown in 
Figure 11c),e),i). These error parameters also show less values with optimized approach. Another 
parameter, SSIM is also evaluated as performance metric of segmentation. It shows similarities 
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between the ground truth image and the segmented image. The value of this parameter should be 
maximum to indicate good segmentation. As indicated in Figure 11h), SSIM has a maximum value 
with an optimized approach. The next metric for evaluation of segmentation performance is PSNR. Its 
value should be higher to ensure good segmentation. Also, in this case, optimized approach looks 
better than traditional thresholding approaches, as shown in Figure 11f). IoU is also considered as the 
performance metric, which gives higher value with optimized approach. This is indicated in Figure 11g). 

Figure 11. Variation of different scores with the proposed methods: a) dice score, b) VOE, c) RVD, 
d) JI, e) MSE, f) PSNR, g) IoU, h) SSIM and i) MAE. 

 

Figure 12. Execution time for segmentation with and without optimization. 

Multi-Otsu Multi-Otsu
+TLBO

Multi-Kapur Multi-Kapur +
TLBO

Segmentation Time (sec.)
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a) 

 
b) 

 
c) 

Figure 13. Comparison of the proposed method with others: in a) and b) comparison with 
et al. [99] with respect to PSNR and SSIM, respectively; in c) comparison with Shahzad 
et al [42]. 
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In addition to these parameters, execution time analysis is performed. The time taken for 
segmentation for the traditional thresholding approach and with optimized approach is calculated. The 
time considered for single image segmentation with and without optimization. The visualization is 
shown in Figure 12. It indicates that optimized approaches require less time for segmentation. 

The execution time analysis is also done with and without optimization which is shown in 
Figure 12. The segmentation is carried out on Core-I3 system with 4 GB RAM, and on Pycharm IDE 
platform. The segmentation time is considered for a single image with two thresholds. 

The proposed approach is compared with the approach stated by Dhal et al. [99]. In their approach, 
the segmentation of leukocytes is presented by using some popular bio-inspired optimization 
algorithms and a clustering approach using K-means and mean shift. The bio-inspired optimization 
approaches used are stochastic fractal search (SFS), ant bee colony (ABC), particle swarm 
optimization (PSO) and differential evolution (DE). PSNR and similarity index are considered for 
comparison of these methods. This comparison is shown in Figure 13a)–c). 

6. Discussion 

Two thresholding methods, Otsu and Kapur, are used for segmentation. The search capabilities 
of these methods are improved by the LebTLBO optimization method. Otsu deals with the within-
class and between-class variance, while Kapur has entropy as the thresholding parameter. Parameters 
considered for measuring the performance of the segmentation are Dice Score, which gives the relation 
of union and intersection between the segmented image and the ground truth image. As shown in 
Figure 11a, the dice score of the proposed methodology with Kapur and Optimized Kapur varies from 
0.565731 to 0.60281, and the same for Otsu and Optimized Otsu varies from 0.628412 to 0.632528. 
This comparison indicates that Otsu thresholding with an optimization approach with LebTLBO gives 
a better dice score during segmentation evaluation. Jaccard index also varies from 0.466313 to 
0.472316 for all four approaches. It also indicates the optimized Otsu offers good performance as the 
Jaccard index is considered.  

The other parameter considered for evaluation is the relative volume difference, which is the 
difference in the volumes of mask-ground truth image and the segmented image. Its value is lesser in 
all four cases. Although, optimized Otsu indicates lesser RVD compared to the other three approaches 
with the value -0.0964. In addition to this, volume overlapping error is also considered for analysis. It 
gives AND and OR operations of ground truth image and segmented image. Its value lies between 
0.44 to 0.52, while the lesser error is obtained in the optimized Kapur method. MSE and PSNR are 
other parameters considered for the evaluation of segmentation performance. MSE and MAE are also 
lesser in the Optimized Otsu approach with corresponding values of 0.0981 and 0.0761, respectively, 
indicating the lowest error with the optimized Otsu method. Regarding MSE, another parameter PSNR 
is considered, which should be larger for better segmentation. PSNR shows the signal-to-noise ratio, 
which also proves a parameter showing the segmented image quality compared to ground truth after 
segmentation. In the proposed methodology, it varies from 56.55 to 58.75, with different approaches. 
It also clearly states that Optimized Otsu proves to be better than other approaches.  

IoU varies from 0.471 to 0.5573, indicating that, Optimized Otsu provides better IoU compared 
to other approaches in the methodology. The similarity index is also one more measure considered for 
analysis. Its value ranges from 0.9872 to 0.9906. Also, in this case, optimized Otsu proves to be a 
better segmentation approach. 



1993 

Mathematical Biosciences and Engineering  Volume 19, Issue 2, 1970−2001. 

Our proposed approach is found to offer a good comparative yield in terms of PSNR with the 
highest value of 58.80 with optimized Otsu, in comparison with approaches stated by [99]. In their 
methodology, PSNR varied from 25.43 to 32.39. The similarity index is another measure considered 
for comparison. It is found to be 0.99 in the case of our methodology, which is quite superior to the 
methodology proposed by [99], with a higher value of 0.8893 in the SFS approach. 

Our methodology is also compared with the one proposed by Shahzad [42]. Here, the measure 
considered is IoU. Our approach gives IoU varying from 0.44 to 0.56, which is better than the measure 
obtained by [42] with a value of 0.3199. 

Figures 9 and 10, shows the images as a result of segmentation with different methods. Kapur 
method shows an under segmentation (with more segmented regions than expected). When the 
optimization is applied, the segmentation is improved. Otsu has an over-segmentation (with fewer 
segmented regions than expected), and it is also improved with optimization. The main reason for the 
differential behavior of Otsu and Kapur is the basis of these two algorithms. Otsu works on 
maximization of between-class variance, whereas Kapur maximizes the entropy for measuring the 
homogeneity of the classes. Hence, the segmentation results differ with Otsu and Kapur. Although, 
optimization improves the segmentation results of both the algorithms. 

In biological assays, there is a requirement of counting and segmentation of cells. This was 
considered to be a prospective research area of microscopic imaging. In practice, the manual counting 
of cell colony forming units is used to calculate the surviving fraction (SF) in clonogenic assays. This 
method is operator specific and may be prone to error. Furthermore, because of the fast development 
rate that causes nearby colonies to merge, determining the actual colony number is frequently 
impossible. The colony size, which is often connected with the given radiation dose or the administered 
cytotoxic agent, is not considered in traditional assessment. Researchers adopted different 
methodologies for these problems. These methods include Circular Hough Transform and adaptive 
thresholding [100], multi-level thresholding with feedback based on watershed algorithm [101], 
bilateral filtering followed by watershed transform and morphological filtering [102], binary classifier 
inspired by quantum machine learning theory with homogeneity considered to be the relevant 
feature [103]. The stated approach in our paper can be explored with the problem of clonological 
assay in biomedical field. Our proposed approach will provide novel insights related to the 
segmentation in biological assays. 

7. Conclusions 

In this research, an improved and optimized method for image segmentation is proposed and 
evaluated for the detection of leukemia via microscopic imaging. Images are taken from a popular and 
publicly available dataset ALL-IDB. Segmentation involved separation between background and 
foreground from microscopic images. Multi-level thresholding is applied for the segmentation purpose 
using two methods, Otsu and Kapur. Otsu is based on intensity, while Kapur is an entropy-based 
algorithm. The histogram is considered for the threshold selection in these cases. There is a problem 
of threshold selection with Otsu and Kapur if there are fewer histogram changes that lead to improper 
threshold values. So the performance of the system is boosted by optimizing the same with the 
LebTLBO optimization algorithm. This has increased the search capacity of the algorithm for getting 
proper threshold values for segmentation. Different parameters used for the analysis of segmentation, 
performance indicates the assurance of the optimization technique to improve the segmentation 
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performance. A comparative analysis of the proposed approach is done against the segmentation with 
bio-inspired optimization techniques such as SFS, ABC, PSO and clustering algorithm such as K-
means and, other algorithms including DE and mean shift for segmentation purpose of leukocyte with 
the same dataset ALL-IDB. Performance measures such as PSNR and Similarity index are considered 
and the proposed approach was found to be better in terms of both parameters. The comparison is 
performed with a convolutional encoder- decoder framework with VGG-16 model, where IoU is the 
measure considered for the comparison. This system proved to be better over bio-inspired and some 
clustering algorithms. Therefore, for leukocyte detection, LebTLBO optimization will prove better 
than bio-inspired and clustering systems. These segmented images could be used further for the 
classification and diagnosis of leukemia. This work comes under traditional image processing, hence 
is always self-explainable and could always be more trusted than the unexplainable natures of newly 
developed AI techniques. 

In the proposed methodology, an ALL-IDB database is utilized. This methodology is to be tested 
with other available databases of leukemia and with real patients' microscopic images, in order to prove 
the robustness of the proposed algorithm. Generative Adversarial Networks (GAN) could be employed 
further for improvement in segmentation performance. GAN could be combined with a transfer 
learning approach (TLA) for further enhancement in system performance. 
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