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Abstract

Human longevity and healthy aging show moderate heritability (20%—-50%). We conducted a meta-analysis of genome-wide association
studies from 9 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium for 2 outcomes: (1) all-cause
mortality, and (2) survival free of major disease or death. No single nucleotide polymorphism (SNP) was a genome-wide significant
predictor of either outcome (p < 5 X 10~ ®). We found 14 independent SNPs that predicted risk of death, and 8 SNPs that predicted
event-free survival (p < 10~°). These SNPs are in or near genes that are highly expressed in the brain (HECW2, HIP1, BIN2, GRIAI), genes
involved in neural development and function (KCNQ4, LMO4, GRIAI, NETO1I) and autophagy (ATG4C), and genes that are associated with
risk of various diseases including cancer and Alzheimer’s disease. In addition to considerable overlap between the traits, pathway and
network analysis corroborated these findings. These findings indicate that variation in genes involved in neurological processes may be an

important factor in regulating aging free of major disease and achieving longevity.

© 2011 Elsevier Inc. Open access under the Elsevier OA license.
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1. Introduction

The recent, remarkable extension of life expectancy is
largely attributed to the postponement of mortality at old
age (Vaupel, 1997, 2010). The years of life gained in the
older population residing in developed nations are a success
story of public health measures and improved health care. In
addition to such external factors, longevity and healthy
aging consistently show a modest heritability between 20%
and 50% and aging-associated genetic research may provide
further insights into the mechanisms of aging (Herskind et
al., 1996; McGue et al., 1993; Reed and Dick, 2003). It has
been postulated that genes involved in pathways associated
with aging identified in animal models, such as insulin-like
growth factor (IGF)-insulin signaling, regulation of lipopro-
tein metabolism, the mTOR pathway, and the oxidative
stress response may also influence survival to old or even
exceptionally old age in humans (Christensen et al., 2006;
Kenyon, 2010; Vellai et al., 2003). However, in humans,
common variants within genes involved in these pathways
have not been consistently associated with lifespan (Chris-
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tensen et al., 2006; Kenyon, 2010; Kuningas et al., 2008;
Vijg and Suh, 2005).

The lack of success in the identification of genes related
to aging in humans may be due to the complexity of the
phenotype. One approach to investigate aging and longevity
is to compare frequencies of genetic variants between no-
nagenarians or centenarians and the general population.
This approach led to the discovery of an association be-
tween APOE (Deelen et al., 2011; Ewbank, 2007; Gerdes et
al., 2000) and more recently FOXO3A (Anselmi et al., 2009;
Flachsbart et al., 2009; Li et al., 2009a; Pawlikowska et al.,
2009; Willcox et al., 2008) and human aging and longevity.
However, a recent genome-wide association study (GWAS)
of individuals reaching the age of 90 or older failed to
identify genome-wide significant variants (Newman et al.,
2010).

Prospective follow-up studies with a continuous outcome
such as time to death are more powerful than case-control
analyses. A study of time to death simultaneously addresses
the effects of genetic variation related to life span, the
progression toward death, and disease-specific mortality.
This design has been successfully applied in animal models
(Finch and Ruvkun, 2001; Kenyon, 2010) and also in hu-
man genetics research of blood pressure (Levy et al., 2009;
Newton-Cheh et al., 2009; van Rijn et al., 2007), a trait with
heritability similar to longevity, where examination of a
continuous outcome has been more successful in identifying
genetic loci than studies that have solely used hypertension


mailto:h.tiemeier@erasmusmc.nl
http://www.elsevier.com/open-access/userlicense/1.0/

S. Walter et al. / Neurobiology of Aging 32 (2011) 2109.¢15-2109.e28

as a dichotomous trait. Frailty and survival free of disease
have been suggested as more promising phenotypes for
studies of aging because mortality is a very heterogeneous
outcome caused by multiple chronic conditions (Vijg and
Suh, 2005).

This study addresses the genetics of aging in a broad,
sequential way using data from cohort studies participating
in the Cohorts for Heart and Aging Research in Genomic
Epidemiology (CHARGE) consortium. First, we aimed to
identify single nucleotide polymorphism (SNPs) associated
with all cause mortality (time to death) in a hypothesis-free
GWAS in approximately 25,000 unselected persons of Eu-
ropean ancestry. Second, we performed GWAS of time to
event, defined by major incident events (myocardial infarc-
tion, heart failure, stroke, dementia, hip fracture, or cancer)
or death, as an alternative phenotype for healthy aging. Last,
we analyzed the SNPs along with their respective most
likely associated genes identified in the GWAS meta-anal-
yses to identify pathways and networks associated with
aging and longevity.

2. Methods
2.1. Participants

The participants are of recent European ancestry and
stem from cohorts of the CHARGE Consortium (Psaty et
al., 2009). All cohorts are follow-up studies periodically
assessing the health and vital status of their participants.
Although some of the cohorts included multiple ethnic
groups, only data from self-reported Caucasians were used.
In addition, population structure was assessed using princi-
pal components in each CHARGE study and outliers were
removed. Any remaining within-study structure was ad-
justed for using appropriate methods (Price et al., 2006). All
participants included in this analysis were at least 55 years
of age at the time of blood draw for DNA and provided
written informed consent. A brief description of each pop-
ulation is given in the Supplementary Information.

2.2. Phenotype

We conducted a survival analysis, adjusted for age at
baseline and sex, to model continuous time to death or end
of follow-up in 25,007 participants (deceased “cases” =
8444; mean follow-up time = 10.6 [SD 5.4] years) that
were older than 55 years at baseline. As research demon-
strated that the likelihood of incident disease is genetically
determined, we defined a second phenotype: survival free of
major disease or mortality (Atzmon et al., 2004; Lunetta et
al., 2007; Vijg and Suh, 2005). The outcome was defined as
time to the first of the following adjudicated events: myo-
cardial infarction, heart failure, stroke, dementia, hip frac-
ture, cancer, or death. For this analysis, participants at
baseline were older than 55 years of age and free of any of
the aforementioned conditions. Inclusion in the study re-
quired complete follow-up information on mortality and at
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least 4 out of 6 of the health conditions. Genome-wide
information on polymorphisms was available for 16,995
participants free of disease at the beginning of the study.
These participants were followed for 8.8 (SD 5.7) years and
we registered 7314 major events.

2.3. Genotyping and imputation

As different genotyping platforms were used across stud-
ies, we imputed to 2.5 million SNPs using the HapMap 22
CEU (Build 36) genotyped samples as a reference. For
details on the study-specific quality control procedures for
genotyping and imputation please consult Supplementary
Table S1.

2.4. Statistical analysis

We used the semiparametric Cox proportional hazard to
model time to event for both phenotypes in each study.
Follow-up time since baseline was used as time scale. An
additive genetic model was used in this analysis. We sub-
sequently combined the individual study results in a meta-
analysis using a fixed effects model that combined the
study-specific regression parameters and standard errors us-
ing inverse variance weighting. We included SNPs that had
a minor allele frequency (MAF) of at least 1% and an
imputation quality ratio (de Bakker et al., 2008) (equivalent
to the MaCH 77 statistic; Li et al., 2009Db) of at least 0.3. The
study-specific inflation factors (Agc) were computed using
the set of chi-square statistics used for the meta-analysis for
each study. The inflation factor is computed as the median
of all chi-square statistics divided by the expected median of
the statistics (approximately 0.456) for a chi-square distri-
bution with 1 degree of freedom. SNP associations at p < 5
X 107% were considered to be genome-wide significant.
SNPs with p < 5 X 107> were considered suggestive
associations. The combined meta-analysis hazard ratio (HR)
can be interpreted as the increase in the risk of dying or
having a major event during follow-up per additional copy
of the coded allele. Power analysis revealed 80% statistical
power to detect SNPs with a minor allele frequency of 5%
and relative risk of 1.10 using a nominal significance level
of 0.05 (Supplementary Table S2).

In addition, we incorporated gene annotation informa-
tion, a technique that has successfully been applied in the
field of aging research (de Magalhaes et al., 2009a, 2010).
Protein ANalysis THrough Evolutionary Relationships
(PANTHER; Mi et al.,, 2007; Thomas et al., 2003) and
Ingenuity Pathway Analysis (IPA) (www.ingenuity.com)
were used for identification and classification of networks,
pathways, biological processes, and molecular functions of
the genes identified in this study. For both phenotypes
we generated lists of candidate genes. These genes were the
closest reference genes to the SNPs associated with the
outcome at p < 1 X 1073, PANTHER compares these gene
lists to the reference list using the binomial test for each
molecular function, biological process, or pathway term.
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IPA builds networks by searching the Ingenuity Pathways
Knowledge Base for interactions between the identified
genes and all other gene objects stored in the knowledge
base.

3. Results

We conducted a meta-analysis of GWAS on time to
death adjusted for baseline age and sex in participants of
European origin, 55 years of age or older from 9 longitu-
dinal cohort studies participating in the CHARGE Consor-
tium (Psaty et al., 2009). In total, we observed 8444 deaths
(mean age at death: 81.1, SD 8.4) in 25,007 participants
(55% female) after an average follow-up of 10.6 (SD 5.4)
years. Descriptive characteristics of participants and Man-
hattan plots showing genome wide p-values for association
are displayed in the Supplementary data (Supplementary
Fig. S1, and Supplementary Tables S3 and S4). The quan-
tile-quantile plot (Q-Q plot) of observed versus expected
p-values showed only a small deviation from the null hy-
pothesis, indicating no significant population stratification
(Fig. la, Age = 1.066). Although there were no genome-
wide significant findings (p < 5 X 107%), 14 independent
SNPs were associated with time to death at a suggestive
threshold of p < 1 X 1073 (Table 1). Among these SNPs,
rs4936894 (chromosome 11, near the von Willebrand factor
A domain containing 5SA gene [VWAS5A]) had the strongest
association with time to death (p = 3.4 X 10~ 7). We sought
replication for 5 of the 14 top SNPs with the strongest
association with time to death in 4 independent samples
(n = 10,411, deaths = 1295) of the same ancestry. None of
the SNPs were consistently associated with time to death at
a nominally significant level of p < 0.05 across all replica-
tion samples (Supplementary Tables S5-S8). In the com-
bined meta-analysis of the discovery and replication studies
only rs1425609 in the vicinity of otolin-1 (OTOLI) showed
a stronger association (1.61 X 1076).

Likewise, no genome-wide significant findings were
identified in the time to event analysis following 16,995
participants free of disease at baseline and registering 7314
events over an average of 8.8 (SD 5.7) years of follow-up
(Table 2). Events included incident myocardial infarction,
heart failure, stroke, dementia, hip fracture, and cancer or
death. The Q-Q plot (Fig. la, Agc = 1.019) showed no
evidence of inflation of type I error. In total, there were 8
independent SNPs associated with event-free survival at
p < 107°. The SNP with the strongest association was
1rs10412199 (chromosome 19, p = 3.02 X 10~°), which is
in close proximity to ataxia, cerebellar, Cayman type (AT-
CAY). Additional descriptive information including defini-
tions of each event and association results with p < 10™*
are provided in Supplementary Figure S2, and Supplemen-
tary Tables S9-S12.

As both phenotypes may provide different but compli-
mentary information about the aging process, we evaluated
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Fig. 1. (a) Quantile-quantile (Q-Q) plot after meta-analysis for time to
death. (b) Quantile-quantile (Q-Q) plot after meta-analysis for time to
event.

the overlap between their association results (Table 3). In-
terpretation of the overlap between the phenotypes requires
caution as both phenotypes are correlated, nevertheless it
helps to focus on specific loci and put them into the context
of aging. From the 14 loci passing the prespecified, sugges-
tive threshold of p < 1 X 1077 in the time to death analysis,
5 had corresponding SNPs within 500 kilo base pairs dis-
tance, in linkage disequilibrium (LD; »* > 0.1) associated
with p < 1 X 10™* and the same overall direction of the
effect in the time to event analysis. These 5 regions were in
the vicinity of the following genes: OTOLI (3q26.1), bridg-
ing integrator 2 (BIN2, 12q13), ATG4 autophagy related 4
homolog C (ATG4C, 1p31.3), origin recognition complex,



Table 1
Top 14 SNPs (p-value < 107) for time to death ranked by p-value, from meta-analysis of 9 cohorts®

Number SNP Chr Position Closest reference Distance from Coded Noncoded Frequency HR p-value Study effect Number of
gene closest gene allele allele coded allele direction ® supporting SNPs
1 rs4936894 11 123522703 VWASA 123 A G 0.226 1.11 3.38E-07 ++++-++-+ 224
2 11425609 3 164164689 OTOLI 1,460,265 A G 0.381 0.92 1.46E-06 —- 399
3 1s766903 12 49990101 BIN2 14,104 A G 0.834 0.90 1.61E-06 — +--m- 7
4 rs12042640 1 63139384 ATG4C 36,747 T C 0.284 1.09 1.71E-06 4+ttt 19
5 rs17149227 7 75073485 HIP1 72,141 T G 0.959 0.79 3.56E-06 = 2P +-? 0
6 rs3128591 9 136741940 COL5A1 68,468 A G 0.754 0.92 3.64E-06 —- 20
7 rs11582903 1 87618642 LMO4 34,804 A C 0.150 1.12 3.94E-06 ++-++++++ 38
8 rs4850695 2 196861504 HECW?2 89,283 A G 0.766 1.09 4.62E-06 +++++++++ 95
9 rs10259086 7 103680248 ORCSL 44,549 T G 0.686 1.08 5.16E-06 ++++++-++ 72
10 1s2769255 1 41017941 KCNQO4 4329 T C 0.374 1.08 5.17E-06 ++++++-++ 95
11 rs17291546 6 2660681 LOC340156 35,472 A G 0.957 0.82 7.65E-06 =P 8
12 rs12606100 18 69102967 NETOI 417,177 T C 0.202 1.11 8.72E-06 +27-++++- 4
13 rs1274214 11 122979741 GRAMDIB 18,987 T C 0.500 0.93 8.87E-06 —- 42
14 rs10811679 9 2224701 SMARCA2 41,080 T C 0.330 1.08 9.53E-06 +++++++++ 37

n = 25,007 participants with 8444 deaths, only SNPs with MAF > 3% are presented. p-values are for the inverse variance-weighted meta-analysis. Distances to genes are given in base pairs. Position is
for NCBI Build 36. HRs are for each additional coded allele. Number of supporting SNPs is the number of SNPs within 500 kilo base pairs of the top SNP that are in LD with the top SNP in the HapMap
CEU release 22 (©* > = 0.10) and have association p-value < 0.05.
Key: Chr, chromosome; LD, linkage disequilibrium; MAF, minor allele frequency; SNP, single nucleotide polymorphism.
 For information on all SNP associations with p-value < 10™* see Supplementary Table S2.
b Study-specific information is presented in the order: RS, CHS, FHS, ARIC, AGES, HABC, BLSA, InCHIANTI, SHIP; “+” = coded allele increases risk of mortality, “-” = coded allele decreases risk
of mortality, “?” = not tested.
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Table 2

Top 8 SNP (p-value < 107°) associations from meta-analysis of 8 cohorts for time to event, ranked by p-value (n = 16,995 with 7314 events)

Number of
supporting SNPs

Study effect

p-value

Frequency

Noncoded

Coded
allele

Distance (bp) from

Closest
reference Gene

Position
ATCAY

Chr

SNP

Number

direction *

coded allele

0.33
0.08
0.44
0.63
0.08
0.08
0.14
0.42

allele

closest gene

RN

3.02E-06
3.37E-06
3.43E-06
4.15E-06
6.10E-06
6.79E-06
8.22E-06
9.31E-06

0.91
1.18
1.09
1.09
1.17
0.

307
114610
129069

1262086

3878771
170169370

rs10412199 19

rs16852912
rs8001976

72
73
40

e+ttt
o S

MECOM

3
13

1

SUCLA2
ELTDI1

47285723

B o o SRS
e
S R

80507169

1
12

rs11162963
rs4764043
rs3112530
rs10202497
1s2367725

2
130

17570
230628

GRIN2B
GRIA1L

14006749
152619870
237935633

85

5
2

1

36
119

0.89
1.08

38233
42611

COL6A3
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R

ST3GAL3

43988415

p-values are for the inverse variance-weighted meta-analysis. Distances to genes are given in base pairs. Position is for NCBI Build 36. HRs are for each additional coded allele. Number of supporting SNPs

is the number of SNPs within 500 kilo base pair of the top SNP that are in LD with the top SNP in the HapMap CEU release 22 (+* = 0.10) and have association p-value < 0.05. For information on all

SNP associations with p-value < 10 see Supplementary Table S12.

Key: bp, base pair; Chr, chromosome; HR, hazard ratio; LD, linkage disequilibrium; SNP, single nucleotide polymorphism.

coded allele decreases risk of event;

o

# Study-specific information is presented in the order: RS, CHS, FHS, ARIC, AGES, HABC, BLSA, InCHIANTI; “+” = coded allele increases risk of event;

“?” = not tested.

subunit 5-like (ORCS5L, 7q22.1), and potassium voltage-
gated channel, KQT-like subfamily, member 4 (KCNQ4,
1p34). Similarly, in the time to event analysis 3 of the 8 top
SNPs showed considerable overlap and the same direction
of effect in the time to death analysis. These SNPs were
close to the following genes: MDS1 and EVIl complex
locus (MECOM, 3q24-q28), succinate-CoA ligase, ADP-
forming, beta subunit (SUCLA2, 13q12.2-q13.3), and ST3
beta-galactoside alpha-2,3-sialyltransferase 3 (ST3GAL3,
1p34.1).

Finally, we evaluated candidate genes for aging by iden-
tification and classification of networks, pathways, biolog-
ical processes, and molecular functions. The candidate
genes were derived from the meta-analyses of GWAS and
included the reference genes closest to the SNPs associated
withp <1 X 1073 (time to death: 862 genes, time to event:
704 genes). We used PANTHER (Mi et al., 2007; Thomas
et al., 2003, 2006) and IPA software (www.ingenuity.com)
for these analyses. PANTHER compares these gene lists to
the reference list using the binomial test for each molecular
function, biological process, or pathway term. IPA builds
networks by searching the Ingenuity Pathways Knowledge
Base for interactions between the identified genes and all
other gene objects stored in the knowledge base.

For the analysis of time to death, the relevant biological
processes overrepresented in the PANTHER analysis were
developmental processes, neuronal activities, signal transduc-
tion, neurogenesis, ectoderm development, and cell adhesion.
For the analysis of time to incident event, developmental pro-
cesses and neuronal activities were overrepresented among
other biological process (Table 4). The analyses also high-
lighted the Wnt signaling pathway. The Wnt signaling path-
way is ubiquitous and known to be involved in cancer but
also plays an important role in the early stages of the
development of the central nervous system, in synaptic
formation by axon guidance, and in modulating fibrosis
during muscle repair scored high in both traits under study
(Brack et al., 2007; Inestrosa and Arenas, 2010; Keeble et
al., 2006; Ulloa and Marti, 2010). For extended tables see
Supplementary Tables S13 and S14. In addition, Ingenuity
identified 1 network with p = 1073! containing 26 genes
involved in processes related to nervous system develop-
ment and function for the analysis of time to death (Fig. 2)
and 1 network with p = 10~*° containing 28 genes involved
in cellular function and development for time to event
(Supplementary Fig. S3).

IPA analysis highlighted the following genes associated
with the time to death trait: NTRK2 (neurotrophic tyrosine
kinase, receptor, type 2)—a member of the neurotrophic
tyrosine receptor kinase family. This kinase is a membrane-
bound receptor that, upon neurotrophin binding, phospho-
rylates itself and members of the mitogen-activated protein
kinase (MAPK) pathway. Signaling through this kinase
leads to cell differentiation. Second in line were NCAM1
(neural cell adhesion molecule 1)—a cytoskeletal binding
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Table 3
Overlap between the associations of time to death and time to event®

Top hit SNP Chr Closest reference Time to death Time to event Top SNPs from time to death (time to event) analysis associated with different p-
gene values in time to event (time to death) analysis
P Effect )4 Effect Total p = 0.05 p < 0.05 p < 0.01 p < 0.001 p < 0.0001

Time to death

1 rs1425609 3 OTOLI 1.46E-06 - 0.005704 — 1119 693 235 132 37 22

2 1s766903 12 BIN2 1.61E-06 - 0.01315 - 37 27 4 5 0 1

3 rs12042640 1 ATG4C 1.71E-06 + 0.03701 + 93 60 19 4 0 10

4 rs11582903 1 LMO4 3.94E-06 + 0.7336 - 133 91 8 12 21 1

5 rs10259086 7 ORCSL 5.16E-06 + 0.03266 + 239 154 56 21 4 4

6 1s2769255 1 KCNQ4 5.17E-06 + 0.01322 + 287 151 68 56 7 5

7 rs17291546 6 LOC340156 7.65E-06 - 0.01624 - 29 19 9 1 0 0

8 rs12606100 18 NETO1 8.72E-06 + 0.02853 + 23 16 5 2 0 0

9 rs1274214 11 GRAMDIB 8.87E-06 - 0.0567 - 101 39 28 17 17 0
Time to event

1 rs16852912 3 MECOM 0.00589 + 3.37E-06 + 169 67 49 49 2 2

2 rs8001976 13 SUCLA2 0.01473 + 3.43E-06 + 433 198 91 46 59 39

3 154764043 12 GRIN2B 0.0017 + 6.10E-06 + 45 42 2 1 0 0

4 rs10202497 2 COL6A3 0.00035 - 8.22E-06 + 135 83 27 12 9 4

5 1s2367725 1 ST3GAL3 0.0274 + 9.31E-06 + 459 317 56 37 31 18

p-values are for the inverse variance-weighted meta-analysis. Total represents the number of SNPs in time to death (time to event) analysis within 500 kilo base pair of SNPs from the time to event (time
to death) analysis that are in LD with the top SNPs from the time to death (time to event) analysis in the HapMap CEU release 22 (+* = 0.10) and have association p-value < 0.05.

Key: Chr, chromosome; Effect, meta-analysis direction of effect; LD, linkage disequilibrium; SNP, single nucleotide polymorphism.

* Only SNPs that were nominally significant (p < 0.05) for both traits are shown.
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Table 4

Results from the gene annotation analysis using PANTHER

Biological process H. sapiens Number of Number of —/+ p-value p-value

(reference) genes observed genes expected unadjusted adjusted *

Time to death:
Biological process unclassified 11321 238 367.71 - 1.29E-20 4.00E-19
Developmental processes 2152 152 69.9 + 1.39E-19 4.32E-18
Neuronal activities 569 65 18.48 + 8.94E-18 2.77E-16
Signal transduction 3406 199 110.63 + 9.09E-17 2.82E-15
Neurogenesis 587 64 19.07 + 1.43E-16 2.84E-14
Ectoderm development 692 68 22.48 + 2.33E-15 3.38E-13
Cell adhesion 622 57 20.2 + 7.00E-12 2.17E-10

Time to event:
Developmental processes 2152 115 57.46 + 1.02E-12 3.16E-11
Biological process unclassified 11321 214 302.27 - 2.93E-12 9.08E-11
Neuronal activities 569 47 15.19 + 2.28E-11 7.08E-10

Candidate genes (genes observed) were in the neighborhood of single nucleotide polymorphisms (SNPs) associated with p value < 1 X 107. For time to
death 862 candidate genes were identified; 826 could be matched to the Protein ANalysis THrough Evolutionary Relationships (PANTHER) gene list. For
time to event 704 candidate genes were identified; 679 could be matched to the PANTHER gene list. Extended lists of PANTHER pathways, biological
processes, and molecular functions are listed in the Supplementary Tables (S13, S14).

% Bonferroni correction multiplying the single-test p-value by the number of independent tests to obtain an expected error rate.
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protein, GRID?2 (glutamate receptor, ionotropic, delta 2)—a
relatively new member of the family of ionotropic gluta-
mate receptors which are the predominant excitatory neu-
rotransmitter receptors in the mammalian brain, and have a
role in neuronal apoptotic death, and RIMSI (regulating
synaptic membrane exocytosis 1), which regulates synaptic
vesicle exocytosis and may be part of the protein scaffold of
the cell.

Among the genes that were highlighted through the IPA
analysis in the analysis of time to event was MYC (v-myc
myelocytomatosis viral oncogene homolog)—a multifunc-
tional, nuclear phosphoprotein that plays a role in cell cycle
progression, apoptosis, and cellular transformation. MYC
functions as a transcription factor that regulates transcrip-
tion of specific target genes. Second in line were E2F 1 (E2F
transcription factor 1), EGFR (epidermal growth factor re-
ceptor), and CEBPA (CCAAT/enhancer binding protein [C/
EBP], alpha). EF21, a transcription factor, plays a crucial
role in the control of cell cycle and action of tumor sup-
pressor proteins can mediate both cell proliferation and
pS53-dependent/independent apoptosis. EGFR is a trans-
membrane glycoprotein that serves as a receptor for mem-
bers of the epidermal growth factor family and supports cell
proliferation. CEBP-Alpha, a bZIP transcription factor, can
bind as a homodimer to certain promoters and enhancers.
CEBPA also forms heterodimers with the related proteins
CEBP-beta and CEBP-gamma and modulates the expres-
sion of leptin, interacts with CDK2 and CDK4, and thereby
inhibits these kinases and causes growth arrest in cultured
cells.

4. Discussion

In our analyses of over 25,000 individuals of 55 years
and older followed for an average of 11 years, we did not
identify genome-wide significant associations for all-cause
mortality and survival free of major diseases. However,
both traits highlighted loci with suggestive significance that
were in the neighborhood of genes related to neural regu-
lation. In addition, our pathway and network analyses iden-
tified an enrichment of genes associated with cellular and
neural development and function, and cell communication
that may contribute to variation in human aging. Brain
development might be responsible for the creation of redun-
dancy in brain circuitry, which is associated with functional
reserve and resiliency. Brain function regulates most of the
compensatory strategy supporting maintenance of homeo-
static equilibrium. Both of these processes are essential to
healthy aging and longevity.

Several explanations are possible for the lack of genome-
wide significant findings. First, mortality is arguably 1 of
the most complex phenotypes, and several trajectories to-
ward extreme old age have been identified (Evert et al.,
2003). Multiple genes could mediate the aging process but
would have their effects through numerous different patho-

2109.e23

physiological processes and diseases that act as intermediate
factors on the pathway to death (de Magalhaes et al., 2010).
Therefore, any common variation in genes associated with
aging probably has a small effect.

Second, the largely negative findings of this and other
studies contrast with the intriguing animal studies of lon-
gevity. Very large effects of single genes on lifespan have
indeed been observed in laboratory animals, but humans
often have several homologues of these genes which might
significantly differ in function or compensate for mutated
genes through redundant mechanisms (Kuningas et al.,
2008). This could explain why our top findings did not
include genes in these pathways found in animal models.
Animal models also represent genetically homogenous pop-
ulations and are exposed to controlled environmental influ-
ences. The lack of replication of animal model findings in
humans suggests that the use of knockout animals may not
provide the optimal approach to understanding the variation
in survival in humans as interactions with environmental
factors may obscure the associations and prevent the iden-
tification of loci in humans.

Third, our study is based on common genetic variants
and therefore we cannot exclude effects due to low fre-
quency and rare variants (< 5%) or due to the presence of
structural variation, such as copy number polymorphisms.
Our discovery set may lack the power to identify all the
relevant loci, even though we had sufficient power to detect
common SNPs (minor allele frequency = 5% or more) with
a relative risk of 1.10 (Supplementary Table S2).

Last, we cannot exclude that phenotypic heterogeneity
influenced our findings. While all cohorts had prospectively
collected information on major health events and diagnoses,
heterogeneity in the methods of assessment and classifica-
tion might have limited the ability to identify true effects.

Complex diseases may result from the effects of a large
number of low frequency variants, with substantial allelic
heterogeneity at disease-causing loci (Pritchard, 2001;
Pritchard and Cox, 2002; Swarbrick and Vaisse, 2003).
Theoretical modeling that incorporates mutation, random
genetic drift, and purifying selection suggests that many of
the variants that affect complex traits may be in the 1%—-5%
frequency range (Pritchard, 2001). Indeed, sequencing of
candidate genes in an attempt to capture such low frequency
variants, has led to the identification of rare variants with
modest effects on body mass index (Ahituv et al., 2007;
Challis et al., 2002; Cone, 2000), triglyceride levels (Romeo
et al., 2007), high-density lipoprotein (HDL; Cohen et al.,
2004; Romeo et al., 2007) and low-density lipoprotein
(LDL) cholesterol levels (Cohen et al., 2005, 2006; Ko-
towski et al., 2006).

It is impossible to determine the functional variant of a
gene by GWAS. Moreover, we cannot conclude from the
location of an SNP that this variation is involved in the
expression of the closest gene. However, our top results
suggested a possible role of genes involved in neurological
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processes in human longevity and aging. Ten of the 22
suggestive associations identified in our analyses are in or
near genes that are highly expressed in the brain (HECW?2
[Rotin and Kumar, 2009], HIPI [Blanpied et al., 2003],
BIN2, GRIAI), were previously related to the regulation of
neuronal excitability and plasticity (KCNQ4 [Van Eyken et
al., 2006], LMO4 [Joshi et al., 2009; Leuba et al., 2004],
GRIAI), and the maintenance of neural circuitry and syn-
aptic plasticity (NETO1), or are associated with neurologi-
cal diseases such as Alzheimer’s disease (LMO4 [Leuba et
al., 2004], BIN2, GRIA1, GRIN2B), and amyotrophic lat-
eral sclerosis (GRIN2B). In addition, 6 of the 22 SNPs were
in close proximity to genes associated with other pheno-
types of aging such as autophagy (ATG4C [Kenyon, 2010]),
cancer (ATG4C [Maiuri et al., 2009], HIPI [Bradley et al.,
2007], HECW?2 [Rotin and Kumar, 2009], VWAS5A [Zhou et
al., 2009], MECOM), and mitochondrial depletion syn-
drome (SUCLA2). Notably, BIN2, ATG4C, KCNQ4,
MECOM, and SUCLA?2 showed associations with both traits
in our study.

Using the expression quantitative trait loci (eQTL)
browser (eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/) we de-
tected eQTL associated with HIPI, COL5A1, LOC340156,
and SMARCA?2 in time to death only.

Interestingly, SNPs known to be associated with longev-
ity and disease in the neighborhood of APOE (Deelen et al.,
2011) or FOXO3A (Flachsbart et al., 2009; Willcox et al.,
2008) only reached nominal significance (results not
shown). These genes were originally identified in studies of
centenarians; it is possible that our study of cohorts com-
prised of individuals from the general populations did not
have sufficient statistical power to identify these genes with
certainty. (Tan et al., 2008).

While meta-analysis of GWAS has the power to detect
small changes of allele frequencies between groups with the
analyzed trait, true association signals may not be revealed
based on a stringent genome-wide significance threshold.
This situation, although limiting false positive findings, per-
forms poorly in identifying false negatives as they may fall
below the threshold. Network analyses using a less stringent
significance threshold do not amend the overall negative
finding of this study. However, it is well-recognized that
within the many associations that failed to attain this level
of significance lie true positive associations. Network anal-
yses can provide useful information exploring multiple gene
effects and their interactions.

In fact the interpretation of most GWAS results is diffi-
cult because individual results may involve many seemingly
unrelated genes. Because PANTHER and IPA are built on
different conceptual approaches, database sources and dif-
ferent pathway classifications, they can be seen as comple-
mentary approaches. Our pathway and network analyses
highlighted neuronal activities and organism developmental
processes as major biological processes involved aging. In
addition, it highlighted Wnt signaling and showed that those
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genes that were involved in most pathways indeed had
substantial effects within the analyzed trait. NTRK?2 (Rico et
al., 2002), NCAM1 (Rutishauser et al., 1988), GRID2 (Hirai
et al., 2003), and RIMSI (Johnson et al., 2003; Schoch et al.,
2002) are associated with neuronal development and disease
pathways that were highlighted in the analysis of time to
death. MYC (Cole, 1986; Goga et al., 2007), E2F1 (Nevins,
2001), EGFR (Wang et al., 2004), and CEBPA (Ménard et
al., 2002; Wang et al., 2001) are associated with “cancer,”
“cell function,” and “development” pathways.

Few if any of the top hits from the GWAS were
involved in common pathways of aging, typically ad-
dressed in candidate gene studies. For example, there was
no specific evidence for genes involved in IGF-insulin
signaling. However, this negative finding cannot be in-
terpreted as evidence against the importance of IGF-
insulin signaling, as well as other processes such as
inflammation, oxidative stress, cellular damage and re-
pair, growth hormone, and cell proliferation in aging.
Moreover, it is possible that polymorphisms in related
genes have an effect in the oldest old, who were repre-
sented by fewer numbers in our study population such
that our study design would be underpowered to detect it.
It is also conceivable that the neurological pathways
identified by our analysis interact with the known candi-
date genes involved in aging (Bishop et al., 2010; Finch
and Ruvkun, 2001). It is feasible that the traditional aging
pathways are hierarchically controlled by neurons and
that the brain might be the location coordinating physi-
ological changes (Bishop et al., 2010; Finch and Ruvkun,
2001). Because neurons are particularly susceptible to
damage caused by reactive oxygen species, limitations in
cellular maintenance and repair might reinforce these
pathways and accelerate aging (Finch and Ruvkun,
2001). An increased ability of neuronal cells to prevent or
repair oxidative damage might result in beneficial hor-
monal signaling, otherwise deregulated with age, thus
delaying the onset of age-related disease and directly
regulating cognitive aging and life span (Bishop et al.,
2010; Cutler and Mattson, 2006; de Magalhaes and Sand-
berg, 2005).

In conclusion, our analysis did provide suggestive evi-
dence that aging is under neuronal control. Unfortunately,
we have no relevant tissue or expression experiment avail-
able to further underscore or validate our findings. Future
investigations of changes of gene expression with age at
cellular and population levels are warranted.
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