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Following a fast initial breakthrough in graph based learning, Graph Neural Networks (GNNs) have reached a widespread

application in many science and engineering ields, prompting the need for methods to understand their decision process.

GNN explainers have started to emerge in recent years, with a multitude of methods both novel or adapted from other domains.

To sort out this plethora of alternative approaches, several studies have benchmarked the performance of diferent explainers

in terms of various explainability metrics. However, these earlier works make no attempts at providing insights into why

diferent GNN architectures are more or less explainable, or which explainer should be preferred in a given setting. In this

survey we ill these gaps by devising a systematic experimental study, which tests twelve explainers on eight representative

message-passing architectures trained on six carefully designed graph and node classiication datasets. With our results we

provide key insights on the choice and applicability of GNN explainers, we isolate key components that make them usable

and successful and provide recommendations on how to avoid common interpretation pitfalls. We conclude by highlighting

open questions and directions of possible future research.

CCS Concepts: · Computing methodologies→ Neural networks.
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1 Introduction

Graph Neural Networks (GNNs) have emerged as the de-facto standard for graph-based learning tasks. Regard-
less of their apparent simplicity, that allows most GNN architectures to be expressed as variants of Message
Passing [31], i.e., exchanging messages between nodes, GNNs have proved extremely efective in preserving the
natural symmetries present in many real-world physical systems [10, 25, 43, 75, 106]. The versatility of GNNs
allowed them to be also applied to emulate classical algorithms [14], addressing tasks like bipartite matching [30],
graph coloring [56] or the Traveling Salesperson Problem [74], and approximate symbolic reasoning tasks like
propositional satisiability [89, 90, 107] and probabilistic logic reasoning [127]. Despite recent works trying to
adapt the Transformer architecture, made popular by a wide success irst in language [76, 82, 102] and then
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in vision applications [3, 61, 78], to the graph domain [22, 48, 79, 123, 129], the natural inductive bias of GNNs
remains at the basis of the current success of GNNs. A major drawback of GNNs with respect to alternative graph
processing approaches [34, 39, 72, 95] is the opacity of their predictive mechanism, which they share with most
deep-learning based architectures. This severely limits the applicability of these technologies to safety-critical
scenarios.

The need to provide insights into the decision process of the network, and the need to provide explanations for
automatic decisions afecting human’s life [18, 47], have stimulated research in techniques for shading light into
the black box nature of deep architectures [35, 73, 81, 91, 98, 100, 101, 112, 124]. The approaches have also been
adapted to generate explanations for GNN models [8, 73, 98, 100]. However, networked data have peculiarities
that pose speciic challenges that explainers developed for tensor data struggle to address. The main challenge
comes from the lack of a regular structure, as nodes have a variable number of edges, which requires ad-hoc
strategies to be properly addressed. Indeed, several approaches have been recently developed that are speciically
tailored to explain GNN architectures, and Section 3 will summarize the main contributions.
It is often the case, however, that each work proposes a new set of benchmarks or metrics, making the

comparison across works complicated. We thereby stress the need for a comprehensive evaluation that can fairly
benchmark the explainers under a uniied lens. One of the irst attempts to provide such a comparative analysis
is the up mentioned work by Yuan et al. [120], where a taxonomy of the available explainers was proposed.
In addition to this, the authors reported a detailed overview of the most common datasets used to benchmark
explainers, along with the adopted evaluation metrics.
However, despite the wide coverage of explainers, datasets, and evaluation metrics, only a single GNN ar-

chitecture, namely a simple Graph Convolutional Network [49], was evaluated, so that nothing can be said
about the impact of diferent architectures in the resulting explanations. A similar limitation afects the works of
Zhao et al. [131] and Agarwal et al. [1, 2] that, despite presenting interesting insights in terms of consistency
of explainers, desired properties of explanation metrics and even introducing a generator for synthetic graph
benchmarks, focus their analysis to a single GNN architecture. Li et al. [55] conducted the irst empirical study
comparing diferent GNN architectures. However, their study is limited to node classiication and the three
explainers under analysis [64, 86, 115] are not well representative of the diversity of explanation strategies that
have been proposed, as summarized in the aforementioned taxonomy [120]. The most comprehensive study to
date is the recent work by Rathee at al. [80], that evaluated four GNN architectures over nine explainers for
both node and graph classiication. However, the main goal of this study is proposing a benchmarking suite to
quantitatively evaluate explainers, with no attempts at providing insights into why diferent GNN architectures
behave diferently in terms of explainability, or which explainer should be preferred in a given setting.

In spite of the aforementioned recent studies benchmarking explainability methods for GNNs, no investigation
has been done in characterizing the typical explanation patterns associated to the topological concepts learned
by the network and how diferent architectures afect the explanation. In our work, we address these issues by
answering the following research questions:

• RQ1: How does the architecture afect the explanations?
• RQ2: How do explainers afect the explanations?
• RQ3: How do diferent types of problems afect the explanations?

Overall, our work aims to go beyond a merely quantitative evaluation of the performance of explainer-GNN
pairs and to make a signiicant step towards explaining explainability. We run an unprecedented number of
experiments involving eight GNN architectures, twelve instance-based explainers, and six datasets (divided into
node and graph classiication) and enrich the quantitative results we obtain by providing a deep understanding
of the reasons behind the observed behaviors, together with a set of recommendations on how to select and best
use the most appropriate explainer for the task under investigation while avoiding common pitfalls, as well as a
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Symbol Description

� := (� , �,� ) A graph.
� := {1, . . . , �� } The set of �� ∈ N nodes of a graph.
� ⊂ � ×� The set of �� ∈ N edges of a graph.

� ∈ R
�� ×� ,� � ∈ R

� The matrix of �-dimensional node features, and the feature vec-
tor of the node � ∈ � .

� ∈ R
�� ×�� The identity matrix.

�, �̃ ∈ R
�� ×�� The adjacency and normalized adjacency matrix of a graph.

�, �̃ ∈ R
�� ×�� The degree and normalized degree matrix of a graph.

�, �̃ ∈ R
�� ×�� The Laplacian and normalized Laplacian matrix of a graph.

� (�) ⊂ � The irst order neighborhood of the node � ∈ � .

� ∈ R
�×� ′

The trainable weights of a layer.

Table 1. List of the mathematical symbols used throughout the paper, and their meaning. A few symbols used only in specific

setings are omited and defined in the text.

number of open problems in GNN explainability that we believe deserve further investigation. Following previous
analyses [1, 55, 58, 80, 121], our study investigates message-passing GNNs applied to static graphs. Exploring
explainability in non-message passing architectures (e.g., Transformers) or diferent graph types (e.g., temporal
graphs) is an interesting direction for future research, that may however necessitate distinct benchmarking
approaches.

The remainder of the paper is structured as follows: Section 2 presents an overview of GNN architectures, with
greater detail on the models that we adopted in our study. On the same vein, Section 3 introduces the explainers
for graph models, while Section 4 describes the benchmark datasets. Section 5 presents the evaluation metrics
employed to asses the explanation’s quality. Section 6 summarizes how we trained the tested architectures, and
Section 7 presents the results expressed with respect to the research questions deined above. In Section 8 we
discuss the results. Finally, in Section 9 we propose future research directions and in Section 10 we draw some
conclusions.

2 Graph Neural Networks

In this section we irst introduce the notation to deal with the GNN formalism, then we review the GNN
architectures explicitly used in our study. To facilitate the reading of the paper, recurring mathematical notation
is summarized in Table 1.

We consider a graph� := (� , �,�� ,��), with�� ∈ N nodes� := {1, . . . , �� },�� ∈ N edges � ⊂ � ×� , a matrix
of �-dimensional node features �� ∈ R

�� ×� , where the �-th row of � is the vector of � ∈ N features of the �-th
node, and similarly a matrix of � ′-dimensional edge features �� ∈ R

��×�
′
. Most graphs considered in this paper

do not have edge features, and we will simply write � := (� , �,� ) in order to denote a graph with node features

only. We use the matrices �, �, � , �̃, �̃, �̃ ∈ R
�� ×�� , where � and � are the adjacency and Laplacian matrices of

� , � is the �� -dimensional identity matrix, �̃ := �+ � , �̃ is its diagonal matrix, and �̃ := 2
�max (�)

� − � is the scaled

and normalized Laplacian, where �max (�) is the largest eigenvalue of �. Furthermore, � (�) := { � ∈ � : (�, �) ∈ �}

is the irst order neighborhood of the node � ∈ � .

ACM Comput. Surv.
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Each GNN layer takes as input the graph � , and maps the node features � ∈ R
�� ×� to updated node features

�
′ ∈ R

�� ×� ′
for a given � ′ ∈ N. Some speciic GNN layers, like Hierarchical Pooling layers [13, 52, 116, 133],

instead of reining the embedding for each input node aggregate nodes in order to coarsen the graph in a
similar way as done by pooling methods for vision models [16, 50, 100], thus resulting in a node feature matrix
�

′ ∈ R
�′×� ′

where �′ < �� . Overall, this new feature matrix � ′ is the embedding or representation of the nodes
after the application of one layer of the network. When needed, we denote as � � ,�

′
� the original and transformed

feature vector of the �-node, i.e., the transpose of the �-th row of the matrices � ,� ′. Specifying the map � → �
′

is thus suicient to provide a full deinition of the diferent layers. These transformations are parametric, and
they depend on trainable weights that are learned during the optimization of the network. We represent these
weights as matrices� . Additional terms speciic to single layers are deined in the following.

After an arbitrary number � of GNN layers stacked in sequence, the node embedding matrix � (� ) is further
processed in a way that depends on the task to perform. In node classiication settings [41, 49], where the
aim is predicting one or more node properties, a Multi-Layer Perceptron (MLP) [38] (with shared parameters
across nodes) is applied to each node’s embedding independently in order to output its predicted class. For
graph classiication settings [41] instead, where the goal is predicting a label for the entire graph, a permutation
invariant aggregation function (like mean, max, or sum) is applied over nodes’ embedding to compress � (� ) into
a single vector which is then mapped to the inal prediction via a standard MLP.

With this notation settled, we can now fully deine the architectures that we are going to consider. In selecting
the architectures to be included in our study, we relied on the comprehensive taxonomy of GNN methods
published by Zhou et al. [133]. Since our goal is to provide an extensive overview of explainability methods for
GNNs, we selected the models to benchmark aiming at covering as much as possible the diferent categories of
the taxonomy. The speciic methods are also selected depending on their popularity, their ease of training, their
performance on our benchmark datasets, their code availability and their compatibility with the explainers being
investigated. Overall, we analyzed the following categories: Convolutional whose computation can be roughly
intended as a generalization of the convolution operation on the image domain. Such convolution can either
be Spectral [19, 49], theoretically grounded in graph signal processing [97], or Spatial [32, 36, 103, 114], where
the operations are usually deined in terms of graph topology; The Pooling category contains all approaches
that aggregate node representations in order to perform graph-level tasks. They can be further diferentiated
into Direct [104, 125], where nodes can be aggregated with diferent aggregation strategies, often called readout
functions, and Hierarchical [11, 13, 52, 116, 118], where nodes are progressively hierarchically aggregated based
on their similarity. The latter methods often allow one to cluster nodes both based on their features and their
topological neighborhood [11, 116]. Despite covering the major aspects of GNN architectures, the aforementioned
taxonomy lacks some of the fundamental works that we will analyze in our study. Particularly, to compensate that,
we decided to respectively include the Graph Isomorphism Network (Gin) [114] and the GraphConv Higher Order
Network (GraphConv) [69] as Spatial Convolution and Higher Order, the latter being a new category added to
the taxonomy. A summary of such categorization end a comprehensive description of the GNN architectures
employed in this study is provided in Supplementary Material A.

3 GNN Explainability

To analyze and understand the strengths and weakness of graph explanation algorithms, we selected instances of
GNN explainers which are representative of the current state of the art. To this end, we follow the systematization
proposed by Yuan et al. [120], and choose to investigate instance-based explainers [8, 26, 42, 57, 59, 63, 81, 87, 88,
91, 94, 98, 100, 101, 105, 115, 122, 128, 132], i.e., those which aim at identifying components of the input that are
responsible for the model’s output. This is in contrast with model-based explainers, which rather try to provide a
global understanding of a trained model [5, 65, 66, 108, 119]. Since the available model-based explainers are very
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heterogeneous (i.e., it is not available a uniied evaluation setting), and since previous works on benchmarking
graph explainers have focused on instance-based methods [1, 2, 55, 80, 120, 131], we thereby omit model-based
explainers. In particular, Yuan et al. [120] identiies four macro categories of instance-based explainers, namely
gradient-, perturbation-, decomposition- and surrogate-based models. Roughly speaking, gradient-based explainers
exploit gradients of the input neural network [73, 100, 101], perturbation-based models perturb the input aiming to
obtain explainable subgraphs [26, 64, 86, 115], decomposition-based models try to decompose the input identifying
the explanations [8, 73, 87], while surrogate-based models use a simple interpretable surrogate to explain the
original neural network [42, 105, 128]. Furthermore, in order to account for a number of new approaches based on
modeling the underlying graph distribution via a generative process, and following the categorization proposed
by Kakkad [45], a ifth category named generation-based is added [57, 59, 94].

3.1 Explanation masks

Independently from this categorization, a further fundamental distinction is among explainers providing explana-
tions in terms of edge [64, 86, 115, 122] or node masks [8, 73, 87, 100, 101]. Given a graph � := (� , �,�� ,��)

(with possibly empty node or edge feature matrices - see Section 2), a node explanation mask is a graph
�exp := (� , �,��

exp) where the node features �
�
exp ∈ R

�� ×1 are node explanation weights. Similarly, an edge

explanation mask is a graph �exp := (� , �,��
exp), where now �

�
exp ∈ R

��×1 are edge explanation weights. For

both nodes and edges, we have hard masks if the weights have binary values in {0, 1}, and soft masks if they
have continuous values in [0, 1]. Any soft mask �exp can be converted in an hard mask �exp (�) by thresholding
its weights with a given threshold value � ∈ (0, 1). Given an hard mask �exp, its complement � \�exp is another
hard mask where the value of binary weights is lipped.

In addition to these two types of masks, a few explainers return also an explanation for the node features [98,
115]. However since single node features are not representative of the underlying topological structure which we
are interested in, and in line with most previous works [1, 2, 55, 80, 120, 131], we do not consider single node
features’ explanations.

3.2 Selection of the explainers

Below we report a brief overview of our benchmark explainers. Despite the existence of other works proposing
explainers, which occasionally fall outside the aforementioned categorization [42, 63, 87, 122, 128], we limited
our analysis on a subset. More speciically, the criteria for selecting a given explainer can be roughly summarized
by i) representativity of a speciic category as outlined before; ii) code availability; and iii) feasibility of usage, i.e.,
whether the explainer is not too computationally heavy to be used.

Given a GNN � to be explained, let �(�)� = �� = (�� )� � be the prediction of the model where � corresponds
to the inal graph-level or node-level embedding, and where the vector�� ∈ R

� ′
contains instead the learned

Fully Connected weights for class � to perform the inal classiication. Furthermore, we denote with H
� (�) the

importance attributed to a given explainer to the node � ∈ � for the prediction of class � , i.e., the collection of the
values H� (�) for � = 1, . . . , �� provides the node explanation mask �

�
exp for class � . A detailed description of the

methods can be found in Supplementary Material B. A concise summary of these methods is presented in Table 2.

4 Benchmark datasets

In this section we present the graph benchmark datasets employed in our work, the majority of which represent
newly proposed datasets. In designing the new benchmarks, we took inspiration from Faber et al. [24] who
analyzed frequent biases in evaluating GNN explainers and pointed out that explainers should be evaluated on
controlled benchmarks where the ground-truth evidence for target labels is known, and that diferent benchmarks
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Name Category Task Mask type

GradExplNode Gradient Graph/Node Node

GradExplEdge Gradient Graph/Node Edge

GuidedBp Gradient Graph/Node Node

IgEdge Gradient Graph/Node Edge

IgNode Gradient Graph/Node Node

GradCam Gradient Graph/Node Node

GnnExpl Perturbation Graph/Node Edge

PgExpl Perturbation Graph/Node Edge

SubX Perturbation Graph/Node Edge

PgmExpl Surrogate Graph/Node Node

Cam Decomposition Graph/Node Node

RgExpl Generation Graph/Node Edge

Table 2. Summary of explainers analyzed in this work. The columns Task represents to which downstream task the explainer

can be applied to, while Mask type represents whether the explainer returns explanations in terms of entire node importance,

single node features importance, or edge importance.

should aim at testing diferent aspects of the GNN. In the following we describe in detail each dataset, both for
node and graph classiication.

4.1 Datasets for graph classification

Grid: Inspired by the benchmarks presented in Ying et al. [115], the Grid dataset is composed by 1000 Barabási-
Albert (BA) graphs [9]. To half of these 1000 graphs we attach a 3 × 3 grid, and the resulting graphs are assigned
to the positive class, while the ones without grid are the negative class. The number of nodes in the BA graph is
a uniformly distributed random number between 15 and 30 (for the negative class) and between 6 and 21 (for the
positive class). This guarantees that when adding the grid, the average number of nodes in the positive class
matches the one in the negative class. It is worth mentioning that in the experiments done by Ying et al. [115],
the total number of nodes is ixed. This benchmark evaluates the ability of the explainers to identify explanations
consisting of a simple connected pattern.
Grid-House: Grid-House is characterized by two concepts. A 3 × 3 grid, as in the previous benchmark, and a
house made of 5 nodes. The base structure, to which the concepts are attached, is a BA graph with a random
number of nodes, and the inal task corresponds to binary classiication. The negative class consists of a BA
graph connected to a grid or a house, while the positive class is composed by a BA graph connected to both a
grid and a house. This benchmark aims at evaluating compositionality, as identifying simple patterns in isolation
is insuicient to characterize the ground truth.
Stars: The Stars benchmark is characterized by a random graph connected to a variable number of star-shaped
structures (from one to four). For the random graph generation, this time, we opted for the Erdős-Rényi (ER)
random graph model [23] to avoid a possible interference of stars generated in a BA graph. We deined a three-
class classiication task, depending on the number of stars present in each sample: class 0 corresponds to 1 star,
class 1 to 2 stars, and class 2 to 3 or 4 stars. Each star has a ixed size of 16 nodes, and the total number of nodes
is uniformly distributed between 30 and 50. This benchmarks is aimed at evaluating how explainers deal with
counting substructures.
House-Color: None of the previous benchmarks involves node features. Thus, in this benchmark we test how
node features afect explanations. In particular, we have a random BA graph with (one-hot encoded) random
colored nodes (blue, green, red). To the base BA graphs, we attached from one to three house-like structures
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made of ive nodes. One of these houses has a uniform color, which is blue for the negative class and green for
the positive one. The other houses have random colors.

4.2 Datasets for node classification

Shapes: The BA-Shapes dataset (henceforth referred to as Shapes), introduced in Ying et al. [115], is a widely
used dataset for benchmarking GNN explainers [64, 94, 115, 120, 122, 131]. It is composed by 300 nodes and a
set of 80 ive-node house-structured network motifs which are randomly attached to the base graph, generated
following the BA model [9]. Nodes are assigned to four categories, namely they either do not belong to a house
(class 0), or they are classiied depending on their structural function in the house: they may be either on the
middle below the roof (class 1), on the base (class 2), or on the top of the roof (class 3). The expected ground truth
explanation is a house motif for all classes.
Infection: This benchmark graph has been introduced in Section 5.1 of Faber et al. [24], and we use it with
minor modiications1. Starting from a directed ER graph [23] with 1000 nodes and an edge-generation probability
� = 0.004, a set of 50 nodes is selected uniformly at random and identiied as infected. The state of each node
is mapped to a node feature by one-hot encoding, i.e., a node has feature [0, 1] if it is healthy and [1, 0] if it is
infected. The label of a node is deined based on the length of a minimal directed path to reach this node from an
infected one. Namely, if this distance is denoted as � , then the node has label 0 if � = 0 (i.e., the node itself is
infected), label 1 if � = 1 or � = 2, and label 2 otherwise, i.e., � ≥ 3. We remark that the original dataset included
5 classes (� = 0, 1, 2, 3, and � ≥ 4), but we restrict to three to simplify the presentation of the results. Accordingly,
we employ two-layer networks instead of the four-layer ones used in [24]. From the deinition of the dataset we
identify the expected ground truth explanations of a node � as follows. For label zero, the explanation is the node
itself. For label 1, any directed path of length one or two from an infected node to � is a valid explanation. For
label 2, the explanation is given by the union of all directed paths of length up to 2 from any node in the graph to
� . In the last case, indeed, the network has to check the entire set of nodes from which � is reachable in at most
two steps to exclude that any of them is infected.

5 Assessment of the explanation quality

Evaluating GNNs’ explanations is a challenging task that requires to verify if and how the explainer is efective
in capturing the behaviour of the model. There are two main strategies to evaluate explanation quality. The irst
is a supervised strategy [27, 85, 115], that measures the similarity of the extracted explanation with an existing
ground-truth, which is assumed to be known. The second strategy measure in an unsupervised manner how
much the prediction of a GNN on the full graph resembles the prediction computed on the extracted explanation
only. Note that this does not require to have a ground-truth explanation available. We consider a metric for each
of these two strategies, in order to capture diferent aspects of the quality of an explanation: the plausibility[80]
of the explanation with respect to a ground-truth concept that an accurate GNN is expected to have learned,
and the idelity[20] of the explanation with respect to the prediction of the GNN to be explained. Speciically,
with plausibility we quantify the consistency between the explainer mask and a human-level intuition of what
a plausible explanation looks like. On the other hand, idelity measures the consistency between the model
prediction on the full graph and the prediction on the explanation subgraph, and thus it works with a sort of
model-based instead of human-based ground truth.

In this work we will evaluate explainers according to both strategies, and study the trade-of between the two.

1The code to generate this benchmark can be found at https://github.com/m30m/gnn-explainability.
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5.1 Single-instance metrics

In the following we detail the metrics we employ, namely plausibility[80] (� ) and idelity (� ), the latter further
divided in its comprehensiveness[20] (����) and suiciency[20] (���� ) components.
Each of the scores or metrics is computed for a speciic instantiation of a dataset with �� ∈ N classes, a class

� ∈ {0, 1, . . . , �� − 1}, a model, and an explainer. We thus assume that these four are ixed in the following, and
we stress that the same computation has to be repeated for each of these conigurations. Moreover, we remark
that the metrics are computed on the training set alone, as we need access to the labels of the graphs or nodes.

We assume to have a graph � (for graph classiication tasks) or a node � ∈ � (for node classiication ones) of
class � = � , and denote as � the trained GNN. We have GNNs which output a class probability prediction vector
in form of a soft max, so that the predicted class probabilities sum to 1. Since we are considering one class at a
time, in the following we assume to be working with only the output’s entry corresponding to class � .
Only the graphs (or nodes) which are correctly classiied by the trained GNN are considered further and run

through the explainer, which returns a corresponding node or edge soft explanation mask �exp (see Section 3.1).
Before computing the metrics, these soft-mask explanations are processed and iltered by means of three

operations:

• Conversion: Edge masks are converted to node masks by assigning to each node the weight given by
the average of the weights of its incident edges. This operation makes it easier to compare the scores of
edge-based and node-based explainers, and we choose to use node masks since node-based explainers are
more common in our taxonomy (see Section 2).

• Filtering: For each mask we check the diference between the largest and the smallest weight. If the
diference is below a tolerance � = 10−3, we discard the graph or node for the given combination of dataset,
class, model, and explainer (the graph or node may still pass the ilter for other settings). The goal of this
ilter is to discard poorly informative explanations.

• Normalization: The remaining explanation masks are normalized instance by instance, so that each expla-
nation has weights in [0, 1]. This has the efect of making the computation of the metric uniform across
the entire dataset, and comparing its values to those obtained with other settings.

After these operations have been applied, we compute the metrics as follows. We formalize each metric as it is
computed on a single instance (a graph or a node), and remark that the overall values of plausibility or idelity
for the entire (dataset, class, model, explainer)-coniguration is obtained by averaging over these single instances.

Plausibility. Let �exp be the expected ground truth for class � ∈ {0, 1, . . . , �� − 1}, represented by a copy of the
original graph� with an hard mask highlighting the ground truth nodes. Following [80], the plausibility � of the
explanation is deined as

� = AucROC(�exp,�exp),

i.e., the area under the ROC curve between the computed soft mask and the ground truth hard mask.
It is clear that this metric can only be computed on benchmarks in which the ground truth explanation can be

deined, and it is completely dependent on this deinition. For each dataset, the ground truths that we are using
to compute � are deined in Section 4. Whenever multiple ground truths are possible (e.g., the shortest paths in
Infection), we compute the plausibility of each candidate and consider only the highest one.

Suiciency. The idelity suiciency ���� [20] is the diference in the predicted probability when computed on
the graph and on the explanation. Since the explanation is a soft mask, we ix a number of levels �� ∈ N and
apply an incremental thresholding with �� + 1 threshold levels �� = �/�� , � = 0, . . . , �� , where we deine�exp (�� )

to be the hard mask explanation derived from �exp with threshold �� .
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Using �� = 100, we deine the metric by

���� =

1

�� − 1

��−1︁

�=1

(

�(�) − �(�exp (�� ))
)

,

i.e., the average change in prediction over all the possible hard masks.
This metric may possibly be negative, and a smaller value indicates a better result. This indeed may happen

only if the explanation provides an higher probability for the correct class than the entire graph, and thus the
explanation mask manages to ilter unnecessary parts of the graph. For this reason this metric is harder to
compare to other scores, so when used alone we transform it to a renormalized metric � ′

���
, which has values in

[0, 1] and where � ′
���

= 1 means a good quality of the explanation. The normalization takes into account the

number of classes �� , and it is deined for � =
��−1
��

as

� ′��� = 1 −
���� + �

1 + �
=

��

2�� − 1
(1 − ���� ).

Comprehensiveness. The idelity comprehensiveness ���� [20] is instead the diference in the predicted proba-
bility when computed on the graph and on the complement of the explanation. Proceeding as in the computation
of the suiciency, we deine

���� =

1

�� − 1

��−1︁

�=1

(

�(�) − �(� \�exp (�� ))
)

,

where now � \�exp (�� ) is the complement of the hard mask �exp (�� ). This metric may as well assume negative
values, but good explanations have in this case ���� close to 1 (the complement of the explanation provides low
probability).

We are not using this metric for node classiication datasets, since its evaluation would require to compute the
model prediction on � \�exp (�� ), which is a graph that may possibly not contain the node whose classiication
we are willing to explain.

Fidelity. To aggregate ���� and ���� into a unique idelity metric, for graph classiication tasks we compute
what we call � 1-idelity (�� 1), which is deined by

�� 1 = 2
(1 − ���� ) · ����

(1 − ���� ) + ����
.

This is indeed the � 1 score [44] between ���� and (1 − ���� ). In graph classiication tasks, we use this metric in
place of ���� and ���� .

5.2 Aggregation

After we evaluate any of these metrics on each (dataset, class, model, explainer)-coniguration, we need an
aggregation mechanism to assign a unique score to the models and the explainers over all classes and datasets.
This permits to avoid visualizing the detailed metrics over the entire set of conigurations, and make the results
easier to be interpreted. However, we provide plausibility and idelity values for each (dataset, class, model,
explainer)-coniguration in Supplementary Material C.
To deine these aggregate metrics we proceed as follows, where the same procedures are repeated for both

plausibility and idelity: (1) For each (dataset, class, model, explainer)-coniguration we keep only the class with
the highest value of the metric, i.e., the best explained class. (2) For a given dataset, we rank the model-explainer
pairs according to the values selected in point (1). The aggregated score of each pair is the ranking number 1, 2, . . . .
(3) The dataset-level scoring of an architecture, of an explainer, or of a category of explainers (e.g., grad-based or
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edge-based) is the average of the scores of point (2) over all the corresponding pairs. (4) To obtain global answers
(over all the datasets), the scores of point (2) are averaged over the datasets, and the operations of point (3) are
repeated using these values.
We mention in particular that the answer to the research questions (Section 7.1) are computed from these

aggregations.
To assess instead the stability the explanations over an entire dataset, we propose a qualitative visualization of

the masks which is discussed for each experimental setting.

6 Experimental seting

Any explainer provides an explanation of the prediction of a given instance of a model, as it is obtained after an
optimization process on a speciic dataset. It is thus of paramount importance to identify the choices made in the
training of the networks that will be analyzed in the following.

Graph classiication. We report in Table 3 the details of the networks used in each graph classiication task, the
parameters used for their optimization, and the resulting train and test accuracies.
For each dataset and each architecture, the table shows the dimensions of the hidden layers of GNN type

(column GNN ) and of fully connected type (column Fully conn.), and any additional parameter used for the
deinition of the architecture. For example, in the irst row the numbers 30 − 30 − 30 and 10 − 2 mean that three
Gcn layers are applied, each mapping to a target dimension of 30, followed by two fully connected layers with
target dimensions 10 and 2. We remark that the inal aggregation function is a mean for all datasets except for
Stars, where we used a sum aggregation. The table additionally reports the learning rate (column LR) and number
of epochs used in the training, where an ADAM optimizer has been used in each case. We remark that these
conigurations have been chosen with the guiding principle of obtaining the simplest coniguration achieving
a target 0.95 train accuracy. In particular, no validation set has been used. This choice is motivated by the fact
that the explanations are computed on the training set. This is a common (sometimes implicit) choice in the
explainability literature, with the rationale that explanations should identify what the model learned during
training, possibly highlighting patterns that do not generalize to test examples. However, to avoid extracting
spurious explanations for models that did not learn anything sensible, only the models with a training accuracy of
at least 0.95 have been further analyzed, while all the others have been discarded. The last two columns of Table
3 show the resulting train and test accuracies obtained by the models trained according to these speciications,
where an "X" indicates that it was not possible to achieve the desired target accuracy (in this case, the row reports
the coniguration of the largest architecture which has been tested). It is easy to see that with a 0.95 threshold on
training accuracy, training and test accuracies end up being very similar.

Node classiication. In the same way, we report in Table 4 the conigurations and accuracies related to the node
classiication tasks.

7 Results

7.1 Research questions

The comparative analysis of the behavior of the explainers is developed along the following research questions,
which will apply to both node and graph classiication tasks.

• RQ1: How does the architecture afect the explanations? This research question can be naturally
divided into the following three subquestions:
ś RQ1.1: Which is the architecture that has the best explanation? With this question we would like
to understand which is the architecture that achieves the best score, either in terms of f1-idelity or
plausibility.
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Dataset Architecture GNN Fully conn. HyperParams LR Epochs
Train

Acc

Test

Acc

Grid

Gcn 30-30-30 10-2 - 0.001 1500 0.994 0.998

GraphSage 30-30-30 10-2 - 0.01 3000 X X

Gat 30-30-30 10-2 heads = 1 0.01 3000 X X

Gin 30-30 30-2 - 0.001 1000 1.0 1.0

Cheb 30-30 30-2 - 0.001 1000 1.0 1.0

MinCutPool 32-32-32 32-2 - 0.001 700 0.92 0.93

Set2Set 30-30-30 10-2 - 0.001 1500 0.97 0.97

GraphConv 30-30 30-2 - 0.001 500 1.0 1.0

Grid-House

Gcn 60-60-60-60 60-10-2 - 0.001 7000 0.97 0.97

GraphSage 60-60-60-60 60-10-2 - 0.01 3000 X X

Gat 60-60-60-60 60-10-2 heads = 3 0.01 3000 X X

Gin 30-30 30-2 - 0.001 1000 0.99 1.0

Cheb 30-30-30 30-2 - 0.001 1000 1.0 0.98

MinCutPool 32-32-32 32-2 - 0.001 700 0.95 0.95

Set2Set 60-60-60-60 60-10-2 - 0.001 1500 0.97 0.97

GraphConv 30-30 30-2 - 0.001 500 1.0 1.0

Stars

Gcn 70-70-70 30-3 - 0.005 1000 0.99 1.0

GraphSage 30-30-30 30-3 - 0.01 3000 X X

Gat 30-30-30 10-3 heads = 1 0.01 3000 X X

Gin 40-40 30-3 - 0.001 3000 0.99 1.0

Cheb 30-30 30-3 - 0.001 1000 0.99 0.99

MinCutPool 32-32-32 32-3 - 0.001 400 0.99 0.99

Set2Set 70-70-70 30-3 - 0.001 1500 0.99 0.99

GraphConv 30-30 30-3 - 0.001 500 0.99 0.99

House-Color

Gcn 30-30 15-2 - 0.001 4000 0.99 0.99

GraphSage 30-30-30 30-2 - 0.001 1000 1.0 0.99

Gat 10-20-40 10-2 heads = 2 0.001 500 0.99 0.99

Gin 30-30 30-2 - 0.001 1000 1.0 0.99

Cheb 30-30 30-2 - 0.001 500 1.0 1.0

MinCutPool 32-32 32-2 - 0.001 400 0.96 0.97

Set2Set 30-30 15-2 - 0.001 1500 1.0 0.99

GraphConv 30-30 30-2 - 0.001 500 1.0 1.0

Table 3. Configuration of the graph classification models, and corresponding accuracies. The table reports for each dataset

and each architecture the dimension, number, and hyperparameters defining the hidden layers, together with the optimization

parameters, and the obtained train and test accuracies. The configuration-dataset pairs which did not reach the target 95%

train accuracy are marked with an "X", and are not further analyzed in this work.

ś RQ1.2:Which is the easiest architecture to explain? This question aims to ind what is the architecture
that is well explained by the greatest number of explainers.

ś RQ1.3:Which is the hardest architecture to explain? In this case we want to search for an architecture
that achieves the lowest score.

• RQ2: How do explainers afect the explanations? Even this question can be divided into subquestions,
which try to cover diferent open problems related to state-of-the-art GNN explainers. We identify them as
follows:
ś RQ2.1: Which is the explainer that explains in the best way? Here we are interested in inding the
explainer able to obtain the highest plausibility or idelity.
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Dataset Architecture GNN Fully conn. LR Epochs
Train

Acc

Test

Acc

Shapes

Gcn 30-30-30 10-4 0.0005 2000 0.98 0.98

GraphSAGE 30-30 4 0.005 2000 1.0 1.0

Gat 30-30-30 10-4 0.0005 2000 X X

Gin 70-70-70 4 0.0005 5000 0.96 0.95

Cheb 30-30 4 0.0005 300 1.0 1.0

Infection

Gcn 30-30 30 0.005 500 0.951 0.950

GraphSAGE 30-30 30 0.005 500 1.000 0.995

Gat 30-30 30 0.005 500 0.977 0.975

Gin 30-30 30 0.005 500 0.952 0.950

Cheb 30-30 30 0.0005 600 0.993 0.950

Table 4. Configuration of the node classification models, and corresponding accuracies. The table reports for each dataset

and each architecture the dimensions and number of hidden layers, together with the optimization parameters, and the

obtained train and test accuracies. The configuration-dataset pairs which did not reach the target 95% train accuracy are

marked with an "X", and are not further analyzed in this work.

ś RQ2.2: Which is the explainer that explains the maximum number of architectures? This aspect is
particularly important because we need explainers which are robust with respect to diferent GNN
architectures.

ś RQ2.3:Which is the category of explainers that provides the best explanations? The subquestion searches
for the best category of explainers. As deined by [120], we consider three macro-categories, namely
gradient-based (Grad), perturbation-based (Pert), and decomposition-based (Dec).

ś RQ2.4: Which is the best mask type between node and edge? By answering this question we investigate
if there is an advantage for explainers based on node or edge importance.

We would like to remark that RQ2.3 and RQ2.4 are particularly relevant for future research in GNN
explainability, since they may provide actionable guidelines for the development of new explainers.

• RQ3: How do diferent types of problems afect the explanations? To address this question we
analyze a series of diferent problems such as: single versus multiple concepts, counting substructures and
others. Each problem has been investigated throw diferent datasets, that will be discussed in relation to
this question.

7.2 Graph classification

7.2.1 RQ1: How does the architecture afect the explanations? Table 5 visualizes in a compact form the answer to
research questions RQ1, where the aggregation mechanism described in Section 5.2 has been used to identify a
ranking of the architectures for each dataset across all explainers, both in terms of plausibility and idelity and
the highest ranking architecture is reported for each research question and dataset. Each column in the table
refers to a speciic dataset (Grid to House-Color, see Section 4), while the irst column shows the overall answer
obtained by considering all the datasets at once. Also in this case we refer to Section 5.2 for the details of the
computation of this ranking.

Although the architecture with the best explanation (RQ1.1) varies depending on the dataset, the overall best
performer is GraphConv both for plausibility (paired with GradExplEdge) and idelity (paired with IgEdge).
This indicates a sort of consistency in the performances of GraphConv: It may not be the single best one for
any dataset, but it is always among the best performing ones, in a way that makes it to be the best in terms of
aggregated scores.

ACM Comput. Surv.



Explaining the Explainers in Graph Neural Networks: a Comparative Study • 13

The overall easiest architecture to explain on average (RQ1.2) is Gcn for both plausibility and idelity, and
even at the single dataset level it prevails in three out of ive datasets for plausibility, in four out of ive for idelity.
Moreover, the two metrics agree to identify Gcn as the easiest to explain in three out of ive datasets. A possible
motivation behind this result may come from the fact that Gcn are among the simplest models based on message
passing, even if other architectures (e.g., GraphSage and Gin) are equally simple. A diference so large may thus
be related to other aspects that we are unable to identify. Moreover, we remark that Gcn and Set2Set work with
the same underlying GNN layers (Gcn), and they difer only in the inal aggregation operation (a sum in Gcn,
and an LSTM in Set2Set). The better performances of Gcn are thus hinting to the fact that a diferent global
aggregation alone is responsible for changing a network’s explainability, and that linear aggregations (Gcn) are,
perhaps unsurprisingly, easier to explain than nonlinear ones (Set2Set). In general terms, the role of the global
aggregation function and its stability across diferent tasks is yet to be fully understood and has not received
great attention in the explanation literature. Thus, we believe that a systematic study in this direction may be an
interesting future topic of research.
Finally, from the table it is easy to see that Gin is the most diicult network to explain (RQ1.3), for both

plausibility and idelity in each dataset except for Stars. This stark diiculty in explaining Gin is not directly
understandable, especially because it is implemented with a single-layer MLP, which does not introduce stronger
non-linearity than a simpler Gcn. A possible explanation for this behaviour is the fact that most explainers have
been developed and tested on Gcn, potentially introducing a bias that afects the performance of that architecture.
This aspect warrants further investigation in future studies.

Moreover, the diiculty in explaining MinCutPool on Stars may be due to the fact that in this case the task
is to count the number of occurrences of a concept (the stars) in a dataset. Although the concept itself is the
easiest possible to identify for message passing based GNNs, it seems that concept-counting is hard to explain for
a pooling mechanism.

Plausibility

All Grid Grid-House Stars House-Color

RQ1.1 GraphConv GraphConv Cheb Set2Set Gcn

RQ1.2 Gcn Gcn Gcn Set2Set MinCutPool

RQ1.3 Gin Gin Gin MinCutPool Gin

Fidelity

All Grid Grid-House Stars House-Color

RQ1.1 GraphConv GraphConv Set2Set GraphConv Set2Set

RQ1.2 Gcn Gcn Gcn GraphConv Gcn

RQ1.3 Gin Gin Gin MinCutPool Gin

Table 5. Experimental answer to RQ1 for graph classification. The table shows the top-ranking architecture with respect to

each subquestion RQ1.1, RQ1.2, RQ1.3, for each dataset Grid to House-Color, and overall. The rankings are computed

with respect to the plausibility and the fidelity metrics, and the colors identify diferent architectures.

To ofer additional insight into this ine-grained behavior of Gcn, which is the easiest architecture to explain
according to RQ1.2 in terms of both metrics, we pick a random element from each dataset and analyze the
mask provided by each explainer. Figure 1 reports these masks, where the rows show the representative graph
from each dataset, and each column corresponds to a diferent explainer. The irst ive explainers return node
importance, while the last four are edge-based. In both cases, the node or edge importance is rendered by a
diferent color intensity. We stress once again that only one graph per dataset is shown in the igure, and thus the
following discussion is of a rather qualitative nature, to be complemented with the metrics discussed in the irst
part of this section.
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Gcn manages to achieve good results in terms of both plausibility and idelity, meaning that its explanations
are both close to the expected ground truth and to the actual one used by the models to realize their prediction.
This duality can be observed across the examples of Figure 1. Indeed, there are cases where the masks identify
clearly the grids in Grid (Cam, GradCam, IgNode, GradExplEdge, PgExpl), the grid, the house and the path
connecting them in Grid-House (most node-based explainers, and PgExpl), the stars in Stars (GuidedBp and
GradExplNode), and the colored house in House-Color (GradCam, GuidedBp, GradExplNode). On the other
hand, for many other dataset-explainer combinations the mask is less localized and interpretable by a human eye,
but the overall high scores of this explainer suggest these explanations could still be good, at least in terms of
idelity and thus from a model perspective, even if they deviate from the expected ground truth. A more in-depth
analysis of the actual behavior on each dataset is presented in Section 7.2.3.

Fig. 1. Explanation masks (node- or edge-based) computed by the diferent explainers on the predictions of Gcn. Each row

visualizes the mask computed for a given random graph from each dataset.

7.2.2 RQ2: How do explainers afect the explanations? The answers to this question are summarized in Table 6,
where we used again the aggregation strategies deined in Section 5.2 to establish a ranking of the explainers and
select the best ones, both for each dataset and overall.

Interestingly, the overall best explainer is diferent for plausibility and idelity in absolute terms (RQ2.1), but it
is the same (SubX) when looking at the best performing one on average across all architectures (RQ2.2). They
are however all edge-based.
At the dataset level, it is worth remarking that House-Color is the only one whose absolute best explainer

(RQ2.1, GuidedBp) is node-based, and this may clearly be due to the fact that this dataset is the only one with
meaningful node features.
In terms of average performances (RQ2.3), perturbation-based explainers are those that best explain all the

models for plausibility, while generation-based explainers prevail with respect to idelity, both at the aggregate
and single-dataset levels. In the case of plausibility, the single best explainer is instead gradient-based (RQ2.1),
but this discrepancy is similar to what happens in node classiication (Section 7.3.2). However, while for node

ACM Comput. Surv.



Explaining the Explainers in Graph Neural Networks: a Comparative Study • 15

tasks the local gradient-based explainers worked better, here perturbation mechanisms are more efective, and
this is understandable since graph classiication may beneit from these more global types of explanation.
When looking at the average over the entire groups (RQ2.4), edge-mask based explainers are clearly over-

performing node-based ones, in accordance with RQ2.1 and RQ2.2. We argue that this may be due to the fact
that edge-based explainers have been developed speciically for graph-explanation tasks, while node-based ones
are all adaptations of existing explainers, introduced for other settings. We remark once again that this is the
case only for graph classiication, while for node-based tasks (Section 7.3.2) node-based explainers appear to be
superior.

Plausibility

All Grid Grid-House Stars House-Color

RQ2.1 GradExplEdge RgExpl PgExpl IgEdge GuidedBp

RQ2.2 SubX SubX PgExpl GradExplEdge SubX

RQ2.3 Pert Gen Pert Grad Pert

RQ2.4 Edge Edge Edge Edge Edge

Fidelity

All Grid Grid-House Stars House-Color

RQ2.1 IgEdge SubX IgEdge GradExplEdge PgExpl

RQ2.2 SubX RgExpl SubX GnnExpl SubX

RQ2.3 Gen Gen Gen Gen Pert

RQ2.4 Edge Edge Edge Edge Edge

Table 6. Experimental answer to RQ2 for graph classification. The table reports the top-ranking explainer with respect

to each subquestion RQ2.1-RQ2.4, for each dataset Grid to House-Color, and overall. The rankings are computed with

respect to the plausibility and the fidelity metrics, and the colors identify diferent explainers.

Similarly to the previous section, Figure 2 zooms into SubX, which is the best-ranking explainer according
to RQ2.1 and with respect to plausibility. The high plausibility of the explainer means that it is efective in
identifying the human-expected explanations in the graphs, and this is clearly visible in the examples of Figure 2:
with a few exceptions, the dark red edges identify the grid in Grid, a path connecting the grid and the house in
Grid-House, the stars in Stars, and the colored house in House-Color.

7.2.3 RQ3: How do diferent types of problems afect the explanations? To address the third question we analyze
the datasets separately. We remark that each dataset has been chosen to represent diferent types of challenges,
which will be discussed in each of the following paragraphs.

Grid. In the irst dataset, the concept is a grid attached to a random BarabásiśAlbert (BA) network. Since the
BA component is identical in the positive and negative classes, the only discriminative subgraph is the grid (or
part of it). In fact, the minimal discriminant subgraph for this dataset is a square, because the BA component
does not contain it.
The left panel of Figure 3 visualizes the performance of each model-explanation pair when applied to this

dataset. Each pair is located according to the two-dimensional coordinate given by the resulting idelity (horizontal
axis) and plausibility (vertical axis), and it is identiied by the model name and by a color representing the explainer.
We use warm colors for node-based explainers, and cold colors for edge-based ones.

This visualization permits to identify those model-explanation pairs that strike the best balance between
the two scores, namely, models that maximize both plausibility and idelity are in the top right corner of the
igure. It is irst relevant to observe that a clear positive correlation emerges for the top-performing pairs, in the
sense that there are no cases where high idelity is achieved without a correspondingly high plausibility, and
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Fig. 2. Explanation masks computed by SubX on the predictions of the diferent models. Each row visualizes the mask

computed for a given random graph from each dataset.

vice-versa. Moreover, the highest plausibility is achieved by GraphConv with RgExpl, while GraphConv with
SubX obtains the highest idelity. These are also the two Pareto-optimal pairs, i.e., any other pair reaches either a
smaller idelity or a smaller accuracy. In this sense, they are the best ones according to this evaluation.

Moreover, it is remarkable to observe that the best performing pairs (thus including also the pairs Gcn-RgExpl,
GraphConv-IgEdge,Gin-RgExpl,Cheb-PgExpl) have all edge-based explainers. This fact is in perfect accordance
to the answer to RQ2.4 (Section 7.2.2), which identiies this type of explainer as superior to node-based ones.
Observe however that Grid has no node features, and this may bias this aspect.
For these two top-performing pairs (GraphConv-RgExpl and GraphConv-SubX) we further investigate

the quality of the explanations by quantifying their stability. Namely, we are interested in understanding how
the diferent instances of graphs in the dataset are explained, and if there is any recurring pattern in these
explanations.

This stability is shown in the right panel of Figure 3, where each edge in the grid motif is colored according to
its importance averaged over all the networks in Grid, with a color scale ranging from white (for importance 0)
to dark red (for importance 1). The width of each edge is instead proportional to the standard deviation of the
explanation across the dataset, such that thicker edges describe a larger deviation, hence a smaller stability, and
vice-versa.

While GraphConv-SubX provides signiicant explanations (dark red edges), we can observe a very high vari-
ability across the dataset (thick edges). On the other hand, GraphConv-RgExpl provides consistent explanations
over the entire dataset (thin edges), but with a less pronounced emphasis on the signiicant edges (light red
edges).
To conclude the analysis on Grid, Figure 4 shows a prototypical explanation for each GNN, paired with its

best explainer as identiied by the highest combination of the two metrics. Overall, we can assert that each GNN
can be explained fairly well if the concept is a simple subgraph of the network. As anticipated in subsection
7.2.1, Gin is the hardest to explain, while the best explanations are obtained with gradient, perturbation, and
generation-based explanations producing edge masks.

ACM Comput. Surv.



Explaining the Explainers in Graph Neural Networks: a Comparative Study • 17

Fig. 3. Let: fidelity and plausibility achieved by all the model-explainer pairs when applied to Grid. In each pair, the name

refers to the model while the color identifies the explainer. Right: stability of the explanations for the three top-performing

model-explanation pairs. The colors identify important edges (dark red), and the edge thickness the variability of the

importance in the dataset.

Fig. 4. Examples of explanations provided for each model and its highest plausibility explainer, when applied to a random

sample from Grid. The plausibility and fidelity values are those of the entire dataset, as reported in Figure 3

Grid-House. In this dataset class 0 contains either a house or a grid, while class 1 contains both of them.
Thus just identifying the presence of a simple pattern (a grid or a house) is insuicient for discrimination, and
the GNN needs to learn how to combine them. In addition to investigating compositionality, this dataset can
also help investigating an aspect that we name laziness. Namely, a network can address a binary classiication
problem by learning patterns characterizing only one of the two classes and predicting the other one when these
patterns are absent.
As with Grid, we start with the comparative analysis of plausibility and idelity for each GNN-explainer

pair in the left of Figure 5, where in this case the results are reported for both class 0 (left panel) and class 1
(right panel). Here a remarkable diference can be observed between the two classes since it is clear that for
class 1 a linear correlation is present between the two metrics for each model-explainer pair, while for class
0 a high plausibility is associated with a low idelity, and vice-versa, the only partial exception being the pair
GraphConv-RgExpl, which achieves a good balance between the two metrics. The best explanations are clearly
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those for class 1, conirming the laziness phenomenon explained above. This inding suggests that care should
be taken in evaluating instance-based explanations, as the reason for predicting a certain class could lie in the
absence of evidence in favor of the alternative one.
In more general terms, this result shows a substantial discrepancy between plausibility and idelity, and it

indicates that it is crucial to jointly consider both metrics to properly evaluate GNN explainability.
Moreover, for class 1 it is easy to see that MinCutPool, Cheb and Gcn stay on the Pareto front when paired

with PgExpl, which is thus the best explainer in this case. In the top right of the igure, the majority of the
colors are cold, corresponding to edge-based explainers. In the case of class 0, instead, it can be veriied that
the high-plausibility model-explanation pairs (top left corner in the igure) all capture either the house or the
grid, but no other structure in the graph. On the other hand, the high-idelity ones (bottom right, i.e., Set2Set
plus IgEdge,MinCutPool plus Cam, and Gcn plus Cam) have explainers which capture both part of the motif
(grid or house), and part of the BA graph. This conirms the unreliability of the explanations extracted from the
“defaultž class.

Fig. 5. Let: Fidelity and plausibility achieved by all the model-explainer pairs when applied to Grid-House, for class 0 (let)

and class 1 (right). In each pair the name refers to the model, while the color identifies the explainer. Right: Stability of the

explanations for the three top-performing model-explanation pairs, for each of the two classes. The colors identify important

edges (dark red), and the edge thickness the variability of the importance in the dataset.

In terms of stability, right of Figure 5 shows the average explanations for the three top-performing explainers
for each of the two classes. Regarding class 0, we can see that both GraphConv-RgExpl and Set2Set-GuidedBp
identify both the grid and the house, and this relects the high plausibility shown in the left panel in Figure 5. On
the other hand, IgEdge does not capture neither the grid nor the house, but it captures part of the BA component,
and this explains the low plausibility and high idelity.
For class 1 the situation is more uniform, since the three optimal pairs all achieve a rather similar stability.

Indeed, the two motifs are colored in dark red, and the edges are rather thin. A partial exception is the case of
Cheb-GuidedBp, where the the house motif has a lighter color (and thus a smaller average importance across the
dataset), and the grid has some variability over the edges’ thickness, indicating a larger standard deviation in
their importance.
Finally, in Figure 6 we show an example of the explanation provided by the best explainer associated to

each model, for both class 0 and class 1. These explanations are visualized with the same color scale used for
the previous dataset, and computed for a graph randomly selected from each class in Grid-House. The high
plausibility pairs are clearly visible since they identify the house for class 0 (Cheb-PgExpl andMinCutPool-
PgExpl) and both structures and their connection for class 1 (MinCutPool-PgExpl). Interestingly, even the high
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idelity ones are easy to spot (GradCam-Set2Set for class 0, Cheb-PgExpl for class 1), and this indicates a good
agreement between the expected and learned concepts.

Fig. 6. Examples of explanations provided for each model and its highest plausibility explainer, when applied to a random

sample from Grid-House. Each row shows the results for one of the two classes. The plausibility and fidelity values are those

of the entire dataset, as reported in Figure 5.

Stars. This dataset has three classes: each graph is obtained starting from an ErdősśRényi (ER) graph, to
which we attach one (class 0), two (class 1), three or four (class 2) stars. This dataset thus evaluates GNN explainers
on concepts involving counting.

In order to enable this motif-counting capability, we used for all architectures a sum-based global aggregation
in place of a mean-based one, which would prevent the networks from being able to count occurrences of motifs.
Indeed, mean-based versions of all models were trained as well, yet without reaching the thresholded train
accuracy of 95% (see Section 6).

The behaviors of each model-explainer pair is visualized in Figure 7, with a panel for each class.
Class 0 is explainedwell by explainers producing nodemasks, and especially byGradExplNode onGraphConv.

However, all the model-explanation pairs have a fairly limited plausibility when compared with the other datasets,
and none of them has a plausibility larger than 0.8.

For class 1 the best combined performances are achieved by Gin explained by IgNode and Cam, even if also in
this case the idelity is almost always below 0.8, with instead a quite high plausibility. This indicates that these
explainers may be good in identifying the expected ground truth (the stars), thus obtaining high plausibility, but
that the presence of these motifs alone may be insuicient for predicting the class, when not complemented by a
non-negligible part of the ER graph.

The right panel of Figure 7 shows the results for class 2. Also in this case the plausibility is very limited across
the entire set of models and explanations. Looking at the idelity alone, it is evident that the best performing
explainers are those that produce an edge mask. In this case, a direct inspection of the explanations shows that
these explainers not only capture the stars, but also paths connecting them. This makes the explanations farther
away from the expected ground truth (thus obtaining low plausibility), but apparently provide better masks for
the model to correctly identify the class.

From these results, it seems clear that there may be some clash between the identiication of the motifs (high
plausibility) and the fact that these motifs are suicient to predict the class (low idelity). To try to explain this
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behavior, we evaluated all the trained networks on the exact expected ground truth explanations, i.e., four graphs
obtained by one, two, three or four disconnected stars. For all these graphs, all the models predict class 2 (i.e.,
that with three or four stars attached to an ER graph), thus completely missing the correct classiication for class
0 and class 1. These stars are thus clearly insuicient to characterize what the networks use for prediction. This
result reveals the diiculty in deining the plausibility of an explanation, even in the presence of explicitly deined
ground truths.

Fig. 7. Fidelity and plausibility achieved by all the model-explainer pairs when applied to Stars, for class 0 (let) and class 1

(right). In each pair the name refers to the model, while the color identifies the explainer.

Figure 8 shows the stability of the explanations when restricted to the stars which identify the three classes.
We remark that both node- and edge-based explainers are visualized, and thus the coloring and thickness may
apply to either the nodes or the edges.
In class 0, explainers that produce a node mask (IgNode on Set2Set, and GradExplNode on GraphConv)

capture really well the star (intensity of the color) with a low standard deviation (size of the nodes), i.e., they are
extremely stable. Remarkably, in the case of GraphConv the explainer gives no importance to the center of the
star, while for Set2Set it does. On the other hand, GnnExpl on Gin identiies the star but with a low intensity,
and this explains the corresponding low plausibility observed in Figure 7.
For class 1, all the three best model-explainer pairs capture the stars, even if Cam has a higher standard

deviation. Surprisingly, Cam gives to the central node of the star always the highest importance (dark color and
small size), while IgNode does the opposite (light color and large size). It is interesting to observe that both masks
are reasonable ways to identify the two stars, and it may be diicult to recognize one or the other as the actual
correct explanation. This diference is made even more interesting by the fact that the two explanations apply
to the same model (Gin), and that the resulting idelity and plausibility are essentially the same (see Figure 9,
central panel).
Finally, for class 2 all explainers capture the stars with high importance and low standard deviation, without

signiicant diferences.
Figure 9 reports, for each model and each class, an example explanation provided by the corresponding best

explainer. All masks are computed on a graph randomly drawn from the dataset for each class.

House-Color. In this dataset we would like to explore how the node features afect the explanations. In
particular, both classes have a BA base graph with attached one, two, or three houses, and each node has a
random color, except for one house that has all nodes colored blue (class 0) or green (class 1). In particular, the
two classes represent essentially the same type of pattern, and thus we have no reason to expect that a lazy
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Fig. 8. Stability of the explanations for the three top-performing model-explanation pairs, for each of the three classes. The

colors identify important edges (dark red), and the edge thickness the variability of the importance in the dataset.

GNN should prefer one or the other, and consequently no way to anticipate a diference in their explainability.
By laziness, speciically, we mean the GNN focusing on learning the discriminant features of class 0 (1) while
predicting the remaining class 1 (0) by the absence of such discriminant feature, without properly modeling the
underlying discriminant feature of the latter class.
The comparison of idelity and plausibility in shown in the left panel of Figure 10. To avoid visualizing too

many results, the igure is limited to those pairs with both plausibility and idelity greater than 0.5. Also in this
case a linear correlation between the two metrics is clearly present, even if there is a group of outliers with high
plausibility and low idelity (theMinCutPool models with explainers GradExplNode and GuidedBp, for the
two classes). In this case, a closer inspection of the single explanations reveals that the explanation masks are able
to capture well the colored house, thus achieving a large plausibility, but they contain also a signiicant amount of
noise that spoils the idelity. An example of this behavior can be observed in the examples in Figure 11. Moreover,
for this dataset the optimal pairs are based on GraphConv and Set2Set, with explanations GradExplEdge,
IgEdge, PgExpl. In particular, edge-based explainers are the top performing ones also in this case. Another
remarkable aspect is the fact that for each model-explainer pair, only one between class 0 and class 1 achieves
high scores (i.e., both high idelity and high accuracy). This suggests again a lazy behavior for the GNN even
in the case in which both classes are equally easy to explain (Figure 10), where some GNNs are learning to
characterize class 0 and others class 1, but none modelling both.

In the right panel of Figure 10 we report the average explanation for the three top-performing pairs, which all
comprise edge-based explainers. Diferently from the previous datasets which had no node feature, the igure
visualizes also the color of the node feature close to each node. In all cases the explanation is very strong across
the dataset (dark red color), with a minimal standard deviation for GraphConv-GradExplEdge, and a maximal
one for GraphConv-IgEdge.
Examples of explanation masks computed on random samples from House-Color are reported in Figure 11,

where again we show for each class and for each model only the corresponding best performing explainer. Once
again, explainers that produces edge features are more efective in terms of plausibility and idelity. It is worth
mentioning that there are no explainers having high idelity in both classes, arguing the thesis that GNNs are lazy
and learn only one class. On the other hand, at least one class for each GNN can be explained by an explainer. As
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Fig. 9. Examples of explanations provided for each model and its highest plausibility explainer, when applied to a random

sample from Grid-House. Each row shows the results for one of the two classes .The plausibility and fidelity values are those

of the entire dataset, as reported in Figure 7.

Fig. 10. Let: fidelity and plausibility achieved by all the model-explainer pairs when applied to House-Color, where the

two classes (0 and 1) are represented in the let and right panel. In each pair the name refers to the model, while the color

identifies the explainer. The plot is limited to metrics larger than 0.5 to simplify the visualization. Right: stability of the

explanations for the three top-performing model-explanation pairs. The colors identify important edges (dark red), and the

edge thickness the variability of the importance in the dataset.

one may expect, the only exception is the Gat architecture, because the attention mechanism strongly operate
on node features, and none of the studied explainers operate on node features.
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Fig. 11. Examples of explanations provided for each model and its highest plausibility explainer, when applied to a random

sample from Grid-House. Each row shows the results for one of the two classes. The plausibility and fidelity values are those

of the entire dataset, as reported in the right of Figure 10.

7.3 Node classification

7.3.1 RQ1: How does the architecture afect the explanations? To answer this question, we summarize the
performance of the diferent architectures across all explainers by using the aggregation mechanism described
in Section 5.2. The plausibility and idelity results for each of the two datasets Shapes and Infection, and the
overall results are reported in Table 7.
The most explainable architectures are GraphSage for the plausibility metric (explained by GradCam), and

Gin for idelity (explained by GnnExpl). They are clearly identiied as such by RQ1.1 and RQ1.2, i.e., both as
single best performing architectures and mean best performing ones, and both at the aggregate and single-dataset
levels. The diference between the two metrics indicates that for GraphSage one gets explanations that better
resemble the expected ground truth, and are thus closer to a human-level explanation. On the other hand, for
Gin one obtains explanations with a higher idelity, meaning that they better capture the actual patterns that the
trained Gin uses in building its decisions.

The hardest architecture to explain on average (RQ1.3) is identiied to be Cheb, for both metrics and both at
the aggregate and at dataset levels. The only exception is Infection with GraphSage.

Plausibility Fidelity

All Shapes Infection All Shapes Infection

RQ1.1 GraphSage GraphSage Gcn Gin Gcn Gin

RQ1.2 GraphSage GraphSage GraphSage Gin Gcn/Gin Gin

RQ1.3 Cheb Cheb Cheb Cheb GraphSage Cheb

Table 7. Experimental answer to RQ1 for node classification. The table shows the top-ranking architecture with respect to

each subquestion RQ1.1, RQ1.2, RQ1.3, both for the single datasets Shapes and Grid-House, and overall. The rankings are

computed with respect to the plausibility and the fidelity metrics.

Figure 12 shows examples of explanation masks computed by the diferent explainers on GraphSage, which
is the architecture with the highest average plausibility (RQ1.2), over all explainers which passed the iltering
procedure (Section 5.2). For each dataset we visualize a sample node and its 2-hop neighborhood (directed in the
case of Infection, i.e., the set of nodes from which the ego node is reachable following two edges). For both
datasets we focused on nodes with label 1, i.e., the base of the roof in Shapes, and a node at distance one or
two from an infected node in Infection. This means that their associated ground truths are the entire house in
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Shapes, and a path of length one or two in Infection (in this case multiple possible ground truth may exist, and
only the one with the highest plausibility is considered for the computation of the metric). Despite GraphSage
being the model with the highest plausibility, it is clear from these examples that there is a high variability across
nodes and explainers. Moreover, for Shapes the house is well highlighted by GradCam, PgmExpl, GnnExpl, and
RgExpl, but the explanation additionally includes spurious nodes and edges with equally large importance. A
similar situation can be observed for Infection. In both cases, a iner inspection (see Section 7.3.3) reveals that
the plausibility of GraphSage, despite being the highest on average over classes and explainers, is fairly limited
for class 1: the values are below 0.6 for class 1 in Shapes (Figure 14), and with high spread and mean around 0.6
for class 1 in Infection (Figure 16). We remark that for both datasets, other classes achieve an higher plausibility.
In any case, this variability across the same dataset has to be taken into account, and a word of caution is in

order when using instance-based explanations, since the single masks are those which are actually utilized to
inspect the model and try to extract information on its decisions. Their usefulness may vary largely from node to
node.
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Node to explain Infected node

CAM CAMGRAD EXPLGNNNODEIG EXPLPGMBPGUIDED XSUB EXPLRG
(GEN)(SUR)

Fig. 12. Explanation masks (node- or edge-based) computed by the diferent explainers on the predictions of GraphSage

on Shapes and Infection. Each row visualizes the mask computed for a given random graph from each dataset. For each

dataset, only the explainers which passed the filtering procedure are shown.

7.3.2 RQ2: How do explainers afect the explanations? Table 8 shows that, while GradCam provides the single
best explanation in terms of plausibility, GnnExpl is the best one both in terms of mean performances (RQ2.2) for
both metrics, and maximal performances (RQ2.1) for plausibility, and can be thus considered as the overall best
performing explainer in this setting. It is worth remarking that this is a perturbation- and edge-based explainer.

When looking at average performances for the entire category the situation is instead diferent, and it turns out
that gradient- (RQ2.3) and node-based (RQ2.4) explainers are to be preferred, with a uniform consensus across
metrics and aggregation levels. In particular, PgExpl (perturbation- and edge-based) has very poor performances
and this lower the aggregates scores of the corresponding categories. This fact is possibly justiiable since we are
dealing with node classiication tasks, where local explanations like those provided by gradient based explainers
may be more efective. Moreover, since meaningful explanation should be limited to a node’s �-hop neighborhood,
it is reasonable to expect that highlighting single nodes instead of edges is suicient to explain the decision.
In particular, the node itself is already deining the relevant neighborhood, and we may thus expect that the
additional missing information required to elaborate a decision is given by the nodes’ labels.

In the same setting of Figure 12, we report in Figure 13 examples of explanation masks obtained by GnnExpl,
which has the highest average plausibility over all architectures and classes - RQ2.2. Also here, architectures not
passing the iltering step have been removed (Section 5.2). In this case a better localization of the explanations
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Plausibility Fidelity

All Shapes Infection All Shapes Infection

RQ2.1 GradCam GradCam GradCam GnnExpl PgExpl GradCam

RQ2.2 GnnExpl GradCam GnnExpl GnnExpl GnnExpl GnnExpl

RQ2.3 Grad Grad Grad Grad Grad Grad

RQ2.4 Node Node Node Node Node Node

Table 8. Experimental answer to RQ2 for node classification. The table shows the top-ranking explainer with respect to each

subquestion RQ2.1, RQ2.2, RQ2.3, RQ2.4, both for the single datasets Shapes and Grid-House, and overall. The rankings

are computed with respect to the plausibility and the fidelity metrics.

may be observed for Shapes for all models. Indeed, all architectures have a plausibility above 0.8 in class 1 in
Shapes (Figure 14).

Fig. 13. Explanation masks (node- or edge-based) computed on the predictions of GnnExpl by the diferent explainers, both

on Shapes and Infection. Each row visualizes the mask computed for a given random graph from each dataset. For each

dataset, only the explainers which passed the filtering procedure are shown.

7.3.3 RQ3: How do diferent types of problems afect the explanations? We analyze the two datasets separately, in
order to highlight the diferent aspects and problems that they represent.

Shapes. The comparative visualization of the plausibility and idelity of each architecture-explainer pair is
reported in Figure 14, where we visualize only the classes 1 to 3 (structural elements of a house, see Section 4.2),
while we omit class 0, which having no structure is less interesting from the point of view of explanations.

No clear correlation emerges between the two metrics, except partially for class 2, which is the only one
with architecture-explainer pairs with both high idelity and high plausibility. Several pairs achieve very high
plausibility (even close to 1, and for all three classes), but always with low idelity (values bounded by 0.6 − 0.7

depending on the class). The only outlier is the Gcn-PgExpl pair for class 2 and 3, which has a plausibility of
about 0.9 and idelity of 0.8 (class 2), and 0.7 (class 3).
The very high plausibility indicates that the explainers agree with the human deinition of a ground truth,

which is thus correctly deined to be the same for all classes (the house structure). On the other hand, this in turn
results in an observed low idelity. This seems to suggest that it is enough to have a few house elements missing
from the explanation (the plausibility is never equal to 1) to spoil the model predictions, and that indeed the
entire motif has to be observed to compute a prediction. It is possible moreover that an high plausibility is a proxy
for a low sparsity of the explanation, which may thus miss some crucial edges. On the other hand, explanations
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with lower plausibility may be more spread, thus covering the entire house structure, even if with some spurious
additional edge. This result highlights again that the suiciency alone may be non very informative in some
settings.

Regarding the well-performing Gcn-PgExpl pair, a sort of two-class laziness can be observed: the explanations
are good for class 2 and 3, while they have fairly limited plausibility and idelity (around 0.5) for class 1. This
may suggest that the nodes in class 1 (the middle of the house) are classiied by Gcn as not being in any other
class. Examples in Figure 15 shows explanation masks returned for each model by its explainer which reaches
the highest plausibility. A signiicant overlapping between the explanation mask and the house structure (the
ground truth) can be observed, even if in most cases the mask is at least partially spread also over other nodes.
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Fig. 14. Fidelity and plausibility achieved by all the model-explainer pairs when applied to Shapes. In each pair the name

refers to the model, while the color identifies the explainer. Class 0 is omited from the visualization since it is less relevant

for the discussion of the explainers.
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Fig. 15. Examples of explanations provided for each model by its highest plausibility explainer, when applied to a random

node from Shapes. Each row shows the results for one of the three house-structure classes. The plausibility and fidelity

values are those of the entire dataset, as reported in Figure 14.

Infection. The pairs of models and explanations are shown in Figure 16 according to their plausibility and
idelity on the three classes. We irst remark that, out of the two edge-based explainers considered here, only
GnnExpl passes the iltering step (Section 5.2), more speciically GnnExpl with Gcn (for class 1,2) and with Gat

and GraphSage (for all classes). Also in this case no correlation appears among the two metrics, while there
are several pairs that reach a high value of only one of the two metrics. It is again possible that even relatively
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high values of the plausibility comprise explanations where some relevant part of the ground truth is missing,
thus achieving low idelity. For this dataset the necessity of covering the entire motif is even more clear than for
Shapes, since here single nodes missing from an explanation may break the minimal paths connecting the node
to an infected one. Exceptions are GraphSage-GradCam and GraphSage-IgNode for class 1, and especially
Gcn-GradExplNode for class 2, which have both metrics above values of 0.8.
With the exception of Gcn, class 2 exhibits a clear lack of explainability, indicating a preference of GNN

architectures in focusing on class 0 and 1. This laziness is perfectly sensible, since it is much easier to model class
2 in terms of a lack of paths from nearby infected nodes (i.e., the negation of the other classes) than by trying to
characterize all possible longer paths from an infected node. The exception to this pattern is Gcn-GradExplNode,
which has very high scores for class 2, but is instead signiicantly unexplainable for class 1 and class 0, where it is
below the threshold for visualization. This is reasonable since Gcn has a simple message passing - aggregation
mechanism, which may facilitate the identiication of lack of infected nodes in the 2-hop neighborhood (since
the infected status is the node feature itself, see Section 4.2), even if GraphSage has a completely analogous
functioning mechanism, and it achieves nevertheless poorer results. At this stage, we are not able to identify the
actual mechanism that make their performances so diferent.
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Fig. 16. Fidelity and plausibility achieved by all the model-explainer pairs when applied to Infection. In each pair the name

refers to the model, while the color identifies the explainer.

Example of explanations are shown in Figure 17 for each model paired with the explainer which explains it
with the highest plausibility. We show only class 1, since class 0 is trivial to visualize (the explanation is the actual
node), while for class 2 the local networks happen to have too many edges and their visualization is not clear
enough. We thus omit both since their visualization does not provide signiicant insights. In this case, it is diicult
to observe a good accordance between the mask and the ground truth (a path connecting an infected node with
the node to be explained). This happens despite the relatively high plausibilities (Figure 16), and demonstrates
again that care should be taken in considering single-instance explanations for the interpretation of a model’s
prediction.
In Table 9, we present a comprehensive summary of the principal outcomes derived from our research. Each

row within the table is dedicated to addressing a speciic research question.

8 Discussion

The main objective of this work is to experimentally study the efectiveness of explainers on diferent GNNs
and types of data, identifying current pitfalls and formulating possible future directions in the ield of GNN
explainability. Given that GNNs may learn diferent concepts, possibly less intuitive, than those expected by
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Fig. 17. Examples of explanations provided for each model by its highest plausibility explainer, when applied to a random

node from Infection. Class 0 and class 2 are omited since their visualization does not provide significant insights. The

plausibility and fidelity values are those of the entire dataset, as reported in Figure 16.

humans, deining ground truths is not a trivial task and may be prone to human biases. A irst simple remark
is that GNNs, as neural networks in general, tend to be lazy and learn a "default" option for one of the classes.
For this reason, a high accuracy does not necessarily imply having learned the ground-truth concept for the
class. A useful insight that emerged from our analysis is that these human biases can often be detected by
comparing plausibility and idelity. Indeed, an explainer with high idelity and low plausibility (or vice-versa)
clearly indicates a discrepancy between what is considered to be the ground truth and the concept learned by the
GNN. It is important to remark, however, that idelity alone may not be the optimal choice for both graph and
node classiication. In the case of graph classiication, the aggregation used to convert nodes embedding into a
graph embedding directly inluences the idelity. In particular, sum aggregation, which is needed to allow GNN
to count substructures, often negatively afects idelity, with the mere ground-truth structure achieving relatively
low idelity because of the reduced number of nodes which in turn reduces the norm of the overall embedding.
The aggregation mechanism is a crucial component of GNNs and its decision directly afects the quality of

the explanation. Nonetheless, there is a lack of works studying the impact of the aggregation mechanism on
explainability. This is an interesting direction for further research. Reliably measuring idelity can be tricky for
node classiication too. On the one hand, comprehensiveness is poorly deined when explaining node predictions
(see Section 5). On the other hand, measuring idelity only in terms of suiciency introduces a bias that favours
larger explanations. Indeed, inding the optimal metric for evaluating explainers is still an open problem that
deserves further investigation.

Identifying a general category of explainers working consistently better than others is challenging. However,
our results suggest that gradient-based explainers are more suited in explaining node classiication networks.
We conjecture that this is due to the fact that in node classiication, the gradient is computed only on the
neighborhood of the node under investigation, limiting the receptive ield of the network. On the other hand,
the category of explainers that best explain GNNs for graph classiication are those that focus on edges, be it by
perturbation or gradient. In general, edge-based explainers outperform node-based ones whenever node features
are not available.
Concerning GNN architectures, there is a substantial diference in their explainability, regardless of the

explainer that best suits each of them. We believe that this result is surprising yet not fully understood, given
that explainers are usually aimed to be model agnostic. Given the importance of explaining predictions, it would
be advisable to include explainability as a metric to be optimized when designing novel GNN architectures.
Finally, we would like to highlight that this work did not consider the most recent and complex architectures,
like difusion-based [4, 29, 92] and spatio-temporal models [62, 68, 84], which are typically omitted from the
evaluation of explainers in the literature. We leave an investigation on the usability of existing explainers for
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Graph classiication Node classiication

RQ1: How does the GNN architecture afect the explanations?

RQ1.1

GraphConv excels in both plausibility
and idelity, achieving the highest

aggregated scores.

GraphSage provides explanations closer to the
expected ground truth, akin to human-level
explanations, while Gin attains elevated
idelity by efectively encapsulating the

patterns acquired by the Gin model during
its training.

RQ1.2
Gcn is the easiest architecture to

explain, possibly due to its straightforward
message-passing model.

RQ1.3
Gin is the hardest to explain, which is
surprising given its rather simple

aggregation strategy.

Cheb is the hardest to explain due to its broader
receptive ield, aggregating information from more

distant nodes compared to other networks.

RQ2: How do explainers afect the explanations?

RQ2.1

The best explainer difers if evaluated in
terms of plausibility or idelity, but

the two best performing ones are both
edge- and gradient-based.

The best explainer difers if evaluated in terms
of plausibility (GradCam) or idelity (GnnExpl).

RQ2.2
SubX explains the maximal

number of models.
GnnExpl explains the maximal

number of models.

RQ2.3

Perturbation methods excel in plausibility,
while generative methods perform best in

idelity, but may not capture the
expected ground truth.

Gradient methods excel in both plausibility
and idelity.

RQ2.4

Edge-based explainers outperform
node-based ones, possibly because they
are designed for graph-explanation tasks,
while node-based explainers are adapted

from other contexts.

Node-based explainers outperform edge-based.
The motivation remains unclear,
necessitating future investigation.

RQ3: How do diferent types of problems afect the explanations?

Motif-based
explanations

In learning problems where the underlying ground truth is a motif, care should be taken in
designing the dataset. In some popular scenarios, the ground-truth motif contains a smaller
minimal discriminant subgraph (MDS). For example, in Grid, the expected explanation

is a 3x3 grid, while the MDS is a simple square. This clearly undermines a correct evaluation
of the explanations being extracted. The problem can also afect the evaluation of real-world

explanations by domain experts.

Class-speciic
explanations

When considering explanations for both positive and negative predictions, the phenomenon of
laziness severely afects the quality of the explanation being extracted. GNNs typically tend
to learn features for only one of the two classes, and predict the other as a "default" option.

Extracting explanations for the "default" class is useless and potentially misleading.

Aggregation-
dependent
explanations

The sum aggregator, used in tasks like counting substructures (e.g., Stars),
makes the graph-level embedding dependent on the number of nodes in the graph.
However, in idelity evaluation, explanations involve smaller subgraphs, potentially

introducing a distribution shift that harms model idelity, as also previously noted in [131].

Table 9. Summary of the main lessons learned, divided by research question.

these architectures, and on the need for ad-hoc explainers speciically designed for their characteristics, to future
research.

9 Future directions

Several explainers have been proposed and tested for the classical GCN architecture [49], but we argue that
signiicant work has yet to be developed to fully grasp the complex interaction of models and explanations and
their interpretability. In the following we outline some promising research directions we believe deserve further
investigation.
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9.1 Going beyond instance-level explanations

While many studies focus on instance-level explanations, model-level explanations are less explored [5, 70, 71,
109, 117, 119]. A deeper understanding of global explanations could provide a more comprehensive insight into
the inner workings of GNNs. This approach can reveal how features are aggregated and utilized across the model,
ofering a broader perspective that complements instance-level insights. Apart from extracting explanations for
providing human-aware guidance on the behavior of a trained GNN, several works also use explanations during
the training of the model as a regularization term. It has been shown, in fact, that explanation-aware training of
GNNs can result in better generalization, faster convergence, and intrinsically higher explainability [33, 96, 99].
Taking this design choice further, a recent trend is to have the GNN make predictions based solely on its
explanations. In this framework, the GNN is typically divided into two components: irst an explanation extractor
takes as input the entire graph and outputs the explanation, then a classiier takes as input the explanation
and makes the inal prediction. Explanations can come in diferent forms, like subgraphs [67, 93], activation
values for semantic concepts or prototypes similarity [77, 130]. Following this schema, if the model is faithful to
the extracted explanation then the explanation unambiguously depicts the underlying reason for the model’s
predictions. Unfortunately, recent studies have shown that despite this training-aware conditioning the resulting
models are often unfaithful to the explanations, meaning that it does not fully depict the intended model behavior
[15], an issue shared with classic post-hoc explainers. Therefore, further research is needed in the study of
trustworthy and efective explainers, whether they are used at training or evaluation time.

9.2 What is an explanation

A direction that warrants further investigation is the deinition of explanations in GNNs. Current explainability-
related studies typically consider a subgraph as an explanation. However, we argue that in some real-world
applications, this subgraph may not provide a suiciently faithful explanation. For example, in a recommendation
system, a user might purchase an item not because of its inherent features, but because it is currently trending. In
this case, the explanation should highlight the high degree of the item’s node, rather than its enclosing subgraph.
An additional example is when local predictions are inluenced by a global property of the network. In traic
low prediction, for instance, the congestion of a particular street may be due to its role as the sole connection
between two parts of the city. This situation can be explained by the high betweenness centrality of that street,
indicating its critical position in the network. Another intriguing direction involves investigating the causality of
explanations [59, 60, 110]. This entails understanding the minimal modiications required to the computational
graph of a node to alter its prediction. Such causal explanations can provide deeper insights into what the model
has learned to make predictions and how node features are aggregated and utilized by the model.

9.3 The role of the dataset

We used only synthetic datasets in our experiments because they provide the ground truth explanations necessary
for our evaluations. However, despite the predeined ground truth, some well-known benchmark datasets have
design issues [24]. Therefore, it is crucial to reconsider these synthetic benchmarks, paying close attention to
potential shortcuts and ensuring that minimal explanations are provided. Furthermore, as discussed in Subsec-
tion 9.2, it is essential to deine synthetic datasets that match the expected ground truth in real-world scenarios,
where the explanation may difer from a local structure.

10 Conclusion

In this survey we proposed an extensive experimental study to quantify the efectiveness of the existing explainers
and to obtain actionable recommendations to select the optimal method for a given task. For this comparison we
evaluated ten explainers on eight diferent GNN architectures, all chosen to represent the most commonly utilized
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instances in a vast taxonomy of existing solutions. These methods have been tested on six diferent datasets for
both graph and node classiication, carefully designed or adapted to model interesting and challenging aspects of
real-world datasets. As a result of our experimental study, we were able to describe signiicant criticalities in the
common explainer evaluation methods and to identify recurring patterns that make some categories of explainers
preferable in certain situations. In particular, we proposed insights on which explainer to use, and how to use
it, depending on the available data. Our indings naturally point to promising future research directions, and
especially highlight once more that much has yet to be understood to achieve a satisfactory GNN explainability.
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