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Abstract 

Let G be a connected graph. Given any two vertices u and v of G, the 
set [ ]vuID ,  consists of all those vertices lying on a longest u-v path. 

A set S is a detour convex set if [ ] SvuID ⊆,  for ., Svu ∈  A tolled 

walk T between distinct vertices u and v of G is a walk of the form 
[ ],,...,,, 1 vwwuT k=  where ,1≥k  in which 1w  and 2w  are the 

only neighbors of u and v in T, respectively. The toll interval ( )vuTG ,  

is the set of vertices in G that lie on some u-v walk. A subset 
( )GVS ⊆  is toll convex (or t-convex) if ( ) SvuTG ⊆,  for all 

., Svu ∈  

In this paper, we define and study the concepts of detour convexity 
number, toll convexity number, forcing subset for a maximum detour 
convex (maximum toll convex) set, and the forcing detour convexity 
(forcing toll convexity) number of a graph. In particular, we study 
these concepts in the join and corona of graphs. 
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1. Introduction 

Harary and Nieminen in [7] initiated the study of geodetic convexity in 
graphs. This type of convexity was further studied in [3-5] where the concept 
of forcing convexity number of a graph is also introduced and studied. 

Recently, two other types of convexity have been considered. Arco and 
Canoy, Jr. [2] studied detour convexity, characterized the detour convex sets 
of some graphs and determined their detour convexity numbers. Alcón et al. 
[1] studied toll convexity, a convexity that uses the concept of a tolled walk. 
In the latter, the authors have characterized the toll-convex sets of the 
Cartesian and lexicographic products of some graphs and introduced other 
invariants arising from toll convexity such as the toll number and toll hull 
number of a graph. Toll convexity in graphs is also studied by Gologranc and 
Repolusk in [6]. 

Let G be a (simple) connected graph and let ( )., GVvu ∈  The detour 

distance ( )vuD ,  of u and v is the length of a longest u-v path in G. A u-v 

path of length ( )vuD ,  is called a u-v detour. If u and v are two distinct non-

adjacent vertices in G, then a tolled walk T between u and v in G is a 
sequence of vertices of the form [ ],,...,,, 1 vwwuT k=  where ,1≥k  which 

enjoys the following three conditions: 

• ( )GEww ii ∈+1  for all i, 

• ( )GEuwi ∈  if and only if ,1=i  

• ( )GEvwi ∈  if and only if .ki =  

The set [ ]vuI G
D ,  or simply [ ]vuID ,  ( )( )vuTG ,.resp  consists of all 

vertices lying on some u-v detour (resp. u-v tolled walk) of G. For ⊆S  

( ),GV  [ ] [ ]∪ Svu DD vuISI ∈= , .,  A subset S of ( )GV  is a detour convex 

(resp. toll convex or t-convex) set if [ ] SvuID ⊆,  ( )( )SvuTG ⊆,.resp  for 

every ., Svu ∈  The detour convexity number ( )GconD  (resp. toll convexity 
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number ))(GconT  of G is the maximum cardinality of a proper detour convex 

(resp. proper t-convex) set of G. Any detour convex (resp. t-convex) set S of 
G with ( )GconS D=  ( )( )GconS T=.resp  is called a maximum detour 

convex set or setconD -  (resp. maximum t-convex set or )-setconD  of G. A 

subset Q of a set-Dcon  ( )set-.resp Tcon  S of G is called a forcing subset for 

S if S is the unique set-Dcon  ( )set-.resp Tcon  containing Q. The forcing 

detour convexity number ( )SfconD  (resp. forcing toll convexity number 

))(SfconT  of a set-Dcon  ( )set-.resp Tcon  S of G is the minimum cardinality 

of a forcing subset for S. The forcing detour convexity number ( )SfconD  

(resp. forcing toll convexity number ))(GfconT  of G is the minimum forcing 

detour convexity number (resp. minimum forcing toll convexity number) 
among all sets-Dcon  ( )sets-.resp Tcon  of G. 

In this paper, the authors deal with the concepts of detour convexity 
number, toll convexity number, forcing subset for a maximum detour convex 
(maximum toll convex) set, and the forcing detour convexity (forcing toll 
convexity) numbers in the join and corona of graphs. 

2. Forcing Subsets for a set-Dcon  of a Graph 

This section deals with the detour convex sets and the forcing subsets for 
the Dcon -sets of some graphs. In particular, these types of sets are 

investigated in the join and corona of graphs. 

Remark 2.1. Let G be a connected graph. 

(i) If S is a set-Dcon  of G, then S is a forcing subset for itself. In 

particular, ( ) ( ).GconGfcon DD ≤  

(ii) If G has a unique set-Dcon  S, then the empty set ∅ is a forcing 

subset for S. In this case, ( ) .0=GfconD  
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Theorem 2.2. Let G be a connected graph of order n. Then ≤0  
( ) .1−≤ nGfconD  Furthermore, 

 (i) ( ) 0=GfconD  if and only if G has a unique ;-setconD  and 

(ii) ( ) 1=GfconD  if and only if G does not have a unique setconD -  but 

some vertex of G belongs to exactly one .-setconD  

Proof. The first statement follows directly from Remark 2.1. 

 (i) Suppose that ( ) .0=GfconD  Then there exists a set-Dcon  S of G 

with ( ) .0=SfconD  This means that ∅ is the minimum forcing subset for S 

and S is the unique set-Dcon  of G containing ∅. Hence, S is the unique 

set-Dcon  of G. 

Conversely, assume that S is a unique set-Dcon  of G. Then by Remark 

2.1(ii), ( ) .0=GfconD  

(ii) Suppose that ( ) .1=GfconD  Then there exists a set-Dcon  S of G 

having the set { }v  as its minimum forcing subset for some ( ) .SGVv ∩∈  

Since ∅ is not the minimum forcing subset for S, G has another ,set-Dcon  

say ,S′  and .Sv ′∉  

The converse is easy. ~ 

A vertex v of G is a detour extreme vertex of G if it is an initial or 
terminal vertex of any detour containing v. The set of all detour extreme 
vertices of G is denoted by ( ).GExD  

Note that if ( ) ,∅≠GExD  then ( ) ( ) .1−= GVGconD  In particular, 

( ) { }xGVS \=  is a set-Dcon  of G for each ( ).GExx D∈  

Theorem 2.3. Let G be a connected graph with k detour extreme vertices 
( ).1≥k  Then ( ) .1−= kGfconD  
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Proof. Let G be a connected graph with k detour extreme vertices, where 
1≥k  and let S be a set-Dcon  of G. Then there exists ( )GExx D∈  such      

that ( ) { }.\ xGVS =  If ,1=k  then S is the unique set-Dcon  of G. Thus, 

( ) 0=GfconD  by Theorem 2.2. Now, assume that 2≥k  and let .ST ⊆  If 

there exists ( ) { }xGExy D \∈  that is not in T, then ( ) { }.\ yGVST =′⊆  

Since S′  is a set-Dcon  of G different from S, it follows that T is not a forcing 

subset for S. Hence, ST ⊆  is a forcing subset for S if ( ) { } .\ TxGExD ⊆  

Since ( ) { }xGExD \  is a forcing subset for S, ( ) ( ) { } kxGExSfcon DD == \  

.1−  Since every set-Dcon  of G is similar to S, we have ( ) .1−= kGfconD  

 ~ 

Corollary 2.4. If G is a Hamiltonian graph, then ( ) .1=GfconD  

The converse of Corollary 2.4 is not true as the next result shows. 

Theorem 2.5. ( ) 1, =nmD Kfcon  for 1== nm  or .2, ≥nm  

Proof. It can easily be verified that every singleton is a set-Dcon  of G. 

Thus, by Theorem 2.2(ii), ( ) .1=GfconD  ~ 

Theorem 2.6. Let { }kJk ...,,2,1=  and let kCCC ...,,, 21  be the 

components of a graph G. Then ( ) ,11 −=+ RGKfconD  where =R  

rk CJr :{ ∈  is a component of G of least order}. 

Proof. The sets-Dcon  of G are the sets of the form ( ) ( ),\1 mCVGKV +  

where .R∈m  If ,1=R  say ,R∈i  then ( ) ( )iCVGKVS \1 +=  is           

the unique set-Dcon  of G. Thus, by Theorem 2.2, ( ) .0=GfconD  Now,    

suppose that .2≥R  Let ( ) ( ) ( )R∈+= rCVGKVS r\11  and let .1ST ⊆  

If there exists { }rj \R∈  such that ( ) ,∅=jCVT ∩  then =⊆ jST  

( ) ( ).\1 jCVGKV +  This implies that T is not a forcing subset for .1S  Thus, if 

T is a forcing subset for ,1S  then ( ) ∅≠tCVT ∩  for each { }.\ rt R∈  Pick 
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( )tt CVx ∈  for each { }rt \R∈  and consider { }{ }.\:0 rtxT t R∈=  Clearly, 

0T  is a minimum forcing subset for .1S  Hence, ( ) .11 −= RSfconD  Since 

every set-Dcon  of GK +1  is similar to ,1S  it follows that ( )GKfconD +1  

.1−= R  ~ 

Recall that the corona of two graphs G and H, denoted by ,HG D  is the 

graph obtained by taking one copy of G and ( )GV  copies of H, and then 

forming the join vv HvHv +=+  for every vertex v of G, where vH  

denotes a copy of H for each vertex v. 

The next result is found in [2]. 

Theorem 2.7. Let G be a connected graph and let H be any graph with k 
components. A non-empty subset C of ( )HGV D  is a detour convex set of 

HG D  if and only if one of the following holds: 

  (i) ( );HGVC D=  

 (ii) { }uC =  for some ( );HGVu D∈  

(iii) ( ),GVC ⊆  where C is a detour convex set of G; or 

(iv) TSC ∪=  such that S is a detour convex set of ( )GV  and =T  

( )∪ ∪Sv i
i
vvv
vCV′∈ ∈K ,  where vivCSS ,⊆′  is a component of vH  and ⊆vK  

{ }k...,,2,1=K  for each .Sv ′∈  

Theorem 2.8. Let G be a connected graph of order 2≥m  and let H         
be any graph with components ,iC  where { }....,,2,1 kJi k =∈  Then 

( ) ,1−= RmHGfconD D  where rk CJr :{ ∈=R  is a component of H 

of least order}. 

Proof. Let ( ) { }....,,, 21 mvvvGV =  Then iv  is a cut-vertex of HG D  

for every { }....,,2,1 mIi m =∈  Now, for each ,mIi ∈  let ( ) { ...,,, 21 iiJ iki =  
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( )}iki  and let ( )ikiii CCC ...,,, 21  be the components of ( ) .ivHG −D  Suppose 

further that 

{ ( ) ( )}.1,1:min ikqmiCV qi ≤≤≤≤=ζ  

For each ,mIi ∈  let { ( ) rii CJr ik :∈=R  is a component of ( ) ivHG −D  

with ( ) }.ζ=rCV  Clearly, RR =i  for all .mIi ∈  Next, let C be a 

set-Dcon  of .HG D  By Theorem 2.7, there exists a ( )GVvi ∈  such that 

( ) ( )rCVHGVC \D=  for some .ir R∈  Let D be a non-empty forcing 

subset for C. Suppose that there exists ( ) { }ij vGVv \∈  and iq R∈  such that 

( ) .∅=qCVD ∩  Then ( ) ( ).\ qCVHGVCD D=⊆ ∗  Since ∗C  is a set-Dcon  

of HG D  different from C, it follows that D is not a forcing subset for C, a 
contradiction. Thus, ( ) ∅≠qCVD ∩  for all { }rq j \R∈  for each .mIj ∈  

This implies that 

( ) ( )
{ }

∑
∈

−+=
iIj

ijD
m

Cfcon
\

1RR  

( ) 11 −+−= RRm  

.1−= Rm  

Since every other set-Dcon  of HG D  is similar to C, ( ) .1−= RmGfconD  

 ~ 

3. Forcing Subsets for a Tcon -set of a Graph 

A vertex x from a t-convex set S is said to be a toll extreme vertex of S if 
{ }xS \  is t-convex. Throughout this section, ( ) ( ){ xGVxGExT :∈=  is a toll 

extreme vertex of ( )}.GV  

Remark 3.1. Let G be a connected graph of order n. 
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  (i) A vertex x is a toll extreme vertex of G if and only if ( ) { }xGV \  is a 

t-convex set of G. Furthermore, if ( ) ,∅≠GExT  then ( ) .1−= nGconT  

 (ii) If S is a set-Tcon  of G, then S is a forcing subset for itself. In 

particular, ( ) ( ).GconGfcon TT ≤  

(iii) If G has a unique set-Tcon  S, then the empty set ∅ is a forcing 

subset for S. In this case, ( ) .0=GfconT  

Theorem 3.2. Let G be a connected graph with ( ) .1≥= kGExT  Then 

( ) .1−= kGfconT  

Proof. Let G be a connected graph and suppose that ( ) .1≥= kGExT  

Let S be a set-Tcon  of G. Then, by Remark 3.1(i), there exists ( )GExx T∈  

such that ( ) { }.\ xGVS =  If ,1=k  then S is the unique set-Tcon  of G. Thus, 

( ) 0=GfconT  by Remark 3.1(iii). Next, assume that 2≥k  and let .ST ⊆  

If there exists ( ) { }xGExy T \∈  that is not in T, then ( ) { },\ yGVST =′⊆  

where S′  is a set-Tcon  of G. It follows that T is not a forcing subset for           

S. Hence, ST ⊆  is a forcing subset for S if ( ) { } .\ TxGExT ⊆  Since 

( ) { }xGExT \  is a forcing subset for S, ( ) ( ) { } .1\ −== kxGExSfcon TT  

Since every set-Tcon  of G is similar to S, we have ( ) .1−= kGfconT  ~ 

Observe that in a complete graph, every vertex is a toll extreme vertex. 
Thus, the next result is immediate from this observation. 

Theorem 3.3. For ,1≥n  ( ) ( ) .1−== nKfconKcon nTnT  

The next result characterizes the t-convex sets in the join of non-
complete graphs G and H. 

Theorem 3.4. Let G and H be non-complete graphs. A non-empty proper 
subset S of ( )HGV +  is a t-convex set of HG +  if and only if =S  

,HG SS ∪  where GS  and HS  are cliques of G and H, respectively GS(  

or HS  may be empty). 
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Proof. Let S be a non-empty t-convex set of HG +  and let =GS  

( )GVS ∩  and ( ).HVSSH ∩=  Consider the following cases: 

Case 1. ( )GVS ⊆  or ( )HVS ⊆  

Assume that ( ).GVS ⊆  Then GSS =  and .∅=HS  Let Svu ∈,  such 

that .vu ≠  Suppose that ( ).GEuv ∉  Then the walk [ ]vwuT ,,=  is a tolled 

walk between u and v in HG +  for all ( ).HVw ∈  It follows that ( ) ⊆HV  

( ) ,, SvuT HG ⊆+  a contradiction. Hence, ( )GEuv ∈  for every ., Svu ∈  

Therefore, GSS =  is a clique of G. Similarly, ∅=GS  and HSS =  

is a clique of H if ( ).HVS ⊆  

Case 2. ∅≠GS  and ∅≠HS  

Suppose that ( ).GVSG =  Since ( ),HGVS +≠  ( ).HVSH ≠  Now, 

since G is not complete, there exist distinct vertices ( )GVba ∈,  such that 

( ).GEab ∉  Pick any ( ) .\ HSHVz ∈  Then [ ]bzaT ,,=  is a tolled walk in 

HG +  with .Sz ∉  Hence, S is not a t-convex set, a contradiction. Thus, 
( ).GVS ≠  Similarly, ( ).HVSH ≠  If GS  is not complete, then ( ) .SHV ⊆  

Hence ( ),HVSH =  a contradiction. Therefore, GS  is a clique of G. 

Similarly, HS  is a clique of H. 

The converse is clear because every clique of HG +  is a t-convex set of 
.HG +  ~ 

The next result is a consequence of Theorem 3.4. 

Corollary 3.5. Let G and H be non-complete graphs. Then ⊂S  
( )HGV +  is a setconT -  of HG +  if and only if ,HG SSS ∪=  where 

GS  and HS  are maximum cliques of G and H, respectively. Moreover, 

( ) ( ) ( ) ( ).HGHGHGconT +ω=ω+ω=+  

Let G be a connected graph and let rK  be a maximum clique of G. A 

subset S of ( )rKV  is a c-forcing subset for ( )rKV  if rK  is the only 
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maximum clique of G such that ( ).rKVS ⊆  The forcing clique number of 

rK  is given by 

( ) ( ){ }.forsubsetforcing-ais:min rr KVcSSKfcn =  

The forcing clique number of G is given by 

( ) ( ){ }.ofcliquemaximumais:min GKKfcnGfcn rr=  

Remark 3.6. Let G be a connected graph. Then ( ) 0=Gfcn  if and only 

if G has a unique maximum clique. If the sets-Tcon  of G induce maximum 

cliques of G, then ( ) ( )SfcnSfconT =  for every set-Tcon  S of G. Therefore 

( ) ( ).GfcnGfconT =  

Theorem 3.7. Let G and H be non-complete graphs. Then 

( ) ( ) ( ).HfcnGfcnHGfconT +=+  

Proof. Let G and H be non-complete graphs. Assume that GS  and 

HS  are maximum cliques of G and H, respectively, such that ( ) =Gfcn  

( )GSfcn  and ( ) ( ).HSfcnHfcn =  Let GC  and HC  be forcing subsets for 

GS  and ,HS  respectively, such that ( ) GG CSfcn =  and ( ) =HSfcn  

.HC  By Theorem 3.4, HG SSS ∪=  is a set-Tcon  of .HG +  Let =D  

.HG CC ∪  Suppose that SD ′⊆  for some SconT ′set-  of HG +  distinct 

from S. Let ,HG SSS ′′=′ ∪  where GS′  and HS′  are maximum cliques of G 

and H, respectively. It follows that GG SC ′⊆  and .HH SC ′⊆  Since ,SS ≠′  

either GG SS ≠′  or .HH SS ≠′  If ,GG SS ≠′  then GGG SSC ′⊆ ∩  implies 

that GC  is not a forcing subset for .GS  This gives a contradiction. A similar 

case happens if .HH SS ≠′  Hence, D is a forcing subset for S. Consequently, 

( ) ( ) ( ) ( ).HfcnGfcnDSfconHGfcon TT +=≤≤+  

Next, let ∗S  be a set-Tcon  of HG +  with ( ) ( )∗=+ SfconHGfcon TT  

( ).∗= Sfcn  By Theorem 3.4, ,∗∗∗ = HG SSS ∪  where ∗
GS  and ∗

HS  are 
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maximum cliques of G and H, respectively. Suppose that C is a forcing 

subset for ∗S  such that ( ) .CSfcn =∗  Assume further that ,BAC ∪=  

where ∗⊆ GSA  and .∗⊆ HSB  If GTA ⊆  for some maximum clique GT  of 

G and ,∗≠ GG ST  then ∗
HG ST ∪  is a set-Tcon  of HG +  and ,∗⊆ HG STC ∪  

contrary to the assumption that C is a forcing subset for .∗S  Similarly, B is a 

forcing subset for .∗
HS  Therefore ( ) ( )GfcnBACHGfconT ≥+==+  

( ).Hfcn+  

Accordingly, ( ) ( ) ( ).HfcnGfcnHGfconT +=+  ~ 

Corollary 3.8. Let G and H be non-complete graphs. Then 

 (i) ( ) 0=+ HGfconT  if and only if G and H have unique maximum 

cliques; and 

(ii) ( ) 1=+ HGfconT  if and only if either G has a unique maximum 

clique and ( ) 1=Hfcn  or H has a unique maximum clique and ( ) .1=Gfcn  

Corollary 3.9. Let G and H be non-complete graphs. Then 
( ) 2=+ HGfconT  if and only if one of the following conditions holds: 

  (i) ( ) 1=Gfcn  and ( ) ;1=Hfcn  

 (ii) ( ) 2=Gfcn  and H has a unique maximum clique; or 

(iii) ( ) 2=Hfcn  and G has a unique maximum clique. 

Theorem 3.10. Let G be any graph and let H be a complete graph. Then 
a non-empty proper subset S of ( )HGV +  is a t-convex set of HG +  if and 

only if 

 (i) ,HG SSS ∪=  where GS  is a clique of G and HSH ⊆  GS(  or 

HS  may be empty); or 

(ii) ( ),HVCS ∪=  where C is a proper t-convex set of G such that C  

is not a clique of G. 
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Proof. Let ( )GVSSG ∩=  and ( ).HVSSH ∩=  Consider the following 

cases: 

Case 1. ( )GVS ⊆  or ( )HVS ⊆  

We may assume that ( ).GVS ⊆  Then .GSS =  Assume further that GS  

is not a clique of G. Then there exist ,,, vuSvu ≠∈  such that ( ).GEuv ∉  

This implies that ( ) ,SHV ⊆  a contradiction. Thus, GSS =  is a clique 

of G. 

Case 2. ∅≠GS  and ∅≠HS  

If G is complete, then GS  is a clique of G. Assume now that G is not 

complete and suppose that ( ).GVSG =  Since ( ) ( )., HVSHGVS H ≠+≠  

Pick non-adjacent vertices x, y of GS  and let ( ) .\ HSHVz ∈  Then ∈z  

( ) ,, SyxT HG ⊆+  a contradiction. Thus, ( ).GVSG ≠  If GS  is complete, 

then (i) holds. If GS  is not complete, then there exist GSvu ∈,  with 

( ).GEuv ∉  This would imply that ( ) ( ) ., SvuTHV HG ⊆⊆ +  Hence, =HS  

( ).HV  Let GSC =  and suppose that C is not a t-convex set of G. Then there 

exist Cba ∈,  such that there is an ( ) .\, GG SbaTx ∈  Let ( )baP ,  be a tolled 

walk in G containing x. Then ( )baP ,  is a tolled walk in .HG +  Hence, S       

is not a t-convex set of ,HG +  a contradiction. It follows that GSC =  is a         

t-convex set of G, showing that (ii) holds. 

The converse is clear. ~ 

Corollary 3.11. Let G be any graph and let H be a complete graph of 
order n. Then S is a setconT -  of HG +  if and only if ( )HVCS ∪=  for 

some setconT -  C of G. Moreover, 

( ) ( ) .nGconHGcon TT +=+  

In particular, if every setconT -  of G is a clique, then 
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( )
( )
( )⎩

⎨
⎧

−+ω
+ω

=+
.,1

,,
otherwisenG

completenotisGifnG
HGconT  

Theorem 3.12. Let G be a graph and let H be a complete graph. Then 

( ) ( ).GfconHGfcon TT =+  

Proof. Let S be a set-Tcon  of HG +  and let T be a forcing subset for S 

such that ( ) ( ) .TSfconHGfcon TT ==+  Then, by Corollary 3.11, =S  

( ),HVC ∪  where C is a set-Tcon  of G. Let ,21 TTT ∪=  where CT ⊆1  

and ( ).2 HVT ⊆  Suppose that CT ′⊆1  for some CconT ′set-  of G with 

.CC ≠′  Then ( ).HVCST ∪′=′⊆  Contrary to the assumption that T is a 

forcing subset for S. Thus, 1T  is a forcing subset for C. Hence, 1T  is also a 

forcing subset for S. Therefore ( ) ( ) ≥≥==+ 1TTSfconHGfcon TT  

( ).GfconT  

Now, let Q be a set-Tcon  of G and let P be a forcing subset for Q such 

that ( ) ( ) .PQfconGfcon TT ==  Then ( )HVQS ∪=∗  is a set-Tcon  of 

HG +  by Corollary 3.11. Clearly, P is also a forcing subset for .∗S  

Therefore ( ) ( ) ( ).GfconPSfconHGfcon TTT =≤≤+ ∗  

Accordingly, ( ) ( ).GfconHGfcon TT =+  ~ 

The next result characterizes the t-convex sets in the corona of two 
graphs G and H. 

Theorem 3.13. Let G be a nontrivial connected graph and let H be any 
graph. Then C is a t-convex set of HG D  if and only if ,vSC =  where vS  

is a complete subgraph of vH  for some ( )GVv ∈  or ,⎟
⎠
⎞

⎜
⎝
⎛= ∈∪∪ Av vDAC  

where A is a non-empty t-convex set of G and vD  is a t-convex set of vH  for 

each .Av ∈  
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Proof. Suppose that C is a t-convex set of .HG D  Let ( ).GVCA ∩=  

Suppose that ∅=A  and let Cx ∈  and ( )GVv ∈  such that ∩CSx v =∈  

( ).vHV  Let ( ) { }vGVu \∈  and set ( ).u
u HVCS ∩=  Suppose that ,∅≠uS  

say .uSy ∈  Let ( ) [ ],...,,,, 21 nuuuvuP =  where 1uu =  and ,nuv =  be a 

u-v geodesic in G. Then ( ) [ ]yuuuxyxP n ,...,,,,, 21=  is an x-y tolled walk 

in .HG D  Since ,, Cvu ∉  it follows that C is not a t-convex set of ,HG D  a 

contradiction. Thus, ∅=uS  for all ( ) { }.\ vGVu ∈  Moreover, since ,Av ∉  

vS  must be a complete subgraph of ,vH  where .vSC =  

Next, suppose that .∅≠A  Since every tolled walk in G is a tolled walk 
in ,HG D  it follows that A is a t-convex set of G. Let Av ∈  and let =vD  

( ).uHVC ∩  Again, it is a routine to show that ( ) ∅== w
w HVCD ∩  for 

all ( ) .\ AGVw ∈  Hence, ,⎟
⎠
⎞

⎜
⎝
⎛= ∈∪∪ Av vDAC  where vD  is necessarily a      

t-convex set of vH  for each .Av ∈  

The converse is clear. ~ 

Theorem 3.14. Let G be a nontrivial connected graph of order m and let 
H be any graph of order n. Then ( ) ( ) ( ).1 HconnmmHGcon TT +−+=D  

Proof. Let ( )GVA =  and let ( ).GVv ∈  Set ( )w
w HVD =  for each 

{ }vAw \∈  and let vD  be a set-Tcon  of .vH  By Theorem 3.13, ∪AC =  

⎟
⎠
⎞

⎜
⎝
⎛

∈∪ Ax xD  is a t-convex set of .HG D  Hence, 

( ) ( ) ( ).1 HconnmmCHGcon TT +−+=≥D  

Next, suppose that ⎟
⎠
⎞

⎜
⎝
⎛ ′= ∈∪∪

000 Ay yDAC  be a set-Tcon  of .HG D  If 

( ),0 GVA =  then there exists 0Az ∈  such that zD′  is a set-Tcon  of .zH  
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Hence, 

( )
{ }

∑
∈

′+′+==
zAy

zyT DDmCHGcon
\

0
0

D  

( ) ( ).1 Hconnmm T+−+≤  

If ( ),0 GVA ≠  then ( ) ( ) ( ) +−+≤−+≤= nmmnmmCHGconT 110D  

( ).HconT  Therefore ( ) ( ) ( ).1 HconnmmHGcon TT +−+=D  ~ 

Theorem 3.15. Let G be a nontrivial connected graph of order m and let 
H be any graph. Then ( ) ( )( ) .11 −+≤ HfconmHGfcon TT D  Moreover, if H 

has a unique ,-setconT  then ( ) .1−= mHGfconT D  

Proof. Let R be a set-Tcon  of H and let S be a forcing subset for R such 

that ( ) ( ) .SRfconHfcon TT ==  For each ( ),GVv∈  let vR  be a set-Tcon  of 
vH  and let vS  be a forcing subset for vR  such that RRv ≅  and .SSv ≅  

By Theorem 3.14, ( ) (( ) { } ) wwGVv
v RHVGVC ∪∪ ∪ ⎟
⎠
⎞

⎜
⎝
⎛= ∈ \  is a Tcon -set      

of .HG D  For each ( ) { },\ wGVv ∈  pick ( ) .\ v
v

v RHVz ∈  Let ∪ww SQ =  

{ }( )( ) { } .\ ⎟
⎠
⎞

⎜
⎝
⎛

∈∪ ∪wGVv vv zS  Assume that ( ) (( ) { } )⎟
⎠
⎞

⎜
⎝
⎛=′ ∈∪∪ yGVv

vHVGVC \  

yD∪  is a set-Tcon  of HG D  with .CC ≠′  Suppose first that .wy =  Then 

.wy RD ≠  Since wS  is a forcing subset for ,wR  .yw DS ⊆/  Next, suppose 

that .wy ≠  If ,yy RD =  then .\ ywy DQz ∈  If ,yy RD ≠  then yy DS ⊆/  

because yS  is a forcing subset for .yR  Thus, .CQw ′⊆/  This implies that wQ  

is a forcing subset for C. Hence, 

( ) ( ) ( ) ( ) ( )( )11 +−+=≤≤ HfconmHfconQCfconHGfcon TTwTT D  

( )( ) .11 −+= Hfconm T  

Let 0C  be a set-Tcon  of HG D  and let 0Q  be a forcing subset for        
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0C  such that ( ) ( ) .00 QCfconHGfcon TT ==D  Then ( ) ∪GVC =0  

( )( ) { } zzGVv
v RHV ∪∪ ⎟
⎠
⎞

⎜
⎝
⎛

∈ \  for some ( ),GVz ∈  by Theorem 3.14 (since H 

has a unique ).set-Tcon  For each ( ) { },\ zGVv ∈  let ( ).0
v

v HVQN ∩=  If 

( ( ) ) ,\ ∅=v
v

v RHVN ∩  then 

( ) ( )
( ) { }

,
\

0 v
vGVx

x RHVGVCQ ∪∪ ∪ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=⊆

∈

∗  

where ∗C  is a Tcon -set of HG D  different from .0C  This gives a contradiction 

since 0Q  is a forcing subset for .0C  Hence, ( ( ) ) ∅≠v
v

v RHVN \∩  for every 

( ) { }.\ zGVv ∈  Thus, ( ) .10 −≥= mQHGfconT D  

Accordingly, ( ) .1−= mHGfconT D  ~ 
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