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Abstract 

Lifelong learning in autonomous systems demands the ability to acquire new knowledge 
over time without compromising previously learned information—a challenge known as 
catastrophic forgetting. This paper explores dynamic knowledge distillation strategies that 
enable continual learning in neural models deployed in autonomous systems. By leveraging 
teacher-student architectures, selective memory replay, and adaptive regularization, the 
proposed framework ensures knowledge retention and optimal adaptation to new tasks. 
Through comparative evaluations on benchmark datasets, the approach demonstrates 
marked improvements in accuracy and task retention over existing lifelong learning 
techniques. 
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1. Introduction  

Lifelong autonomous systems must dynamically adapt to evolving environments. 

However, traditional neural networks struggle to retain earlier knowledge when exposed to 

new data distributions a phenomenon termed catastrophic forgetting. This problem is 

especially critical for systems such as autonomous vehicles, industrial robots, and 

surveillance agents where prior task retention is vital for safety and functionality. 

This research investigates dynamic knowledge distillation as a strategic solution. 

Unlike static distillation, dynamic approaches adapt to the temporal characteristics of data, 

enabling smoother task transitions. The paper aims to present a distilled learning strategy 
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that reduces memory overhead, ensures performance consistency, and fosters modular task 

adaptability. 

 

2. Literature Review 

Li and Hoiem (2017) introduced Elastic Weight Consolidation (EWC), a regularization-

based technique that penalizes changes to important weights. Rebuffi et al. (2017) proposed 

iCaRL, which uses memory exemplars to retain prior task knowledge. Hinton et al. (2015) 

first introduced knowledge distillation for model compression, which later influenced 

lifelong learning strategies. 

Rusu et al. (2016) developed progressive neural networks for preserving task-specific 

pathways. Shin et al. (2017) applied generative replay to synthesize past task distributions. 

Lomonaco and Maltoni (2019) reviewed continual learning benchmarks and emphasized 

modular architectures. These studies highlight the necessity for scalable, memory-efficient, 

and modular learning systems. 

 

3. System Architecture and Methodology 

      The proposed framework integrates a dynamic teacher-student setup. For every 

new task, a student network is initialized while the teacher is updated to reflect learned 

knowledge. Knowledge distillation loss is dynamically adjusted based on task complexity and 

similarity. 

     The proposed framework is based on a dynamic teacher-student knowledge 

distillation model tailored for continual learning scenarios. In each learning phase, a student 

network acquires new task-specific knowledge, while a teacher network preserves 

previously acquired representations. The distillation controller dynamically adjusts the loss 

weighting between the old and new knowledge, based on task similarity computed using a 

cosine similarity measure on task embeddings. The architecture supports modular 

integration of memory replay and selective sample prioritization to minimize redundancy 
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and maximize representational diversity. This modularity enables seamless transitions 

between tasks with minimal reconfiguration. 

3.2 Key components include: 

• Task Encoder (Rectangle) 

• Distillation Controller (Diamond - Decision: “High Similarity?”) 

• Memory Replay Unit (Custom Shape: Cylinder for Storage) 

• Knowledge Integration Layer (Rectangle) 

The system design includes core functional blocks that are visually represented in a 

structured flow chart. Key components include a Task Encoder (Rectangle) that processes 

incoming task data, a Distillation Controller (Diamond) that decides the blending strategy 

based on task similarity, and a Memory Replay Unit (Cylinder) that retains selected 

exemplars. The Knowledge Integration Layer (Rectangle) combines old and new task 

features for stable updates to the student model. These interconnected modules operate 

asynchronously, enabling task-level parallelism and scalability in autonomous environments 

 

4. Evaluation Metrics and Results 

       To evaluate the effectiveness of the proposed dynamic knowledge distillation 

strategy, we measured three primary metrics: classification accuracy, average forgetting, and 

task retention. Experiments were conducted on standard continual learning benchmarks 

such as Split CIFAR-100 and Permuted MNIST. Our model achieved a higher average retention 

rate and lower forgetting compared to baseline methods including EWC, iCaRL, and GEM. 

Performance consistency was observed across multiple task sequences, indicating the 

robustness of the dynamic distillation controller. The metrics were computed after each task 

increment to assess long-term learning stability. 
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 Table 1: Comparative Accuracy Across Tasks 

Model Task-1 Task-2 Task-3 Avg Retention 

EWC 85.1% 79.4% 74.2% 79.6% 

iCaRL 88.3% 81.7% 76.9% 82.3% 

Proposed Model 91.2% 88.9% 87.1% 89.0% 

 

     A comparative analysis reveals that our method maintains an average accuracy of 

89.0%, outperforming the nearest competitor by nearly 7%. This improvement stems from 

task-adaptive distillation weights and memory-efficient replay mechanisms. A line graph was 

plotted to visualize the drop in accuracy across tasks for competing models, with our 

approach showing minimal decline. Furthermore, a bar chart illustrates average retention 

across methods, highlighting our model’s ability to preserve knowledge across task 

transitions. These empirical results affirm the model's capacity to overcome catastrophic 

forgetting with minimal computational overhead. 

 

 Figure 1: Accuracy vs Task Index 

 

 



 

 

 5  

 

5. Discussion and Analysis 

The dynamic strategy adapts to task transitions and avoids unnecessary overwriting of 

learned features. By using task-specific distillation weights, the framework fine-tunes 

learning without sacrificing old task accuracy. This contrasts with static regularization 

methods that generalize poorly. 

Memory replay, although effective, is often computationally intensive. Our approach 

optimizes this by prioritizing high-informational samples based on entropy. This ensures the 

minimal memory footprint while preserving semantic task context for future inferences. 

 

6. Conclusion and Future Work 

This study presents a dynamic knowledge distillation framework tailored for continual 

learning in autonomous systems. The proposed method mitigates catastrophic forgetting 

and enhances long-term adaptability. The empirical evaluation validates the system's 

efficiency across multiple metrics. 

Future work involves integrating federated learning to enable decentralized continual 

learning, and testing the framework in real-time robotic and UAV-based platforms under 

bandwidth and latency constraints. 
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