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ABSTRACT 

Thermographic Non-destructive Testing (TNDT) has gained increasing importance 

in various industry fields. It can provide rapid, non-contact, and robust non-invasive 

detection of both surface and internal damage. Artificial Intelligence (AI) is an emerging 

technology that shows increasing potential in almost all fields and has recently 

attracted significant interest in TNDT. Thermal signals from TNDT have relatively low 

signal-noise-ratio (SNR), and most thermal images have the common weakness of edge 

blurring. The abovementioned obstacles lead to high requirements of field expertise and 

subjectivity in TNDT inspections. One of the purposes of developing AI is substituting 

human work more efficiently and objectively. The above mentioned weaknesses in 

TNDT can be overcome with help of AI technologies deep learning. This paper offers a 

review of state-of-art researches on AI deployment in TNDT, discussing the current 

challenges and a roadmap for application expansion. Deep Learning is the most 

commonly used AI technology since it has powerful feature extraction and pattern 

recognition capabilities for imaging processing and computer vision. Most existing 

research adopted Convolutional Neural Network (CNN) models utilizing only spatial 

information in thermal images to detect defects such as U-net, VGG, Yolo, etc. Except 

for defect detection, automated defect depth estimation is another focus in the deep 

learning method. Recurrent Neural Networks (RNNs) such as LSTM and GRUs are 

usually applied for extracting the temporal feature from thermal sequences, which is 

sensitive to defect depth. Furtherly, different deep model variations and integrated 

algorithms are also reviewed, which improves the performance of defect detectability. 

Method followed in way as preparing dataset, building the model, training the model 

and testing the model. 
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INTRODUCTION 

As the main storage device for dangerous chemicals, pressure vessel tanks will directly affect 

the safety of transportation chemicals and hazardous gases. Due to the defects of the inner wall 

steel plate during the manufacturing process, the stress concentration and the long-term fatigue 

load, cracks will occur in the inner wall of the tank. If the crack is not found in time, it will 

become a huge safety hazard, so the crack of the steel plate of the tank car detection is especially 

important. 

Non-destructive testing (NDT) techniques that can inspect specimens without causing any 

damages to the object being tested. Different types of NDT techniques have been developed 

during the past few decades to meet the broad requirements in various fields of modern industry. 

The most typical methods are visual and optical testing, electromagnetic testing, radiographic 

testing, ultrasonic testing, and thermography testing 

The most popular method in thermography testing (also named Thermal Nondestructive 

Testing, TNDT) is Infrared Thermography which adopts infrared rays to conduct the 

inspection. Compared with other techniques such as X-rays, ultrasonic, and eddy current, 

infrared thermography can be applied to much broader materials due to its excellent 

performance for metallic and non-metallic materials, especially for widely used composite 

materials such as Carbon-Fiber-Reinforced Polymer (CFRP) materials. 

However, TNDT process requires lot of expertise to read thermal images associated with 

the manual entry of various parameters to perform the inspection. Though the inspection 

procedure has been adapted to specific applications, the overall process flow of parameter 

selection, experimental setup, data acquisition, data post-processing and analysis with the final 

set of results has not changed over the years  as they are directly dependent on expert knowledge. 

The primary objective of this study is to present suitable deep-learning frameworks that can 

aid in the automatic detection of defects through pulsed thermography for thermal non-

destructive evaluations. These frameworks aim to accurately and efficiently extract and separate 

different types of defects, including less visible cracks, internal defects, and delamination 

structures, even when the data are limited. 

The key contributions of this review is as follows: 1. A comprehensive and systematic 

investigation and comparison of classical deep learning methods were conducted to analyze the 

accuracy and efficiency of defect detection using pulsed thermography. 2. An innovative 

instance segmentation method was introduced to predict the irregular shape of each defect 

instance in thermal images, enabling efficient defect segmentation and identification for each 

defect type across different specimens. 3. Experimental modelinananalysis 

 In recent years, with the rapid development of Artificial Intelligence (AI), some researchers 

deployed Deep learning with TNDT and achieved a highly automated inspection process 

powered by AI.  

In this paper, technology of applying to TNDT are reviewed. It has been observed that 

most studies focused on utilising DL- based approaches to realise automated defects   detection, 

segmentation, or classification, while some of them set foot in defect depth measurement. 

Different types of deep learning models have been developed for this application studies. 

Typical models include Convolutional Neural Network (CNN) 8 based models such as VGG 

network, Unet, SegNet, FCN8, Yolo-v3 and Faster R-CNN, and Recurrent Neural Network 

(RNN) 9 based models like Long Short-Term Memory (LSTM) and Gated Recurrent Units 

(GRUs). CNN-based models are primarily used for defects detection, segmentation, and 

classification in thermal images since their excellent performance in dimensionality reduction 

and image segmentation.  



Prashant Jadhav, Sandeep Thorat, Sachin Pawar, B.K. Patle 

https://iaeme.com/Home/journal/IJTE 3 editor@iaeme.com 

Temporal information of thermal image sequences (cooling curves) is always extracted and 

processed by RNN-based models due to their strong ability in processing time-series 

information. Most studies only applied one of these deep learning models, whereas few 

combined two or more methods. Section 2 to will present three groups of DL methods: 

spatial-oriented methods, temporal-based methods, and integrated methods processing both 

spatial and temporal information. Different deep learning models reviewed in this paper and a 

brief classification and interrelation based on the application scope are shown in Fig.2. 

1. Crack Detection Method  

When thermally excited from one side of the object, the steady state conditions of the object 

are destroyed. At this time, heat is diffused in the horizontal direction and the vertical direction. 

Due to heat transfer, when the heat diffused in the horizontal direction encounters a crack, heat 

is concentrated on one side of the crack, and the temperature difference between the two sides 

of the crack increases. The detection principle is shown in figure 1. 

Thermal excitation Surface temperature field distribution Receiving energy Horizontal heat 

transfer Figure 1. Horizontal heat conduction diagram 

 

 

Fig.1 Horizontal heat conduction diagram 

 

Fig. 2 Spatial-Temporal based classification of different deep learning models 
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2. Spatial Deep Learning Methods 

 Most deep learning methods utilised to detect or classify thermal image defects are 

Convolutional Neural Network (CNN) based. CNN has a superior ability in feature extraction 

and pattern recognition which makes it perform well in thermal images segmentation which has 

been challenging using traditional methods due to thermal data's low Signal Noise Ratio (SNR) 

Yolo detected most defects compared with the other combinations. A Yolo-v3 deep learning 

algorithm was brought forward by Q. Fang et al to realise automatic subsurface defects 

detection in four different materials, Plexiglass, Carbon Fiber Reinforced Polymer (CFRP), 

Glass Fiber-Reinforced Polymer (GFRP) and steel. Optical pulsed thermography was adopted 

in this study for obtaining thermal image sequences. . The training accuracy of the four different 

materials with this supervised learning is 0.9867 for Plexiglass, 0.992 for CFRP, 0.991 for 

GFRP and 0.9935 for steel, respectively. Another noteworthy point from the result is that the 

Probability of Detection (POD) with each bounding box reached an average of 0.99 for different 

materials with this Yolo-v3 model. 

Another research of applying deep learning techniques to identify subsurface defects in 

composite materials was conducted by H. T. Banga et al. . Faster R-CNN was adopted in this 

research due to its fast processing speed compared with Fast R-CNN, R-CNN, and typical CNN 

structures. The majority of Faster R-CNN is similar to Fast R-CNN but with one significant 

difference in identifying proposed regions. Faster R-CNN utilises a separate network to propose 

candidate regions from original feature maps while Fast R-CNN resorts to selective search 

algorithm. The model was trained with a public dataset and was validated by two types of 

manufactured composite specimens (composed of polypropylene and glass fibre with different 

proportions) with various artificial defects. The proposed system was capable of identifying 

defects as well as measuring their size and shape, even for defects with irregular shapes. 

3. Temporal-Based Deep Learning Methods 

The temperature evolution information of the tested specimen can be extracted from time-series 

information of thermal image sequences. The essential information implied in temperature 

evolution curves is the thermal contrast (temperature contrast) between defective and sound 

areas. Thermal contrast can indicate whether a pixel of the specimen belongs to a defective area 

or sound area. Furthermore, the defect depth has a direct relationship to the time when the 

cooling curve has a deviation from the one of sound area. 

LSTM is an updated method based on RNN. David Müller, Udo Netzelmann and Bernd 

Valeske proposed a LSTM-RNN model to estimate defects depth in thermal NDT. In this study, 

raw thermal data and data pre-processed by Thermal Signal Reconstruction (TSR) were chosen 

as two comparative input sources to test their performance in the LSTM-RNN model. The result 

showed that TSR data outperformed raw data in depth measurement in this LSTM model. The 

proposed LSTM-RNN model was also compared with RNN, CNN, and LSTM, respectively, 

and the result suggested its better ability in learning features. 

4. Methods Based on The Combination of Time   Spatial Domain 

Since both spatial and temporal data of thermal sequences can provide helpful information in 

defect identification, shown in Fig. 2, some studies also proposed integrated deep learning 

models to learn both special and temporal information. A neural network was adopted to classify 

specific defects such as oil, water and air in a homogeneous material in the study, FBHs were 

produced in a stainless-steel sample to simulate impurities like air, oil and water 
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A multilayer NN with a feed-forward pattern was applied in this study, the network 

transformed the 3D information of thermal imagesequences (2D for spatial information and 1D 

for temporal information) into 2D data by vectorisation. Then the vectorised data was feed into 

the proposed neural network for defect classification. Raw cooling data of the sample and TSR 

coefficients were chosen as the two types of input. Two different NN models were constructed 

and trained, respectively. The research result showed that both NNs displayed good 

performance in certain types of defects detection with a recall rate of more than 97%. The NN 

using TSR coefficients outperformed the counterpart model using raw data in defect 

classification with an average recall rate of 96% and 89% 

In another study conducted by Q. Luo et al., Pulsed Thermography was chosen as the 

inspection method due to its fast detection. Five image segmentation techniques, including 

UNet, VGG- UNet, SegNet, VGG-SegNet and FCN8 were applied to detect subsurface defects 

in the spatial domain in this study. The comparison of their detection results and performance 

are elaborated. Considering all aspects together, the VGG-UNet model showed the best 

performance in both high- power and low-power OPT platforms, with an average POD value 

of 0.667. In terms of time domain, a 3-layer Long-Short-Term-Memory (LSTM) model was 

adopted to make predictions of transient properties. This model worked well in heat- collecting 

CFPR materials and coating materials, whereas it performed poorly with heat-dissipating CFPR 

materials and R shaped samples. Another technique utilised in this study is cross-network 

learning, which means integrating two different deep learning models. The VGG-U-net model 

proposed in this research is a good illustration of this strategy. U-net cannot learn adequate 

features from a small dataset in relatively complex cases. But with the help of some pre-trained 

weights implanted in the encoder stage which generated from a VGG-16 module, this drawback 

can be tackled. Apart from VGG-UNet, a PCA-VGG-UNet conjoint model was also proposed 

as a cross-network learning method. In this model, Principal Components Algorithm (PCA) 

was utilised to extract principal components from thermal sequences . The extracted temporal- 

spatial features (3-dimensional information) were then converted to a 2-dimensional image 

which can be processed by spatial-oriented models such as VGG-UNet. This spatial-temporal 

conjoint model can be used to detect relatively deeper defects since the information obtained 

from the time domain can help the spatial model achieve a higher detection rate. An integrated 

deep model ConvLSTM2D which combined the CNN method and LSTM to realise defect 

reconstruction, was proposed in the study. The model utilised CNN's strength in processing 

spatial information for defect detection and LSTM's speciality in predicting defect depth by 

analysing time-series information of thermal sequences.  

5. Preparation of Training dataset 

Unlike the normal photographic images, which are always composed of RGB colours including 

three channels: red, green and blue, thermal images only have one channel. To be more specific, 

a thermal image can be regarded as a kind of intensity image representing temperature of each 

pixel. Another difference between photographic images and thermal images is the tonal range. 

Most RGB images are 8bit, which means there are 256 (28) tonal values for each colour channel, 

while thermal images are usually 16-bit which exponentially increases the amount of possible 

tonal values to 65536 (216); this also indicates a higher sensitivity to minor changes in 

temperature. The most meaningful difference between thermal images in NDT and photographic 

images appears when employed in deep learning. Thermal images always come in the form of 

image sequences which can reflect the temperature propagation and decay along time. 

Temperature changes over time contain crucial information for subsurface defects identification 

and defects depth measurement. Therefore, the form of multi-input and single-output for deep 

learning model is used to detect subsurface damages in TNDT. 
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One challenge in applying deep learning models to TNDT is obtaining enough training data 

from real specimens with different defects. AI models need to be fully trained to achieve good 

evaluation performance on the testing data, which usually requires a large dataset containing 

sufficient variants. Data collected from experiments on specimens with artificial defects or real 

defects are intrinsically limited due to high cost and time consumption. There are three main 

approaches to tackle this challenge in current studies: 1. Real data from tested samples and data 

augmentation. 2. Data from simulation. 3. Data from both real samples and simulation or public 

database. In the first scenario, real thermal data collected from inspection of specimens with 

subsurface defects are used for training model and data augmentation such as scaling, rotation 

and flipping are adopted to expand the dataset. The drawback of this method is the lack of 

variaton of defects in real specimens. The second method uses data generated from simulation, 

such as FEM. In this method, no real data and real samples are involved. The main disadvantage 

of this method that the simulated data cannot be identical to real thermal data, which means the 

model performance could be compromised in real cases. The third approach is also called 

"transfer learning". The model is pre-trained using simulated data and then fed real data from 

thermal inspection for the final 

This method may achieve satisfactory performance for specific cases. However, there is 

still a concern that the deep learning model trained with the dataset containing artificial data 

and low correlation data (generic data) may not be robust and reliable enough. To maximize the 

probability of detection, we   independently sampled 4000 thermal images in total from the 

pulsed thermography experiment in three types of materials (plexiglas, carbon fiber-reinforced 

polymer (CFRP), and steel) to build a training and testing database from pulsed thermography 

data. As the images used for training should be the same size, the database was split into 512 × 

640 pixels. 

5.1. Calibration of the Data 

Calibration of the Data The marking process was conducted with the two labelling software 

based on the model type: Colabeler toolkit (YOLO–V3; Faster–RCNN); LabelMe 2.5 toolkit 

(Mask– RCNN; Center–Mask; U-net; Res–U-net). Each representative image file from the four 

types of samples was extracted from the sfmov.format sequence files or matrix raw files. These 

samples created multiple shapes of defects in the database, such as squares and rectangles.In 

the Colabeler toolkit, only one label (square-shape label) was used for all of the different kinds 

of marks. The bounding boxes were prepared by hand for each of the images, then exported to 

a .xml file by Colabeler. Each bounded defect was used as training for the algorithm. The 

process has to be repeated for all images used for training. In the Labelme toolkit, a different 

labeling curve from the procedure will be provided regardless of the shape of the defects for 

segmentation, a labeling curve on each object in the images is then exported to a json.file by 

Labelme to transform into a large scale object segmentation database (COCO). The elaborate 

labeling procedure has been explicitly depicted in Figure 4a–c, providing a comprehensive 

representation of the precise steps involved in the processing of the data. 

5.2. Preprocessing and Data Augmentation 

In the case of the overfitting issue during the training, data augmentation plays a significant 

role. We encourage this model to learn the invariant and transformations by using rotation and 

flipping for the raw images. Since the defects in these materials remain in permanent positions 

and shapes, they lead to a requirement of capturing images in diverse conditions. As known, 

the defect is not clear because of the shaping process and/or the specifications of materials that 

lead to captured images on cluttered background.  
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Figure 4. Processing of labelling. (a) bounding box labelling; (b) circle labelling; (c) 

irregular labelling. images before entering them into a deep-learning network, which is 

important. Partial images for the training are undertaken in a preprocessing stage. We adapted 

the preprocessed sequence images from feature extraction methods, including Principal 

Component Thermography (PCT), which extracts meaningful features by dimension reduction 

and reflects the intuitions of the data. For example, when the data arise from the high 

dimensional form (sparse and unstable estimation), the PCT can give more redundancy to our 

classier to enable them to make a better decision 

6. Methodologies 

Defect Detection Methods by Deep Learning Algorithms As shown in Figure 5 below, three 

main deep-learning feature-extraction methods and their implementation steps were introduced: 

A. Objective localization algorithms: Method 1. Single-stage real-time algorithm-You Only 

Look Once (YOLO-V3), and Method 2. Two-stage real-time algorithm—Faster Region-based 

Convolutional Neural Networks—Faster–RCNN; B. Semantic segmentations: Method 3. U-

net, and Method 4. Res–U-net; C. Instance segmentation: Method 5. Mask–RCNN and Method 

6. Center– Mask; D. Regular thermal segmentation: Method 7. The absolute thermal contrast 

with global threshold. 

 

Figure 5. Three types of deep-learning methods (objective detection; instance segmentation; semantic 

segmentation). 
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6.1. Objective Localization Algorithms Method 1:  

Real-time defect localization (YOLO-V3) YOLO-v3 is a proposed supervised deep-learning 

algorithm that has excellent detection capability both on the large or small objects due to its 

concatenation involving the merging of the features from the earlier layer with the features from 

the deeper layer, especially during the infrared nondestructive evaluation with an automatic 

defect detection task (subsurface defects case). 

Processing images with YOLO v3 is quite fast and simple, allowing defects to be detected and 

localized directly. To perform the feature extraction, residual networks and successive 3 × 3 

and 1 × 1 convolutional layers are localized in YOLO-v3 in Figure 6. The skip-connections 

mechanism was achieved by residual networks through multiple residual units [9,10], which 

was proposed to improve the performance of object detection, and also solve the gradient 

vanishing issue. In this research, the YOLO-v3-based deep architecture neural network is 

proposed to perform the detection of defects (of various sizes). This algorithm includes the 

implementation of three steps. First, the pictures are resized as the input size. Then, an entire 

convolutional network is run on these pictures. Lastly, we threshold the detection results based 

on the model confidence scores. In Figure 7, an example is shown of an original image (a) and 

a detected image (b) from the YOLO-V3 network. The CNN was able to distinguish the 

components, which have a similar thermal pattern with defects during the processing of thermal 

diffusion, which indicated that the supervised learning method (YOLO-V3) is less influenced 

by the boundary information in the components 

 

Figure 6: The architecture of residual units in Yolo-v3.  
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Figure 7. An example of used Method A: (a) the original thermal image; (b) the detected image. 

Method 2  

Faster–RCNN is a real-time detector that achieved satisfying accuracy with several previous 

object localization applications in NDT [31]. In 2018, the Faster–RCNN was used for crack 

detection in an eddy current thermography diagnosis system. The neural network based on a 

deep architecture was proposed to deal with the problem of accurate crack detection and 

localization via the preprocessing unsupervised method (Principal Component Analysis). The 

deep architecture of Faster–RCNN is composed of several modules (Figure 8): 1. A fully 

convolutional network, which included five blocks of basic convolutional layers and a Relu 

layer with a pooling layer to extract feature from the input images. 2. A region proposal network 

(RPN) connected with the fully convolutional network to obtain the region of interest (RPI). 3. 

A Fast–RCNN detector using the feature region extracted in the (1)–(2) to achieve bounding 

box regression and SoftMax classification. The Faster R–CNN trained from multi-properties, 

rather than the regular unsupervised method, was limited with respect to certain properties that 

the defect information contained. An example image detected from Faster–RCNN, as well as a 

corresponding original thermal image, is shown in Figure 9. Figure 8. Faster–RCNN defect 

detection for infrared data. Figure 7. An example of used Method A: (a) the original thermal 

image; (b) the detected image.  

 

Figure 8 Faster–RCNN defect detection for infrared data. 
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Figure 9. An example of Method B: (a) The original thermal image; (b) The Faster–RCNN-detected 

image. 

Semantic Defect Segmentation Method 

Method3-defect-segmentation method with U-net network the U-net is an excellent auto-

encoder format model to handle the training data with dimensionality reduction and data 

augmentation. It is worth evaluating the performance of semantic segmentation by U-net after 

extracting objective features from the temporal infrared sequence. In the previous article, the 

U-net was employed for the segmentation of wildland and forest fires as a deep-fire 

convolutional network obtaining very good performance. The convolutional architecture of U-

net is inspired from the auto-encoder network architecture, as indicated in Figure 10. 

Contracting path maps from the original image to a low dimension vector by extracting 

meaningful feature representations, and the expansive path reconstructs the output of the 

desired feature maps. The contracting path is composed of a group of convolutional blocks: 

convolutional layers; rectified linear unit (ReLU); and max pooling (dimension reduction). The 

expansive path included groups of reconstruction blocks to upsample the feature: up-conv (half-

reduce the feature channels), concatenation with a feature map from cropping in the contracting. 

 

Figure 10. U-net model structure. 
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During the cooling period of the thermal data, a temperature change curve over time is 

obtained on the given image sequence. Therefore, each single thermal frame is fed into this 

model at the pixel level, and the thermal image can gradually capture the physical properties of 

temperature variation by U-net. The input values of U-net are thermal temporal evaluation 

vectors from each pixel. The output label is set either as 1 or 0 corresponding to the defect or 

non-defect region. During the validation stage, an obtained thermal sequence is selected as the 

input data after de-background and normalization. The output is a segmented image 

reconstructed from the predicted value as shown in Figure 11. Figure 11a is the corresponding 

original thermal image. (a) (b) Figure 11. An example of used Method C: (a) the original 

thermal image; (b) the being segmented image. Method 4: Res–U-net for defect semantic 

segmentation It is worth investigating comparatively to evaluate thermal sequence databases 

based on these different defect segmentation methods. As indicated in Figure 1, Res–U-net is 

an adapted novel encoder/decoder structure evolved from U-net in combination with several 

structures: residual connections ; atrous convolutions; pyramid scene Figure 10. U-net model 

structure. In the final layer, the feature vectors are classified into the target number of the class 

by 1 × 1 convolution. Moreover, this architecture relies heavily on data augmentation for its 

performance, which is explained below. The data augmentation strategy from the U-net 

architecture also brings a significant benefit for the performance for the training. Due to the 

characteristics of the spatial-thermal temperature sequence, the infrared thermal profile for the 

defect and non-defect pixels can be distinguished based on the labeling to the force 

implementation of the supervised learning method (U-net segmentation). During the cooling 

period of the thermal data, a temperature change curve over time is obtained on the given image 

sequence. Therefore, each single thermal frame is fed into this model at the pixel level, and the 

thermal image can gradually capture the physical properties of temperature variation by U-net. 

The input values of U-net are thermal temporal evaluation vectors from each pixel. The output 

label is set either as 1 or 0 corresponding to the defect or non-defect region. During the 

validation stage, an obtained thermal sequence is selected as the input data after de-background 

and normalization. The output is a segmented image reconstructed from the predicted   value 

as shown in Figure 11b. Figure 11a is the corresponding original thermal image. 

 

Fig 11 example of used Method C: (a) the original thermal image; (b) the being segmented image.  

Method 4: Res–U-net for defect semantic segmentation It is worth investigating comparatively 

to evaluate thermal sequence databases based on these different defect segmentation methods. 

As indicated in Figure 12, Res–U-net is an adapted novel encoder/decoder structure evolved 

from U-net in combination with several structures: residual connections; atrous convolutions; 

pyramid scene parsing pooling [36]. Res–U-net can infer sequentially the boundary of the 

objects, the distance transforms of the segmentation mask, the segmentation mask, and a 

colored reconstruction of the input. Since residual blocks in Res–U-net can remove vanishing 

and exploding gradients to a great extent to improve the implementation efficacy of the learning 

mode and to achieve the pixel level of the segmenting of defects and classification, Res–U-net 

was compared with other state-of-the-art DL algorithms. The Res–U-net original was 

performed on the monotemporal aerial images for the task of semantic segmentation.: This 

reliable framework can perform semantic segmentation, resulting in high-resolution images.  
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To avoid the overfitting, the Res–U-net relied on the data augmentation strategy as well. 

Each image was rotated to the angle, zoom in/out, flip, and so on to enlarge the datasets of Res–

U-net. In Figure 13, a segmented sample from Res–U-net (b) and the corresponding raw images 

(a) are shown.  

 

Fig 12 Example of used Method C: (a) the original thermal image; (b) the being segmented image 

 

Figure 13. Res–U-net model structue 

 

Figure 13. An example of Method 4: (a) the original thermal image; (b) the segmented image. 

Method 5: MASK–RCNN for defect segmentation The Mask–RCNN detection procedure can 

be considered as either an object detection function or object segmentation function. Compared 

with the semantic segmentation, the instance segmentation associates each pixel of an image 

with an instance label. It can forecast a whole segmentation mask for each of those objects and 

predict which pixels in the input image correspond to each object instance. It also reduces the 

restriction to the position of defects rather than predicting a group of bounding boxes for the 

defects. Mask– RCNN is a classical instance segmentation method extended intuitively from 

Faster–RCN, which is an end-to-end trainable model to achieve pixel-to-pixel alignment 

segmentation between inputs and outputs of a convolutional backbone architecture.  
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ROI Align preserves spatial orientation of features with no loss of data for extraction over 

the entire image of the network. This approach efficiently detects objects in an image while 

simultaneously generating a high-quality segmentation mask for each instance. Each thermal 

image was fed into the backbone convolutional network from Mask–RCNN, once some learned 

region proposal was obtained from the backbone network.  

These features projected learned region proposals onto convolutional feature maps. Mask–

RCNN uses ROI aligning [39] to warp our feature from the convolutional feature map into the 

right shape then outputs it into two different branches. As shown in Figure 14, there are two 

different branches providing an output of predicted results. The top branch (blue line box) is a 

classification score of categories of region proposals and a bounding box for regression of 

coordinates in the output. In addition, at the bottom (red line box), a segmentation mask is 

predicted by the model for each of those region proposals to classify for each pixel in that input 

region proposal whether it is an object. Figure 15 provides an example of an original image 

from pulsed thermography (a) and a segmented image from Mask–RCNN (b). 

Method 6: Central–Mask for defect segmentation Since the Mask–RCNN relies on the pre-

defined anchors, its influence slowed down for the speed and accuracy in detection. Central–

Mask is a simple yet efficient real-time anchor-free instance segmentation. Based on the 

structure, Central–Mask could be regarded as a novel spatial attention-guided mask (SAG–

Mask) branch, adding a free anchor onestage object detector (FCOS) [40]. A segmentation 

mask head is located on each detected box with the spatial attention map that helps to aim 

attention at informative pixels and suppress noise. Figure 16 shows the overview architecture 

of Center–Mask. A feature pyramid extractor combines with the FCOS box head to predict 

classification scores and Sensorbounding box regression. A spatial attention-guided mask 

(SAG–MASK) predicts the segmentation map for the defects based on a spatial attention 

module [41] from each bounding box, which focuses on meaningful pixels and eliminates the 

noised influence. Central–Mask achieves a faster speed and surprising accuracy better than 

other state-ofthe-art instance segmentation approaches (Mask–RCNN). In this work, we 

adapted the Central–Mask network for feature extraction and defect segmentation. The main 

goal is to precisely detect and analyze defect information from the thermal images. The core 

strategy from this network is to extract the meaningful thermal pattern from the sequence for 

each specific defect. Figure 17 shows a raw thermal image (a) and a corresponding segmented 

thermal image (b) from Center–Mask. Each defect is precisely localized and segmented by the 

Mask. Sensors 2023, 23, x FOR PEER REVIEW 16 of 33 Mask–RCNN is a classical instance 

segmentation method extended intuitively from Faster–RCN, which is an end-to-end trainable 

model to achieve pixel-to-pixel alignment segmentation between inputs and outputs of a 

convolutional backbone architecture. ROI Align preserves spatial orientation of features with 

no loss of data for extraction over the entire image of the network. This approach efficiently 

detects objects in an image while simultaneously generating a high-quality segmentation mask 

for each instance. Each thermal image was fed into the backbone convolutional network from 

Mask– RCNN, once some learned region proposal was obtained from the backbone network. 

These features projected learned region proposals onto convolutional feature maps. Mask–

RCNN uses ROI aligning [39] to warp our feature from the convolutional feature map into the 

right shape then outputs it into two different branches. As shown in Figure 14, there are two 

different branches providing an output of predicted results. The top branch (blue line box) is a 

classification score of categories of region proposals and a bounding box for regression of 

coordinates in the output. In addition, at the bottom (red line box), a segmentation mask is 

predicted by the model for each of those region proposals to classify for each pixel in that input 

region proposal whether it is an object. Figure 15 provides an example of an original image 

from pulsed thermography (a) and a segmented image from Mask–RCNN (b). Figure 14. Mask–
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Figure 14. Mask–RCNN processing architecture. 

 

Figure 15. An example of used Method 5: (a) the original thermal image; (b) the detected image. 

 

Figure 16. The structure of Center–Mask 

 

Figure 17. An example of used Method: 6(a) the original thermal image; (b) the detected image. 
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Method 7: Absolute thermal contrast (ATC) with global threshold (GT) In combination with a 

global threshold method (GT), the ATC was adapted for the procedure of segmenting defects 

areas. The vital concept of this method was to compare the grey level of the pixel in the image 

coordinated (x, y) with the average grey level of a sound region of the sample, and it is often 

adapted in infrared image processing. Equation (3) Sensors 2023, 23, 4444 17 of 33 describes 

how this method works: where Tatc is the grey level in the ATC image in the coordinate (x, y) 

of the ATC image. Td (x, y) is the average grey level of the group pixels in the defect region 

and Ts(x, y) is the average temperature of a nearly sound region. Tatc = Td(x, y) − Ts(x, y) (3) 

Figure 18 provides an example of the segmentation with this method: (a) The raw image from 

pulsed thermography; and (b) The corresponding segmented image in Method 7. This method 

made it possible to reduce the effect from non-uniform heating and remove some thermal 

pattern noises. Sensors 2023, 23, x FOR PEER REVIEW 18 of 33 Figure 18 provides an 

example of the segmentation with this method: (a) The raw image from pulsed thermography; 

and (b) The corresponding segmented image in Method 7. This method made it possible to 

reduce the effect from non-uniform heating and remove some thermal pattern noises 

 

Figure 18. An instance of Method 7 applied on the thermal image (a) the original thermal image; (b) 

the detected image. 

7. Evaluation Metrics 

F-score and the probability of detection [45] are introduced to analyze the capability of 

detection of each detection deep-learning model, which is interpreted by Equations (4)–(7). The 

precision means the ratio from the cases contain the defects over the cases that are recognized 

by the system that contains the defects, which represent how accurate the system is in 

identifying the defects. The recall means the system correctly recognized the defects over the 

cases that actually contained the defects. The precision and recall values heavily depend on the 

confidences scores that the system is setting. The F-score is a method to estimate the detection 

and segmentation capability from these algorithms. β is a value to represent the weight between 

the precision and recall value. In this work, the recall is a metric that is more influential in 

evaluating the performance. Therefore, β is equal to 2. The POD reveals the accuracy of the 

method to detect the defects, which are always calculated at a specific confidence score value. 

Although the POD keeps the same mathematical format as the recall in the equation, POD 

represents a further explanation in quantifying research with NDT inspectors. In this work, we 

set the threshold for CTS at 75% for POD metric. Precision = TP TP + FP (4) Recall = TP TP 

+ FN (5) POD = TP TP + FN (CTS = 75%) (6) F score = β 2 + 1 Precision × Recall (β 2 × 

Precision) + Recall (7) where TP is true positive, and FN is the false negative representing the 

number of the defects that have not been detected. Meanwhile, FP is the false positive defect 

representing the defects that are wrongly detected as defects when they are in fact not defects. 

Moreover, the confidence threshold score (CTS) was defined as a standard for measuring the 

accuracy of detecting corresponding objects in each dataset. CTS is a simple measurement 

standard that can be used for any task that yields a prediction range (bounding boxes, segmented 

maps) in the output regarding the ground truth. 
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9. DETECTION RESULTS 

This model provided the shape and location of each defect detection results based on the labeled 

images with ground truth. In Table 3f, the noise of the input image is the main factor affecting 

the segmentation results. As indicated in the U-net result, the segmented image is not clear. The 

segmentation boundary is still blurry. A preprocessed image from principal component analysis 

(PCA) Sensors 2023, 23, 4444 20 of 33 was added in the validation database to verify whether 

the segmentation effect will be better after denoising in the Res–U-net model training. From 

the results, it seems the performance improved to some extent, and the test result of Resnet–U-

net gave a better performance than the original U-net. Table 3. Results with semantic 

segmentation and object localization algorithms. Res–U-Net U-Net Faster–RCNN Yolo-v3 (a) 

Sensors 2023, 23, x FOR PEER REVIEW 22 of 35 seems the performance improved to some 

extent, and the test result of Resnet–U-net gave a better performance than the origin 
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Average frame per second for each deep-learning model. 7. Results Analysis The deep 

segmentation models gave attractive results for the Plexiglass/CFRP/Steel materials defects 

identification evaluation. This project focused on building and fine-tuning the training 

parameters for those defects. To improve the accuracy of the detection model, the way the 

dataset is built has a significant impact. According to the results obtained, the following 

analyses and points of this experiment were concluded below: 1. To implement a robust 

detection model, the databases must include enough samples. One way to effectively improve 

is to increase the size of the dataset by including multiscale images. A database composed of 

images on different scales (larger or smaller), enables the training to be sensitive to those new 

dimensions. This would increase the robustness of the deep segmentation algorithms facing 

larger defects, as well as improve the results on blurry pictures. To help reduce false alarms in 

the algorithm results and be more convenient for the user, implementing different types of labels 

is necessary. In the case of this project, each section was labeled with a defect in the spatial 

segmentation training (Mask–RCNN; U-net; Res–U-net). The proposal is to add different 

classifications. For example, including the name of the shape of the defect: circle, triangle, or 

some false positive cases (lighting spots, scratches) would be beneficial. This would allow the 

algorithm to not detect these shapes as a defect, and, thus, reduce the number of false alarms. 

2. Another critical point in this experiment to be considered is the marking process. In 

comparison to other objective detection methods, Mask–RCNN/Center–Mask especially 

involves a pixel-based marking approach that could mark the defects accurately, as opposed to 

marking a considerable area around each defect. It can rapidly and easily annotate the object 

without the bounding boxes restrictions in most cases. In comparison with an instance-

segmentation method, U-net and Res–U-net are the auto-encoder format DL models that can be 

trained based on each pixel level to semantically segment defect pixels from sound pixels. 

However due to the burden of tackling massive temporal data of thermal frames, U-net and 

Res–U-net have less time efficiency and high time complexity on the thermal data in  

comparison to the instance-segmentation model. Therefore, building and creating more diverse 

and Sensors 2023, 23, 4444 30 of 33 representative training samples is the key point in the 

future work in this research. There are several ways in which the size of the dataset can be 

effectively increased. Through data augmentation involving rotation, horizon flipping, and 

vertical shifts, the deep neural network model could learn the transformations further. By 

having different scales of larger or smaller training images, the learning procedure will be more 

sensitive to those new dimensions. This would also enhance the robustness of the algorithm to 

train for the detection of large defects and improve the results of grayscale images. 3. In 

addition, the specific training gave results for specific defects in the academic samples. In this 

work, training only involved using square, circle, and rectangle defects of plexiglass, CFRP, 

and steel samples. The detection results indicate that similar defects could be detected on other 

types of training samples. However, the results also show that if the learning model is tested on 

other defects that the model did not learn on, it would not be an accurate system to rely on. 

Hence, to use the deep-learning algorithm for training, we should clearly define the type of 

sample we are working on and enlarge the robustness of the system to learn this type of sample 

during the neural network training procedure. In addition, due to the time limitation, we simply 

labeled all the visible defects of each sample in this experiment. However, if we want to extract 

the feature map completely for each defect area, the positioning of less visible defects in 

infrared data will be a significant but challenging issue in further research. 4. A specific 

limitation of the objective localization algorithms is the influence of the labeling process. 

Although fast and efficient to use, the bounding boxes also led to some restrictions in most 

cases. As can be seen, when the circle is present in bounding box, this involves a defect that is 

totally bounded by the box.  
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However, this shows that although the entire defect is contained, the bounding box also 

extracted the non-defect area, which possibly introduces multiple errors and less accuracy in 

the results. The proposal is to make a pixel-based labeling to achieve integrity in the image 

segmentation, which would only label the defects and not a considerable area around each 

defect. This proposition can be further clarified by segmentation methods. The results presented 

here lead to a more reliable defects characterization with pulsed thermography (PT). 5. A good 

defect characterization is essential to not replace parts that could yet be used and to not leave 

critically damaged components without the needed repair. Therefore, these results are 

important, especially, e.g., in the designing of autonomous diagnosis NDT systems, which can 

make decisions regarding the integrity of the inspected part by themselves. In this work, three 

different types of automatic detection, being intelligent techniques, to combine with infrared 

thermography could improve the detection with industrial applications based on each group of 

results in the previous section. The critically damaged components could be easier identified 

and maintained the component that could be used by those algorithms with a high AP rate 

(81.06%). However, the instance segmentation (e.g., Center–Mask) provided the highest 

detection rate associated with vivid segmentation results among three different algorithms to 

provides the better solution of detection capability compared with the conventional thermal 

inspection method in industries. Therefore, it could be able to apply and contribute to current 

industrialized infrared inspection and controlling system. 6. Future work includes: (a) Tests that 

can be performed with the instance segmentation method and other NDT techniques based on 

images like stereography and holography; (b) The best technique, method instance-

segmentation method (Center–Mask), which can still be improved by tuning achieves excellent 

performance, other network architectures must be tested and compared in the future to specify 

the best intelligent tool for defect measurement with infrared images. Sensors 2023, 23, 4444 

31 of 33 8. Conclusions In this work, six spatial deep-learning models, involving instance 

segmentation (Mask– RCNN; Center–Mask), autoencoder format semantic segmentation (U-

net; Res–U-net), and the object localization model (YOLO-V3; Faster–RCNN) are applied for 

defect detection in infrared thermography. The evaluated results and analysis from different 

geometric specimens of plexiglass, CFRP, and steel specimen with different aspect ratios 

(size/depth) are indicated in Section 6. Each POD curve is related to the defect sizes that assess 

the quality of the results to land smoothly in the case of catastrophic failure results. These spatial 

deep-learning models are separately and comparatively discussed in brief. Future work will 

focus on the detection of more complicated structured materials through the modification and 

combination of different spatial and transient deep-learning models.  
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