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ABSTRACT 

Ocean freight rates (hereafter referred to as ocean rates) have seen unprecedented 

growth (over 150-175% increase) and volatility in recent years due to many factors, 

including energy prices, global supply chain logistics and transportation challenges. In 

this paper, we use machine learning methods (regularized regression and support 

vector machine regression) to predict ocean rates using daily data between January 

2015 and May 2022. The models include global supply chain pressure index, Baltic Dry 

Exchange Index, Brent crude oil prices, time charter rates, total bulker sales, 

commodity price, and several other global trade indices as features to predict ocean 

rates. For model selection, evaluation, and improving accuracy, we employed time 

series cross validation as well as hyperparameter tuning. Predictive accuracy results 

of ocean rates will help trading firms in their risk management strategies and strategic 

decisions. 
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1. Introduction  

Ocean rates have escalated in importance in international trade of bulk commodities 

and have become increasingly volatile. For example, ocean rates account for about 35-53% of 

the total shipping costs for soybean shipments from the United States and Brazil to China and 

for about 6-10% of the total landed cost [USDA, 2022]. Due to the numerous events that 

occurred concurrent with and following the pandemic, volatility of ocean rates escalated 

drastically, resulting in risk and opportunities for market participants. For these reasons, 

understanding how critical factors impact ocean rates and predicting them has become more 

important. 

Figure 1 show the change in ocean rates from US Gulf to various destination ports, 

including China, Indonesia, Japan, and South Korea between January 2016 and May 2022. 

Ocean rates have increased over 175% in case of shipments to China and at least over 

150% for other origins. Additionally, ocean rates experienced significant volatility in the recent 

years, especially after the corona virus disease 2019 (COVID-19). Ocean rates impact almost 

every business/agribusiness due to their dependence on international trade. 
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Figure 1: Growth Rate of Ocean Rates from US Gulf, January 2015 to May 2022 

 

Many factors have increased volatility in world agricultural trade. These include the 

2021 drought in the United States Northern Plains, the emergence of Renewable Diesel and 

Sustainable Aviation Fuels, oil prices increasing (from negative values), pressures related to 

the post-COVID economic expansion, in addition to labor shortages constraining rail, trucks, 

and other logistical functions, and followed by the Russian invasion of Ukraine “Special 

Military Operation” [Drewry, 2022]. Additionally, numerous factors impact ocean rates. These 

have been described in detail in reference to the container shipping sector [Adjemian and 

Wilson, 2022] but have similar implications for dry-bulk shipping industry. 

The purpose of this paper is to develop machine learning (ML) models to predict ocean 

rates for dry-bulk from the US Gulf and US Pacific Northwest (PNW) origins to selected des- 

tinations using two different machine learning specifications. They are regularized regression 

and support vector machine regression.1 Our primary goal is predictive accuracy of ocean rates 

and to evaluate and compare predictions of two models. To predict ocean rates, we use features, 

including time charter rates, Brent crude oil prices, Baltic dry exchange index, total bulker 

sales, global supply chain pressure index, order book percent fleet, commodity prices, and 

several other trade indices. 

Machine learning accounts for inherent correlations among the features using regular- 

ization for improving accuracy of the predictions. Both regularized regression and support 
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vector machine regression models are evaluated using time series cross validation and hyper- 

parameter tuning for consistency and robust performance of the models, and to improve the 

overall accuracy of the models, respectively. 

Supply chains for most of the products and commodities being traded were impacted 

by the post-COVID developments. Gamio and Goodman [2021] provide an explanation 

on how the supply chain crisis developed, including increasing freight rates, port 

congestion, interior logistical congestion, among others. Drewry [2020] described the 

increase in shipping costs due to COVID-19. Probably the most important factors 

impacting the dry-bulk sector in the period post-pandemic includes the volatility in oil 

prices, in addition to congestion at ports and interior shipping, labor and insurance costs, 

increased wait and transit times, and changing in global shipping patterns. Additionally, 

port restrictions in some countries constrained ships from loading and unloading (e.g., 

China, among others). All these factors caused greater focus on supply chains including 

risks and management. By late 2022, the global supply chain crisis seems to have abated 

[Fung et al., 2022]. 

These elevated risks have important implications for dry-bulk shippers, and for 

agricul- tural shipping in particular. Exporters confront at least three risks related to 

changes in ocean freight costs. First is the relationship between short-term and long-term 

shipping rates which affects strategies related to forward coverage. Second is how global 

shipping patterns change which in turn affects marketing and asset strategies. A classic 

example is to switch origins for grain from US Gulf (USG) to the US Pacific Northwest 

(PNW), and from Ukraine to Brazil for corn, among others [Mano, 2023]. Third is the 

change in shipping  

 

 

 

 

 

 

1Alternate machine learning models, including ensemble models such as random forests and 

gradient boosting models were analyzed but they overfit for our data. Therefore, our analysis was restricted 

to these two machine learning models described in this paper. 
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costs between the commodity transaction and shipping date. If these changes are sufficient, 

traders may negotiate a change of origin, which escalates the value of “switching options” 

in international commodity trading and agricultural trading in particular [Meersman et al., 

2012]. The implications of these changes for traders is the advantage of being able to sup- 

ply from all origins as suggested in recent trade strategy literature Meersman et al. [2012], 

and quantified by Johansen and Wilson [2019]. Indeed, this is a virtue of multiple-origins 

capability. Finally, as a result of these issues, there is a trend in agricultural trade between 

more geographically nearby origins [Freight-News, 2022a], and to allow greater 

optionality as reflected in recent tenders [Freight-News, 2022b]. 

Several studies analyzed the relationships among commodity prices and ocean 

freight costs, including Bandyopadhyay and Rajib [2021], Tsioumas et al. [2021], Melas 

and Michail [2021], Barua et al. [2020], Kanamoto et al. [2019], Hathikal et al. [2020] and 

among others. However, only a few studies have analyzed the ocean rates [Han et al., 

2014, Eslami et al., 2017, Yang and Mehmed, 2019] although they account for a critical 

component of the overall shipping cost. 

Han et al. [2014] developed models to predict dry bulk rates using a combined 

model of wavelet transform and support vector machine. Their model was superior in 

accuracy to other models. Eslami et al. [2017] sought to predict tanker rates using an 

artificial neural network and an adaptive genetic algorithm. The results were superior to 

regression and moving average models. Yang and Mehmed [2019] developed several 

Artificial Intelligence (AI) models to project ocean rates and compared them to 

traditional time series. 

Others have studied commodity markets using a data-science-based analysis. For 

in- stance, SenGupta et al. [2019] used a machine/deep learning-based refined stochastic 

process to analyze optimal hedging strategies in the commodity market. Traditionally, 

stochastic models assume fixed or nonrandom production or inventory. However, this 

assumption is not supported by empirical data. This quantity is stochastic, and it is an 

important feature of risk management strategies. This clearly impacts the hedging 

decisions. In another paper [Wilson et al., 2019] a data-science-driven analysis is provided 

for handling the quantity risk in connection to the various stochastic models. 

This paper contributes to the literature in several ways. First, ocean rates have been 

historically high, especially after COVID pandemic, and given the escalation in volatility, 

predicting rates with improved accuracy considering recent data is important. Second, we 
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perform the best practices of machine learning and data science, including time series cross 

validation and hyperparameter tuning of both our models unlike other studies in the lit- erature. 

Finally, we study ocean rates using the unique combination of data generated from Thomson 

Reuters Eikon and Clarkson, which are rich sources of shipping intelligence information. 

 

2. Background 

Organization of the ocean rate markets is well documented [Alizadeh and Nomikos, 

2009, Stopford, 2008, Clarkson, 2022]. There are a number of contractual alternatives that are 

relevant in dry-bulk shipping, including spot transactions, voyage, trip and time charters, all of 

which are traded and quoted in multiple sources. These are in addition to shippers vertically 

integrating into ship ownership and operations. 

The shipping industry plays an essential role in global trade. For shipping companies, 

having an accurate assessment of the markets is essential to their marketing and risk manage- 

ment strategies. A number of important determinants impact ocean rates. Most important are 

fuel costs, in addition to distance, and time-in-transit. Stopford [2008] indicated that the single 

most important cost category is fuel costs, and more recently Hellenic-Shipping-News [2022] 

indicated that 47% of the cost of dry-bulk shipping was fuels costs, and it is expected these 

would be of increasing importance (and which will be exacerbated by decarbonization 

initiatives). As a result of the escalation in fuel costs in mid-2020, there were radical changes 

in ocean rates and spreads that impact shipping decisions [Wilson et al., 2022]. Of interest, are 

the change in rates between the US Gulf and PNW to Japan (one of the most commonly quoted 

ocean rates spreads), in addition to changes on rate spreads from the Black Sea, among others. 

Ocean freight costs, of which ocean rates comprise an critical component, were also impacted 

by the post-COVID-19 recovery and its multitude of impacts on supply chains. While most of 

the attention has focused on container ships and port congestion, there were several important 

impacts on bulk shipping. One is the increase in fuel prices as described above. In addition, 

congestion, primarily at ports, had the impact of increasing ocean rates. In normal times, ships 

are allowed time for loading and if exceeded, demurrage is charged. Typically, this would 

compensate the ship owner for the loss related to idled capacity. Under the post-COVID 

recovery, this relationship was compounded. Frequent situations around the world, resulted in 

ship-wait times being elongated in part by COVID-related protocols (e.g., China, Brazil), and 

more recently in the Black Sea due to operations of the Grain Corridor. 
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The impact of increased wait times was to have a consequential reduction in effective 

world ship capacity. This resulted in increasing ocean rates. Shih [2022] described how 

congestion has the effect of reducing capacity and suggested that the rise in freight rates was 

due to the Chinese lockdown (a two-stage lockdown which disrupted land-based logistics 

which adversely impacted port congestion) which exacerbated port congestion. Specifically, 

Sadden [2022] indicated there were “300 vessels waiting outside Shanghai, up five-fold from 

just two and a half weeks ago, with around 125 dry bulk carriers included among them.” 

As a result of these developments, traders became exposed to abnormally large changes in 

ocean rates either when bidding in export tenders, or post-tender but prior to shipping. Both of 

these make risk management strategies important for ocean freight [Alizadeh and Nomikos, 

2009]. Specifically, traders become exposed to change in ocean rates either when bidding in 

export tenders, or post-tender but prior to shipping. 

 

3. Model Framework 

The objective of this paper is to predict ocean rates at two primary ports of the United 

States- US Gulf and US Pacific Northwest (PNW) - to selected destinations, including China, 

Indonesia, Japan, and South Korea. The ocean rate, which is the target variable, is dependent 

on several feature variables. We discuss this in detail in the next section. We propose a general 

mathematical model for this analysis. We label US Gulf and US Pacific Northwest by i = 1 and 

j = 2 respectively, and the destinations (China, Indonesia, Japan, and South Korea) by j = 1, 2, 

3, 4. The model is motivated by the previous studies [Awasthi and SenGupta, 2021, Awasthi et 

al., 2022]. 

We denote the ocean rate from i to j as S_t^(i,j) . For i = 1,2, and j = 1,2,3,4, we we 

model: 

 

𝑆𝑡
𝑖,𝑗

 =  𝑆0
𝑖,𝑗

𝑒𝑋𝑡
𝑖,𝑗

, where 𝑑𝑋𝑡
𝑖,𝑗

 =  𝑏𝑡
𝑖,𝑗

𝑑𝑡 + ∑ 𝜃𝑡
(𝑖,𝑗,𝑘)𝑛

𝑘 = 1 (𝜎𝑡 𝑑𝑊𝑡
(𝑖,𝑗,𝑘)

 + 𝑑𝐽𝑡
(𝑖,𝑗,𝑘)),       (1) 

 

where 𝑏𝑡
𝑖,𝑗

 is a deterministic function of 𝑡, 𝑊𝑡
(𝑖,𝑗,𝑘)

, 𝑘 = 1, . . . , 𝑛, are independent Brownian 

motions and 𝐽𝑡
(𝑖,𝑗,𝑘) is the jump process with intensities 𝜆𝑘, 𝑘 = 1, . . . , 𝑛. We assume that  

𝑊𝑡
(𝑖,𝑗,𝑘)

 and  𝐽𝑡
(𝑖,𝑗,𝑘), for 𝑘 = 1, . . . , 𝑛, are independent. The coefficients 𝜃𝑡

(𝑖,𝑗,𝑘)
, at every 𝑡 

satisfy ∑ (𝜃𝑡
(𝑖,𝑗,𝑘)

)
2

𝑛
𝑘 = 1  =  1. In addition to that, 𝜎𝑡 is assumed to be stochastic, and its 
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dynamics is governed by 

 

𝑑𝜎𝑡  =  𝐹(𝜎𝑡
2, 𝛽𝑡

(1)
𝐻𝑡

(1)
, 𝛽𝑡

(2)
𝐻𝑡

(2)
, . . . , 𝛽𝑡

(𝑛)
𝐻𝑡

(𝑛)
),                                                      (2) 

 

for an appropriate function F, where 𝐻𝑡
(𝑘)

, for 𝑘 = 1, . . . , 𝑛 are jump processes with intensities  

 

𝜇𝑘, 𝑘 = 1, . . . , 𝑛. The coefficients 𝛽𝑡
(𝑘)

, at every 𝑡 satisfy ∑ (𝛽𝑡
(𝑗)

)
2

𝑛
𝑘 = 1  =  1 

 

We observe, that for a fixed 𝑖 and 𝑗, if ∑ (𝜃𝑡
(𝑖,𝑗,𝑘)

)
2

𝑛
𝑘 = 1  =  1 and ∑ 𝜃𝑡

(𝑖,𝑗,𝑘)𝑛
𝑘 = 1  , 𝑑𝑊𝑡

(𝑖,𝑗,𝑘)
 can 

be represented by 𝑑𝐵𝑡
(𝑖,𝑗)

,  where 𝐵𝑡
(𝑖,𝑗)

 is a Brownian motion. Consequently, (1) can be 

written as 

 

𝑆𝑡
𝑖,𝑗

 =  𝑆0
𝑖,𝑗

𝑒𝑋𝑡
𝑖,𝑗

, where 𝑑𝑋𝑡
𝑖,𝑗

 =  𝑏𝑡
𝑖,𝑗

𝑑𝑡 +  𝜎𝑡 𝑑𝐵𝑡
(𝑖,𝑗)

 + ∑ 𝜃𝑡
(𝑖,𝑗,𝑘)𝑛

𝑘 = 1 𝑑𝐽𝑡
(𝑖,𝑗,𝑘) ,             (3) 

 

The expression (3) provides an alternative explanation for the coefficients 𝜃𝑡
(𝑖,𝑗,𝑘)

. These 

coefficients pick up the fluctuations due to the “unusual” jumps. When we analyze the 

empirical data, these terms contribute to the detection of unusual or significant feature 

variable activities. 

 

4. Support Vector Machine Regression 

Support Vector Machine (SVM) is one of the most popular machine learning tools used 

both for classification and regression contexts. We use SVM regression to analyze ocean rates. 

SVM regression is generally considered as a non-parametric technique given it’s reliance on 

the kernel functions [MathWorks, 2022]. Finding the optimum fit line is the fundamental tenet 

of SVM regression. 

Given the training data with relevant features, X_ijtand Y_ijt representing the outcome 

variable, that is, ocean rates for each origin (i)and destination (j), the linear function of SVM 

regression is shown below [Fan et al., 2005, Chen et al., 2006]. 

 

Y =f(X)= X'β + b  (4) 
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The goal of the SVM regression is to formulate the above setup as a convex optimization 

problem to minimize 

 

J(β) =  1/2 β'β 

 

subject to |Y_n  -X'β+b|≤ϵ, where   |Y_n  -X'β+b| is the residual of the linear SVM regression 

function specified in the equation (4) and ϵ is the threshold value [MathWorks, 2022]. The 

SVM Regression matches the best line within a threshold value, in contrast to other regression 

models that aim to reduce the error between the actual and predicted value. The distance 

between the boundary line and the hyperplane is the threshold value. While linear SVM 

Regression merely takes into account the linear kernel, it offers a faster implementation than 

non-linear SVM regression. This is because the samples’ whose prediction is close to the 

objective are ignored by the cost function and the resulting model created relies on a portion of 

the training data. 

Some advantages of using SVM regression include 1) it’s robustness to anomalies, 2) 

it’s simplicity in updating the decision model, 3) it’s strong capability for generalization and 

predictive accuracy, and 4) it’s simple to use empirically. Finally, a few disadvantages using 

SVM regression include 1) it’s use is not appropriate for huge datasets, 2) it does not function 

well when there is noise in the training data. 

 

5. Regularized Regression 

Regularization is a technique to discourage learning complex models and thus help 

to avoid over-fitting, which is often present in regression models and neural networks. The 

main idea of regularization is to constrain or shrink the coefficient estimates towards zero. 

Empirically, if there is noise in the training data, then the estimated coefficients won’t 

generalize well to the new data. In this scenario, regularization plays a key role in shrinking 

the coefficients towards zero discouraging the learning of noise. There are three main types 

of regularization, including L1 regularization (LASSO), L2 regularization (ridge 

regression), and Elastic net (combines both LASSO and Ridge regression) [James et al., 

2013]. 

Given the linear relationship between the outcome (𝑌) and predictor (𝑋𝑡) variables, the 
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regression equation is written as follows: 

 

𝑌 =  𝛽0  + 𝛽1  ∗  𝑋1  + 𝛽2  ∗  𝑋2 + . . . + 𝛽𝑝  ∗  𝑋𝑝              (5) 

 

The residual sum of squares (RSS) is the loss function used during the model fitting 

process. This loss function’s minimization is achieved by selecting the coefficients. 

 

𝑅𝑆𝑆 =  ∑ (𝑦𝑖  −  𝛽0   − ∑ (𝛽𝑗
𝑝
𝑗 = 1 𝑥𝑖𝑗))2𝑛

𝑖 = 1
                                        (6) 

Least Absolute Shrinkage and Selection Operator (LASSO) regression consists of 

adding a shrinkage term to RSS, which is the L1 norm of the coefficient vector. The LASSO 

regression penalizes the large coefficient more severely and thereby results in the 

coefficients becoming zero [James et al., 2013]. 

 

                             𝑅𝑆𝑆 + ‖�⃗�‖
1

=  𝑅𝑆𝑆 +  𝜆 ∑ \𝛽𝑗\𝑝
𝑗 = 1                                                   (7) 

 
 

LASSO regression can be examined in a different perspective. When summation 

of the squares of the coefficients is less than or equal to s, the ridge regression (described 

later) can be viewed as the solution to the equation. Additionally, the LASSO can be 

viewed as an equation where sum of the coefficients’ moduli is smaller than or equal to s. 

In this case, the constant s holds true regardless of the shrinkage factor’s value. 

Consider there are two parameters in a given problem. Then according to above 

formulation, the ridge regression is expressed by β_1^2  + β_2^2≤ s. This  implies that 

ridge regression coefficients have the smallest RSS(loss function) for all the points that lie 

within the circle given by β_1^2  + β_2^2≤ s. Similarly, for LASSO, the equation becomes, 

|β_1 | + |β_2 | ≤ s. This implies that LASSO coefficients have the smallest RSS (loss 

function) for all points that lie within the diamond given by |β_1 | + |β_2 | ≤ s. 

Ridge regression adds a shrinkage term to the RSS objective function as shown 

below 

 

𝑅𝑆𝑆 + ‖�⃗�‖
2

=  𝑅𝑆𝑆 +  𝜆 ∑ 𝛽𝑗
2𝑝

𝑗 = 1                            (8) 

 

The RSS of the ridge regression is changed by including the shrinkage term. This RSS 

function is minimized in order to estimate the coefficients. If we want to reduce the size of the 

above function, then the coefficients of a model that represents an improvement in flexibility 
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must be minimal by limiting the upward trend of coefficients. The estimated associations of 

each variable with the response have been shrunk, with the exception of the intercept. 

The estimates generated by ridge regression are equal to least squares estimates when 

λ= 0, as the penalty term has no impact at that point. However, as, the shrinkage penalty’s effect 

increases and the estimations of the ridge regression coefficients get closer to zero. Therefore, 

choosing an appropriate value for is crucial. Combining techniques such as time series cross 

validation and hyper-parameter tuning is useful to compute the appropriate value of λbased on 

the chosen accuracy metric. The L2 norm refers to the coefficient estimates generated by this 

procedure. 

As shown in the equation (8), the shrinkage term uses the L2 norm of the coefficient 

vector. λis the regularization hyper-parameter which gives the flexibility to set the amount of 

of model complexity to be penalized. If λequal zero, then it is equivalent to the original RSS 

function. As a requirement it is a general practice to standardize the regressor or predictors 

before applying ridge regression. 

Finally, the Elastic net linearly combines both the L1 and L2 penalties of the 

LASSO and ridge regression methods as shown in the following equation. 

 

𝑅𝑆𝑆 + 𝜆1‖�⃗�‖
1

+ 𝜆2  ‖�⃗�‖
2

                         (9) 

 

In the above equation, some of the special cases include the following [James et al., 2013]: 

 

• 𝜆1  =  𝜆, 𝜆2  =  0 : LASSO regression 

• 𝜆1  =  0, 𝜆2  = 𝜆 : Ridge regression 

• 𝜆1  =  𝜆2  =  0 : ordinary least squares (OLS) 

 

The similarity and differences between the LASSO and ridge regression [James et 

al., 2013] are important. A few similarities include 1) both the methods improve 

generalization by penalizing model complexity, 2) their computational complexity is quite 

similar, and 3) penalization hyper-parameter 𝜆 must be carefully set using hyper-

parameter tuning. Differences between the LASSO and ridge regressions include 1) ridge 

regression shrinks large coefficients but does not perform feature selection, 2) LASSO 

regression performs both shrinkage and feature selection. 

The bias-variance trade-off is critical for model learning and model generalization. 

Bias is generally related to model learning and caused due to incorrect assumptions in the 
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model. For instance, if you fit a linear model to variables that are associated non-linearly, 

then the model suffers from high bias. Bias is indicated by the training error. In contrast, 

variance is related to model generalization. For instance, if the variance of a least squares 

model is high then we conclude that the model does not generalize well to the new data. 

Variance is obtained by subtracting training error from test error. 

Regularization dramatically lowers the model’s variance while maintaining or even 

in- creasing its bias depending the tuning parameters. The bias-variance trade-off is partly 

controlled by the tuning parameter, which is employed in the regularization methods. As 

the value of 𝜆 increases, the coefficients’ values decrease, lowering the variance. Up to a 

certain degree, this rise in 𝜆 is advantageous because it reduces variance (avoiding over-

fitting), without losing any significant data features. However, after a certain value, the 

model begins to lose crucial characteristics, leading to bias and under-fitting. Therefore, 

the value of should be carefully selected using time series cross validation and 

hyperparamter tuning. 

For our empirical analysis, we include two hyperparameters related to regularization 

methods, including 1) penalty (𝜆) term that was already discussed and 2) mixture term that 

specifies the type of regularization method from the LASSO (mixture = 1), ridge (mixture 

= 0), and Elastic net (mixture = 0.5) [James et al., 2013]. 

 

6. Data 

In this paper, our goal is to predict ocean rates from two US origins (US Gulf and 

US Pacific Northwest) to four destinations (China, Indonesia, Japan, and South Korea). 

Many factors contribute to the prediction of ocean rates such as supply and demand of 

ships or vessels, crude oil prices, commodity prices, and global trade and its volume 

indices etc. Additionally, supply chain pressure or port congestion indices play a major 

role as well and has been especially critical during the COVID time. Therefore, our target 

or dependent variable is the ocean rate ($/Metric Ton) from each of the US origin to 

each destination. 

In order to predict the ocean rates, features included global supply chain pressure 

index, Baltic exchange dry index, Brent crude oil price, total bulker sales, time charter 

rates, order book percent fleet, global trade index, global trade volume index, global bulk 

trade volume index, and commodity (corn) price. All these features are same for US Gulf 
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and US PNW models, except the commodity price. We explored other variables such as 

port congestion index, idle number of ships at the port, and dry bulk trade index etc but 

could not include them in our analysis either due to the data being incomplete for our 

period or due not strongly associated with the ocean rates. In our models, congestion is 

captured by the global supply chain pressure index. 

We use daily data between January 2015 and May 2022. Data are from three sources, 

including Thomson Reuters Eikon [TR-Eikon, 2022], Clarkson’s Research Portal [Clarkson, 

2022], Federal Reserve Bank of New York [NY-Fed, 2022]. We collected data on ocean rates, 

Baltic exchange dry index, Brent crude oil price, US corn prices were from Thomson Reuters 

Eikon. Other variables such as total bulker sales, time charter rates, order book percent 

fleet, US corn price, global trade index, global trade volume index, global bulk trade volume 

index were collected from Clarkson’s Shipping Intelligence’s Research Portal. Finally, global 

supply chain pressure index was collected from New York Federal Reserve. Summary 

statistics of the data variables are presented in Table 1. 

 

Table 1: Summary Statistics 

 

Characteristic US_Gulf, N = 16,2421 US_PNW, N = 10,8281 

Ocean Rate 37 (15), 10, 90 23 (7), 10, 47 

Global Supply Chain Pressure 

Index 

0.79 (1.37), -0.81, 4.38 0.79 (1.37), -0.81, 4.38 

Baltic Exchange Dry Index 1,369 (870), 290, 5,650 1,369 (870), 290, 5,650 

Brent Crude Oil Price 60 (16), 19, 128 60 (16), 19, 128 

Total Bulker Sales 729 (415), 31, 2,055 729 (415), 31, 2,055 

Time Charter Rates 12,443 (6,043), 4,750, 30,400 12,443 (6,043), 4,750, 30,400 

Order Book Percent Fleet 11.6 (4.0), 7.0, 22.9 11.6 (4.0), 7.0, 22.9 

US Corn Price 78 (32), 26, 205 205 (54), 113, 383 

Global Trade Index 4 (9), -14, 27 4 (9), -14, 27 

Global Trade Volume Index 122 (14), 92, 157 122 (14), 92, 157 

Global Bulk Trade Volume Index 109 (7), 90, 121 109 (7), 90, 121 

          
1
Mean (SD), Range 

Notes: Range is the spread of the data from the lowest (minimum) to the highest 

(maximum) value in the distribution 

We conducted a series of data preprocessing steps as the values range differently 
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for dif- ferent features and to make it ready for use in the machine learning models– 

regularized regression and support vector machine regression. Specifically, we conducted 

Z-score nor- malization, which is robust for any potential anomalies/outliers in the time 

series. We also preprocessed the data for features containing near zero variance, and 

created a set of dummy variables for the destinations (to account for unobserved factors 

for the origin-destination combination) and month (for capturing seasonality in ocean 

rates). 

We split the data into training and test sets by taking into account the time 

dependency. Specifically, the training set includes entire data between January, 2, 2015 

and May, 31, 2021 in each of the origin-destination combinations which the test set 

includes the between June, 1, 2021 and May, 31, 2022 (last 365 days) of data for each 

origin-destination combinations. Therefore, for both the US Gulf and US PNW, total 

observations in the training set includes 9368 observations while the test set includes 1460 

(365×4 [destinations]) for each origin. 

 

7. Results and Discussion 

We first describe the exploratory data analysis, results of both machine learning 

models, including regularized regression and support vector machine regression. We then 

discuss the results of the study. 

As part of the exploratory data analysis, instead of using correlations between 

features and the target variable, we used predictive power score of each feature on the 

target variable [Wetschoreck, 2020, van der Laken, 2021]. The predictive power score is 

relatively new technique and developed as an alternative to the correlation matrix 

[Wetschoreck, 2020] and has three main advantages. First, the correlations between any 

two variables are symmetric while predictive power score is asymmetric. That is, the 

correlation relationship between two variables are same if you flip the axis (symmetric) 

while the relationship may not be the same in reality (asymmetric). Second, the predictive 

power score works for both numeric as well as categorical features unlike correlation 

matrix. Finally, predictive power score allows non-linear relationships between the feature 

and the target variable. The predictive power score captures the predictive power of each 

feature on the target variable on a scale of 0 to 1 with the values close to 1 indicating 

high predictive power while the values close to zero indicating low predictive power. 
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Results of predictive power scores are presented in Figure 2 for both the US Gulf 

(panel a) and US PNW (panel b). There are four main takeaways from the results of 

predictive power scores. First, the predictive power scores are relatively high for the ocean 

rates at US PNW compared with the US Gulf. Second, the top three features, including 

time charter rates, order book percent fleet, Baltic exchange dry index, with high 

prediction scores are same for the both the origins. Third, the global supply chain pressure 

index ranked much higher in the case of US Gulf compared with the US PNW. Finally, 

the commodity price 

 

 

                         (a) US Gulf                                                (b) US Pacific Northwest (PNW) 

Figure 2: Predictive Power Score (pps) 

 

(Corn Price) ranked the lowest among all the features considered in predicting 

ocean rate for both the origins. Overall, the results of these predictive power scores 

indicate that time charter rates, order book percent fleet, Baltic exchange dry index play 

an important role while commodity price play a minimal role in predicting ocean freight. 

We specified two machine learning models: the regularized regression and support 

vector machine regression. Before finalizing on the two models, we explored several other 

machine learning models, including ensemble models such as random forest and gradient 

boosting models, which are based on the decision/regression trees as the base learners. 

But, these ensemble models suffered from overfitting for these data highlighting the 

importance that the use of the machine learning model specification depends on the 

characteristics of the data. 
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Predictive accuracy (rmse) results for both the machine learning models by each 

origin and destination are presented in Table 2. These results are based on the best 

(lowest) root mean square error (rmse) metric. We considered several other accuracy 

metrics, including mean absolute error (mae), mean absolute percentage error (mape), 

symmetric mean ab- solute percentage error (smape), mean absolute scaled error 

(mase), and R-squared (rsq). We chose rmse as our accuracy metric due to its 

interpretability and is one of the common accuracy metrics used in the regression-based 

supervised predictive models. However, the results of the other accuracy metrics are 

similar to the rmse results (and hence not shown in the results). 

Table 2: Root Mean Square Error (rmse): Prediction Accuracy Results by Origin and Des- tination 

Model 

                                                                  Regularized                       Support Vector  

                                                             Regression                       Machine Reg. 

Origin Destination Train Test Train Test 

US Gulf China 2.65 4.27 2.27 4.52 

 Indonesia 2.89 4.22 2.52 5.15 

 

 
US PNW 

Japan 

South Korea 

China 

2.98 

2.37 

1.66 

4.58 

5.38 

3.16 

2.62 

2.25 

1.62 

4.67 

7.15 

3.36 

 Indonesia 1.58 3.20 1.22 2.35 

 

 
US Gulf 

Japan 

South Korea 

Overall 

1.76 

1.23 

2.73 

2.50 

1.75 

4.64 

1.46 

1.07 

2.42 

3.46 

2.08 

5.48 

US PNW Overall 1.57 2.72 1.36 2.88 

 

The rmse for the regularized regression models for the US Gufl to China indicate 

that the ocean rate predictions are off by $2.65/MT on average in the training data while 

they are off by $4.27/MT on average in the new (test) data. Similarly, between US Gulf 

and China, the support vector machine regression model rmse results indicate that ocean 

rate predictions are off by $2.27/MT in training data while they are off by $4.52/MT in 

the test data. As the variance ($4.27 - $2.65 = $1.62) is lower in regularized regression 

compared with the variance ($4.52-$2.27 = $2.25) of support vector machine regression, 

we conclude that the regularized regression has generalized (slightly) well in predicting 

new ocean rates between US Gulf and China. 

The bias-variance trade-off is important to consider when evaluating the 
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performance of the machine learning models. Bias-variance trade-off is essentially the 

trade-off between model learning and model generalization as it ensures that the models 

do not overfit. A model that overfits is very sensitive to the small changes in training data 

and does not generalize to the new data. An ideal model should have less bias and less 

variance. 

Predictive accuracy (rmse measures in Table 2) show that the regularized 

regression results consistently performed well in the test set when compared with the 

results of support vector machine regression. The training error approximates the bias 

while the difference in the test and training error indicates the variance. The bias is less if 

the training error is small. The model will have lower variance if the difference between 

test and training error is small. Based on the results, the US PNW has less bias and less 

variance compared with the results of the US Gulf. The training error shows the 

approximate estimate of the bias, which signifies how well the model is learning while the 

variance is the difference between test error and training error. Variance shows whether 

a model is learning the patterns or the noise. For instance, if the variance is high, then 

the model overfits, which means that the model is learning noise. In contrast, if the model 

variance is low, then the model does not overfit, which means that the model is learning 

patterns. 

Figure 3 shows the predictions for the test set of both the models (regularized 

regression is shown as 1_GLMNET while SVM regression is shown as 2_LIBLINEAR in 

Figure 3) compared with the actual observations in the case of US Gulf. Overall, the 

predictions for all destinations have higher accuracy except for South Korea, which has 

greater confidence bands compared with all other destinations. Results are similar in the 

case of US PNW but with a greater accuracy in the predictions as outlined in the Table 

2 as well. 

 

8. Time Series Cross Validation 

Test error can vary depending on the data split and the sample at hand. Cross 

validation, popularly known as K-fold cross validation, is widely used approach for 

estimating test error. The idea of K-fold cross validation is to randomly divide the data into 

K (roughly) equal-sized sets leaving one fold aside [James et al., 2013]. The training is 
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performed on K-1 number of folds and tested on the left out fold. This process is repeated 

K times to compute the estimates of test error K times. Finally, the results are combined 

to compute the accuracy measures of interest. 

Since our data has time stamps, the usual cross validation may not be appropriate 

be- cause of its random split of data. As there is a need to maintain time dependency of 

the observations, we instead use time series cross validation. Time series cross validation 

involves dividing the whole data set into a K-folds or slices to perform the training in the 

first slice and test the model in the consequent slice [Hyndman and Athanasopoulos, 

2018]. 

Results of time series cross validation are shown in Figure 4, which shows the 

accuracy 

 

Figure 3: US Gulf: A Comparison of Actual versus Predictions on Test Data by Model and 

Destination 

metrics for all the 10 slices of data samples. The average results of various predictive accu- 

racy measures indicate that the regularized regression (shown as 1_GLMNET in Figure 4) 

performs consistently (and slightly) better than the SVM regression model (shown as 2_LI- 
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BLINEAR in Figure 4) across all the slices. These results are consistent compared with the 

results shown in Table 2. 

 

Figure 4: US Gulf: Time Series Cross Validation Resamples: Accuracy Metrics 

9. Hyperparameter Tuning 

Hyperparameter tuning is the procedure for finding the optimal values for 

hyperparameters in a machine learning model by evaluating predictive accuracy based on 

a selected accuracy metric. Hyperparameters are specified before the training of the model 

as opposed to model parameters which are obtained after the training procedure in the 

form of weights or the coefficient estimates of the features.Hyperparameter tuning can 

significantly affect the predictive accuracy of a machine learning model. Instead of 

evaluating machine learning model using default or a single set of hyperparameters, it is 

advised to evaluate over a wide range in order to obtain optimal values at which the 

accuracy of the model is the best. 

Each machine learning model has its own hyperparameters for tuning. In the case 

of regularized regression, there are two hyperparameters, including a penalty term for 
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regular- ization and a mixture term for the type of model (mixture = 0, ridge regression; 

mixture 

= 1, LASSO regression; mixture = 0.5, elastic net regression) to be specified [James 

et al., 2013, Kuhn et al., 2013]. In the case of support vector machine regression, there are 

two hyperparameters for tuning, including the cost and margin [James et al., 2013, Kuhn 

et al., 2013]. 

For each model, a tuning grid is specified through a random search of 1000 values 

for each hyperparameter of the model [Kuhn et al., 2013]. Results of the hyperparameter 

tuning are shown in Table 3. The hyperparameter values are different for both the US 

Gulf and US PNW models, which indicate that the hyperparameter values depend on the 

dataset and their tuning procedure help to improve the accuracy of the model. 

 

Table 3: Hyperparameter Tuning Parameters Based on the Lowest RMSE 

 

Model Hyperparameter US Gulf US PNW 

Regularized Reg. 

 
Support Vector Machine Reg. 

Penalty 

Mixture Cost 

0.880 

0.374 

0.126 

0.372 

0.554 

0.015 

 Margin 7.1×10−5 0.125 

 

10. Summary and Concluding Remarks 

Ocean rates increased recently between 150% and 175% depending on the shipping route. This 

unprecedented growth in ocean rates has coincided with COVID and post COVID era. 

Predicting ocean rates is important given it’s contribution to the total cost of transportation of 

the bulk commodities. For example, ocean rates account for about 35-50% of the total shipping 

costs of soybean shipments from the origins such as the United States and Brazil to destination 

such as China [USDA, 2022]. 

The purpose of this paper is to to predict ocean rates for dry-bulk from the US Gulf 

and US Pacific Northwest (PNW) origins to selected destinations using machine learning 

speci- fications. We specify regularized regression and support vector machine regression 

methods to analyze and predict ocean rates using daily data obtained on relevant features 

between January 2015 and May 2022. In order to predict ocean rates, we use features, 

including global supply chain pressure index, Baltic exchange dry index, Brent crude oil 
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price, total bulker sales, time charter rates, order book percent fleet, commodity (corn) 

price, and global trade indices. Specifically, for predicting ocean rates, we analyzed US 

origins (US Gulf and US Pacific Northwest) to selected destinations, including China, 

Indonesia, Japan, and South Korea. For improving model selection and its performance, 

we used time series cross validation and hyperparameter tuning. We used root mean 

square error as the accuracy metric for selecting the hyperparameters in case of both the 

models. 

Predictive power score results indicate that time charter rates, order book percent 

fleet, and Baltic exchange dry index have higher predictive power scores compared with 

the others in predicting ocean rates highlighting their importance. While commodity (corn) 

price con- tributes the least relatively in predicting the ocean rates. Predictive accuracy 

results show that both the regularized regression and support vector machine regression 

models performed well in predicting ocean rates, however, regularized regression method 

yielded slightly bet- ter predictive accuracy both in terms of bias and variance compared 

with support vector machine regression. In the case of regularized regression, the mixture 

type indicate that the models are close to representing Elastic net rather than the LASSO 

and ridge regressions. 

The methodology and results of this study have implications for both commodity 

analysts and for trading and shipping companies in particular. Specifically, ocean rates 

are volatile, and their volatility has escalated in recent years. As a result, prediction 

of ocean rates is integral to understanding commodity flows and competition. The models 

developed in this paper provide superior predictions, and the regularized regression 

models in particular performed better than the support vector machines. Second, the 

increased volatility of ocean rates results in greater risks to trading firms. Ultimately, 

trading firms have to find ways to mitigate these risks. The risk of changes in ocean rates 

can be managed either through including predicted rates in formulated bids to importers, 

and/or using forward contracts for ocean rates. Additionally, in some cases, trading firms 

may facilitate ‘switching’ options (as discussed in [Meersman et al., 2012] and quantified 

in [Johansen and Wilson, 2019]) to their import customers in anticipation of predicted 

changes in ocean shipping rates. 
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