ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/323201411
FORCING SUBSETS FOR SOME TYPES OF CONVEX SETS IN A GRAPH

Article - February 2018

DOI: 10.17654/DM019010033

CITATIONS READS
0 26

2 authors, including:

. Roxanne Arco Anunciado
o
g Caraga State University Cabadbaran City
5 PUBLICATIONS 7 CITATIONS

SEE PROFILE

All content following this page was uploaded by Roxanne Arco Anunciado on 23 February 2023.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/323201411_FORCING_SUBSETS_FOR_SOME_TYPES_OF_CONVEX_SETS_IN_A_GRAPH?enrichId=rgreq-9e85da653c07f0ec496638f132453764-XXX&enrichSource=Y292ZXJQYWdlOzMyMzIwMTQxMTtBUzoxMTQzMTI4MTEyMTk1Mjg4MUAxNjc3MTMxMjI4MTIy&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/323201411_FORCING_SUBSETS_FOR_SOME_TYPES_OF_CONVEX_SETS_IN_A_GRAPH?enrichId=rgreq-9e85da653c07f0ec496638f132453764-XXX&enrichSource=Y292ZXJQYWdlOzMyMzIwMTQxMTtBUzoxMTQzMTI4MTEyMTk1Mjg4MUAxNjc3MTMxMjI4MTIy&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9e85da653c07f0ec496638f132453764-XXX&enrichSource=Y292ZXJQYWdlOzMyMzIwMTQxMTtBUzoxMTQzMTI4MTEyMTk1Mjg4MUAxNjc3MTMxMjI4MTIy&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roxanne-Anunciado?enrichId=rgreq-9e85da653c07f0ec496638f132453764-XXX&enrichSource=Y292ZXJQYWdlOzMyMzIwMTQxMTtBUzoxMTQzMTI4MTEyMTk1Mjg4MUAxNjc3MTMxMjI4MTIy&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roxanne-Anunciado?enrichId=rgreq-9e85da653c07f0ec496638f132453764-XXX&enrichSource=Y292ZXJQYWdlOzMyMzIwMTQxMTtBUzoxMTQzMTI4MTEyMTk1Mjg4MUAxNjc3MTMxMjI4MTIy&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roxanne-Anunciado?enrichId=rgreq-9e85da653c07f0ec496638f132453764-XXX&enrichSource=Y292ZXJQYWdlOzMyMzIwMTQxMTtBUzoxMTQzMTI4MTEyMTk1Mjg4MUAxNjc3MTMxMjI4MTIy&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roxanne-Anunciado?enrichId=rgreq-9e85da653c07f0ec496638f132453764-XXX&enrichSource=Y292ZXJQYWdlOzMyMzIwMTQxMTtBUzoxMTQzMTI4MTEyMTk1Mjg4MUAxNjc3MTMxMjI4MTIy&el=1_x_10&_esc=publicationCoverPdf

Advances and Applications in Discrete Mathematics

© 2018 Pushpa Publishing House, Allahabad, India

http://www.pphmj.com

http://dx.doi.org/10.17654/DM019010033

Volume 19, Number 1, 2018, Pages 33-49 ISSN: 0974-1658

ALAAED « INDIA

FORCING SUBSETS FOR SOME TYPES OF CONVEX
SETS IN A GRAPH

Roxanne L. Arco and Sergio R. Canoy, Jr.

Department of Mathematics and Statistics
College of Science and Mathematics

Center for Graph Theory, Algebra, and Analysis
Premier Institute of Science and Mathematics
MSU-lligan Institute of Technology

Iligan City, 9200, Philippines

Abstract

Let G be a connected graph. Given any two vertices u and v of G, the
set Ip[u, v] consists of all those vertices lying on a longest u-v path.

A set S is a detour convex set if Ip[u, v]< S for u, v e S. Atolled
walk T between distinct vertices u and v of G is a walk of the form
T =[u, W, ..., W, v], where k >1, in which w; and w, are the
only neighbors of u and v in T, respectively. The toll interval Tg(u, v)

is the set of vertices in G that lie on some u-v walk. A subset
S < V(G) is toll convex (or t-convex) if Tg(u,v)< S for all

u,vesS.

In this paper, we define and study the concepts of detour convexity
number, toll convexity number, forcing subset for a maximum detour
convex (maximum toll convex) set, and the forcing detour convexity
(forcing toll convexity) number of a graph. In particular, we study
these concepts in the join and corona of graphs.
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1. Introduction

Harary and Nieminen in [7] initiated the study of geodetic convexity in
graphs. This type of convexity was further studied in [3-5] where the concept
of forcing convexity number of a graph is also introduced and studied.

Recently, two other types of convexity have been considered. Arco and
Canoy, Jr. [2] studied detour convexity, characterized the detour convex sets
of some graphs and determined their detour convexity numbers. Alcén et al.
[1] studied toll convexity, a convexity that uses the concept of a tolled walk.
In the latter, the authors have characterized the toll-convex sets of the
Cartesian and lexicographic products of some graphs and introduced other
invariants arising from toll convexity such as the toll number and toll hull
number of a graph. Toll convexity in graphs is also studied by Gologranc and
Repolusk in [6].

Let G be a (simple) connected graph and let u, v e V(G). The detour
distance D(u, v) of u and v is the length of a longest u-v path in G. A u-v
path of length D(u, v) is called a u-v detour. If u and v are two distinct non-

adjacent vertices in G, then a tolled walk T between u and v in G is a
sequence of vertices of the form T = [u, w, ..., Wy, v], where k > 1, which

enjoys the following three conditions:
e W,wi, 1 € E(G) foralli,
e uw; € E(G) ifandonly if i =1,
e vw; € E(G) ifand only if i = k.
The set IS[u, v] or simply Ipfu, v] (resp. Tg(u, v)) consists of all

vertices lying on some u-v detour (resp. u-v tolled walk) of G. For S <
V(G), Ip[S]= Uu ves Ipfu, v]. A subset S of V(G) is a detour convex

(resp. toll convex or t-convex) set if Ipfu, v]< S (resp. Tg(u, v) < S) for

every u, v e S. The detour convexity number conp(G) (resp. toll convexity
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number cony (G)) of G is the maximum cardinality of a proper detour convex

(resp. proper t-convex) set of G. Any detour convex (resp. t-convex) set S of
G with | S| = conp(G) (resp.|S|=cony(G)) is called a maximum detour

convex set or conp-set (resp. maximum t-convex set or conp-set) of G. A
subset Q of a conp-set (resp. cony -set) S of G is called a forcing subset for
S if S is the unique conp-set (resp. cony-set) containing Q. The forcing
detour convexity number fconp(S) (resp. forcing toll convexity number
fcont (S)) of a conp -set (resp. cony -set) S of G is the minimum cardinality
of a forcing subset for S. The forcing detour convexity number fconp(S)
(resp. forcing toll convexity number fcony (G)) of G is the minimum forcing

detour convexity number (resp. minimum forcing toll convexity number)
among all conp-sets (resp. cony -sets) of G.

In this paper, the authors deal with the concepts of detour convexity
number, toll convexity number, forcing subset for a maximum detour convex
(maximum toll convex) set, and the forcing detour convexity (forcing toll
convexity) numbers in the join and corona of graphs.

2. Forcing Subsets for a conp -set of a Graph

This section deals with the detour convex sets and the forcing subsets for
the conp-sets of some graphs. In particular, these types of sets are

investigated in the join and corona of graphs.
Remark 2.1. Let G be a connected graph.

(i) If Sis a conp-set of G, then S is a forcing subset for itself. In

particular, fconp(G) < conp(G).

(if) If G has a unique conp-set S, then the empty set & is a forcing

subset for S. In this case, fconp(G) = 0.
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Theorem 2.2. Let G be a connected graph of order n. Then 0<
fconp(G) < n —1. Furthermore,

(i) fconp(G) =0 if and only if G has a unique conp-set; and

(i) fconp(G) =1 if and only if G does not have a unique conp-set but

some vertex of G belongs to exactly one conp-set.

Proof. The first statement follows directly from Remark 2.1.

(i) Suppose that fconp(G) = 0. Then there exists a conp-set S of G
with fconp(S) = 0. This means that & is the minimum forcing subset for S
and S is the unique conp-set of G containing <. Hence, S is the unique

conp-set of G.

Conversely, assume that S is a unique conp-set of G. Then by Remark
2.1(ii), fconp(G) = 0.

(ii) Suppose that fconp(G) =1. Then there exists a conp-set S of G
having the set {v} as its minimum forcing subset for some v e V(G) S.
Since & is not the minimum forcing subset for S, G has another conp -set,

say S’,and v ¢ S'.
The converse is easy. O

A vertex v of G is a detour extreme vertex of G if it is an initial or
terminal vertex of any detour containing v. The set of all detour extreme
vertices of G is denoted by Exp(G).

Note that if Exp(G) # &, then conp(G) =|V(G)|-1. In particular,
S =V(G)\{x} isa conp-set of G for each x € Exp(G).

Theorem 2.3. Let G be a connected graph with k detour extreme vertices
(k >1). Then fconp(G) =k —1.
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Proof. Let G be a connected graph with k detour extreme vertices, where

k >1 and let S be a conp-set of G. Then there exists x € Exp(G) such
that S =V(G)\{x}. If k =1, then S is the unique conp-set of G. Thus,
fconp(G) = 0 by Theorem 2.2. Now, assume that k > 2 and let T < S. If
there exists y € Exp(G)\{x} that is not in T, then T < S" =V(G)\{y}.
Since S’ is a conp-set of G different from S, it follows that T is not a forcing
subset for S. Hence, T < S s a forcing subset for S if Exp(G)\{x} < T.
Since Exp(G)\{x} is a forcing subset for S, fconp(S) = | Exp(G)\{x}| =k

—1. Since every conp-set of G is similar to S, we have fconp(G) =k —1.
O

Corollary 2.4. If G is a Hamiltonian graph, then fconp(G) =1.

The converse of Corollary 2.4 is not true as the next result shows.

Theorem 2.5. fconp(Kp p)=1form=n=10rm,n2 2.

Proof. It can easily be verified that every singleton is a conp-set of G.
Thus, by Theorem 2.2(ii), fconp(G) =1. O

Theorem 2.6. Let Jy ={1, 2, ..., k} and let C;, Cy, ..., C, be the
components of a graph G. Then fconp(K; +G)=|R|-1 where R =

{r € Ji : C, is acomponent of G of least order}.

Proof. The conp-sets of G are the sets of the form V(K; + G)\V(C,),
where meR. If |[R|=1 say ieR, then S=V(K;+G)\V(C) is
the unique conp-set of G. Thus, by Theorem 2.2, fconp(G) = 0. Now,
suppose that | R | > 2. Let S; =V(K; + G)\V(C,)(re R) andlet T c S;.
If there exists j e R\{r} such that TNV(C;)=4, then TcS; =
V(Ky + G)\V(C;). This implies that T is not a forcing subset for S;. Thus, if
T is a forcing subset for S;, then T NV(C;) # & for each t € R\{r}. Pick
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X € V(C;) for each t € R\{r} and consider Tp = {X : t € R\{r}}. Clearly,
To is @ minimum forcing subset for S;. Hence, fconp(S;) =|R|-1. Since
every conp-set of K; + G is similar to Sy, it follows that fconp(K; + G)
=|R|-1 O

Recall that the corona of two graphs G and H, denoted by G o H, is the
graph obtained by taking one copy of G and |V (G)| copies of H, and then

forming the join (v) + HY =v+ H" for every vertex v of G, where H"
denotes a copy of H for each vertex v.

The next result is found in [2].

Theorem 2.7. Let G be a connected graph and let H be any graph with k
components. A non-empty subset C of V(G o H) is a detour convex set of

G o H if and only if one of the following holds:
(i) C=V(GoH);
(ii) C = {u} forsome u e V(G o H);
(iii) C < V(G), where C is a detour convex set of G; or

(iv) C =S UT such that S is a detour convex set of V(G) and T =
UVes,Ui K V(C\i,V), where S’ < S, C\i,V is a component of HY and K, <
Vv Vv
K=1{,2 ..k} foreach v e S

Theorem 2.8. Let G be a connected graph of order m > 2 and let H
be any graph with components C;j, where ie J, ={1, 2, ..., k}. Then

fconp(GeoH)=m| R | -1 where R ={r € J; : C, is a component of H
of least order}.

Proof. Let V(G) = {v{, V2, ..., Vn}. Then v; is a cut-vertex of G o H

foreveryie Iy, =11 2, ..., m}. Now, foreachi e I, let ‘]ik(i) = {iy, 9, ...,
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ik(i)} and let C; , Cj,, ..., Cj, ;) be the components of (G o H) — v;. Suppose

(i)
further that

Q:min{|V(Ciq)|:1£ism,lgqgk(i)}.

For each i € Iy, let R ={r € J; ., : C, is a component of (G o H)-v;

(i)
with |V(Cy)| =¢}. Clearly, | Rj|=|R | for all i € I,. Next, let C be a
conp-set of Go H. By Theorem 2.7, there exists a v; € V(G) such that
C =V(GoH)\V(C,) for some r € R;. Let D be a non-empty forcing

subset for C. Suppose that there exists vj € V(G)\{v; } and g € R; such that

DNV(Cq)=@.Then D = C* = V(G o H)\V(Cy). Since C™ is a conp -set
of G o H different from C, it follows that D is not a forcing subset for C, a
contradiction. Thus, D NV(Cqy) = & for all g € R j\{r} for each j e Ip,.

This implies that

feonp(C) = D [ RjI+(Ri|-D
je'm\{i}

=Mm-DIR|+|R[-1
=mR|-1

Since every other conp-set of G o H is similar to C, fconp(G) = m R | -1.

O

3. Forcing Subsets for a cony -set of a Graph

A vertex x from a t-convex set S is said to be a toll extreme vertex of S if
S\{x} is t-convex. Throughout this section, Ex; (G) = {x e V(G) : x is a toll

extreme vertex of V(G)}.

Remark 3.1. Let G be a connected graph of order n.
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(i) A vertex x is a toll extreme vertex of G if and only if V(G)\{x} isa

t-convex set of G. Furthermore, if Ex; (G) # &, then cony (G) = n-1.

(if) If Sis a cony-set of G, then S is a forcing subset for itself. In

particular, fcont(G) < cony (G).

(iif) If G has a unique cony-set S, then the empty set & is a forcing

subset for S. In this case, fcong (G) = 0.

Theorem 3.2. Let G be a connected graph with | Ex; (G)| = k > 1. Then
fcont (G) = k - 1.

Proof. Let G be a connected graph and suppose that | Ex; (G)| = k > 1.
Let S be a cony -set of G. Then, by Remark 3.1(i), there exists x € Ex (G)
such that S =V(G)\{x}. If k =1, then S is the unique cony -set of G. Thus,
fconr (G) = 0 by Remark 3.1(iii). Next, assume that k > 2 and let T < S.
If there exists y € Exy (G)\{x} that is not in T, then T < S’ =V(G)\{y},
where S’ is a cony-set of G. It follows that T is not a forcing subset for
S. Hence, T < S is a forcing subset for S if Exy(G)\{x} < T. Since
Exr (G)\{x} is a forcing subset for S, fcony (S) =|Exy (G)\{x}|=k —1.
Since every cony -set of G is similar to S, we have fcony (G) = k —1. O

Observe that in a complete graph, every vertex is a toll extreme vertex.
Thus, the next result is immediate from this observation.

Theorem 3.3. For n >1, cony(K,) = fcont (K,)=n-1.
The next result characterizes the t-convex sets in the join of non-
complete graphs G and H.

Theorem 3.4. Let G and H be non-complete graphs. A non-empty proper
subset S of V(G + H) is a t-convex set of G+ H if and only if S =
Sg U SH, where (Sg) and (Sy ) are cliques of G and H, respectively (Sg

or Sy may be empty).
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Proof. Let S be a non-empty t-convex set of G+ H and let Sg =
SNV(G) and Sy = SNV(H). Consider the following cases:

Casel. S cV(G)or S cV(H)

Assume that S < V(G). Then S = Sg and Sy = . Let u, v e S such
that u = v. Suppose that uv ¢ E(G). Then the walk T = [u, w, v] is a tolled
walk between uand vin G + H for all we V(H). It follows that V(H) <
Teo+H (U, v) < S, a contradiction. Hence, uv € E(G) for every u, v e S.
Therefore, (S) = (Sg) is a clique of G. Similarly, S = & and (S) = (Sy)
isacligueof Hif S c V(H).

Case2. Sg # ¥ and Sy = I

Suppose that Sg =V(G). Since S #V(G+H), Sy #V(H). Now,
since G is not complete, there exist distinct vertices a, b € V(G) such that
ab ¢ E(G). Pickany z e V(H)\Sy. Then T =[a, z, b] is a tolled walk in
G +H with z ¢ S. Hence, S is not a t-convex set, a contradiction. Thus,
S #V(G). Similarly, Sy # V(H). If (Sg) is not complete, then V(H) < S.
Hence Sy =V(H), a contradiction. Therefore, (Sg) is a clique of G.
Similarly, (Sy ) is a clique of H.

The converse is clear because every clique of G + H is a t-convex set of
G+ H. O

The next result is a consequence of Theorem 3.4.

Corollary 3.5. Let G and H be non-complete graphs. Then S c
V(G+H) is a conp-set of G+ H if and only if S =Sg U Sy, where
(Sg) and (Sy) are maximum cliques of G and H, respectively. Moreover,
conf(G+H)=0(G)+o(H) =G + H).

Let G be a connected graph and let K, be a maximum clique of G. A
subset S of V(K,) is a c-forcing subset for V(K,) if K, is the only
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maximum clique of G such that S < V(K,). The forcing clique number of

K, is given by

fen(K,) = min{| S| : S is a c-forcing subset for V (K, )}.
The forcing clique number of G is given by

fen(G) = min{fcn(K, ) : K, is a maximum clique of G}.

Remark 3.6. Let G be a connected graph. Then fcn(G) = 0 if and only
if G has a unique maximum clique. If the cony -sets of G induce maximum
cliques of G, then fcony (S) = fen((S)) for every cony -set S of G. Therefore
fcony (G) = fen(G).

Theorem 3.7. Let G and H be non-complete graphs. Then
fcont (G + H) = fen(G) + fen(H).

Proof. Let G and H be non-complete graphs. Assume that (Sg) and
(Sy) are maximum cliques of G and H, respectively, such that fcn(G) =
fcn((Sg)) and fen(H) = fen((Sy )). Let Cg and Cy be forcing subsets for
Sg and Sy, respectively, such that fcn((Sg)) =|Cg | and fen((Sy)) =
|Ch |. By Theorem 3.4, S = Sg U Sy is a conp-set of G+ H. Let D =
Cg UCH. Suppose that D < S' for some cony-set S" of G + H distinct
from S. Let S’ = Sg U Sy, where (Sg) and (S{y ) are maximum cliques of G
and H, respectively. It follows that C; < Sg and Cy < Sp. Since S'#S,
either Sg # Sg or Sy # Sy. If Sg # Sg, then Cg < Sg (1 S implies
that Cg is not a forcing subset for Sg. This gives a contradiction. A similar
case happens if Sy # Sy. Hence, D is a forcing subset for S. Consequently,
fcony (G + H) < feonp (S) <|D| = fen(G) + fen(H).

Next, let S* be a cony -set of G + H with fcon; (G + H) = fcony (S™)
= fcn((S™)). By Theorem 3.4, S* = Sg U Sfy, where (Sg) and (Sy;) are
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maximum cliques of G and H, respectively. Suppose that C is a forcing
subset for S* such that fcn((S*)) =|C|. Assume further that C = AU B,

where A c Sg and B < Sfj. If A < Tg for some maximum clique (Tg ) of
Gand Tg # Sg, then Tg U Sy isa cony-set of G+ H and C < Tg U Sfy,
contrary to the assumption that C is a forcing subset for S*. Similarly, B is a
forcing subset for Sy;. Therefore fcony (G +H)=|C|=|A|+|B]|> fen(G)
+ fen(H).
Accordingly, fcont (G + H) = fen(G) + fen(H). O
Corollary 3.8. Let G and H be non-complete graphs. Then

(i) fcony (G +H)=0 if and only if G and H have unique maximum
cligues; and

(ii) fcont(G + H) =1 if and only if either G has a unique maximum

clique and fcn(H) =1 or H has a unique maximum clique and fcn(G) = 1.

Corollary 39. Let G and H be non-complete graphs. Then
fcont (G + H) = 2 if and only if one of the following conditions holds:

(i) fen(G)=1and fen(H) =1
(i) fen(G) = 2 and H has a unique maximum clique; or
(iii) fen(H) = 2 and G has a unique maximum clique.

Theorem 3.10. Let G be any graph and let H be a complete graph. Then
a non-empty proper subset S of V(G + H) is a t-convex set of G + H if and

only if

(i) S =Sg USH, where (Sg) is aclique of Gand Sy < H (Sg or
Sy may be empty); or

(ii) S =CUV(H), where C is a proper t-convex set of G such that (C)
is not a clique of G.
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Proof. Let Sg = SMNV(G) and Sy = S NV(H). Consider the following
cases:

Casel. S cV(G)or S cV(H)

We may assume that S = V(G). Then S = Sg. Assume further that (Sg )
is not a clique of G. Then there exist u, v e S, u # v, such that uv ¢ E(G).
This implies that V(H) = S, a contradiction. Thus, (S) = (Sg) is a clique
of G.

Case 2. Sg # & and Sy #

If G is complete, then (Sg) is a clique of G. Assume now that G is not
complete and suppose that Sg = V(G). Since S #V(G + H), Sy # V(H).
Pick non-adjacent vertices x, y of Sg and let zeV(H)\Sy. Then z e
To+H (X, y) < S, a contradiction. Thus, Sg # V(G). If (Sg) is complete,
then (i) holds. If (Sg) is not complete, then there exist u, v e Sg with
uv ¢ E(G). This would imply that V(H) < Tg (U, v) = S. Hence, Sy =
V(H). Let C = Sg and suppose that C is not a t-convex set of G. Then there
exist a, b € C such that there is an x € Tg(a, b)\Sg. Let P(a, b) be a tolled
walk in G containing x. Then P(a, b) is a tolled walk in G + H. Hence, S
is not a t-convex set of G + H, a contradiction. It follows that C = Sg is a
t-convex set of G, showing that (ii) holds.

The converse is clear. O

Corollary 3.11. Let G be any graph and let H be a complete graph of
order n. Then Sis a cony-set of G+ H ifand only if S=CUV(H) for

some cony -set C of G. Moreover,
cony (G + H) =conp (G) + n.

In particular, if every cony -set of G is a clique, then
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o(G) +n, if G is not complete,

conf(G+H)=
( ) {co(G) +n-1  otherwise.

Theorem 3.12. Let G be a graph and let H be a complete graph. Then
fcont (G + H) = fcong (G).

Proof. Let S be a cony-set of G + H and let T be a forcing subset for S
such that fcony (G + H) = fcony (S) =|T |. Then, by Corollary 3.11, S =
CUV(H), where Cis a cony-set of G. Let T =T; UT,, where T, c C
and T, < V(H). Suppose that T, < C' for some cony-set C' of G with
C'#C. Then T < S'"=C"UV(H). Contrary to the assumption that T is a
forcing subset for S. Thus, Ty is a forcing subset for C. Hence, T; is also a
forcing subset for S. Therefore fcony (G + H)= fconr(S)=|T|>|Ty|2

fcony (G).

Now, let Q be a cony -set of G and let P be a forcing subset for Q such
that fcony (G) = fecong (Q) =|P|. Then S* =QUV(H) is a cony -set of
G +H by Corollary 3.11. Clearly, P is also a forcing subset for S*.
Therefore fcony (G + H) < fconp (S™) < |P| = fecony (G).

Accordingly, fcony (G + H) = fcony (G). O

The next result characterizes the t-convex sets in the corona of two
graphs G and H.

Theorem 3.13. Let G be a nontrivial connected graph and let H be any
graph. Then C is a t-convex set of G o H if and only if C = S, where (S,)

is a complete subgraph of HY for some v e V(G) or C = AU (UVEA D\,j,

where A is a non-empty t-convex set of G and D, is a t-convex set of H" for
each v e A
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Proof. Suppose that C is a t-convex set of Go H. Let A=C V(G).
Suppose that A =& and let x e C and v € V(G) suchthat xe S, =C

V(HY). Letu e V(G)\{v} and set S, = C NV(H"). Suppose that S, = &,
say y € S,. Let P(u, v) =[uq, Uy, ..., uy], where u=u; and v =u,, be a
u-v geodesic in G. Then P(X, y) = [X, Uy, Uy, ..., Uy, Y] is an x-y tolled walk
in G o H. Since u, v ¢ C, it follows that C is not a t-convex setof G o H, a

contradiction. Thus, S, = & for all u € V(G)\{v}. Moreover, since v ¢ A,

(Sy) must be a complete subgraph of HY, where C = S,

Next, suppose that A = . Since every tolled walk in G is a tolled walk
in G o H, it follows that A is a t-convex set of G. Let v e A and let D, =

CNV(H"). Again, it is a routine to show that D, = CNV(H") =@ for
all weV(G)\A Hence, C=AU (UVEADVJ’ where D, is necessarily a
t-convex set of H" foreach v e A

The converse is clear. O

Theorem 3.14. Let G be a nontrivial connected graph of order m and let
H be any graph of order n. Then cony (G o H) =m+ (m —1)n + cony (H).

Proof. Let A=V(G) and let veV(G). Set D, =V(HY) for each

w e A\{v} and let D, be a cony-set of H". By Theorem 3.13, C = AU
(U D j is a t-convex set of G o H. Hence,

xeA X

conf (GeH)>|C|=m+(m-1)n+cony(H).

Next, suppose that Cy = Ag U (Uye% D'yj be a conp-set of GoH. If

Ay =V(G), then there exists z € Ay such that D} is a cony-set of H”.
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Hence,

conp(GeH)=|Col=m+ » Dy+|D;]
yeA\{z}

<m+(m-1)n+cony(H).
If Ag #V(G), thenconf(GoH)=|Cqo|<m+(Mm-n<m+(m-1)n+
cony (H). Therefore cony (Go H)=m+(m —1)n + cony (H). O

Theorem 3.15. Let G be a nontrivial connected graph of order m and let
H be any graph. Then fcont (G o H) < m(fcony (H) +1) — 1. Moreover, if H

has a unique cony -set, then fcon(GeH)=m-1.

Proof. Let R be a cony -set of H and let S be a forcing subset for R such
that fcony (H)= fcony (R)=|S|. For each veV(G), let R, be a cony -set of

H" and let S, be a forcing subset for R, such that (R, ) = (R) and (S,,) = (S).
By Theorem 3.14, C =V(G)U (UVEV(G)\{W}V(HV)J URy, is a cony -set
of G o H. For each v e V(G)\{w}, pick z, e V(HY)\R,. Let Q, = S,, U

(UveV(G)\{W} (v U {Zv})} Assume that C’ =V (G)U (UVEv(G)\{y}V(H V)j

U Dy isa cony-set of G o H with C" # C. Suppose first that y = w. Then
Dy # Ry. Since Sy is a forcing subset for Ry, S,, ¢ Dy. Next, suppose
that y = w. If Dy = Ry, then zZy € QW\Dy. If Dy * Ry, then Sy len Dy
because Sy is a forcing subset for Ry. Thus, Q,, & C'. This implies that Q,
is a forcing subset for C. Hence,
fcony (G o H) < feont (C) < |Qy | = feony (H) + (m —1)(fecony (H) +1)
=m(fcony(H)+1)-1.

Let Cy be a cony-set of GoH and let Qy be a forcing subset for
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Cp such that fcony(GeoH)= fcont(Cq)=|Qg|. Then Cq=V(G)U

(UVEV(G)\{Z}V(HV)) UR, for some z € V(G), by Theorem 3.14 (since H

has a unique cony -set). For each v € V(G)\{z}, let N, = Qy NV(H"). If
N, N(V(HY)\R,) = @, then

QcC’ :V(G)U{ U V(HX)JU Ry,

xeV (G)\{v}

where C™ is a cony -set of G o H different from Cy. This gives a contradiction

since Qg is a forcing subset for Cq. Hence, N, N (V(HY)\R,) # & for every
v eV(G)\{z}. Thus, fcon; (GoH)=|Qy|=m-1.

Accordingly, fconf(GoH)=m-1. O
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