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Abstract 

As microprocessor designs grow increasingly complex, achieving effective 

coverage closure in Register-Transfer Level (RTL) verification becomes a critical 

bottleneck. Traditional simulation-based verification techniques often struggle to 

scale with growing design sizes, leading to delays and increased verification costs. 

In this paper, we propose a hybrid AI architecture that integrates supervised learning 

and reinforcement learning models to optimize coverage closure intelligently. The 

architecture dynamically predicts unverified design areas and suggests directed tests 

to accelerate verification convergence. We validate our approach on open-source 

microprocessor designs and report significant improvements in coverage metrics and 

time-to-closure compared to baseline methods. 

 

Keywords: RTL verification, Coverage closure, Hybrid AI architectures, 
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1. Introduction 

RTL verification is a cornerstone of modern microprocessor design methodologies. It ensures that 

the design specifications align with the implemented behavior before silicon fabrication, minimizing 

costly re-spins. However, the increasing complexity of processor designs, including multi-core, 

heterogeneous compute units, and advanced memory hierarchies, has exponentially raised 

verification challenges. Traditional techniques, including constrained-random simulation and 

assertion-based verification, often struggle to achieve timely and complete coverage closure. 

Recent trends suggest that intelligent verification strategies, especially those employing AI and ML, 

can offer transformative improvements. By learning from simulation patterns and predicting under-
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tested scenarios, AI models can guide simulation and test generation dynamically. Yet, current AI 

models tend to be either too general or overfit to specific designs. Therefore, a hybrid AI architecture 

combining different types of learning paradigms  could leverage the strengths of each to drive 

smarter, faster verification convergence. 

 

2. Literature Review 

The quest for automating and optimizing coverage closure has been ongoing for over a decade. Early 

works such as those by Bergeron (2005) introduced coverage-driven verification (CDV) as a 

systematic methodology for achieving functional completeness. CDV frameworks initially used 

random generation and constrained generation techniques. 

Later, Pandey et al. (2006) proposed a coverage feedback loop to adapt stimulus generation 

dynamically. Reinforcement learning approaches began to emerge with works like that of Mishra 

(2008), who explored test generation using Q-learning for architectural validation. Similarly, 

Shivakumar and Dey (2013) introduced statistical learning methods for prioritizing functional 

coverage holes. 

The integration of supervised ML models for bug prediction was investigated by Basu et al. (2015), 

while Ahmed et al. (2017) presented methods to model coverage space exploration using deep 

learning. However, by 2020, few approaches had effectively merged reinforcement and supervised 

learning to enhance RTL verification. 

Hence, our work builds upon the foundational principles established before 2020 but proposes a 

novel hybrid approach to combine predictive and adaptive models into a single verification 

framework. 

 

3. Problem Formulation  

Achieving efficient coverage closure in RTL verification requires overcoming several practical 

challenges. Firstly, the simulation state space of a microprocessor design is vast and often non-

uniform in terms of coverage contribution. Certain modules or states contribute significantly to 

functional verification success, while others have marginal impact. Traditional constrained-random 

approaches inefficiently spend simulation resources across both areas equally. 

Secondly, designs under test (DUTs) frequently evolve over project lifecycles, introducing new 

coverage goals and invalidating previously achieved coverage points. Consequently, a static or rigid 

verification flow fails to adapt dynamically to shifting priorities. This necessitates a verification 

strategy that intelligently reallocates effort based on current and anticipated design states, rather than 

pursuing uniform coverage blindly. 
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4. Proposed Hybrid AI Architecture  

To address the outlined challenges, we propose an intelligent hybrid AI system that integrates two 

complementary machine learning techniques: supervised learning and reinforcement learning. 

The Supervised Learning Module (SLM) provides predictive capabilities. It uses historical 

simulation outcomes, functional coverage reports, assertion hit patterns, and bug localization data 

to predict hotspots — RTL modules or behaviors likely to cause verification bottlenecks. These 

predictions guide the early prioritization of verification efforts toward high-yield areas. 

Meanwhile, the Reinforcement Learning Agent (RLA) ensures adaptability and exploration. The 

RLA interacts with the RTL simulation environment, receives rewards based on observed coverage 

improvement, and refines its exploration policy dynamically. This allows the system to adapt to 

newly introduced modules, assertion failures, or changing test priorities that may not be fully 

captured in the supervised model. 

4.1 Supervised Learning Module (SLM) 

The SLM is constructed using a gradient-boosted trees model trained on datasets extracted from 

prior verification projects. Key features include simulation runtime metrics, uncovered functional 

points, historical bug frequency in modules, and assertion failure density. The model outputs a 

probability score for each module indicating the likelihood of low coverage or latent bugs. 

Feature importance analysis is used to explain the model's predictions, enhancing trust and enabling 

human-in-the-loop verification planning if needed. The SLM's outputs are periodically updated as 

fresh simulation data arrives, ensuring that the predictions remain relevant and timely. 

4.2 Reinforcement Learning Agent (RLA) 

The RLA is based on a deep Q-learning network that learns an optimal policy to select directed 

stimuli based on feedback from the environment. The environment (RTL simulation) provides 

coverage metrics as reward signals. Positive rewards are assigned when coverage improves 

significantly after an action; penalties occur if actions yield redundant or low-impact stimuli. 

To prevent overfitting, the RLA uses exploration-exploitation balancing strategies such as ε-greedy 

algorithms. Moreover, periodic reinitialization of exploration parameters ensures that the agent 

remains robust against design changes across verification milestones. 
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Figure 1: Hybrid AI Architecture Overview 

 

5. Implementation Strategy 

The hybrid framework is implemented in three stages: Data Preparation, Model Training, and 

Simulation Control. 

First, historical simulation data is collected, cleaned, and feature-engineered to build input sets for 

the supervised learning model. The SLM is trained using gradient-boosted decision trees for 

interpretable predictions of coverage gaps. Meanwhile, the reinforcement learning agent utilizes a 

deep Q-learning strategy, adapting dynamically based on reward functions defined over coverage 

delta. 

Second, a feedback loop is established between the RL agent and the RTL simulation environment. 

After each test iteration, coverage metrics are analyzed, and the RL agent adjusts its strategy, while 

the SLM updates hotspot predictions if significant deviations occur. 

 

6. Experimental Setup 

The experimental validation focuses on real-world open-source microprocessor designs to 

demonstrate the practicality and generalizability of the hybrid AI approach. Two designs of varying 

complexity — the Rocket Core and the OpenSPARC T1 — were selected. For each design, 

simulations were run both with conventional constrained-random strategies and with the proposed 

hybrid AI framework. 
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Coverage metrics (functional, code) and time-to-closure were the primary evaluation parameters. 

The simulation and verification were performed using industry-standard tools (Synopsys VCS) to 

ensure realistic conditions. Key configurations, such as the coverage reporting interval and assertion 

checking, were standardized across all runs to ensure a fair comparison. 

The results consistently highlighted that the hybrid model delivered faster coverage closure and 

higher verification efficiency across designs, validating the effectiveness of combining supervised 

and reinforcement learning techniques. 

 

7. Results and Evaluation 

The hybrid AI framework demonstrated substantial improvements over traditional approaches. On 

the Rocket Core, full functional coverage (≥ 95%) was achieved 30% faster than using constrained-

random methods. For the OpenSPARC T1, a similar speedup of 25% was observed. 

The reinforcement agent effectively prioritized coverage holes based on historical predictions, 

thereby avoiding redundant simulation cycles. The hybrid model also showed better generalization 

during design revisions compared to static methods. 

 

Figure 3: Time to Coverage Closure Comparison 
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8. Conclusion and Future Scope 

This work presented a hybrid AI architecture combining supervised learning and reinforcement 

learning to intelligently guide RTL verification processes towards faster coverage closure. The 

approach successfully addressed major limitations of existing methods by dynamically adapting to 

feedback and focusing resources on high-risk areas. Substantial reductions in verification time were 

achieved across microprocessor designs of varying complexity. 

In the future, deeper integration with formal verification tools and automatic retraining during design 

iterations could further enhance the framework’s adaptability. Furthermore, extending the hybrid 

model with generative AI capabilities for test synthesis could unlock even greater efficiencies, 

paving the way for highly autonomous verification flows. 
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