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Abstract 

The integration of differential privacy (DP) mechanisms into public sector analytics has 
become increasingly critical in the era of high-dimensional data, where privacy preservation 
and analytical utility are often at odds. This paper provides a focused theoretical and 
empirical investigation of the effectiveness of prominent DP algorithms—particularly the 
Laplace and Gaussian mechanisms—within high-dimensional public datasets. We evaluate 
the performance trade-offs across varying privacy budgets and dimensionalities, using real-
world census and health datasets. Our findings highlight that while noise calibration in high-
dimensional settings preserves privacy, it often leads to significant utility degradation, 
necessitating smarter dimensionality reduction and adaptive noise distribution. 
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1. INTRODUCTİON  

Public institutions are increasingly leveraging data-intensive tools to guide evidence-

based policymaking, especially in domains such as health care, social services, and urban 

planning. These datasets often include thousands of attributes, ranging from demographic 

profiles to medical histories. However, such high-dimensional datasets pose severe privacy 

risks, even when conventional de-identification techniques are used. Differential Privacy 

(DP) offers a formalized framework to provide quantifiable privacy guarantees, yet its 

effectiveness in high-dimensional contexts remains an underexplored challenge. 
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The growing size and complexity of public sector datasets necessitate privacy-

preserving algorithms that maintain analytical utility. DP mechanisms inject noise into the 

data or query results, where the trade-off between privacy and utility is governed by a 

tunable privacy budget (ε). High-dimensionality amplifies the effect of noise, resulting in 

increased error and decreased statistical relevance. Thus, our work examines both 

theoretically and empirically how Laplace and Gaussian DP mechanisms perform when 

applied to high-dimensional datasets used in public sector analytics. 

 

2. Literature Review 

2.1 Foundations of Differential Privacy 

Dwork et al. (2006) introduced the concept of differential privacy to offer formal 

guarantees against individual data re-identification. Their foundational work proposed the 

Laplace mechanism, which has since served as a baseline for numerous implementations. 

Building on this, McSherry and Talwar (2007) introduced the exponential mechanism to 

optimize utility under DP constraints. 

In high-dimensional contexts, Chaudhuri et al. (2011) analyzed the effect of DP on 

empirical risk minimization, suggesting that error increases linearly with the dimensionality 

of the data. Similarly, Smith (2011) emphasized the need for adaptive privacy strategies for 

high-dimensional statistics. The works of Hardt and Rothblum (2012) and Bassily et al. 

(2014) explored efficient algorithms under local and global DP assumptions, further 

highlighting the tension between accuracy and privacy. 

2.2 Applications in Public Sector Datasets 

In the context of public data, Machanavajjhala et al. (2008) demonstrated that even 

anonymized census data could be susceptible to linkage attacks, reinforcing the relevance of 

DP. Nissim et al. (2017) evaluated the U.S. Census Bureau’s deployment of differential privacy, 

showing a sharp utility loss in high-resolution geographic data. Recent works such as Abowd 
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(2018) and Wood et al. (2020) underscore the real-world implications of these mechanisms 

in national statistics. 

 

3. Methodology 

3.1 Data Sources and Preprocessing 

We use two primary datasets: the American Community Survey (ACS) 2018 Public Use 

Microdata Sample (PUMS) and the National Health Interview Survey (NHIS) 2019. Each 

dataset contains over 1,200 variables, spanning demographic, geographic, and health 

attributes. We filtered to include only complete records, resulting in a sample size of 50,000 

for each dataset. Variables with more than 10% missing values were excluded, and numerical 

features were normalized. 

Dimensionality reduction techniques such as Principal Component Analysis (PCA) 

were tested to reduce noise amplification without significantly impacting utility. We retained 

95% of variance, resulting in ~150 principal components per dataset. 

3.2 Evaluation Metrics 

To assess privacy-utility trade-offs, we used: 

• Mean Squared Error (MSE) for numeric variable reconstruction. 

• F1-Score for classification tasks (e.g., income prediction). 

• Kullback-Leibler Divergence (KL) to assess distributional distortion. 

• Runtime Efficiency for scalability. 
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4. Differential Privacy Mechanisms Evaluated 

4.1 Laplace Mechanism 

The Laplace mechanism adds noise sampled from a Laplace distribution scaled to the 

global sensitivity of the query. This method is computationally lightweight and supports fast 

deployment. However, in high-dimensional scenarios, noise accumulates across dimensions, 

leading to high MSE and distorted distributions. 

4.2 Gaussian Mechanism 

The Gaussian mechanism, which adds noise from a normal distribution, offers (ε, δ)-

differential privacy and is more robust under composition. Empirical evaluations suggest 

slightly better utility preservation in classification tasks but come at increased 

computational cost due to more complex sensitivity calibration. 

 

Figure 1: MSE vs. Privacy Budget (ε) Across Mechanisms 
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5. Experimental Results 

5.1 Privacy-Utility Trade-off 

Our experiments confirmed that increasing dimensionality while keeping ε fixed leads 

to exponential error growth. At ε = 0.5, MSE rose from 0.02 (50D) to 0.46 (150D) using 

Laplace noise. Gaussian noise showed improved results with MSE peaking at 0.33 for 150D. 

5.2 Computational Overhead 

We measured runtime efficiency across different privacy budgets. Gaussian 

mechanisms had an average runtime increase of 28% over Laplace in high-dimensional data. 

This raises concerns for real-time public analytics deployments. 

Table 2: Experimental Results Summary – Privacy-Utility Trade-off and Runtime 

Comparison 

Dimen-

sionality 

(D) 

Privacy 

Budget (ε) 

Mecha-

nism 

Mean Squared 

Error (MSE) 

Runtime 

(Seconds) 

% Runtime Increase 

(Gaussian vs Laplace) 

50 0.5 Laplace 0.02 1.2 – 

50 0.5 
Gauss-

ian 
0.015 1.5 +25.0% 

100 0.5 Laplace 0.28 2.0 – 

100 0.5 
Gauss-

ian 
0.21 2.6 +30.0% 

150 0.5 Laplace 0.46 3.1 – 

150 0.5 
Gauss-

ian 
0.33 4.0 +29.0% 

 

Interpretation Notes: 

• Laplace vs Gaussian: Gaussian consistently outperforms Laplace in terms of lower 

MSE across all tested dimensions. 
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• Efficiency Trade-off: Gaussian mechanism introduces a ~28–30% runtime overhead 

due to more complex noise calibration. 

• Scalability: Both mechanisms exhibit increased error and runtime with higher 

dimensionality, underscoring the scalability limitations of DP in public sector 

analytics. 

 

6. Limitations and Future Directions 

Although our study offers valuable insights into the behavior of DP in high-dimensional 

settings, several limitations persist. First, real-world public data often exhibit structured 

correlations (e.g., geographic and economic), which can affect sensitivity calibration and 

privacy leakage. Our models assume independent features post-PCA, which may oversimplify 

these dependencies. 

Second, we only tested standard DP mechanisms. Future work should explore newer 

approaches such as Re nyi Differential Privacy and Private Aggregation of Teacher Ensembles 

(PATE), which may better balance privacy and utility in complex domains. Moreover, hybrid 

models combining synthetic data generation with DP constraints remain a promising avenue. 

 

7. Conclusion 

This paper investigated the challenges of applying differential privacy to high-

dimensional public sector datasets. Both Laplace and Gaussian mechanisms exhibit 

diminished utility in such environments, particularly at stricter privacy levels. The Gaussian 

mechanism offers slightly better preservation of statistical features but requires higher 

computational resources. Our results highlight the need for adaptive, context-aware DP 

strategies that incorporate dimensionality reduction and sensitivity-aware noise calibration. 

As public institutions increasingly rely on high-dimensional analytics, refining differential 

privacy mechanisms will be essential to uphold citizen trust and data integrity. 
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