
JOURNAL OF ASIAN SCIENTIFIC RESEARCH (JOASR)
2023, Vol. 13, No. 3, May-June, pp. 1-6.
website: https://joasr.com

1

Automated Debugging of Hardware Simulation Traces Using

Contrastive Learning and Attention Mechanisms

David Wong,
Machine Learning Researcher, Canada .

Abstract

Debugging complex hardware simulation traces is a labor-intensive and error-prone process

due to the intricate nature of digital circuit behavior and trace dependencies. In this paper, we

propose a novel approach that leverages contrastive learning and attention mechanisms to

automate the identification of fault-prone segments in simulation traces. Our methodology embeds

trace segments into a learned vector space using a Siamese architecture, while attention layers

prioritize signal relevance dynamically. Experimental results on benchmark circuits demonstrate

up to 45% improvement in fault localization accuracy compared to traditional pattern-matching

approaches. The proposed system paves the way for efficient trace analysis, reducing manual

intervention and accelerating verification cycles.

Keywords: Hardware debugging · Contrastive learning · Attention mechanism · Simulation

traces · Fault localization · Machine learning for EDA

Citation: Wong, D. (2023). Automated debugging of hardware simulation traces using contrastive

learning and attention mechanisms. Journal of Asian Scientific Research (JOASR), 13(3), 1–6.

1. Introduction

Modern digital systems are increasingly complex, with billions of transistors and intricate

interconnects. Verification and debugging of hardware simulation traces are crucial phases of

the design flow, consuming over 70% of the total development time [1]. Simulation traces,

representing signal transitions over time, often span millions of time steps and thousands of

signals, making manual debugging impractical.

Traditional debugging methods rely on assertion checking, waveform inspection, and log

analysis, all of which are manual, time-consuming, and error-prone. Recent advances in

machine learning, especially representation learning, provide new avenues for automating

debugging. This paper explores the application of contrastive learning to encode trace

segments and attention mechanisms to identify signal patterns most relevant to faults. These

techniques, when combined, can reveal latent structures in traces and improve fault detection

accuracy.

We organize this paper into six sections: background and motivation, literature review,

system design, experimental results, analysis and discussion, and conclusion.

https://joasr.com/

Journal of Asian Scientific Research (JASR) https://joasr.com/

2

2. Background and Motivation

Debugging hardware traces involves identifying faulty behaviors by analyzing changes in

signal values over simulation time. These traces are often large and noisy, with irrelevant signal

transitions masking the actual cause of failure. Prior work has explored symbolic execution [2],

logic slicing [3], and anomaly detection [4], but these approaches suffer from scalability and

generalization issues.

Contrastive learning is a form of self-supervised learning that learns representations by

bringing similar pairs closer and dissimilar pairs apart. Combined with attention mechanisms,

which dynamically focus on the most important inputs, these models can learn to isolate

relevant features from traces. Our motivation lies in the unique suitability of these methods for

handling high-dimensional, time-series simulation data in hardware debugging.

3. Literature Review

Recent advancements in machine learning have significantly influenced the field of

Electronic Design Automation (EDA), particularly in fault detection and hardware trace

analysis. Early works in this domain demonstrated the feasibility of deep learning models to

analyze and predict hardware behavior. Wang et al. (2018) investigated machine learning

models for performance estimation of EDA flows, showcasing neural networks' ability to learn

complex design parameters, though interpretability remained a challenge. Similarly, Lin et al.

(2019) explored self-supervised learning for design optimization, paving the way for

autonomous debugging systems.

In terms of fault localization, Pradhan and Gupta (1996) proposed stuck-at fault models, a

foundational technique in digital testing. However, these traditional models often lack

adaptability to the trace data generated during simulation. Later, Patel et al. (2018) introduced

an automated diagnosis framework for RTL-level bugs using feature extraction from

waveforms, showing improved fault detection but requiring extensive domain-specific feature

engineering. Complementarily, Moradi and Sangiovanni-Vincentelli (2020) applied graph

neural networks for trace reduction and structural bug localization, addressing scalability and

information sparsity.

The incorporation of attention mechanisms has been revolutionary in sequence modeling.

Vaswani et al. (2017) introduced the transformer model, which leveraged attention to model

dependencies across long sequences without recurrence, an architecture that would later inspire

attention-based debugging of time-series signals. Lee et al. (2015) also examined temporal

models for circuit simulation, which, though lacking attention layers, demonstrated the

importance of temporal context in debugging traces.

Contrastive learning has emerged as a dominant approach for representation learning,

especially when labeled data is scarce. Chen et al. (2020) proposed a simple framework for

unsupervised contrastive learning, which was later extended to supervised scenarios by Khosla

et al. (2020). These methods showed the ability to learn robust embeddings by bringing similar

data pairs closer in the latent space and pushing dissimilar ones apart. This idea has high

Journal of Asian Scientific Research (JASR) https://joasr.com/

3

relevance to hardware debugging, where trace segments can be treated as structured time-series

requiring similarity-based comparison.

Trace abstraction, as studied by Hines et al. (2013), is another complementary line of work

where behavioral equivalence is used to reduce trace complexity, aiding in better scalability of

formal verification and debugging tools. In analog fault diagnosis, Wang and Roychowdhury

(2017) successfully demonstrated neural network-based fault detection using simulation data,

showing that even non-digital signal behavior can benefit from learned models. Additionally,

anomaly detection techniques using generative models, such as those proposed by Ding et al.

(2018), provided inspiration for unsupervised trace anomaly detection.

Together, these studies form a strong foundation upon which this paper builds. By combining

contrastive representation learning with attention-based signal relevance estimation, the

proposed approach aims to improve generalization, fault coverage, and interpretability in

automated debugging of simulation traces.

4. System Design

The proposed system integrates contrastive learning with attention mechanisms to enable

efficient and intelligent analysis of hardware simulation traces. At the heart of the system lies

a Siamese neural network that processes pairs of trace segments—each segment composed of

multi-signal time-series data—and transforms them into embedding vectors in a latent space.

These embeddings capture temporal dependencies and cross-signal relationships using a

combination of 1D convolutional layers and gated recurrent units (GRUs), optimized for time-

series modeling. Training is guided by a contrastive loss function, where pairs of trace segments

labeled as similar (e.g., both fault-prone) are brought closer in the embedding space, while

dissimilar ones are pushed apart. This framework helps the model learn subtle variations in

faulty vs. clean trace behaviors even without explicit signal-level annotations.

To further enhance the model’s interpretability and focus, an attention mechanism is

incorporated after the encoding step. The attention layer assigns weights to different signals

and time steps, effectively highlighting the most influential parts of the trace responsible for

faulty behavior. These attention scores not only improve the model’s fault localization

capabilities but also provide insights into which signals or time windows are most critical,

aiding verification engineers in root-cause analysis. The final classification layer—a shallow

feedforward neural network—consumes the attended embeddings and outputs the likelihood

of a trace segment being fault-indicative. This modular architecture enables flexibility, supports

end-to-end training, and significantly improves the trace debugging workflow in terms of both

accuracy and user interpretability.

5. Experimental Results

To validate the effectiveness of our proposed model, we conducted experiments using the

ISCAS'89 benchmark circuits, including fault-injected simulations for circuits such as s349,

s5378, and s9234. Simulation traces were generated by injecting single and multiple stuck-at

Journal of Asian Scientific Research (JASR) https://joasr.com/

4

faults, and both faulty and fault-free outputs were captured. These traces were segmented into

overlapping time windows, each treated as a classification instance. We compared our system

with two baselines: a waveform comparison method, which identifies differences in signal

transitions across time steps, and a random forest classifier trained on handcrafted statistical

features extracted from trace segments.

Table 2 summarizes performance metrics including accuracy, precision, recall, and a custom-

defined Fault Localization Index (FLI), which measures the closeness of the predicted fault

signal to the actual injected fault. Our approach outperformed both baselines across all metrics,

achieving an accuracy of 88.5%, compared to 72.4% for random forests and only 61.2% for

waveform comparisons. Similarly, the proposed model demonstrated a much higher FLI (0.72)

than existing methods. Figure 1 plots accuracy versus fault injection rate , demonstrating the

model’s graceful degradation compared to steep declines in baseline performance. As fault

injection increased, our model retained robustness due to its attention-based focus on critical

signals, while other methods were overwhelmed by irrelevant or noisy transitions.

Table 1: Performance Comparison Across Methods

Method Accuracy Precision Recall Fault Localization Index

Waveform Comparison 61.2% 58.1% 55.4% 0.34

Random Forest 72.4% 70.2% 68.8% 0.49

Proposed (Contrastive + Attn) 88.5% 86.7% 84.9% 0.72

6. Analysis and Discussion

The proposed model consistently outperforms baselines across all metrics, especially in trace

segments with higher fault injection. The use of attention improves interpretability by

highlighting key signals, and contrastive learning improves robustness to unseen faults.

Limitations include the requirement for labeled traces during initial training and potential

overfitting on highly synthetic benchmarks. Future work will focus on domain adaptation and

semi-supervised learning to reduce annotation effort.

7. Conclusion

We have introduced a hybrid model combining contrastive learning and attention

mechanisms for automated debugging of hardware simulation traces. Our approach shows

significant improvements in accuracy and interpretability over traditional methods. This study

contributes toward more intelligent and scalable verification systems in the hardware design

process.

Journal of Asian Scientific Research (JASR) https://joasr.com/

5

References

[1] Grohoski, G. T. (2005). Design challenges in the development of the Niagara

processor. IEEE Micro, 25(2), 6–16.

[2] Gurushankar, N. (2020). Verification challenge in 3D integrated circuits (IC) design.

International Journal of Innovative Research and Creative Technology, 6(1), 1–6.

https://doi.org/10.5281/zenodo.14383858

[3] Perry, D., & Kaiser, G. (1990). Adequate testing and object-oriented programming.

Journal of Object-Oriented Programming, 2(5), 13–19.

[4] Albinet, A. et al. (2016). A novel dynamic slicing approach for HDL design. In: DATE

Conference Proceedings, 12–17.

[5] Balasubramanian, A., & Gurushankar, N. (2019). AI-powered hardware fault

detection and self-healing mechanisms. International Journal of Core Engineering &

Management, 6(4), 23–30.

[6] Ding, Z. et al. (2018). Anomaly detection for system verification using deep

generative models. In: ASP-DAC, 44–49.

[7] Wang, H. et al. (2018). Machine learning for performance modeling of EDA flows. In:

DAC, 1–6.

[8] Pradhan, D. K., & Gupta, S. K. (1996). Test generation using stuck-at fault models.

IEEE Trans. Computers, 45(9), 1032–1044.

[9] Balasubramanian, A., & Gurushankar, N. (2020). Building secure cybersecurity

infrastructure integrating AI and hardware for real-time threat analysis. International

Journal of Core Engineering & Management, 6(7), 263–270.

[10] Vaswani, A. et al. (2017). Attention is all you need. In: NIPS, 5998–6008.

[11] Chen, T. et al. (2020). A simple framework for contrastive learning of visual

representations. In: ICML, 1597–1607.

[12] Khosla, P. et al. (2020). Supervised contrastive learning. In: NeurIPS, 18661–18673.

[13] Hines, M. et al. (2013). Trace abstraction and its application to bug finding in RTL.

In: ICCAD, 432–439.

[14] Wang, Y., & Roychowdhury, J. (2017). Fault detection in analog circuits using deep

learning. IEEE Trans. CAD, 36(3), 416–429.

[15] Balasubramanian, A., & Gurushankar, N. (2020). AI-Driven Supply Chain Risk

Management: Integrating Hardware and Software for Real-Time Prediction in Critical

Industries. International Journal of Innovative Research in Engineering &

Multidisciplinary Physical Sciences, 8(3), 1–11.

[16] Lin, Y. et al. (2019). Self-supervised learning in electronic design automation. In:

Journal of Asian Scientific Research (JASR) https://joasr.com/

6

DATE, 1182–1187.

[17] Moradi, M., & Sangiovanni-Vincentelli, A. (2020). Trace reduction using graph neural

networks. In: DAC, 1–6.

[18] Balasubramanian, A., & Gurushankar, N. (2020). Hardware-Enabled AI for Predictive

Analytics in the Pharmaceutical Industry. International Journal of Leading Research

Publication (IJLRP), 1(4), 1–13.

[19] Patel, P. et al. (2018). Automated trace diagnosis for RTL bugs. In: ICCAD, 34–41.

[20] Lee, B. et al. (2015). Temporal deep learning models for circuit simulation. In: ASP-

DAC, 525–530.

