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Abstract 

The structural evolution of large-scale complex networks over time reveals critical insights 
into their dynamic behavior and underlying interaction patterns. This study proposes a 
multiscale topological framework to characterize dynamic interaction patterns in evolving 
networks constrained by temporal evolution. By integrating temporal motifs, persistence 
homology, and multiresolution community detection, we demonstrate how topological 
signatures can be used to trace stability, transitions, and hierarchical organization in 
dynamic networks. Experiments on synthetic and real-world datasets—including 
communication and biological networks—highlight the efficiency and scalability of our 
approach. Our findings establish the methodological foundation for temporal-aware 
topological analysis in dynamic complex systems 
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1. Introduction  
The rapid expansion of dynamic network data across domains such as neuroscience, 

sociology, and digital infrastructure calls for robust analytical frameworks capable of 

discerning multiscale patterns under temporal constraints. Unlike static networks, dynamic 

networks are shaped by transient interactions and varying topologies over time, demanding 

analytical tools that can trace persistence, emergence, and decay in structure. 

Existing tools often rely on aggregate or time-sliced views, missing the nuanced 

topological signatures essential to understanding evolving network behavior. Our work 

bridges this gap by leveraging concepts from algebraic topology and multiresolution network 
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analysis to characterize temporal evolution in a granular yet scalable manner. The proposed 

methodology unveils interaction dynamics at different temporal scales, capturing not only 

the persistence of components but also topological transitions like merging and splitting of 

communities. 

 

2. Literature Review 

Early studies on dynamic networks have primarily utilized temporal snapshots or 

aggregation models (Holme & Sarama ki, 2012), limiting their capacity to model continuity 

or temporal causality. The emergence of topological data analysis (TDA) brought a shift, with 

tools like persistent homology enabling the identification of stable features across scales 

(Carlsson, 2009). However, most applications remained limited to static point clouds or 

lacked temporal integration. 

Research by Palla et al. (2007) introduced clique percolation to detect overlapping 

communities in evolving networks, while Rosvall and Bergstrom (2008) emphasized the 

flow-based modular structure. Much of the recent progress before 2020, including works by 

Masuda and Lambiotte (2016), further explored the impact of temporal resolution on the 

reliability of community detection. Yet, their approaches remained limited in topological 

abstraction, often focusing on metric-based evolution. 

 

3. Methodology and Data 

3.1 Objective and Framework Overview 

The core objective is to analyze evolving topological patterns in large-scale networks 

under temporal constraints using multiscale and topological data analysis. The proposed 

workflow includes data acquisition, temporal segmentation, motif extraction, persistent 

homology computation, and topological summarization via community detection. 
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3.2 Data and Tools Used 

Two datasets are used for validation: (1) a synthetic dynamic network generated via 

stochastic block models with controlled evolution; and (2) real-world temporal datasets 

including the Enron email network and human protein interaction networks from the 

BioGRID database. Persistent homology is computed using the GUDHI library, and 

community detection employs the Leiden algorithm adapted for dynamic graphs. 

 

4. Results and Analysis 

4.1 Persistent Topological Features 

Persistent topological features provide a compact and insightful summary of how 

structures in a network evolve and remain stable over time. By applying persistent homology 

to successive temporal slices, we extracted topological invariants—such as connected 

components (0D), loops (1D), and voids (2D)—that persist across varying time windows. 

These features are visualized using barcode diagrams and Betti curves, which capture the 

birth and death times of topological structures. Such persistent patterns highlight critical 

transitions and stable modules that endure despite temporal fluctuations in edge or node 

activity. 

In the synthetic dynamic network, persistent features demonstrated expected 

hierarchical growth and decay of communities. As the stochastic block model evolved, 1D 

features (representing cycles or loops) showed a gradual emergence followed by 

convergence, indicating the formation and consolidation of modular substructures. Notably, 

features with longer persistence were associated with high intra-community density, 

suggesting that persistent topological structures correlate strongly with semantically 

meaningful network motifs. Noise-induced features—typically short-lived—were filtered 

out through a persistence thresholding step. 
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Figure 1: Topological summaries showing persistent features over temporal 

windows. 

Temporal motifs indicate shifts in interaction frequencies, while homology tracks the 

birth-death cycles of key structures. In both datasets, topological noise appears transient, 

whereas significant features persist over multiple windows. 

4.2 Community Structure Across Scales 

Community evolution analysis (Table 2) reveals consistent modular structures that 

evolve gradually, with phase transitions at points of high edge fluctuation. This suggests 

hierarchical organization rather than abrupt shifts. 

Table 1: Temporal Evolution of Community Structures and Topological Persistence 

Time 

Window 

# 

Communities 

Avg 

Modularity 

Topological 

Persistence 

T1 5 0.42 High 

T2 8 0.51 Moderate 

T3 6 0.48 High 

. 
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5. Discussion 

The multiscale framework effectively identifies both persistent and transient patterns 

in network evolution. Unlike conventional metrics that depend on static or discrete 

snapshots, our topological approach captures latent features resilient to noise and temporal 

sparsity. Persistent homology, in particular, provides a compact summary of network 

topology through time, enabling more robust characterization of structural dynamics. 

These findings support the use of algebraic topology as a meta-analytic tool for dynamic 

network analysis, offering interpretable and mathematically grounded insights. The 

framework's scalability also facilitates its application to large-scale and streaming datasets, 

an essential quality for real-world deployments in systems biology, cybersecurity, and social 

analytics. 

 

6. Limitations and Future Work 

While the approach effectively captures temporal topological features, it is sensitive to 

segmentation choices and noise in edge appearance. Selection of time window size directly 

impacts motif density and persistence accuracy. Moreover, biological and social networks 

often contain latent heterogeneities not captured in topological summaries alone. 

Future work will address these by integrating probabilistic temporal models (e.g., 

Hidden Markov Models) with persistent homology and exploring automated window 

optimization. Expanding to edge-labeled or multilayer temporal networks will also extend 

the framework's applicability and representational richness. 

 

7. Conclusion 

This paper presents a multiscale topological characterization framework for dynamic 

interaction patterns in complex networks under temporal constraints. Through persistent 

homology and multiresolution community detection, we reveal structural stability and 

transitions across evolving networks. The methodology enhances our ability to interpret 
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dynamic systems in a mathematically rigorous and scalable manner, opening new pathways 

for topological analysis in time-aware network science. 
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