
 https://iaeme.com/Home/journal/JAIML 1 editor@iaeme.com

Journal of Artificial Intelligence and Machine Learning (JAIML)
Volume 3, Issue 2, July-December 2024, pp. 1-9, Article ID: JAIML_03_02_001

Available online at https://iaeme.com/Home/issue/JAIML?Volume=3&Issue=2

Journal ID: 5979-A561, DOI: https://doi.org/10.5281/zenodo.13897258

© IAEME Publication

A CONTINUOUS INTEGRATION AND

CONTINUOUS DEPLOYMENT FRAMEWORK

FOR SAGEMAKER REAL-TIME INFERENCE

Gautham Ram Rajendiran

USA

ABSTRACT

Real-time inference in a modern machine learning workflow requires robust

deployment and monitoring to ensure models are delivering accurate and timely

predictions. This paper elaborates on the implementation details of a CI/CD framework

for deploying SageMaker real-time inference models by automating model packaging,

deployment, and monitoring processes, integrating key approval steps that assure

model performance and stakeholder involvement before production deployment. The

workflow is designed to take full advantage of AWS Step Functions, SageMaker Model

Registry, and other AWS services to make this transition from development to

production as seamless as possible.

Keywords: Machine Learning Operations, Amazon Web Services, Real-Time Inference

Cite this Article: Rajendiran, G. R. (2024). A Continuous Integration and Continuous

Deployment Framework for Sagemaker Real-Time Inference. Journal of Artificial

Intelligence and Machine Learning, 3(2), 1–9.

https://iaeme.com/Home/issue/JAIML?Volume=3&Issue=2

INTRODUCTION

The models deployed for real-time inference use cases should be constantly updated with

periodically re-trained models in order to account for data drift and performance enhancements.

This creates the need for a structured CI/CD pipeline that will allow seamless model updates,

thereby limiting manual intervention and production downtime. The framework ensures that

automated checks, stakeholder approvals, and mechanisms for rollback are in place while

facilitating fast iterative improvements. It also provides mechanisms to deploy new model

changes in parallel to production models which can be used to measure the performance of the

new model against the old model. This framework was implemented in a multi-national e-

commerce company that supported real-time inference for 50+ use cases while reducing the

time taken to iterate and deploy updates to machine learning models by 46%.

A Continuous Integration and Continuous Deployment Framework for Sagemaker Real-Time

Inference

https://iaeme.com/Home/journal/JAIML 2 editor@iaeme.com

COMPONENTS OVERVIEW

This section provides a high level overview of all the components involved in the deployment

automation framework. It also provides detail about implementation specifics of each of these

components which will be useful for future works that aim to replicate this infrastructure. In

the following section the paper elaborates on the flow of events by taking a case study as an

example.

MODEL PACKAGE

A dedicated model package contains essential components to perform real time inference

using Sagemaker. This includes the inference script, configuration files that contain

environment specific information like instance type and ECR image to be used for a certain

environment like production or shadow. It also contains a packaging script that has knowledge

on how to create the tarball of the model which will be passed into Sagemaker Inference to

instantiate the model.

Gautham Ram Rajendiran

https://iaeme.com/Home/journal/JAIML 3 editor@iaeme.com

DEPLOYMENT INFRASTRUCTURE

The deployment infrastructure is a combination of AWS Step functions, Sagemaker Model

Registry, Sagemaker Model package and a shadow environment. These components work

together to create a distributable model version that has been validated by having it serve

production traffic for an extended period of time.

Prior to going into the implementation specifics, a note on the shadow environment needs

to be made in order to properly understand the details. The shadow environment is a replica of

the production environment and contains all infrastructure and code that has been deployed in

production. It may or may not consume all traffic from the production environment depending

on the use case. For example, this environment may need to consume 100% of the production

traffic in order to estimate the performance of a certain instance type used for inference, and in

some other cases it may need only 10% of the production traffic to test the performance metrics

of a model. Such a lever is provided by the traffic replay component explained below.

It uses AWS Step functions to orchestrate the packaging and deployment of models to

shadow environments. The steps in detail are as follows:

1. Create Artifacts: This is the step where the pre-trained model file, the sagemaker

inference script and other artifacts required to run the model are packaged into a tarball

[1] in a way that is specified by Sagemaker here as shown in the documentation here

[2]. It also creates a custom Docker image that will be deployed to AWS ECR, this is

the image that will be used by Sagemaker to create the inference container which will

serve requests to the model. The packaging script provided in the Model Deployment

Package will contain implementation specifics on how to package the model.

2. Register Model: Using the artifacts created in the previous step, a Sagemaker Model [3]

is created in Sagemaker Model Registry [4]. This provides mechanisms to automatically

version control the model and perform comparisons across different model versions.

3. Package Model: The artifacts are also packaged into a Sagemaker Model Package [5]

which allows the account to vend out the model to AWS accounts and other

environments by providing a unique identifier called a ARN.

A Continuous Integration and Continuous Deployment Framework for Sagemaker Real-Time

Inference

https://iaeme.com/Home/journal/JAIML 4 editor@iaeme.com

4. Deploy to Shadow: The model is deployed to the shadow environment in order to test

it against live production traffic.

Once the model is deployed, it is monitored using pre-configured metrics in AWS

Cloudwatch [6]. A data scientist or engineer monitors these metrics through dashboards and

alarms in order to gauge the performance of the model against live production data. Once they

are satisfied with the performance, the scientist makes note of the corresponding Model Package

ARN of the model that is currently deployed in shadow. If they are not satisfied with the

performance, another iteration of the deployment is performed with a different model.

TRAFFIC REPLAY

This component is used to route requests from the production environment into the shadow

environment. It contains mechanisms to control the rate of traffic sent to shadow from

production and acts as a middle-man for any transformations that need to be made to the routed

requests in order to support testing the new model. It consists of an event handler that listens to

all the events which are the entry points to the application in the production system, it then

replicates these events in the shadow application while making transformations in the request

as necessary.

ROLLBACK MONITOR

Gautham Ram Rajendiran

https://iaeme.com/Home/journal/JAIML 5 editor@iaeme.com

This is a monitor created using cloudwatch alarms which sends notification to a SNS topic

on alarm. The code deployment pipeline listens to this SNS topic and reverts the most recent

change deployed when this goes into the alarm stage. The deployments are orchestrated through

AWS Code Commit [7] and AWS Code Deploy [8] which provide automated robust rollback

mechanisms to revert the deployment in-case the newly deployed model under performs.

CASE STUDY: UPDATE A XGBOOST MODEL IN PRODUCTION

The idea of this case study is to explain infrastructure deployment, the addition of a trained

model, and Inference Endpoint configuration configurations into the pipeline. It also explains

how Step Functions are used to automate deployments and monitoring.

Step 1: Use CDK to Deploy Infrastructure

AWS CDK is employed to define and provision infrastructure components essential for the

machine learning workflow:

● Amazon S3 for storing training data, model artifacts, and any intermediary files.

● Amazon SageMaker for managing model training and deploying inference endpoints.

● AWS Step Functions, CodeCommit, and CloudWatch Dashboards for automating the

CI/CD workflow and monitoring model performance.

Step 2: Train the Model

The XGBoost model is trained using Amazon SageMaker’s managed training services. After

training, the model is serialized and saved for deployment.

● Training Script: The training script defines the dataset, hyperparameters, and evaluation

metrics. The script runs in SageMaker to train the model.

● Model File: The trained model is saved in the form of a pickle file (.pkl) or PyTorch file

(.pth), which will be used to create the deployment artifact.

Step 3: Prepare the Model for Deployment

The model artifact is converted into a tarball that includes the inference script and other

configuration files required for deployment in SageMaker.

The folder structure might look like this:

model/

 ├── inference.py

 ├── model.pkl

 └── Dockerfile

Step 4: Commit Changes to Git Repository

The model package (including the model location in S3, the inference script, and the endpoint

configuration) is committed to a Git repository using AWS CodeCommit.

• The Git repository acts as the source of truth for all model and deployment artifacts.

• A pull request (PR) is created, which includes the trained model and the configurations

needed for deployment.

A Continuous Integration and Continuous Deployment Framework for Sagemaker Real-Time

Inference

https://iaeme.com/Home/journal/JAIML 6 editor@iaeme.com

Step 5: Trigger the CI/CD Pipeline

When a new commit is detected, AWS CodeDeploy triggers the pipeline. The Step Function

orchestrates the steps to build the Docker image, package the model, and push it to Amazon

ECR:

from aws_cdk import (
 aws_codebuild as codebuild,
 aws_codepipeline as codepipeline,
 aws_codepipeline_actions as actions,
)

Define the pipeline
pipeline = codepipeline.Pipeline(self, "Pipeline")

Source stage (from CodeCommit)
source_output = codepipeline.Artifact()
source_action = actions.CodeCommitSourceAction(
 repository=codecommit.Repository(self, "Repo", repository_name="XGBoostRepo"),
 branch="main",
 output=source_output
)
pipeline.add_stage(stage_name="Source", actions=[source_action])

Build stage (to create model tarball and Docker image)
build_output = codepipeline.Artifact()
build_action = actions.CodeBuildAction(
 project=codebuild.Project(self, "BuildProject"),
 input=source_output,
 outputs=[build_output]
)
pipeline.add_stage(stage_name="Build", actions=[build_action])

Step 6: Register the Model in SageMaker

The Step Function registers the newly created model in SageMaker Model Registry for version

control:

register_model_task = tasks.SageMakerRegisterModel(
 self, "RegisterModel",
 model_package_group_name="XGBoostModelPackageGroup",
 content_types=["text/csv"],
 inference_instances=["ml.m5.xlarge"],
 response_types=["text/csv"],
 transform_instances=["ml.m5.xlarge"],
 model_data=model_bucket.s3_url_for_object("model.tar.gz")
)

Gautham Ram Rajendiran

https://iaeme.com/Home/journal/JAIML 7 editor@iaeme.com

Step 7: Deploy to Shadow Environment

The Step Function deploys the model to a shadow environment, sending a small percentage of

traffic to the new model while leaving the current production model intact:
shadow_deployment_task = tasks.SageMakerEndpointConfig(
 self, "ShadowDeployment",
 endpoint_config_name="XGBoostShadowEndpointConfig",
 production_variants=[
 tasks.SageMakerEndpointConfig.ProductionVariant(
 model_name="XGBoostModel",
 variant_name="ShadowVariant",
 initial_instance_count=1,
 instance_type="ml.m5.xlarge",
 initial_variant_weight=0.1
)
]
)

Step 8: Monitor and Approve the Model

The data scientist monitors the model using a CloudWatch Dashboard. A sample CloudWatch

alarm for monitoring prediction accuracy:

cloudwatch.Alarm(self, "PredictionAccuracyAlarm",
 metric=cloudwatch.Metric(
 namespace="AWS/SageMaker",
 metric_name="PredictionAccuracy",
 statistic="Average"
),
 threshold=0.95,
 evaluation_periods=5
)

Step 9: Update Production Endpoint

After the model has been validated in the shadow environment, the next step for the data

scientist is to prepare the production deployment. The following steps are performed to deploy

the shadow-verified model into production.

1. Copy the SageMaker Model Package ARN: Once the data scientist approves the

model's performance in the shadow environment, they will copy the ARN (Amazon

Resource Name) of the approved model package from the SageMaker Model Registry.

This ARN uniquely identifies the versioned model that is to be deployed in production.

2. Commit the ARN to the Deployment Package: The data scientist will then update the

deployment package by committing the new model package ARN. The deployment

package contains configuration details, such as the inference endpoint configuration,

which will point to this new version of the model.

A Continuous Integration and Continuous Deployment Framework for Sagemaker Real-Time

Inference

https://iaeme.com/Home/journal/JAIML 8 editor@iaeme.com

Here’s an example of how the data scientist might update the production deployment

configuration:

production-inference-config:

model_package_arn: "arn:aws:sagemaker:us-west-2:123456789012:model-
package/xgboost-model-package/version"

 instance_type: "ml.m5.xlarge"
 initial_instance_count: 2
 variant_name: "ProductionVariant"

3. Update Production Endpoint: Once the deployment package has been updated and

committed to the CodeCommit repository, the CI/CD pipeline is triggered. The pipeline

automatically updates the SageMaker inference endpoint with the new model package

version.

Step 10: Monitor Post-Deployment Performance

The deployment enters a monitoring phase. CloudWatch tracks critical metrics such as latency

and accuracy. If alarms are triggered, the deployment is rolled back automatically.

Step 11: Rollback or Promote

The AWS Code Deployment pipeline can be configured in such a way that a deployment group

or deployment can automatically roll back when a deployment fails or when a monitoring

threshold is met. In this case, the last known good version of an application revision is deployed.

It can also configure automatic rollbacks when the application is created or create or update a

deployment group.

When a new deployment is created, one can also choose to override the automatic rollback

configuration that was specified for the deployment group.

CONCLUSION

This CI/CD framework for SageMaker real-time inference provides a reliable, automated, and

scalable solution for deploying machine learning models in production environments. This

paper demonstrates the use of AWS Code Deploy to automate the deployment of a machine

learning model to production and also shows ways to automate deployment rollbacks in-case

of problems in performance. This method of continuous infrastructure and deployment of

machine learning models was deployed in a large-scale eCommerce organization that had 50+

models running in production, with such a robust pipeline to support a streamlined deployment

process. The aim of this paper is to expose this architecture for other engineers and scientists to

use for a similar cloud-native setup on AWS, and reduce much of the time in starting fresh.

Gautham Ram Rajendiran

https://iaeme.com/Home/journal/JAIML 9 editor@iaeme.com

REFERENCES

[1] "TarBall - Debian Wiki," Debian. [Online]. Available: https://wiki.debian.org/TarBall.

[2] "Using XGBoost with SageMaker — Write an inference script," Amazon SageMaker

Documentation. [Online]. Available:

https://sagemaker.readthedocs.io/en/stable/frameworks/xgboost/using_xgboost.html#

write-an-inference-script.

[3] "SageMaker Python SDK — Model," Amazon SageMaker Documentation. [Online].

Available: https://sagemaker.readthedocs.io/en/stable/api/inference/model.html.

[4] "Model Registry," Amazon SageMaker Documentation. [Online]. Available:

https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html.

[5] "Using a Model Package in SageMaker," Amazon SageMaker Documentation.

[Online]. Available: https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-

mkt-model-pkg-model.html.

[6] "What is Amazon CloudWatch?" Amazon CloudWatch Documentation. [Online].

Available:

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWa

tch.html "AWS CodeCommit — Source Control Service," Amazon Web Services.

[Online]. Available: https://aws.amazon.com/codecommit/.

[7] "AWS CodeDeploy — User Guide," Amazon Web Services. [Online]. Available:

https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html.

Citation: Rajendiran, G. R. (2024). A Continuous Integration and Continuous Deployment Framework for

Sagemaker Real-Time Inference. Journal of Artificial Intelligence and Machine Learning, 3(2), 1–9

Abstract Link:

https://iaeme.com/Home/article_id/JAIML_03_02_001

Article Link:

https://iaeme.com/MasterAdmin/Journal_uploads/JAIML/VOLUME_3_ISSUE_2/JAIML_03_02_001.pdf

Copyright: © 2024 Authors. This is an open-access article distributed under the terms of the Creative Commons

Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

✉ editor@iaeme.com

https://wiki.debian.org/TarBall
https://sagemaker.readthedocs.io/en/stable/frameworks/xgboost/using_xgboost.html#write-an-inference-script
https://sagemaker.readthedocs.io/en/stable/frameworks/xgboost/using_xgboost.html#write-an-inference-script
https://sagemaker.readthedocs.io/en/stable/frameworks/xgboost/using_xgboost.html#write-an-inference-script
https://sagemaker.readthedocs.io/en/stable/api/inference/model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-mkt-model-pkg-model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-mkt-model-pkg-model.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://aws.amazon.com/codecommit/
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html

